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Abstract

An accurate and reliable precipitation forecast is long recognized as one of the most

urgent societal demands to meteorology. Particularly in densely populated areas, such as

the East region of the State of São Paulo (ESP), intense rainfall events often lead to signifi-

cant human and material losses. To address this demand, this study proposes an approach

based on recent developments in the field of artificial intelligence. The results are grouped

into four main parts. The first part concerns the evaluation of CHIRPS (Climate Ha-

zards group InfraRed Precipitation with Station data) daily rainfall dataset in the area of

study. When compared against purely in-situ observations, CHIRPS presents a root mean

squared error of 7 mm/day and a coefficient of determination in the order of 40%. Consi-

dering the high spatial variability of rainfall, the evaluation is considered satisfactory. The

second part, based on reanalysis data, investigates atmospheric patterns related with ex-

treme precipitation events. This discussion supports the assembly of explanatory datasets

and underpins physical interpretations of the deep neural networks (DNNs) solution.The

third and fourth parts present the results of the DNNs precipitation forecast in the city of

São Paulo and in ESP, respectively. Analyses of Probability of Detection (PoD) and False

Alarm Rate (FAR) metrics reveal that the DNN forecast performance is unequivocally su-

perior to the GFS 24-hour precipitation forecast. In the fourth part, the deep autoencoder

is presented as an adequate non-linear dimensionality reduction tool that allows a spatial

precipitation forecast with a small number of DNNs. The most relevant predictors are

evaluated with one-hot and two-hot vectors stimulations, providing a quantification of the

most relevant atmospheric patterns for predicting rainfall. A complementary discussion

compares the top-ranked predictors with the patterns identified in the second part. This



comparison shows that, after the training process, the DNNs behave in agreement with

the local atmospheric dynamics, thus narrowing the gap between machine learning and

physics. The central conclusion of this study is that the proposed methodology provi-

des trustworthy predictions with substantially higher accuracy when compared to model

outputs, highlighting the applicability of modern artificial intelligence implementations in

weather forecasting.



Resumo

Uma previsão de precipitação confiável e acurada é uma das demandas mais urgentes da

sociedade para a meteorologia. Áreas com alta densidade populacional, como a região Leste

do Estado de São Paulo (ESP), costumam sofrer perdas humanas e materias em eventos

extremos de chuva. Para atender a essa demanda, esse estudo propõe uma abordagem

baseada em técnicas modernas de inteligência artificial. Os resultados estão divididos

em quatro partes principais. A primeira parte trata da avaliação da precipitação diária

do CHIRPS (Climate Hazards group InfraRed Precipitation with Station data) na área

de estudo. Quando comparado com observações de superf́ıcie, o CHIRPS apresenta erro

quadrático médio na ordem de 7 mm/dia e coeficiente de determinação de 40%. Levando

em consideração a alta variabilidade espacial da chuva, os resultados foram considerados

satisfatórios. A segunda parte, através do uso de dados de reanálise, investiga os padrões

atmosféricos relacionados com a ocorrência de eventos extremos. Essa discussão serve

para dar suporte à definição de um conjunto de variáveis preditoras e para fundamentar

as interpretações f́ısicas das soluções encontradas pelas redes neurais. A terceira e quarta

partes apresentam, respectivamente, os resultados da previsão de precipitaçao na cidade

de São Paulo e no ESP. Análises das métricas de Probabilidade de Detecção (PoD) e Razão

de Alarme Falso (FAR) mostram que o desempenho das redes neurais é significativamente

superior a previsão de chuva acumulada em 24 horas do GFS. Na quarta parte, o deep

autoencoder é apresentado como um método não-linear de redução de dimensionalidade

que permite a previsão espacial de chuva com um número reduzido de redes neurais. As

variáveis preditoras mais relevantes foram analisadas com o input de vetores one-hot e two-

hot, permitindo a quantificação dos padrões mais relevantes para a previsão de chuva. Uma



discussão complementar compara os preditores mais relevantes com os padrões identificados

na segunda parte. Essa comparação mostra que, após a etapa de treinamento, as redes

neurais se comportam em acordo com a dinâmica atmosférica local. Esse resultado tem

a proposta de aproximar o aprendizado de máquina e a f́ısica. A conclusão central do

presente estudo é que a metodologia proposta fornece previsões confiáveis e com acurácia

significativamente superior se comparada à sáıda de modelos numéricos, enfatizando a

aplicabilidade de técnicas modernas de inteligência artificial na previsão de tempo.
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Chapter 1

