Numerical Modeling of the Planetary Boundary Layer

Amauri Pereira de Oliveira
apdolive@usp.br

Jacyra Soares
jacyra@usp.br

Hugo A. Karam
hakaram@model.iag.usp.br

Maxsuel M. R. Pereira
maxsuel@model.iag.usp.br

Edson P. Marques Filho
emarques@model.iag.usp.br

Group of Micrometeorology, Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226, 05508.900 - São Paulo, SP, Brazil

Abstract. This work describes the major available techniques to simulate the time and space evolution of the planetary boundary layer. For homogeneous and equilibrium conditions the structure of the planetary boundary layer can be diagnosed from the Monin-Obukhov, Free Convection, Local and Mixed Layer Similarity theories. For the other atmospheric conditions the planetary boundary layer can be numerically simulated using first and second order closure models and large eddy models. The closure models take into consideration the traditional statistical approach. Large eddy simulation models are based on the filtered equations of motion and require statistical approach to estimated subgrid turbulence.

Keywords Numerical Modeling; Large eddy simulation; Convective boundary layer; Dispersion of inert pollutants; Planetary boundary layer

1. Introduction

The Planetary Boundary Layer (PBL) is the region of the atmosphere, adjacent to the surface, where the turbulence is the dominant feature. The intensity of turbulence determines the spatial distribution of thermodynamic and dynamic properties and its vertical extent. Over continental areas, the turbulence in the PBL is maintained by wind shear throughout the day, and it is intensified by thermal convection, during daytime, and restrained by the surface inversion layer, during nighttime. Its vertical extent varies from 300-1500 m, during day, to 100-300 m at night. Over the ocean the thermal effects on the turbulence is much less important and its vertical extent has smaller amplitude compare to the continental areas (Garrat, et al. 1996). Improving the understanding of PBL is important for several human activities: weather forecasting, pollution management, agriculture, etc. The PBL properties can be described by application of numerical and physical modeling. Numerical PBL models are based on numerical solution of the momentum, thermodynamic and mass conservation law (Wyngaard, 1985). Physical modeling of the PBL is accomplished by wind tunnels and convection tank. (Plate, 1999; Cermark 1995; Lu and Arya, 1995; Avissar et al., 1990). In this paper the major techniques used to model numerically the PBL will be reviewed, and some numerical results will be shown.

2. PBL Models

Turbulent flow can be simulated numerically by solving directly the equations of motion discretized over a mesh (She, et al. 1991). The number of grid points required to describe a turbulent flow with characteristic length scale \(l \) is given by \(\left(\frac{l}{\eta} \right)^3 \), where \(\eta \) is the Kolmogorov microscale. It can be shown that the number of grid points is proportional to the Reynolds number \(Re \) of the flow according to the \(\left(\frac{l}{\eta} \right)^3 = Re^{3/4} \). Applying direct numeric simulation (DNS) to simulate the PBL would require, for typical conditions \(l = 1000 \) m and \(\eta = 0.001 \) m about, \(10^{27} \) grid points. This simple result indicates that DNS cannot be applied to simulate PBL.
The turbulent flows can be (and have been) adequately described by statistical methods. The hypothesis is that each dynamic and thermodynamic properties of the flow can be treated as a random variable (Monin and Yaglon, 1971 Frisch, 1995). The concept of ensemble averaged, or Reynolds averaged, is then applied to derive prognostic equations for the statistical properties of the PBL (Stull, 1988).

This work will focus on the BPL mean properties associated to the zonal and meridional components of the wind ($\overline{u}, \overline{v}$) and mean potential temperature ($\overline{\theta}$). The momentum and thermodynamic conservation laws applied to atmosphere can be simplified, considering the air as an ideal gas, resulting to a set of 3 equations as illustrated in Table 1. There symbols $-f/\rho_o \left(\frac{\partial}{\partial x} \overline{p} \right)$ and $-f/\rho_o \left(\frac{\partial}{\partial y} \overline{p} \right)$ indicate the horizontal mean pressure gradient acceleration in the x and y directions, where ρ_o is basic state atmospheric density; $- f \overline{v}$ and $- f \overline{u}$ are the Coriolis acceleration, where f is the Coriolis parameter; $\overline{(u'w')}$ and $\overline{(v'w')}$ are vertical turbulent fluxes of momentum; $\overline{(\theta'w')}$ is the vertical turbulent flux of sensible heat; $- \overline{(1/\rho_o c_p) \partial R_\theta \overline{\theta} \overline{z}}$ is the vertical divergence of the net radiation flux, where c_p is the air specific heat at constant pressure. The thermodynamic equation is commonly expressed in terms of the potential temperature, which is, by definition, the temperature that any air parcel would have if was brought adiabatically to the level pressure of 1000 hPa (p_{00}). It can be estimated by $\overline{\theta} = T \left(\frac{p}{p_{00}} \right) C_p$, where T and p are the temperature and pressure of the air parcel and R_D is the dry air gas constant.

