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ABSTRACT

Many approaches to magnetic data inversion are based on
assumptions that source magnetization is homogeneous in di-
rection and intensity. Such assumptions rarely can be verified
with independent geologic information and are usually incor-
porated without further inquiry in the next steps of data inter-
pretation. The use of magnetization direction invariants, such
as the gradient intensity of the total field anomaly (equivalent
to the amplitude of the analytical signal [ASA]) and the in-
tensity of the anomalous vector field (IAVF), is effective
for modeling sources with strong remanent magnetization,
usually with unknown direction. Even in such cases, however,
the assumption of uniform magnetization is understood but
unchecked when seeking smooth or compact solutions from
data inversion. We have developed a procedure to test the
assumption of uniform magnetization for 2D sources. For true
2D homogeneous sources, the ratio of ASA to IAVF can be
modeled with a binary solution (0 and 1) regardless of the real
value of the magnetization. A procedure to provide conver-
gence was applied, and its output solution was submitted
to a binary test to verify the uniformity hypothesis. This tech-
nique was illustrated with numerical simulations and then
used to reinterpret a ground magnetic profile across an intru-
sive diabase body in sediments of the Paraná Basin, Brazil,
revealing the existence of two adjacent bodies that are homo-
geneous with different magnetization intensities.

INTRODUCTION

The quantitative interpretation of magnetic data using inversion
procedures is an ill-posed problem (Tikhonov and Arsenin, 1977)
requiring specific regularization procedures to suit solutions with
uniqueness and stability. The introduction of a priori information

based on available geologic data defines a realistic scenario to ob-
tain reliable representations for the subsurface geology. The avail-
able information must be translated as mathematical expressions of
regularizing functionals to be effectively incorporated in the data
inversion (Silva et al., 2001). In many cases, however, the databases
for physical properties and attributes of geologic entities are limited
to outcrops and borehole information, usually lacking sufficient cov-
erage to provide quantitative constraints for the entire geologic struc-
ture. The constraints incorporated in the data inversion then tend to
guarantee the general attributes expected for geologic formations,
usually in terms of smooth variations in physical properties (Barbosa
and Silva, 1994) or compact (minimum volume) distributions (Last
and Kubik, 1983; Portniaguine and Zhdanov, 2002), for example.
For magnetic sources with strong remanent magnetization, the

inversion of the total field anomaly (TFA), which is highly depen-
dent on the magnetization direction, has been substituted by the in-
version of field intensities that are invariant (for 2D sources) with
the magnetization direction (Liu et al., 2013, 2015). For 3D sources,
such intensity fields are not invariant with the magnetization direc-
tion but are less sensitive than TFA (Shearer and Li, 2004; Li et al.,
2010, 2018; Li and Pilkington, 2016), easing the representation of
underlying sources by assuming an arbitrary magnetization direc-
tion. Most popular invariant or less-sensitive intensity fields are the
intensity of the anomalous vector field (IAVF) (Li et al., 2010; Liu
et al., 2013) and the amplitude of the analytical signal (ASA)
(Shearer and Li, 2004; Li and Pilkington, 2016), which is equivalent
to the gradient intensity of the TFA. Inversion of the ASA was in-
troduced by Shearer and Li (2004). Later works point out advan-
tages for the IAVF inversion because of its higher sensitivity to
greater depth when compared with ASA, which is more sensitive
to upper levels (Li et al., 2010; Liu et al., 2013, 2015). Nonlinear
field quantities less sensitive to the magnetization direction have
been proposed to improve source location in gridded data sets (Stav-
rev and Gerovska, 2000; Stavrev, 2006), but they are not incorpo-
rated in formulations based on data inversion.
Another way to overcome the lack of knowledge about the mag-

netization intensity and direction is to invert the ratio between com-
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ponents and field intensities. For uniform sources, the evaluation
of such ratios cancels the magnetization intensity, hence allowing
shape reconstruction and depth estimates without requiring pre-
vious knowledge on the magnetization intensity. The tilt angle tech-
nique (Wijns et al., 2005; Salem et al., 2008; Hidalgo-Gato and
Barbosa, 2015) can be regarded as a successful case of a ratio-based
technique to accurately outline geologic contacts and depth to the
top for contact or thin sheet models. There are few cases in which
ratio quantities are inverted for more complex (polygonal) sources
(Mendonça, 2004; Tuma and Mendonça, 2007).
Another characteristic of inversion methods incorporating invar-