Introduction

Precipitation is a complex atmospheric phenomenon that involves numerous processes

of a wide variety of scales. Microscale variables such as the concentration of cloud conden-

sation nuclei are key elements to the formation of rain droplets in saturated environments.

An unsaturated air-parcel originating in the planetary boundary layer can become satu-

rated through the process of adiabatic cooling when uplifted to the lifting condensation

level. This uplift can be caused by several forcings such as mesoscale circulations, signifi-

cant topographic features, large-scale dynamics etc.

This complexity makes any attempt to accurately predict rainfall become a very de-

manding task. In the context of Numerical Weather Prediction (NWP), the rainfall rates

either rely on parameterizations schemes or cloud resolving subroutines with very high

computational cost. As a consequence, the precipitation forecast is often misleading and

quantitatively unrealistic. Despite many advances in the last decades, the rainfall forecast

is still insufficient to attend society practical demands. For example, Hamill (2014) shows

that operational global and regional models were unable to predict an extreme precipita-

tion event that caused severe human and material losses in Colorado, USA. Clark et al.

(2009) analyzed ensemble forecasts of both parameterized and convection-allowing models.

Their results show that convection-allowing models produce better precipitation forecasts,

but still many improvements are necessary, specially for intense rainfall events.

Considering the population density and economic importance of the East Region of

the State of São Paulo (ESP), an accurate and reliable precipitation forecast is of vital

importance to mitigate the impacts of intense rainfall events. Specially in the summer,
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such events are frequent (Silva Dias et al., 2013) and their economic impact is significant

(Haddad and Teixeira, 2015). In order to address this demand, this project employs state-

of-the-art deep learning techniques to improve the 24-hour precipitation forecast in ESP.

1.1 Large-scale and mesoscale precipitation mechanisms in Southeastern

Brazil

The precipitation regime in Brazil presents substantial spatial and temporal variability

that can be partially attributed to large-scale systems. Figure 1.1 shows the annual preci-

pitation averaged between 1981 and 2016 from CHIRPS (Climate Hazards group InfraRed

Precipitation with Station data, further details in Methodology section) and Figure 1.2

shows the seasonally averaged precipitation fields in South America (SA).

Figure 1.1: Annual average precipitation (1981-2016) from CHIRPS in South America and b) on the

study area (b). The study area is bounded by a rectangle in (a).

During the austral summer, a northwest-southeast configuration shows as a dominant

precipitation feature in Brazil (Figure 1.2a). This precipitation pattern distinguishes the

South Atlantic Convergence Zone, SACZ (Carvalho et al., 2002), which is an important

component of the South American Monsoon System, SAMS (Horel et al., 1989; da Silva and

de Carvalho, 2007). The SACZ influences the total precipitation as well as the occurrence

of extreme events in Southeastern Brazil, SEB (Carvalho et al., 2002).

Cold fronts and mesoscale convective systems (MCS) are also important precipitation

mechanisms in Southern Brazil (SB) and SEB. Cavalcanti and Kousky (2009), through
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composite analysis, show that cold front passage have an expressive influence on the preci-

pitation in SEB and SB. This influence is particularly evident during austral winter, when

a local maximum is located across the states of Rio Grande do Sul, Santa Catarina and

Paraná (Figure 1.2c). The occurrence of MCSs during summer, autumn and spring shifts

this local maximum towards the south of Paraguay and northeast of Argentina. The high

MCS activity observed in this region (Velasco and Fritsch, 1987; Durkee and Mote, 2010)

influences the precipitation totals in SEB and SB specially during summer, autumn and

fall (Figures 1.2a, 1.2b and 1.2d).