Table 1. The Reynolds averaged momentum and thermodynamic equations used to describe the atmosphere mean state of a horizontally homogeneous PBL.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [\frac{\partial \overline{u}}{\partial t} = - \frac{\partial \overline{(u'w')}}{\partial z} + \left(\frac{1}{\rho_o} \frac{\partial \overline{p}}{\partial x} + f \overline{v} \right)]</td>
<td>\overline{u} and $\overline{(u'w')}$</td>
</tr>
<tr>
<td>2 [\frac{\partial \overline{v}}{\partial t} = - \frac{\partial \overline{(v'w')}}{\partial z} + \left(\frac{1}{\rho_o} \frac{\partial \overline{p}}{\partial y} - f \overline{u} \right)]</td>
<td>\overline{v} and $\overline{(v'w')}$</td>
</tr>
<tr>
<td>3 [\frac{\partial \overline{\theta}}{\partial t} = - \frac{\partial \overline{(\theta'w')}}{\partial z} - \left(\frac{1}{\rho_o c_p} \frac{\partial R_\theta \overline{\theta}}{\partial z} \right)]</td>
<td>$\overline{\theta}$ and $\overline{(\theta'w')}$</td>
</tr>
</tbody>
</table>

The advection terms in equation of motion (Table 1) are dropped because it is assumed that: (i) the PBL is homogeneous in the horizontal directions; (ii) the mean vertical velocity (\overline{w}) is equal zero. The accelerations associated to the horizontal component of pressure gradients, $- f/\rho_o \left(\frac{\partial}{\partial x} \overline{p} \right)$ and $- f/\rho_o \left(\frac{\partial}{\partial y} \overline{p} \right)$, are kept because they represent the external forcing associated to meteorological disturbances in spatial scales larger the ones used to consider the PBL horizontally homogeneous (Stull, 1988). Above the PBL, in the free atmosphere (Fig. 1) the turbulent flux are negligible, and the atmosphere is in geostrophic equilibrium, so that the horizontal wind can be represented very well represented by $u_r = - f/ f \rho_o \left(\frac{\partial}{\partial y} \overline{p} \right)$ and $v_r = f/ f \rho_o \left(\frac{\partial}{\partial x} \overline{p} \right)$, at least in the middle latitudes. Therefore, as the PBL evolves, the geostrophic equilibrium is disrupted by turbulent friction, $- \overline{(u'w')}/\partial z$ and $- \overline{(v'w')}/\partial z$, which decelerates the horizontal components of the mean wind.

The temporal and spatial evolution of the potential temperature in the free atmosphere is given by the radiation cooling or heating. In the PBL, the divergence of turbulent sensible heat, $- \overline{(\theta'w')}/\partial z$, will warm up the lower atmosphere, during daytime, and cool down, during nighttime, as result of the daytime solar heating of the surface and long wave radiational cooling during nighttime, respectively. It should be emphasize that the set of equations in Table 1 implies that the mean flow in the vertical direction is in hydrostatic balance expressed by: $g = - f/ \rho_o \left(\frac{\partial}{\partial z} \overline{p} \right)$, where g is the gravity acceleration. The set of motion equation in Table 1 reflects also the Boussinesq approximation, where the mean flow is non-divergent, $\overline{u}/\partial x + \overline{v}/\partial y + \overline{w}/\partial z = 0$, the equation of state is given by $\overline{p}/\rho_o = - \overline{\theta}/\theta_0$, with θ_0 being the basic state atmospheric potential temperature. The basic state is also assumed to obey the ideal gas law $p_0 = \rho_o R_0 T_0$ (Dutton and Fitchl, 1969, Mahrt, 1986). The resulting set of the equation used to describe the mean state suffers from the closure problem - the number of unknowns is larger than the number of equations (Table 1). To overcome the closure problem four approaches have been developed: (a) similarity laws; (b) bulk model, (c) first and superior order closure schemes and (d) Large eddy simulation models.