iants is the adoption of sequential or stepped procedures in which
the inversion of the TFA is postponed once a solution from inverting
intensity fields or ratios is provided. The sequential inversion of Liu
et al. (2015) initially inverts IAVF to outline the source geometry,
which is then used as the input to fit the TFA. The stepped inversion
of Tuma and Mendonça (2007) sequentially inverts the shape func-
tion (SF) to determine the geometry of the sources, next to deter-
mine the magnetization intensity with ASA inversion, and finally to
determine the magnetization inclination by fixing previous esti-
mates and fitting the TFA. Low convergence rates in inverting the
SF prevented advance to the next steps, especially for highly hetero-
geneous sources for which no uniform solution exists.
We present a procedure that postpones the inversion of a ratio

quantity to a later stage of a sequential procedure to allow model
convergence and analysis of the obtained solutions. The sources
are represented by a mesh of juxtaposed cells to represent sources
with complex geometry. The test for uniform magnetization is ap-
plied once having a solution fitting the ASA, IAVF, and SF. This
approach reverses the order in which the stepped inversion was ap-
plied and introduces a simple binary constraint to test the uniformity
of the source. Our technique was tested with numerical simulation
and then used to reinterpret a ground magnetic profile already mod-
eled with a set of adjacent vertical prisms (Tuma and Mendonça,
2007).

THEORETICAL ASPECTS

The TFA measured along a profile transverse to a magnetic struc-
ture can be grouped into a data vector f t, the subscript t denoting the
direction t of the local main field. This data vector has entries ft;i,
for readings at positions xi, i ¼ 1∶n. The distribution of magneti-

zation in the substrate can be represented by a mesh withM ¼ nx ×
nz cells (Figure 1) of known size and position but unknown mag-
netization (intensity and direction).
The kth cell of the mesh k ¼ nxðj − 1Þ þ i has magnetization

intensity pk and inclination (projected at the x-z plane) Ik. A uni-
form body has constant pk and Ik values for all cells. We regarded
magnetic models with variable pk, but inclination Ik, k ¼ 1∶M
equal to iM . For igneous bodies, it is not a restrictive assumption
given that the magnetization direction is frozen as the body cools
below the critical temperature. The inclination iM , defined by the
unitary vector m̂, is the angle of the magnetization projected at
the x-z plane. The anomalous vector field can be obtained from
the horizontal fx and vertical fz components as

f t ¼ fx cos ic þ fz sin ic; (1)

where ic is the inclination of the local main field at the x-z plane.
The ith entries in fx and fz can be evaluated from a mesh of pris-
matic bodies as

8<
:

fx;iðp; m̂Þ ¼ P
k¼1∶M

pkfx;i;kðm̂Þ
fz;iðp; m̂Þ ¼ P

k¼1∶M
pkfz;i;kðm̂Þ ; (2)

with fx;i;kðm̂Þ expressing the x-component of the magnetic field
evaluated at the ith profile point caused by the kth cell of the model
with magnetization intensity pk; all cells of the model have the
(unknown) magnetization direction m̂. The IAVF at the ith station is

fiðpÞ ¼ ½fx;iðp; m̂Þ2 þ fx;iðp; m̂Þ2�12; (3)

explicitly suppressing magnetization direction m̂ given that the in-
tensity field fiðpÞ is invariant with the magnetization direction for
2D sources. The IAVF can be evaluated using any direction m̂, for
example, m̂ ¼ t̂. The sensitivity coefficients fx;i;k and fz;i;k can be
stored to evaluate the model’s response to minimize data fitting to
IAVF according to a nonlinear problem. The ASA can be calculated
from x- and z-derivatives applied to TFA as

8>><
>>:

∂ft;iðp;m̂Þ
∂x ¼ P

k¼1∶M
pk

∂ft;i;kðm̂Þ
∂x

∂ft;iðp;m̂Þ
∂z ¼ P

k¼1∶M
pk

∂ft;i;kðm̂Þ
∂z

; (4)

where ft;i;kðm̂Þ is the TFA evaluated from the kth cell of the
model at the ith station of the profile. As in the case of the IAVF,
the ASA is independent of magnetization direction m̂, such that
aiðp; m̂Þ ≡ aiðpÞ, with

aiðpÞ ¼
��

∂ft;iðp; m̂Þ
∂x

�
2

þ
�
∂ft;iðp; m̂Þ

∂z

�
2
�1

2

: (5)

