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Ground Penetrating Radar (GPR) method is important 
near-surface surveys. Obtaining information of frequency and amplitude increases strongly the 
possibility of performing a better stratigraphical characterization. The spectral recomposition is an 
efficient meth
Since many wavelets observed in seismic records are similar to the ones observed in GPR data, it is 
possible to recompose the GPR signal spectrum using the same proposition.
propose to apply, for a GPR signal, an adapted version of the spectral recomposition approach, aiming 
to obtain, through an inversion procedure, frequency and amplitude information in a more efficient 
manner. Since the peak frequencies 
comparison to the seismic signal, it is possible to recover frequency and amplitude information in a 
more accurate manner.
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INTRODUCTION  
 
Frequency-domain information can provide a better resolution 
concerning the geological characterization; and knowing each 
set of frequencies and amplitudes which composes a spectrum 
can improve the modelling for near-surface analysis 
Ground Penetrating Radar (GPR) is commonly used in near
surface surveys, and is based on the using of electromagnetic 
radiation in a high frequency in the order of radio/microwave 
frequencies (1, 2, 10, 12, 28). Since the range of frequencies 
and the peak frequencies used in GPR surveys are, 
respectively, broader and higher, in comparison to seismic, this 
electromagnetic method is for efficient to be used for near
surface targets; however, due to the similarities of the seismic 
and GPR methods during some steps of the data processing 
9, 11, 14), some techniques used in seismic processing can be 
adapted for GPR processing. For years, the spectral 
decomposition technique was studied and applied for 
stratigraphic characterization in seismic data processin
many cases, for instance, such as, time-frequency analysis,
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ABSTRACT 

Ground Penetrating Radar (GPR) method is important to perform the structural characterization in 
surface surveys. Obtaining information of frequency and amplitude increases strongly the 

possibility of performing a better stratigraphical characterization. The spectral recomposition is an 
efficient method to recover wave parameters information in near
Since many wavelets observed in seismic records are similar to the ones observed in GPR data, it is 
possible to recompose the GPR signal spectrum using the same proposition.
propose to apply, for a GPR signal, an adapted version of the spectral recomposition approach, aiming 
to obtain, through an inversion procedure, frequency and amplitude information in a more efficient 
manner. Since the peak frequencies observed in GPR signal are more singular and higher, in 
comparison to the seismic signal, it is possible to recover frequency and amplitude information in a 
more accurate manner. 
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domain information can provide a better resolution 
concerning the geological characterization; and knowing each 
set of frequencies and amplitudes which composes a spectrum 

surface analysis (6, 20). 
Ground Penetrating Radar (GPR) is commonly used in near-
surface surveys, and is based on the using of electromagnetic 
radiation in a high frequency in the order of radio/microwave 

. Since the range of frequencies 
k frequencies used in GPR surveys are, 

respectively, broader and higher, in comparison to seismic, this 
electromagnetic method is for efficient to be used for near-
surface targets; however, due to the similarities of the seismic 

steps of the data processing (5, 
, some techniques used in seismic processing can be 

For years, the spectral 
decomposition technique was studied and applied for 
stratigraphic characterization in seismic data processing for 

frequency analysis, 

 
 
 
 
short-time Fourier transform, and time
decomposition (7, 8, 13, 21, 22, 24
the frequencies of the spectra by time
Tomasso et al. (27) proposed an approach which is able to 
recompose the single frequencies into a multi
model. This method is based on describing the seismic 
spectrum as a sum of different Ricker wavelet 
components. The limitation of this method resides in the 
necessity of picking manually each pair of amplitudes and 
peak frequencies. However, Cai et al. 
the linear part and the nonlinear part of the Ricker wavelet 
spectrum in an automated manner; with the nonlinear part 
estimation based on using separable nonlinear Least Squares 
estimation, which estimates automatically both parts of the 
spectrum (15). This approach provides an accurate estimation 
of the amplitudes and peak frequen
wavelets. Once the GPR signal commonly behaves as Ricker 
and/or semi-Gaussian wavelets, the described method of 
spectral recomposition could be an efficient way to obtain 
frequency and amplitude information.
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to perform the structural characterization in 
surface surveys. Obtaining information of frequency and amplitude increases strongly the 

possibility of performing a better stratigraphical characterization. The spectral recomposition is an 
od to recover wave parameters information in near-surface seismic data processing. 