2.1. Similarity Laws

The similarity laws are derived from the observational fact that under certain conditions, the turbulence is intense enough to adjust itself to surface and the external forcing changes fast enough so that the statistical properties of the
PBL are of equilibrium. Under this rather frequent condition the PBL properties are self-similar when normalized by appropriated characteristic scales. In the PBL, Monin-Obukhov, Free Convection, Mixed Layer and Local (or Zless) are similarities most celebrated by use (Sorbjan, 1989).

They are known as similarity laws and are based on a set of empirical expressions developed to diagnose statistic properties of the turbulent flow wind velocity \(\sqrt{\langle u'^2 \rangle} \), variances of the wind components \(\sigma_u^2 = \langle u'^2 \rangle \), \(\sigma_v^2 = \langle v'^2 \rangle \), \(\sigma_w^2 = \langle w'^2 \rangle \), variance of potential temperature \(\sigma_\theta^2 = \langle \theta'\theta' \rangle \), co-variances \(\langle uu' \rangle \), \(\langle vv' \rangle \), \(\langle \theta \theta' \rangle \), \(\langle \theta' w' \rangle \), \(\langle \theta' v' \rangle \), \(\langle \theta' u' \rangle \) as well as their spectral and co-spectral distribution in the frequency space.

The Monin-Obukhov and free convection similarities are valid for the surface layer (SL, Fig. 1) and for stability conditions typically observed in this PBL layer. The characteristic scales of wind, temperature and length are respectively, \(u_*, \theta_* \), \(z \) and \(L \) for the Monin-Obukhov and \(u_F, \theta_F \) and \(z \) for free convection (Table 2).

Table 2: Characteristic scales used in the Monin-Obukhov and Free Convection similarity valid for the Atmospheric Surface Layer.

<table>
<thead>
<tr>
<th>Characteristic Scale</th>
<th>Monin-Obukhov</th>
<th>Free Convection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Velocity</td>
<td>(u_* = \sqrt{\langle u'^2 \rangle})</td>
<td>(u_F = \left[\frac{\kappa \langle w \theta' \rangle}{\theta_0} \right])</td>
</tr>
<tr>
<td>Temperature</td>
<td>(\theta_* = -\langle \theta' w' \rangle / u_*)</td>
<td>(\theta_F = \langle \theta' w' \rangle / u_F)</td>
</tr>
<tr>
<td>Length</td>
<td>(L = u_* / \left[\left(\frac{\kappa}{\theta_0} \langle w \theta' \rangle \right) \right])</td>
<td>(z)</td>
</tr>
</tbody>
</table>

Where \(\kappa \) is the von Karman constant. The Monin-Obukhov similarity should be used when the SL turbulence structure is predominantly sustained by mechanical production and thermal production (or destruction) can have an important role. When the mechanical production is no important and the SL turbulence structure is sustained basically by the thermal production, the Free Convection similarity should be used in the SL.

The Mixed Layer and Local similarities are valid for regions of the PBL well above the SL. The Mixed Layer Similarity has successfully been applied to diagnose the vertical variance of wind velocity components and potential temperature in the convective PBL (Hojstrop, 1982). It is a generalization of the Free Convection similarity to regions above of the SL where the characteristic length scale \(z_i \) is given by the height of the convective PBL (Sorbjan, 1989). In the Mixed Layer, the characteristic scales of wind and temperature and length are, respectively, \(w_i, \Theta_i \) and \(z_i \) (Table 3).

Table 3 Characteristic scales used in the Mixed Layer and Local Similarity valid for the Convective and Stable Planetary Boundary layer.

<table>
<thead>
<tr>
<th>Characteristic Scale</th>
<th>Mixed Layer</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Velocity</td>
<td>(w_i = \left[\frac{\kappa \langle w \theta' \rangle}{\theta_0} \right])</td>
<td>(u_E = \sqrt{\langle u'^2 \rangle} + \langle u'^2 \rangle)</td>
</tr>
<tr>
<td>Temperature</td>
<td>(\Theta_i = \langle \theta' w' \rangle / w_i)</td>
<td>(\theta_E = -\langle \theta' w' \rangle / u_E)</td>
</tr>
<tr>
<td>Length</td>
<td>(z_i)</td>
<td>(\Lambda = -u_E / \left[\left(\frac{\kappa}{\theta_0} \langle \theta' w' \rangle \right) \right])</td>
</tr>
</tbody>
</table>

The Local Similarity was developed by Nieuwstadt (1984) and used to PBL under stable conditions (occurring during nighttime over continental areas) when the turbulence is continuous. It can be understood as a generalization of the Monin-Obukhov Similarity to regions above the SL where the characteristic scales of wind, temperature and length – respectively, \(u_E, \theta_E \), and \(\Lambda \) - are estimated in terms of the local values of vertical turbulent fluxes of sensible heat and horizontal wind (Table 3). This particularity confers to the Local Similarity the Z-Less characters (Wyngaard, 1985).