The sensitivity coefficients hxi;k ≡ ∂ft;i;kðm̂Þ∕∂x and hzi;k≡
∂ft;i;kðm̂Þ∕∂z can be evaluated with any m̂ (e.g., m̂ ¼ t̂) and stored
to evaluate equation 4 during iterative procedures allowing nonlin-
ear data fitting to ASA. The SF can be evaluated from IAVF and
ASA (Tuma and Mendonça, 2007) as

Figure 1. Model representation for a 2D magnetic body with uniform
magnetization M ¼ Mm̂: magnetic profile X′–X″ crossing the elon-
gated source, regular mesh withM ¼ nx × nz cells of size dx and dz
(infinite along the y-axis). The cells have unknown magnetization
intensities pk but a constant magnetization direction m̂.
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siðpbÞ ¼
aiðpÞ
fiðpÞ

; (6)

where pb is a binary version of vector p, obtained by keeping the
zeros for cells with magnetization intensity equal to zero and attrib-
uting 1 to cells with non-null entries. This binary property is intrin-
sic to 2D homogeneous sources given that the numerator and
denominator in equation 6 are multiplied by a common factor
(the magnetization intensity), which is canceled when divided. This
allows data fitting to SF, assuming any values for magnetization
direction m̂ and the same magnetization intensity for all cells in
the mesh. The SF depends only on source geometry; thus, it is
termed the “shape function.”
Figure 2 shows the processing flowchart scheme developed to ob-

tain the SF from a set of TFA data. The processing flowchart applies a
sequence of linear transformations in the Fourier domain (Blakely,
1996), available in most potential field processing packages.

Inverse problem

Finding a binary distribution that fits SF data is a difficult task
because of the complexity of the objective functions that are mini-
mized. To make matters worse, a solution exists only for homo-
geneous sources, but when analyzing a real data set no one can be
sure if the observed fields arise from homogeneous sources or not.
To circumvent this problem, we implemented a set of preliminary
solutions fitting ASA-IAVF and then ASA-IAVF-SF according to
the sequential procedure illustrated in Figure 3, postponing the in-
version of SF data under a binary constraint. The existence of a
solution in this later stage of the sequential inversion is indicative
of a source with uniform magnetization (intensity and direction)

even though these parameters are not determined explicitly at this
stage. This can be done by using the binary solution to determine a
scale factor fitting the ASA and/or IAVF, thus estimating the mag-
netization intensity. The magnetization inclination can be deter-
mined by fixing the shape and magnetization intensity while
varying magnetization inclination to fit TFA.
As illustrated in Figure 3, the first step of our proposed sequential

procedure jointly inverts the IAVF data set f01; : : : ; f
0
n and the ASA

data set a01; : : : ; a
0
n by minimizing the objective function φf;aðpÞ:

φf;aðpÞ ¼
1

nRf

X
i¼1∶n

½foi − fiðpÞ�2 þ
1

nRa

X
i¼1∶n

½aoi − aiðpÞ�2

þ μs
M

X
i¼1∶M

p2
i : (7)

The joint minimization of IAVF and ASA enhances the model sen-
sitivity with depth, by incorporating the IAVF sensitivity to deeper
levels with ASA sensitivity to shallower levels (Liu et al., 2013,
2015). The terms Rf and Ra are scaling factors (IAVF and ASA
peak amplitudes) to balance the contributions to each field in the
joint data fitting. The ith entry pi of the M-dimensional vector p
assigns the magnetization intensity for the mesh ith cell. The third
addend in equation 7 implements the zeroth-order Tikhonov regu-
larization (Tikhonov and Arsenin, 1977) with global smoothness

Figure 2. Processing flowchart for the inversion procedure and
homogeneity testing: TFA f t as input and filtering operations in
the Fourier domain with the discrete Fourier transform (DFT).
Processing products to be inverted: ASA a, IAVF f, SF s. Field
intensities a and f are invariant with the magnetization direction;
SF is invariant with the magnetization direction and intensity.