Since many wavelets observed in seismic records are similar to the ones observed in GPR data, it is 
possible to recompose the GPR signal spectrum using the same proposition.For this reason, we 
propose to apply, for a GPR signal, an adapted version of the spectral recomposition approach, aiming 
to obtain, through an inversion procedure, frequency and amplitude information in a more efficient 

observed in GPR signal are more singular and higher, in 
comparison to the seismic signal, it is possible to recover frequency and amplitude information in a 
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time Fourier transform, and time-domain spectral 
7, 8, 13, 21, 22, 24). Instead of decomposing 

the frequencies of the spectra by time-domain analysis; 
proposed an approach which is able to 

recompose the single frequencies into a multi-frequencies 
model. This method is based on describing the seismic 
spectrum as a sum of different Ricker wavelet (25) 
components. The limitation of this method resides in the 
necessity of picking manually each pair of amplitudes and 
peak frequencies. However, Cai et al. (4) proposed to estimate 
the linear part and the nonlinear part of the Ricker wavelet 

utomated manner; with the nonlinear part 
estimation based on using separable nonlinear Least Squares 
estimation, which estimates automatically both parts of the 

. This approach provides an accurate estimation 
of the amplitudes and peak frequencies of multiple Ricker 

Once the GPR signal commonly behaves as Ricker 
Gaussian wavelets, the described method of 

spectral recomposition could be an efficient way to obtain 
frequency and amplitude information. 
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This idea is strengthened once it is assumed that the peak 
frequency of a GPR signal is better defined — presenting a 
single peak frequency —, and presents higher frequencies, in 
comparison to the seismic signal. For this reason, the approach 
we propose is very desirable for GPR signals. 
 

METHOD 
 
Relation between GPR and seismic methods: GPR and the 
seismic methods present similarities between them, excepting 
for the use of electromagnetic energy rather than the acoustic 
energy. For this reason, the interfaces between two layers with 
different physical properties can appear in different positions 
in each method, since the observed boundaries are dependent 
of the electrical properties and not dependent of the 
mechanical properties (5, 28).As there is a close relation 
between seismic and GPR methods, and many techniques 
usually used in seismic can be adapted and applied to be used 
on GPR data processing (5).An important comparison between 
both methods is that the acquisition array of the seismic 
method is usually in function of the source with many 
receivers in different and periodic distances, providing an 
event which tends to a hyperbola (21, 22). On the other hand, 
the GPR presents one source and one receiver with the same 
offset, which provides a straight event (10, 14). Despite that, 
there are many GPR acquisition arrays similar to seismic 
surveys, which requires, during the processing, techniques 
used in seismic data processing, such as, for instance, NMO 
correction, Kirchoff migration and stacking (3, 11, 26). For 
this reason, the technique of spectral recomposition (27) has 
potential to be used for GPR processing (32). 
 
Ricker and semi-Gaussian wavelets: One of the main 
differences between GPR and seismic signals are concerning 
the wavelet. In the seismic signal, the phase, usually, tends to 
be zero and usually changing this characteristic when it goes 
through a phase shift due to a critical reflection; and, in this 
case, the main shape observed is the Ricker wavelet (16, 29) 
— the second derivative of the Gaussian function. The Ricker 
wavelet (Ricker, 1953) can be described as 
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where  is the wavelength and  is the dominant 
wavelength.After the critical point, and, therefore, the phase 
shift, there is more signals with a displaced (between than 0º 
and 180º) or reversed (for around 180º) Ricker wavelet signals. 
For this reason, the semi-Gaussian wavelet — the first 
derivative of the Gaussian function — is frequently observed 
(30).As the modulus of the derivative in the Equation 1 with 
respect to � is applied, it results in 
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the semi-Gaussian function. 
 
Applying the modulus of the derivative to Equation 2 results in 
Equation 3, the Gaussian function. 
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Regarding the GPR signal, the Ricker and the semi-Gaussian 
wavelets appear very frequently — among many other 
wavelets (17). For this reason, it is necessary to use techniques 
for spectral analyses that are capable of consider, at least, these 
two kinds of wavelet (Figure 1). 
 

 

Figure 1. Gaussian, semi-Gaussian, and Ricker wavelets 
 

Spectral recomposition: The spectral decomposition is a 
technique of time-frequency analysis used to perform 
stratigraphic characterization with the seismic method. 
However, to recompose single frequencies into a multi-
frequencies model can provide a set of valuable information 
that can enhance the stratigraphic model (27).The definition of 
frequency recomposition is described as an estimation of 
components of a spectrum; however, this definition was 
proposed to estimate components of seismic spectrum to make 
forward models (27). This method provided the possibility of 
reconstructing the seismic spectrum manually picked, and not 
decomposing it.The limitation of this approach in performing 
the manually picking of each pair of amplitudes and peak 
frequencies can be overcame by using the proposition of the 
nonlinear estimation (15). The estimation of linear and 
nonlinear parts of the Ricker spectrum performed in an 
automated manner (4).Cai et al. (4) proposed an automated 
manner to perform the identification of the frequency spectrum 
for each trace aiming to recover the information of amplitude 
and frequency using the spectral recomposition proposed by 
Tomasso et al. (27).Tomasso et al. (27) propose to describe the 
seismic spectrum as a sum of different Ricker components as 
observed in Equation 1. 
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where  is the spectrum of a seismic trace,  is the frequency, and  
and  are, respectively, the amplitude and the peak frequency of 
the -th Ricker spectrum component, given by 
 