Figure 1.2: Monthly averaged precipitation (mm/month, 1981 - 2016) from CHIRPS in South America

during austral summer (a), autumn (b), winter (c) and spring (d).

The sea surface temperature (SST) is also related locally and remotely with precipita-

tion mechanisms in SEB. Locally, it influences the intensity and position of SACZ (Chaves

and Nobre, 2004; Jorgetti et al., 2014) and the sea-breeze passage (Perez and Silva Dias,

2017). Remotely, disturbances in SST trigger wave trains propagation that influence the
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precipitation regime in SEB. Climatic oscillations such as Atlantic Multidecadal Oscilla-

tion (AMO) and El-Nino Southern Oscilation (ENSO) have been related with precipitation

patterns (de MBS Xavier et al., 1995; Prado, 2010) and sea breeze circulation (Perez and

Silva Dias, 2017) in the state of São Paulo.

1.2 Local circulations and urban characteristics of the East region of the

State of São Paulo

Local circulations also play a major role in the development of precipitating clouds.

These circulations are generated by surface heterogeneities, such as the presence of ur-

ban areas, a bodies of water or substantial changes in topography. Figure 1.3 shows the

topography of the State of São Paulo, located in SEB. The topographic features and pro-

ximity with Atlantic Ocean are ingredients to the development of local circulations, such

as mountain-valley circulation and sea/land breeze.

Figure 1.3: Topography of the East region of the State of São Paulo and the 9 most populous municipalities

of the State.

ESP concentrates the nine most populous cities of the State, including the city of São

Paulo – the most populous city in Southern Hemisphere with approximately 12 million

inhabitants (Brazilian Institute of Geography and Statistics 2015 population estimates).
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The contrasting land use caused by urbanization (see Figure 1.4) induces urban heat-island

circulations that influence the precipitation regime. Silva Dias et al. (1995) and Freitas

et al. (2007), through numerical simulations, demonstrated the association between the

urban heat-island and the formation of severe rainfall events in São Paulo.

Figure 1.4: Satellite view of the East region of the State of São Paulo identifying the 9 most populous

municipalities of the State. Source: Google Earth.

1.3 Statistical methods to improve precipitation forecast

Obtaining a realistic rainfall prediction is a long standing issue in weather forecasting.

In 1960, the National Weather Service of the United States of America recognized the

quantitative precipitation forecast (QPF) as a matter of high social and economic value

(Olson et al., 1995). Since then, many studies have aimed to improve the probabilistic

and quantitative precipitation forecast. Many of these studies employ post-processing

techniques in NWP ensembles to crate probability density functions (Hamill et al., 2004;

Sloughter et al., 2007). In the case of Hamill et al. (2004), the author trains a logistic

regression model to post-process ensemble reforecast data. Logistic regression is an early

class of artificial neural network (ANN), equivalent to the single-layer perceptron, discussed

in the next section.

Other authors have employed ANNs as a tool to forecast rainfall. Ramirez et al.

(2005) show that an ANN trained with atmospheric fields from the ETA model provides

better rainfall predictions than multiple linear regression in São Paulo. Nasseri et al.

(2008) combined genetic programming and ANNs to improve the precipitation forecast in
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Sidney, Australia. Anochi and Velho (2016) propose the use of the Multi-Particle Collision

Algorithm to optimize the topology of ANNs for climate predictions. ANNs also have been

used to downscale and remove the bias of hydroclimatic projections of IPCC models in the

Han River, South Korea (Kang and Moon, 2017).

Given the limitations of operational NWP models, the aforementioned studies show

that statistical methods are powerful tools to provide a potentially more accurate rainfall

forecast. The next section presents a detailed discussion ranging from early artificial neural

networks implementations until recent deep learning developments.

1.4 Objectives and dissertation outline

The availability of massive datasets and computational resources, allied to new metho-

dologies, are responsible for the recent success of deep learning applications in science and

engineering. Deep learning is now employed in progressively more complex systems, such

as: handwriting and speech recognition, chat-bots, books and movies recommendation,

self-driving vehicles, medical diagnosis and even developing original music and paintings.