Figure 3. Flowchart for magnetic data inversion and homogeneity
test. Upper block: procedure to obtain a heterogeneous solution, start-
ing with the minimization of φf;a by fitting f and a, to provide sol-
ution p1 that serves as the initial solution to a second stage, where
φf;a;s is minimized. In the second stage, f , a, and s are inverted to find
solution p2. The upper block output (solution p2) is subjected to the
homogeneity test by minimizing φs subject to the binary constraint
BðpiÞ ¼ 0 for each ith entry in p, as in equation 11. A solution p3
such that φsðp3Þ ≈ φsðp2Þ ≤ ε is indicative that the analyzed data set
that can be associated to a model with uniform magnetization (incli-
nation and intensity). In both blocks, random perturbations in tem-
porary solutions are repeated (n iterations or N iterations) to improve
convergence. Random perturbations are applied to the compact sol-
ution p2 when starting a newminimization round after convergence is
not obtained.
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(Barbosa et al., 1997). The positive scalar μs establishes a threshold
between goodness in data fitting and smoothness for the magneti-
zation distribution. The solution p1 minimizing φf;aðpÞ is fed as an
initial solution to minimize

φf;a;sðpÞ ¼
1

nRf

X
i¼1∶n

½foi − fiðpÞ�2 þ
1

nRa

X
i¼1∶n

½aoi − aiðpÞ�2

þ 1

nRs

X
i¼1∶n

½soi − siðpÞ�2 þ
μc
M

X
i¼1∶M

piri; (8)

which in addition to fitting IAVF and ASA also fits SF data
s01; : : : ; s

0
n (Rs as the SF peak amplitude). The fourth term of func-

tional φf;a;sðpÞ weights the model parameters with

ri ¼
pi

p2
i þ α2

; (9)

which suits solutions with compacity (Last and Kubik, 1983;
Barbosa and Silva, 1994; Portniaguine and Zhdanov, 2002). A suf-
ficiently small scalar α prevents division by zero; a positive scalar μc
balances the compacity degree with the data fitting quality. The
minimization of φf;a is usually fast but its output does not neces-
sarily fit φf;a;s, thus the need for a second step to fit SF with the
compacity constraint as in equation 9. The interval constraint 0 ≤
pk ≤ pmax is incorporated to guarantee positivity and an upper
bound pmax according to the magnetization intensity values for
the rocks in the region under study. The minimization of functionals
φf;a and φf;a;s with interval constraints was implemented with the
interior point method (Byrd et al., 1999) as coded in the FMINCON
function of the MATLAB optimization package.

Homogeneity test

Preliminary solutions sequentially minimizing φf;a and φf;a;s pro-
vide a trial solution p3 (as illustrated in Figure 3) that is subject to
the uniformity test. This is done by minimizing

φb
s ðpÞ ¼

1

nRs

X
i¼1∶n

½soi − siðpÞ�2; (10)

subject to the equality constraint BðpiÞ ¼ 0 for i ¼ 1∶n, such
that

BðpiÞ ≡
X
i∶M

ðpi − piriÞ2; (11)

where the term ri is expressed in equation 9. Note that condition
BðpiÞ ¼ 0 for i ¼ 1∶n holds only when the entries in the testing
parameters p assume values of 0 or 1 (supposing that α in equation 9
is set sufficiently small), hence the term “binary solution.” Binary
solutions are described in several papers (Portniaguine and Zhdanov
2002; Krahenbuhl and Li, 2006; Van Zon and Roy-Chowdhury,
2006; Li et al., 2018), usually representing the model parameter
as a product of a binary distribution with a scale factor representing
the magnetization intensity or the density contrast for gravity fields.
In minimizing SF as in equations 10 and 11, no assumption about a
known scaling factor is required. The sequence of mesh cells with 1
and 0 outlines the shape of the true sources without any assumption
about their magnetization intensity and direction.
We can verify if a given 2D magnetic field can be associated with

a body with uniform magnetization, if a binary solution p3 mini-
mizing φb

s (equation 10) provides comparable data fitting as the
solution p2 minimizing φf;a;s (equation 8). In summary, p2 and
p3 must be such that φsðp2Þ ≈ φsðp3Þ ≤ ε, with φs representing
the least-squares measure in fitting SF. Figure 4 illustrates the
solutions p2 and p3 as a set of alternative solutions, similary
allowing SF data fitting below the margin of error defined by ε.
In this figure, two model solutions are represented. The first one
(the star) is the solution p2 associated with a nonuniform magneti-
zation model but fitting ASA, IAVF, and SF. The second solution
(marked with a square) also minimizes φs but is constrained to
achieve only 0 or 1 values (the binary constraint). Figure 4a repre-
sents a binary solution such that φsðp2Þ ≈ φsðp3Þ ≤ ε as expected
when a uniformly magnetized body can be associated with the mod-
eled fields. Alternately, in Figure 4b, the binary solution fits the SF
function with residuals higher than the threshold ε, suggesting that
a binary model must be rejected as a possible solution because it
provides no fitness to the observed data. In addition to parameter
ε to account for the data fitness, one can use the coefficient
R2 ¼ 1 − ½Pn