�(�) = ��(�, �) = �
��

�� ��� �−
��

��� (5) 

 
As the description of the wavelet is known, it is possible to 
perform an inversion aiming to fit the calculated frequency 
spectrum to the observed frequency spectrum of the wavelet 
for each trace. 
 
The spectrum definition proposed by Tomasso et al. (27) can 
include the characterization of the spectrum of a Ricker and 
semi-Gaussian wavelet (4, 31, 32). For this reason, the 
approach is, in this work, proposed to be applied for GPR  
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The spectrum definition proposed by Tomasso et al. (27) can 
include the characterization of the spectrum of a Ricker and 
semi-Gaussian wavelet (4, 31, 32). For this reason, the 
approach is, in this work, proposed to be applied for GPR 
signal. An important consideration is that the GPR signal 
usually presents a peak frequency more well define in 
comparison to the seismic signal, which presents a set with 
more peak frequencies. For this reason, it is very interesting to 
apply this approach for GPR signals, aiming to recover wave 
parameters more accurately. The GPR signal spectrum can be 
represented as a sum of Ricker components, in the same way 
as the seismic spectrum.  However, since the GPR signal 
presents a higher and single peak frequency in comparison to 
the seismic signal, the proposed approach becomes simpler to 
be implemented, since the inversion must be performed only 
for a pair of amplitude and peak frequency. 
 
Topological analysis of the RFM of the frequency 
spectrum: The complexity analysis is important, once the 
objective function can be described as the quality of a solution 
in relation to its variables. In this work, the estimation of the 
wave parameters was performed by minimizing the error with 
the Least Squares method by approximating the solution. The 
method is based in reaching the best fit for a set of data by 
minimizing the sums of the squares of the differences between 
the estimated values and the observed ones. In this work, the 
Least Squares method was used to perform the inversion 
aiming to measure how close the estimated spectrum and 
observed spectrum are; with the minimum value of the 
function, there is the optimum value for the solution, once the 
sum of the squares of the differences between the observed 
spectrum and the estimated one is the least possible. 
 
This analysis can be spread for any set of combination of 
parameters. For this, it is necessary to determine an area of to 
analyse the data. This area determines the maximum and the 
minimum value of the parameter to be estimated, providing 
several sets of parameters, in which most of them are not the 
solutions; however, they show how the error varies until it 
reaches the optimum set of values. This kind of complexity 
analysis is known as Residual Function Maps (RFM); it allows 
studying the topology of the function and how the error varies 
by mapping the objective function (18, 19). This method is 
very appropriate to analyse problems with two variables, and it 
is important to understand the complexity of the objective 
function, which provides information, such as, about the best 
kind of optimization algorithm to be used, or about the 
behaviour of the parameters for many different solutions (34, 
36, 37). In this work, the RFM was constructed with two 
dimensions related to the wave parameters — one dimension 
representing the amplitude, and the other one representing the 
frequencies — while the third dimension in the hyperplane 
represents the value of the objective function, or, in other 
words, the error between the calculated and the observed 
values. 
 
Three peak frequencies were adopted to perform the tests 
(Figure 2); all of them are frequencies which are commonly 
used for near-surface investigation: 900 MHz, used for targets 
shallower than around 1 meter depth; 600 MHz, used for 
targets around 1.5 meters depth; and 300 MHz, which is used 
for targets until around 2.5 meters depth. In Figure 3, the RFM 
are placed to show the variation of the complexity of the 
topology of the objective function for each of the three 
frequencies tested in this work. In Figure 3A, it is possible to 

observe that, for 900 MHz, there is a homogeneity concerning 
the variation of both parameters to be recovered (amplitude 
and frequency), which allows, proportionally, a similar 
accuracy to recover both parameters. For 600 MHz (Figure 
3B), it is possible to observe that the topology is less 
homogeneous between frequency and amplitude. In this case, 
the resolution to recover the frequency is increased, once the 
limits for the optimization does not exceed the 1000 MHz; 
however, with less initial information, and, therefore, with the 
necessity of a larger area to analyse, many optimization 
algorithms can be trapped in solutions related to higher 
frequencies, or, at least, take a higher processing time to find 
the global minimum region.  
 