2.2 Bulk Models

The bulk models are based on the integrated version of the motion equations (Table 3) assuming that when the intensity of the vertical turbulent mixing is large the mean properties of the flow are vertically homogeneous in large portion of the PBL. This is typically found over the continental areas and during daytime period. However, intense vertical turbulent mixing can be found during nighttime over continental areas due to large horizontal wind but it is a much less frequent situation.
The closure problem is overcome, in the case of the bulk models, by using the turbulent kinetic energy equation and considering similarity laws for convective case (Deardorff, 1980, Wyngaard, 1989). The bulk model is very easy to implement numerically and admits analytical solution to estimate the height of the convective PBL (Oliveira et al, 1998):

\[h(t) = \sqrt{\frac{1}{5} \int_0^t (\dot{\Theta} \dot{w'})_0 dt} \]

where the symbols used here are described in Figs 1 ans 2. Besides it can be used as tool to understand the behavior of the well mixed PBL.

Figure 1: Schematic description the bulk model thermodynamic structure for convective PBL. The vertical extent of the PBL is indicated by \(h \). The PBL potential temperature in the mixed layer is constant and indicated by \(\bar{\Theta}_M \). The potential temperature at the surface is indicated by \(\bar{\Theta}_0 \). The intensity of temperature inversion at the top of the mixed layer is given by \(\Delta \bar{\theta} = \bar{\theta}(h + \varepsilon / 2) - \bar{\theta}_M \), where \(\varepsilon \) is the depth of the entrainment layer. Above the PBL, the vertical rate of potential temperature variation is indicated by \(\gamma_0 \). The turbulent sensible heat flux vary linearly across the mixed layer from \((\dot{\Theta} \dot{w'})_0 \), in the surface layer, to \((\dot{\Theta} \dot{w'})_i \), in the entrainment layer.

Figure 2: Schematic description the bulk model dynamic structure for convective PBL. The vertical extent of the PBL is indicated by \(h \). The mixed layer horizontal wind components are indicated by \(\bar{u}_M \) and \(\bar{v}_M \). The vertical turbulent fluxes of the components of horizontal wind at the top of the mixed layer are indicated by \((\dot{u} \dot{w'}) \) and \((\dot{v} \dot{w'}) \). The respective wind shear across the entrainment layer are indicated by \(\Delta \bar{u} = \bar{u}_e \left(h + \varepsilon / 2 \right) - \bar{u}_M \) and \(\Delta \bar{v} = \bar{v}_e \left(h + \varepsilon / 2 \right) - \bar{v}_M \).
Table 3: Equations used in the bulk models.

<table>
<thead>
<tr>
<th>Bulk Equation</th>
<th>Unknowns</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\partial \overline{u}}{\partial t} = -\left(\frac{u'u'}{\nu} + f(\overline{u} - \overline{v})\right) + \frac{I}{h}$</td>
<td>\overline{u}</td>
</tr>
<tr>
<td>$\frac{\partial \overline{v}}{\partial t} = -\left(\frac{v'v'}{\nu} + f(\overline{v} - \overline{u})\right)$</td>
<td>\overline{v}</td>
</tr>
<tr>
<td>$\frac{\partial \overline{T}}{\partial t} = -\left(\frac{T'T'}{\nu} + f(\overline{T} - \overline{T})\right)$</td>
<td>\overline{T}</td>
</tr>
</tbody>
</table>

Entrainment Layer Equation

$\frac{\partial \Delta \overline{u}}{\partial t} = \left(\frac{u'u'}{\nu} - \overline{u} \right)$	$\Delta \overline{u}$
$\frac{\partial \Delta \overline{v}}{\partial t} = \left(\frac{v'v'}{\nu} - \overline{v} \right)$	$\Delta \overline{v}$
$\frac{\partial \Delta \overline{T}}{\partial t} = \left(\frac{T'T'}{\nu} - \overline{T} \right)$	$\Delta \overline{T}$