i¼1ðyi − yi;cÞ2∕
P

n
i¼1ðyi − ŷiÞ2� to compare data

fitting provided by solutions p2 and p3. In this expression, yi and
yi;c are observed and model the evaluated data and ŷi models the
mean of the observed data. The R2 parameter varies within 0 and 1,
with values close to 1 usually identifying an overall data fitting
between the observed and measured data. The parameter ε must
satisfy φsðp2Þ ≈ φsðp3Þ ≤ ε, and, in practice, it can be set as the
data fitness level provided by the stable and compact solution
p2. The use of solution p2 as an initial solution in searching solution
p3 tends to enforce convergence because the compact and binary
solutions share many zeros as a common property.
In essence, the finding of a binary solution such that φsðp3Þ > ε

indicates that no solution with uniform magnetization can be asso-
ciated with the observed data set. Otherwise, the finding of a
solution such that φsðp3Þ ≤ ε indicates that a uniform magnetiza-
tion can be associated with the analyzed data. In the first case
φsðp3Þ > ε, the existence of a uniform distribution must be dis-
carded; in the second case, it can be regarded as a possible repre-
sentation for the underlying sources. The homogeneity test then
consists of verifying the existence of a binary solution p3 using
as the starting point the compact solution p2. The need to use the

Figure 4. Illustration of compact solution p2 (star) and binary solution
(square) p3 as a set of alternative solutions, similary allowing fitness to
SF data below the error margin ε. Schematics for a fictitious model
with two parameters only (p1 and p2). In case (a), a uniformly mag-
netized body can be associated with the modeled fields. In case (b), a
uniformly magnetized body cannot be associated with the modeled
fields because the binary solution does not allow data fitness below ε.
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compact solution p2 as a trial solution intends to enforce conver-
gence in minimizing φb

s ðpÞ to obtain solution p3.

NUMERICAL SIMULATIONS

Numerical simulation tests aim to evaluate the ability of our pro-
posed procedure to delineate the source geometry and determine if
the magnetization condition is uniform or not. In all of the tested
models, synthetic data for IAVF, ASA, and SF were contaminated
with pseudorandom Gaussian noise with zero mean and a standard
deviation of 3% of the respective amplitude values. Two cases were
tested by simulating bodies with the same geometry, but with uni-
form and nonuniform magnetization.

Dipping body models

Models in Figure 5 simulate dipping bodies
with geometry similar to a model tested by Liu
et al. (2015). Model A represents a homogeneous
body with magnetization of 1 Am−1, comprising
seven juxtaposed prisms. Each prism is 50 m in
width; the shallower portion is 150 m deep, and
the deeper one occurs at a depth of 350 m. Model
B has the same geometry, but with its southern
(shallower) portion with a magnetization of
2 Am−1. Model B is then composed by groups
of prisms with the magnetization intensity of 1
and 2 Am−1, thus simulating a model with var-
iable magnetization intensity. The local main
field inclination is 60°, and the declination is 0°.
The subsurface was divided into M ¼ 800 cells
(nx ¼ 40; nz ¼ 20) of size 25 × 25 m. For
model A, the interval constraint was set to
0 ≤ pk ≤ 2 Am−1 and the regularization param-
eters were μs ¼ 1 and μc ¼ 1. For model B, the
interval constraint was set to 0 ≤ pk ≤ 4Am−1

with regularization parameters of μs ¼ 10−3

and μc ¼ 1.
As shown in Figure 5, all of the field quantities

(IAVF, ASA, and SF) for model A were fitted
accordingly by the model obtained from data in-
version. Solution p2 resulted from inverting
IAVF-ASA-SF; solution p3 satisfies the binary
constraint for uniformity. As shown in Figure 6a,
both solutions allowed data fitting with a coeffi-
cient R2 higher than 0.98, thus indicating that the
respective IAVF, ASA, and SF can be regarded as
associated with a uniformly magnetized body.
In a practical situation, because two solutions ex-
plain the same data set, the interpreter should
weigh the available geologic information to ac-
cept one of the models as a more plausible
one. Model B, however, failed the uniformity
test. Its R2 parameter (Figure 6b) dropped from
as high as 0.98 for the unconstrained solution to
as low as 0.59 for the binary solution. This de-
grading of the data fitness represents a solution as
in the schematics shown in Figure 4b, showing
that no solution suited with a binary distribution
was able to represent the measured data set. The

