The Paleomagnetic Record of the São Francisco-Congo Craton


Manoel S. D’Agrella-Filho
Umberto G. Cordani
Informações Gerais
Título do Livro: 
São Francisco Craton, Eastern Brazil
Ano de Publicação: 
Número de Volumes: 
Página Inicial: 
Página Final: 
Springer International Publishing
São Francisco Craton. Paleomagnetism. Supercontinents
Publicação Internacional
D’Agrella-Filho, M. S., & Cordani, U. G..pdf1.2 MB

This chapter, based on paleomagnetic and geologic-geochronological evidence, discusses the position of the São Francisco craton and other South American and African cratonic blocks within paleo-continents, since the formation of Columbia supercontinent in the Paleoproterozoic up to the fragmentation of Pangea in the Mesozoic. In Paleoproterozoic times, between ca. 2.0 and 1.8 Ga, two large independent landmasses were formed. The first one involved several cratonic blocks that were leading to the formation of Laurentia. Later, Laurentia, proto-Amazonia, West Africa and Baltica amalgamated to form the nucleus of the supercontinent Columbia at about 1.78 Ga. The second landmass encompassed the São Francisco-Congo, Kalahari, Rio de la Plata and Borborema-Trans-Sahara, forming the Central African block. For the São Francisco-Congo and Kalahari cratons, two robust Paleoproterozoic poles are available. One is from the Jequié charnockites of Bahia (São Francisco Craton), and the other from the Limpopo high-grade metamorphics in South Africa (Kalahari Craton). They support the possible link between these two cratonic blocks at ca. 2.0 Ga. Columbia may have remained united until 1.25 Ga, when Baltica and Amazonia/West Africa broke apart. Their paleomagnetic record seems to indicate that both executed clockwise rotations, until they collided with Laurentia along the Grenville belt at ca. 1.0 Ga., culminating with the formation of Rodinia. For the Central African block, however, there are no reliable paleomagnetic poles available between 1.78 and 1.27 MA. Nevertheless, during this time interval, the geological-geochronological evidence indicates that no continental collisional episodes affected the São Francisco-Congo craton, where important intra-plate tectonic episodes occurred. Most probably, this large continental block drifted alone since the end of the Paleoproterozoic and did not take part of Columbia or Rodinia. At the end of the Mesoproterozoic, ca. 1100 MA, the robust Umkondo pole of the Kalahari craton, as part of the Central African block, and the equally robust Keweenawan pole of Laurentia at the center of Rodinia, indicated that these landmasses were very far apart. At that time a large oceanic realm, the Goiás-Pharusian Ocean, was indeed separating Amazonia-West Africa from the Central African block. This ocean closed by a continued subduction process that started at ca. 900 MA and ended in a collisional belt with Himalayan-type mountains at ca. 615 MA, as part of the few continental collisions which formed Gondwana. However, the age of the final convergence is still a matter of debate, because paleomagnetic measurements for the Araras Group, which occurs within the Paraguay belt at the eastern margin of the Amazonian craton, would indicate that a large ocean was still in existence between it and São Francisco craton close to the Ediacaran/Cambrian boundary. Consensus about this matter awaits for further paleomagnetic data. Gondwana collided with Laurasia during the late Paleozoic, at about 300 Ma, originating Pangea, which not much later started splitting apart, near the Permian/Triassic boundary. As part of this present-time plate tectonic regime, the São Francisco Craton (in South America) started separation from the Congo craton (in Africa) in Jurassic times, giving rise of the present-day oceanic lithosphere of the Atlantic Ocean.