PBL height Equation

| $\frac{\partial \Delta \overline{T}}{\partial t} = \left(\frac{T'T'}{\nu} - \overline{T} \right)$ | h |

<table>
<thead>
<tr>
<th>Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\left(\frac{T'T'}{\nu} \right) = -\left(\frac{u'u'}{\nu} \right) = \left(\frac{v'v'}{\nu} \right)$</td>
</tr>
</tbody>
</table>

2.3 First Order Closure

The first order closure model of the PBL is based on the analogy between turbulent and molecular transports of the property. Therefore, the PBL turbulent fluxes can be written as given in Table 4, where \dot{K}_m and \dot{K}_H are, respectively, the momentum and heat coefficients of turbulent diffusivity in the vertical direction. The number of expressions used to estimate \dot{K}_m and \dot{K}_H in the atmospheric applications is very large (Holt and Raman, 1988) and most of them are based on the mixing length approach. While they have gained a great popularity among the modeling community in the 60’s and yearly 70’s, the first order closure model based on parameterizations of \dot{K}_m and \dot{K}_H in terms of mixing length and mean properties has been progressively substituted by parameterizations taking into consideration the turbulent kinetic energy equation (Table 5).

An example of numerical simulation of PBL vertical structure is given in the figure 3. The vertical profile of potential temperature indicates a mixed layer about 750 m deep and the vertical extent of the PBL can be identified in the vertical profile of turbulent kinetic energy. These results are obtained using the mesoscale model TVM (Martin et al., 2001). The TVM is a three-dimension model which takes into consideration topography and land use of the surface.

2.4 Second Order Closure Model (SOCM)

The second order closure models are based on the set of equations that describe the second order statistical moments for momentum and temperature. The second order closure is carried for four terms: third order statistical momentum (or turbulent fluxes of second order statistical moments); pressure-velocity fluctuations correlation; tendency toward isotropy and molecular dissipation. In general, the parameterization of all these terms requires a particular mixing length. To overcome this problem, Mellor and Yamada (1982) assumed all mixing lengths proportional to the master length scale, where the constants of proportionality are empirically determined from turbulent flows in laboratory. In Table 6 it is described the set of 12 equations and unknowns. In the parameterization used in SOCM, “e” is twice the turbulent kinetic energy; τ_{1M} and τ_{1T} are, respectively, the characteristic time scales for tendency toward isotropy of variance and covariance of momentum and temperature; τ_{PM} and τ_{PT} are, respectively, the characteristic time scales for molecular dissipation of variance of momentum and temperature; K_M and K_T are the coefficients of turbulent diffusion of variance and covariance of momentum and temperature. These scales and coefficients are evaluated in terms of a master length scale. In SOCM the master length, λ, is derived from Blackadar mixing-length expression for neutral conditions where the stability effect is introduced ad hoc by assumptions on the Blackadar expression (Holt and
According to Mellor and Yamada (1982), the determination of master length scale is the major weakness, precluding a more generic application of SOCM.

Table 4: Vertical turbulent fluxes and the closure model based on mixing length (l) approach.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{u}' \bar{w}') = -K_M \frac{\partial \bar{u}}{\partial z})</td>
<td>((\bar{u}' \bar{w}') , K_M)</td>
</tr>
<tr>
<td>((\bar{v}' \bar{w}') = -K_M \frac{\partial \bar{v}}{\partial z})</td>
<td>((\bar{v}' \bar{w}') , K_M)</td>
</tr>
<tr>
<td>((\bar{\theta}' \bar{w}') = -K_H \frac{\partial \bar{\theta}}{\partial z})</td>
<td>((\bar{\theta}' \bar{w}') , K_H)</td>
</tr>
</tbody>
</table>

Closure

\[
K_M = l^2 \left[\left(\frac{\partial \bar{u}}{\partial z} \right)^2 + \left(\frac{\partial \bar{v}}{\partial z} \right)^2 \right]^{1/2} \]

\[
\frac{l}{\kappa} = \frac{l}{\lambda_0} + \frac{l}{\kappa} \]

\[
\lambda_0 = c_0 \left(\left(\frac{\partial \bar{u}}{\partial z} \right)^2 + \left(\frac{\partial \bar{v}}{\partial z} \right)^2 \right)^{1/2} \frac{f}{\bar{u}} \]

\[
c_0 = 2.7 \times 10^{-4} \]