higher magnetized bodies at the southern side of the profile are rec-
ognized by solution p2, which gives a binary solution p3 that is
unable to fit the associated data set below the same error margin.
In summary, the uniformity test is based on how far the data fitness
is degraded when the binary constraint is applied. The reference to
check the data fitness quality is the one provided by solution p2,
which means a stable solution satisfying interval constraints for
physical properties and general attributes of smoothness and com-
pacity expected from geologic entities.

REAL DATA APPLICATION

We applied our technique to interpret a magnetic north–south
profile 4050 m long, acquired in the northeastern border of the

Figure 6. Crossplot of the measured (synthetic data) and evaluated SF from p2 (non-
uniform magnetization) and p3 (binary, uniform magnetization), and the respective R2

parameter. For the uniform body (model A), the R2 coefficient is as good as that for
models p2 and p3. For the variable magnetization body (model B), the data fitness under
the binary constraint (solution p3) degrades and parameter R2 drops from 0.98 to 0.59,
thus recognizing the variation of magnetization in model B.

Figure 5. Numerical simulation with uniform (model A) and nonuniform (model B)
representing dipping geological structures: (a) synthetic noisy data (circles) and data
fitting from models p2 and p3 (lines) to the TFA, (b) IAVF, (c) ASA, and (d) SF.
The magnetization model in (e) is the compact solution p2. The magnetization model
p3 in (f) satisfies the binary constraint.
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Paraná Basin, Brazil. This part of the basin is comprised of Pale-
ozoic sediments intruded by sills and dikes of diabase of the
Cretaceous Serra Geral Formation (Hawkesworth et al., 1992). This
formation comprises flood basalts, sills, and dikes developed in the
early stages of the South Atlantic opening (White and McKenzie,
1989). The magnetic anomaly and IAVF, ASA, and SF were pre-
sented by Tuma andMendonça (2007) when modeling the magnetic
sources with a set of juxtaposed prisms with their tops at the ground
surface and of unknown thickness. This representation is less effec-
tive in mapping the magnetization distribution because uniform do-
mains were assumed from top to bottom. We reinterpreted this data
set using a mesh model of cells capturing magnetization variations
in two directions. The subsurface was divided into M = 156 mesh
cells (nx ¼ 26 × nz ¼ 6) with a size of 162 × 80 m. The interval
constraint was set to 0 ≤ pk ≤ 5 Am−1 with regularization param-
eters of μs ¼ 10−3 and μc ¼ 10−3.
The inverted models are shown in Figure 7. The solution p2 sat-

isfactorily fits fields IAVF, ASA, and SF and represents the mag-
netic structure as two nonconnected magnetic bodies. The inverted
distribution captures the same trends formerly outlined by Tuma
and Mendonça (2007) but suggests that the bodies are disjointed
and packed into two domains.
As shown in Figure 8, the R2 coefficient drops from 0.94 for

solution p2 to 0.26 for solution p3 satisfying the binary constraint,
indicating bodies with variable magnetization. But because two
bodies are outlined, the condition of nonuniform magnetization
could apply to either bodies forming two homogeneous domains
or bodies with internal variations in magnetization intensity. The

first hypothesis can be tested by taking into account the average
magnetization of the two bodies outlined in solution p2.
As shown in Figure 9, the mean values for the southern and

northern bodies are about 2.0� 0.4 and 2.4� 0.8 Am−1, respec-
tively. Next, we evaluated the SF from a model derived from solu-
tion p2 by assigning values equal to 1 for the southern body and
equal to 1.2 for the northern body, thus keeping the proportion
2.4/2.0 for their mean values. This gives the model shown in
Figure 10, providing acceptable data fitting with R2 of 0.86. These
results indicate that the diabase bodies intruding the sediments in
the studied area can be characterized as being comprised of two
uniform entities: one with magnetization 20% higher than the other.
By fitting ASA and IAVF with this “modified binary” model
(i.e., comprised of zeros, 1.0, and 1.2) the magnetization intensity
was estimated as 2.0 and 2.4 Am−1, respectively. The scaling factor
equal to 2.0 was determined by matching the amplitude of the
measured intensity fields with those evaluated from the model with

Figure 7. Real data application with a ground magnetic profile
across intrusive diabase bodies: (a) data fitness to the TFA, (b) fitness
to ASA, (c) fitness to IAVF, and (d) fitness to SF. (e) Solution p2
and (f) solution p3 satisfying the binary constraint. Panel (d) was
intentionally cut off to make clear the data fitness provided by solu-
tion p2 (the blue curve). In the black vertical prisms are the solution
from Tuma and Mendonça (2007).