This kind of behaviour increases for 300 MHz (Figure 3C), 
and it is possible to observe that the resolution increases even 
more; however, the boundaries for the initial starting 
optimization points should be set in a region no higher than 
500 MHz, since, above that value, the variation starts to appear 
almost only for the amplitude (almost parallel to the frequency 
axis). The RFMs with a broader frequency axis (Figure 3D, 
Figure 3E, and Figure 3F) show the importance of setting a 
limited starting region to set the initial points to perform the 
optimization, since the significantly higher values of 
frequencies, in comparison to the peak frequency, bring the 
same behaviour of making the contour lines getting almost 
parallel to the frequency axis, which brings difficulty to 
recover peak frequency information. 

 

Figure 2. Ricker wavelet spectrum for (A) 900 MHz, (B) 600 
MHz, and (C) 300 MHz 
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Figure 3. Residual function maps to demonstrate the complexity 
of the topology of the objective function for (A) 900 MHz, (B) 600 
MHz, and (C) 300 MHz. The RFM with a broader peak frequency 

axis for (D) 900 MHz, (E) 600 MHz, and (F) 300 MHz. 
 
Inversion of frequencies and amplitudes: To obtain the 
information of amplitude and frequency of the GPR spectrum, 
an inversion procedure according an optimization criterion was 
proposed. The curve calculated with the Ricker wavelet 
spectrum was fit to the observed spectrum, using the adapted 
simplex optimization algorithm proposed by Nelder and Mead 
(23), and the Least Squares as minimization norm. This local 
search optimization algorithm can be used, since the main area 
of the analysed topology presented only a global minimum 
region (33, 35). Multi-start procedure was applied, since the 
selected algorithm is for local search optimization, aiming to 
reach the global minimum region. With this procedure, the 
global minimum can be found even whether there are local 
minimum regions not found during the topological analysis of 
the RFM. The procedure is based on perform several 
inversions, with each one starting from an initial random point. 
 
Two important factors regarding the amplitude recovering 
were studied in previous works (4, 21, 32): 1-the higher is the 
amplitude the more accurate is the procedure to recover the 
amplitude information during the inversion; 2-the higher is the 
frequency, in comparison with other frequencies of the 
spectrum, the more accurate is to recover the amplitude 
information during the inversion. For this reason, it is very 
interesting to understand, in a better way, how the magnitude 
of the frequency influences the information recovering during 

the inversion, once the GPR uses a much broader frequency 
variation than the one used in seismic methods. Since the 
difficulty to recover the amplitude is well known, it was 
normalized to have a better comparison between the accuracy 
to recover the information for different frequencies. As it is 
possible to observe in Table 1, for each frequency tested (900, 
600 and 300 MHz), the resolution in the direct modeling is 
lower for higher frequencies, due to its softer variation and 
similar along both axes. However, even though a lower 
frequency presenting a better resolution, it showed the 
necessity of limit the boundaries in a smaller space around the 
solution, which is a problem when there is only little initial 
information. Regarding the residual error with no noise, higher 
frequencies presented a lower error, which increased 
exponentially when the frequency got lower. Concerning the 
residual error with no noise, it was possible to observe that the 
same pattern of the error, which got higher while the frequency 
decreased; however, the variation was much softer, in 
comparison to the residual error variation with no noise. 
 
Table 1. Average Frequency Resolution, Average Residual Error, 
and Average Residual Error with noise for each frequency tested 

 

Frequency 
(MHz) 

Frequency 
Resolution (MHz) 

Residual 
Error (%) 

Residual Error 
with Noise (%) 

900 52 0.0102 3.11 
600 41 0.0228 7.99 
300 32 0.1009 12.35 

 

CONCLUSION 
 
The approach we propose to be adapted to GPR signal 
presented to work in an efficient manner, and it shows to be an 
effective manner to recover frequency and amplitude 
information, which is essential to perform a better 
stratigraphical characterization in near-surface investigations 
using GPR method. With a lower error, the higher frequencies 
are better recovered, and therefore, allows a better 
stratigraphical characterization for shallower targets.  
 
This does not prevent to apply the approach for lower 
frequencies, and, consequently, for deeper targets; however, 
the application for lower frequencies generates more problems 
concerning the ambiguity of the information obtained, which 
demands more a priori information to restrict the limits in 
order to set the initial parameters to perform the inversion 
procedure. Even though the approach tends to be used for 
shallower investigation — since it presents a higher accuracy 
in obtaining higher frequencies —, the accuracy to obtain the 
frequency and amplitude information is, in many cases, 
considerably acceptable for lower frequencies, if it is not 
demanded to be highly accurate. 
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