Table 5: Equation of motion using first order closure model coupled to turbulent kinetic energy equation.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial \bar{u}}{\partial t} = \frac{\partial \bar{u}}{\partial z} \left(K_M \frac{\partial \bar{u}}{\partial z} \right) + \frac{-l}{\rho} \frac{\partial \bar{u}}{\partial y} + f \bar{v})</td>
<td>(\bar{u}, K_M)</td>
</tr>
<tr>
<td>(\frac{\partial \bar{v}}{\partial t} = \frac{\partial \bar{v}}{\partial z} \left(K_M \frac{\partial \bar{v}}{\partial z} \right) + \frac{-l}{\rho} \frac{\partial \bar{v}}{\partial x} - f \bar{u})</td>
<td>(\bar{v}, K_M)</td>
</tr>
<tr>
<td>(\frac{\partial \bar{\theta}}{\partial t} = \frac{\partial \bar{\theta}}{\partial z} \left(K_M \frac{\partial \bar{\theta}}{\partial z} \right))</td>
<td>(\bar{\theta}, K_H)</td>
</tr>
</tbody>
</table>

Closure

\[
\frac{\partial \bar{\theta}}{\partial t} = K_M \left[\left(\frac{\partial \bar{u}}{\partial z} \right)^2 + \left(\frac{\partial \bar{v}}{\partial z} \right)^2 \right] - \frac{g}{\Theta_0} K_M \frac{\partial \bar{\theta}}{\partial z} - e_2 \frac{\bar{\theta}}{l_e} + e_1 \frac{\partial \bar{\theta}}{\partial z} \left(K_M \frac{\partial \bar{\theta}}{\partial z} \right) \]

where \(e_1 = 1.2 \), \(e_2 = 0.125 \) and \(l_e \) is the dissipation length scale given by Therry and Lacarrère (1983).

\[
K_M = Pr K_H = c_k l_e \]

\(Pr \) is the turbulent number of Prandtl and \(c_k = 0.4 \).

\[
\frac{l}{l'} = \frac{1}{\kappa (z + z_0)} + \frac{1}{h} \left(\frac{l}{\kappa z} + \frac{C_{el}}{z_i} \right) m_i m_2 + \frac{C_{el}}{l_s}, \text{ where} \]

\[
m_i = \left(l + C_{el} z_i / \kappa z \right)^{-1} \]

\[
m_2 = \left\{ \begin{array}{ll} 0 & L \geq 0 \\ \left(l + C_{el} L / \kappa z \right)^{-1} & L < 0 \end{array} \right. \]

\[
\frac{l}{l'} = \left\{ \begin{array}{ll} 0 & \partial \bar{\theta} / \partial z \leq 0 \\ \left(\frac{g}{\Theta_0} \frac{\partial \bar{\theta}}{\partial z} / \kappa \right)^2 & \partial \bar{\theta} / \partial z > 0 \end{array} \right. \]

The constants \(C_{el} \) are determined experimentally, and the boundary layer height \(z_i \) is defined as the height at which the profile of turbulent energy \(e \) first falls to 10% of its surface value.
Table 6: Set of equations used in the SOCM developed by Mellor and Yamada (1982).