Figure 8. Crossplot of measured and evaluated SF for solutions p2
and p3.

Figure 9. Histogram of magnetization values for cells covering the
bodies in the northern and southern portions of the profile: the
southern body with a mean value of 2.0� 0.4 Am−1; the northern
body with a mean value of 2.4� 0.8 Am−1.
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nonzero terms equal to 1.0 or 1.2. Fitting to the magnetic anomaly
was accomplished by setting a magnetization inclination of−50° for
the two bodies, as inferred by Tuma and Mendonça (2007). In shar-
ing magnetization inclination, the two bodies can be regarded as
emplaced when the geomagnetic field was at the normal position
but in higher magnetic latitude because the inclination of the present
field is −30°.

CONCLUSION

We have developed a sequential procedure that facilitates the
convergence of the nonlinear inversion of a ratioed quantity involv-
ing field intensities and developed a procedure to verify if the
assumption about homogeneous magnetization holds. The hetero-
geneous magnetization model is recovered by minimizing quan-
tities invariant with the magnetization direction (IAVF and ASA).
These quantities, in addition to SF, are invariant with the mag-
netization intensity. The model was subjected to a uniformity test
looking for a solution of zeros and ones that minimizes the SF.
Degrading of data fitting under the binary constraint is indicative
of heterogeneously magnetized bodies. A solution, otherwise satis-
fying the binary condition, identifies a homogeneously magnetized
source. The geometry of the source is outlined by the binary solu-
tion and, by sequentially fitting the intensity fields (ASA, IAVF)
and the TFA, the magnetization intensity and direction are deter-
mined. This procedure, when applied to a ground magnetic anomaly
along a profile crossing an intrusive body of diabase, revealed the
existence of two disjointed but homogeneous bodies, one of them
with a magnetization 20% higher than the other, both entities with
the same magnetization direction. We stress the importance of such
findings in characterizing an igneous body under a sequential in-
verse approach and the application of the uniformity test to better
outline structures and physical properties of underlying magnetic
bodies. The homogeneity test can be applied only for 2D magnetic
anomalies for which the related intensity fields are invariant with
the magnetization direction.

ACKNOWLEDGMENTS

Inputs from E. Gasperikova and three anonymous reviewers sub-
stantially improved this contribution. This study was financed in
part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) (Finance Code 001).

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be
obtained by contacting the corresponding author.

REFERENCES

Barbosa, V. C. F., and J. B. C. Silva, 1994, Generalized compact gravity
inversion: Geophysics, 59, 57–68, doi: 10.1190/1.1443534.

Barbosa, V. C. F., J. B. C. Silva, andW. E. Medeiros, 1997, Gravity inversion
of basement relief using approximate equality constraints on depths: Geo-
physics, 62, 1745–1757, doi: 10.1190/1.1444275.

Blakely, R. J., 1996, Potential theory in gravity and magnetic applications:
Cambridge University Press.

Byrd, R. H., M. E. Hribar, and J. Nocedal, 1999, An interior point algorithm
for large-scale nonlinear programming: SIAM Journal on Optimization, 9,
877–900, doi: 10.1137/S1052623497325107.

Hawkesworth, C., K. Gallagher, S. Kelly, M. S. Mantovani, D. Peate, M.
Regelous, and N. Rogers, 1992, Paraná magmatism and the opening
of the south Atlantic: Geological Society, London, Special Publications,
68, 221–240, doi: 10.1144/GSL.SP.1992.068.01.14.

Hidalgo-Gato, M. C., and V. C. F. Barbosa, 2015, Edge detection of poten-
tial-field sources using scale-spacemonogenic signal: Fundamental prin-
ciples: Geophysics, 80, no. 5, J27–J36, doi: 10.1190/geo2015-0025.1.

Krahenbuhl, R. A., and Y. Li, 2006, Inversion of gravity data using a binary
formulation: Geophysical Journal International, 167, 543–556, doi: 10
.1111/j.1365-246X.2006.03179.x.