<table>
<thead>
<tr>
<th>Equation</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [\frac{\partial \overline{\rho}}{\partial t} = - \frac{\partial}{\partial z} \left(\overline{u'w'} \right) + \frac{1}{\rho} \frac{\partial}{\partial x} + f \overline{v}]</td>
<td>(\overline{\rho}) and (\left(\overline{u'w'} \right))</td>
</tr>
<tr>
<td>2 [\frac{\partial \overline{v}}{\partial t} = - \frac{\partial}{\partial z} \left(\overline{v'v'} \right) + \frac{1}{\rho} \frac{\partial}{\partial y} - f \overline{u}]</td>
<td>(\overline{v}) and (\left(\overline{v'v'} \right))</td>
</tr>
<tr>
<td>3 [\frac{\partial \overline{\theta}}{\partial t} = - \frac{\partial}{\partial z} \left(\overline{\theta'w'} \right) - \left(\frac{1}{\rho c_p} \frac{\partial R}{\partial z} \right)]</td>
<td>(\overline{\theta}) and (\left(\overline{\theta'w'} \right))</td>
</tr>
<tr>
<td>4 [\frac{\partial (u'v')}{\partial t} = \frac{\partial}{\partial z} \left(K_M \frac{\partial (u'v')}{\partial z} \right) + \frac{3(u'v')e}{\tau_{JM}} + \frac{2e}{3\tau_{DM}} + \frac{-2(uvw')\overline{\theta'}}{\overline{\rho}} + \left(u'v' \right), \left(u'w' \right), \overline{u}, e, K_M, \tau_{DM}]</td>
<td></td>
</tr>
<tr>
<td>5 [\frac{\partial (v'v')}{\partial t} = \frac{\partial}{\partial z} \left(K_M \frac{\partial (v'v')}{\partial z} \right) + \frac{3(v'v')e}{\tau_{DM}} + \frac{2e}{3\tau_{DM}} + \frac{-2(v'w')\overline{\theta'}}{\overline{\rho}} + \left(v'v' \right), \left(v'w' \right), \overline{v}, e, K_M, \tau_{DM}]</td>
<td></td>
</tr>
<tr>
<td>6 [\frac{\partial (w'w')}{\partial t} = \frac{\partial}{\partial z} \left(K_M \frac{\partial (w'w')}{\partial z} \right) + \frac{3(w'w')e}{\tau_{DM}} + \frac{2e}{3\tau_{DM}} + \frac{-2(\overline{\theta'}w')^g}{\overline{\Theta_o}} + \left(w'w' \right), \left(\overline{\theta'}w' \right), e, K_M, \tau_{DM}]</td>
<td></td>
</tr>
<tr>
<td>7 [\frac{\partial (u'u')}{\partial t} = \frac{\partial}{\partial z} \left(K_M \frac{\partial (u'u')}{\partial z} \right) + \frac{-c_{ufy}(u'u')}{\tau_{JM}} + \frac{-2(\overline{\theta'}w')^g}{\overline{\Theta_o}} + \left(u'u' \right), \left(\overline{\theta'}w' \right), e, \left(\overline{\theta'}u' \right), K_M, \tau_{JM}]</td>
<td></td>
</tr>
<tr>
<td>8 [\frac{\partial (v'w')}{\partial t} = \frac{\partial}{\partial z} \left(K_M \frac{\partial (v'w')}{\partial z} \right) + \frac{-c_{ufy}(v'w')}{\tau_{JM}} + \frac{-2(\overline{\theta'}w')^g}{\overline{\Theta_o}} + \left(v'w' \right), \left(\overline{\theta'}w' \right), e, \left(\overline{\theta'}v' \right), K_M, \tau_{JM}]</td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Relevant parameters and expressions used in the second order closure model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>$\left(\frac{1}{K_x} + \frac{1}{\lambda_w} \right)^{-1}$</td>
<td>Master length scale</td>
</tr>
<tr>
<td>λ_w</td>
<td>$0.10 \left(\int_0^b \bar{z} \bar{c} dz / \int_0^b \bar{c}^2 dz \right)$</td>
<td>PBL characteristic length scale</td>
</tr>
<tr>
<td>e</td>
<td>$(u' u') + (v' v') + (w' w')$</td>
<td>Twice turbulent kinetic energy</td>
</tr>
<tr>
<td>τ</td>
<td>$\frac{\lambda_0 \sqrt{e}}{e}$</td>
<td>PBL characteristic time scale</td>
</tr>
<tr>
<td>K</td>
<td>$\frac{\lambda_0 \sqrt{e}}{\rho}$</td>
<td>Turbulent diffusion coefficient</td>
</tr>
<tr>
<td>τ_{u}/τ</td>
<td>16.6</td>
<td>Constant (Mellor and Yamada, 1982)</td>
</tr>
<tr>
<td>τ_{v}/τ</td>
<td>10.1</td>
<td>“ “</td>
</tr>
<tr>
<td>τ_{w}/τ</td>
<td>0.92</td>
<td>“ “</td>
</tr>
<tr>
<td>K_u/K</td>
<td>0.74</td>
<td>“ “</td>
</tr>
<tr>
<td>K_v/K</td>
<td>0.12</td>
<td>“ “</td>
</tr>
<tr>
<td>K_w/K</td>
<td>0.20</td>
<td>“ “</td>
</tr>
</tbody>
</table>

Figure 4: Vertical profile of diffusion coefficient, variance of zonal, meridional and vertical components of the wind velocity. Numerical simulation using SOCM. The results correspond to the 12:00 LT, in the latitude of Ipero, São Paulo, during winter.
2.5 Large Eddy Simulation Model (LES)