Last, B. J., and K. Kubik, 1983, Compact gravity inversion: Geophysics, 48,
713–721, doi: 10.1190/1.1441501.

Li, X., and M. Pilkington, 2016, Attributes of the magnetic field, analytic
signal, and monogenic signal for gravity and magnetic interpretation:
Geophysics, 81, no. 6, J79–J86, doi: 10.1190/geo2015-0697.1.

Li, Y., S. Shearer, M. Haney, and N. Dannemiller, 2010, Comprehensive
approaches to 3D inversion of magnetic data affected by remanent mag-
netization: Geophysics, 75, no. 1, L1–L11, doi: 10.1190/1.3294766.

Li, Z., C. Yao, Y. Zheng, J. Wang, and Y. Zhang, 2018, 3D magnetic sparse
inversion using an interior point method: Geophysics, 83, no. 3, J15–J32,
doi: 10.1190/geo2016-0652.1.

Liu, S., X. Hu, T. Liu, J. Feng, W. Gao, and L. Qiu, 2013, Magnetization
vector imaging for bore hole magnetic data based on magnitude magnetic
anomaly: Geophysics, 78, no. 6, D429–D444, doi: 10.1190/geo2012-0454.1.

Liu, S., X. Hu, Y. Xi, T. Liu, and S. Xu, 2015, 2D sequential inversion of
total magnitude and total magnetic anomaly data affected by remanent mag-
netization: Geophysics, 80, no. 3, K1–K12, doi: 10.1190/geo2014-0019.1.

Mendonça, C. A., 2004, Inversion of gravity-field inclination to map the
basement relief of sedimentary basins: Geophysics, 69, 1240–1251,
doi: 10.1190/1.1801940.

Portniaguine, O., and M. S. Zhdanov, 2002, 3-D magnetic inversion with
data compression and image focusing: Geophysics, 67, 1532–1541,
doi: 10.1190/1.1512749.

Salem, A., S. Williams, D. Fairhead, R. Smith, and D. Ravat, 2008, Inter-
pretation of magnetic data using tilt-angle derivatives: Geophysics, 73,
no. 1, L1–L10, doi: 10.1190/1.2799992.

Shearer, S., and Y. Li, 2004, 3D Inversion of magnetic total gradient data in
the presence of remanent magnetization: 74th Annual International Meet-
ing, SEG, Expanded Abstracts, 774–777, doi: 10.1190/1.1851318.

Silva, J. B. C., W. E. Medeiros, and V. C. F. Barbosa, 2001, Potential-field
inversion: Choosing the appropriate technique to solve a geologic prob-
lem: Geophysics, 66, 511–520, doi: 10.1190/1.1444941.

Stavrev, P., 2006, Inversion of elongated magnetic anomalies using magni-
tude transforms: Geophysical Prospecting, 54, 153–166, doi: 10.1111/j
.1365-2478.2006.00528.x.

Stavrev, P., and D. Gerovska, 2000, Magnetic field transforms with low sen-
sitivity to the direction of source magnetization and high centricity: Geo-
physical Prospecting, 48, 317–340, doi: 10.1046/j.1365-2478.2000.00188.x.

Tikhonov, A. N., and V. Y. Arsenin, 1977, Solutions of ill-posed problems:
W. H. Winston & Sons.

Tuma, S. L., and C. A. Mendonca, 2007, Stepped inversion of magnetic data:
Geophysics, 72, no. 3, L21–L30, doi: 10.1190/1.2711661.

Van Zon, T., and K. Roy-Chowdhury, 2006, Structural inversion of gravity
data using linear programming: Geophysics, 71, no. 3, J41–J50, doi: 10
.1190/1.2197491.

White, R., and D. McKenzie, 1989, Magmatism at rift zones: The generation
of volcanic continental margins and flood basalts: Journal of Geophysical
Research, 94, 7685–7729, doi: 10.1029/JB094iB06p07685.

Wijns, C., C. Perez, and P. Kowalczyk, 2005, Theta map: Edge detection in
magnetic data: Geophysics, 70, no. 4, L39–L43, doi: 10.1190/1.1988184.

Biographies and photographs of the authors are not available.

Figure 10. Model with approximated binary solution with values
equal to 1.0 (the southern body) and 1.2 (the northern body), and
the corresponding SF fitting curve (the line in red) to observed data
(the circles).
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