In the last 30 years the LES model has been applied to investigate several features of the turbulence in the atmospheric PBL under convective, neutral and stable regimes (Mason, 1994; Lesieur and Métai, 1996). An example of these applications can be seen in Table 8. There one can see that in 90’s the LES reached the extraordinary spatial resolution with numerical simulations using grid size of 2 meters and spatial domains with 10^6 grid points (Andrén, 1995; Su et al., 1998). Deardorff (1972) carried out the first simulations of the convective PBL, using LES, and verified that the convective wind velocity (u_c) and the PBL height (z_c) were the characteristic scales that formed the mixed layer similarity (Section 2.1). In these remarkable simulations, Deardorff carried also out estimates of the turbulent diffusion of atmospheric pollutants by following the trajectories of a set of particles released in the PBL. Later on, his results were extensively used to develop a set of atmospheric dispersion parameters intensively applied in Lagrangian Particle Models (Lamb, 1984).

Table 8: Characteristics of the LES used to simulate PBL turbulence.

<table>
<thead>
<tr>
<th>Author</th>
<th>Number of grid points (x, y, z)</th>
<th>Model Domain (x, y, z) (km3)</th>
<th>Time Step (s)</th>
<th>Total integration time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deardorff (1972)</td>
<td>40,40,20</td>
<td>4 x 4 x 1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deardorff (1974)</td>
<td>40,40,40</td>
<td>5 x 5 x 2</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Moeng (1984)</td>
<td>32,32,40</td>
<td>5 x 5 x 2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Wyngaard and Brost (1984)</td>
<td>40,40,40</td>
<td>5 x 5 x 2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Van Haren and Nieuwstadt (1989)</td>
<td>40,40,40</td>
<td>5 x 5 x 2</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Moeng and Wyngaard (1989)</td>
<td>96,96,96</td>
<td>5 x 5 x 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Moeng and Sullivan (1994)</td>
<td>96,96,96</td>
<td>5 x 5 x 2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Andrén (1995)</td>
<td>96,96,96</td>
<td>0.6 x 0.4 x 0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Su et al. (1998)</td>
<td>96,96,30</td>
<td>0.192 x 0.192 x 0.6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

In the LES models, in order to describe the spatial scales of motion larger than a particular cutoff scale it is necessary to apply a low pass filter to the mass, momentum and energy equations. To explicitly describe only motions with length scales larger than a determined valor δ is convenient to use a low pass filter: $\langle f(x_i, t) \rangle = \int G(x_i - x_i') f(x_i', t) dx_i'$, where f is any variable and G is a filter function, x_i is the coordinate in the i direction and t is time. The resulting momentum and thermodynamic equations are given in Table 9.
Table 9: Equation of motion used in LES models in tensor notation, where \(\delta_{ij} \) is the Kronecker delta and \(\varepsilon_{ij} \) the Levi-Civita tensor. The vector \(\Omega_j \) is the Earth rotation rate and \(\varphi \), and \(\kappa_0 \) are, respectively, the kinematics viscosity and thermal diffusivity of the air. The sub-grid turbulence terms are \(\tau_y \) and \(\tau_w \).

Table 10: Closure expressions used in the LES model.

3. Conclusion

In this paper the major techniques used to model numerically the PBL are reviewed, and some numerical results are shown. The Monin-Obukhov, Free Convection, Mixed Layer Similarities theories can be applied to diagnose the PBL vertical structure under equilibrium conditions. These four similarities laws can be applied to second order statistic moments and their spectral distribution. Prognostic models are classified in four categories: (a) bulk; (b) first order closure; (c) second order closure and (d) large eddy simulation models. The numerical simulation displayed here
indicated that first order closure using turbulent kinetic energy equation is more indicated in most of the meteorological mesoscale models. The second order closure model is now become a reasonable alternative the first order closure. The large eddy simulation models are still considered a research tool, but they unravel important features of the PBL structure that are inaccessible to other numerical techniques of modeling.

4. Acknowledgements

The Authors acknowledge financial support provided by “Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq” and by “Fundação de Amparo à Pesquisa do Estado de São Paulo – Fapesp”.

Figure 6a: The vertical profile of the skewness. Numerical simulation using LES with 80^3 grid points in a domain of 5kmx5kmx2km. Forcing and boundary conditions were set to generate highly convective PBL reaching equilibrium for z/L=-800.

Figure 6b: Contour map of vertical wind velocity in m s^{-1} in a cross section in y=2500 m. Simulation using LES. For convective conditions. After 1000 time steps.

Figure 6c: The contour map of CO concentration (ppm) in a cross section in y=2500 m. Simulation using LES. For convective conditions. After 1000 time steps.

5. References