Precipitation is perhaps the most critical meteorological variable for human activities

and the greatest limitation in numerical weather prediction. The East Region of the State

of São Paulo is a densely populated and economically relevant area in Brazil that would

greatly benefit from an improved rainfall forecast. For this reason, the general aim of

this research is to employ recent and successful machine learning techniques to develop a

more reliable and accurate precipitation forecast methodology in this region. A secondary

aim of this project is to improve the understanding of how deep neural networks learn

the underlying physical mechanisms of rainfall. To achieve these goals, this monograph is

divided in the following parts:

• Chapter 1 - The first chapter is dedicated to supply to the reader a background of

the main rainfall related meteorological systems and geographical characteristics of

the study area.

• Chapter 2 - This chapter aims to provide to the reader with no machine learning
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previous knowledge a review of the main developments that culminated into the

present field of deep learning;

• Chapter 3 - This chapter presents a brief overview of the datasets employed in this

project. Each following chapter provides further details about particular usages of

the data;

• Chapter 4 - The third chapter presents an evaluation of CHIRPS (the precipitation

dataset chosen as target variable) against observational precipitation data;

• Chapter 5 - The fourth chapter presents atmospheric patterns associated with ex-

treme precipitation events;

• Chapter 6 - This chapter presents the methodology, discussion and results about

the DNNs implementation for precipitation forecast in the city of São Paulo. This

chapter also quantifies the most relevant predictors and discusses the physical validity

of the solution found during the training process;

• Chapter 7 - This chapter presents the deep learning framework and results of the

spatial rainfall forecast in ESP. Deep auto-encoders are presented as an appropriate

non-linear dimensionality reduction tool for encoding high-resolution precipitation

data;

• Chapter 8 - This final chapter presents a brief summary of the results, final remarks

and discusses potentially relevant future studies.
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Chapter 2

Artificial Neural Networks preliminaries

ANN is a class of statistical models in the machine learning framework with plenty

applications in science and engineering. Some groundbreaking advances in the last decade

have greatly improved ANNs capabilities and popularity and now they are part of many

practical aspects of society (LeCun et al., 2015). The most canonical example of ANN

is the Multilayer Perceptron (MLP), which consists of a non-linear mapping of a target

function into some input space.

The MLP originates from early models of the biological brain. Rosenblatt (1958),

based on previous studies about the brain functioning, developed the perceptron (Figure

2.1): a model that could optimize its parameters (w and b) to approximate a function

y given a set of explanatory variables x1, x2, ..., xn (Equation 2.1). Despite using a non-

linear activation function g (traditionally the logistic function given by Equation 2.2), the

perceptron is a linear model in the context of classification problems since it draws a simple

linear boundary between two categories.
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x2 w2 Σ g

activation

function
y

Output

x1 w1

x3 w3

Weights

Bias b

Inputs

Figure 2.1: Diagram of a perceptron. In this example, the input vector consists of three variables x1, x2

and x3 that are multiplied by a weight vector of the same size and added to a bias b. The summation of

the result is passed to the activation function g to yield an output y.

y = g(
n∑

x=1

wixi + b) (2.1)

g(x) =
1

1 + ex
(2.2)

The MLP is Rossenblatt’s perceptron non-linear extension. It consists of multiple

interconnected layers with a number of perceptrons (hereafter “neurons” or “nodes”) in

each layer (Figure 2.2). The input layer and the output layer are commonly called “visible”

layers, while the layers in between are called “hidden” layers. It has been shown (Cybenko,

1989; Hornik et al., 1989) that a single hidden-layer MLP with a finite number of neurons

and a logistic activation function can approximate any continuous function arbitrarily well.

However, there is no guarantee if it is feasible to optimize a single-layer (i.e., “shallow”)

network with a large set of weights (Vidal et al., 2017).
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Input 1

Input 2

Input 3

Input 4

Output

Hidden

layer 1

Hidden

layer 2

Input

layer

Output

layer

Figure 2.2: Diagram of a Multilayer Perceptron with four variables in the input layer, two hidden layers

and one output variable. The biases are omitted.

Deeper architectures (i.e., several hidden layers) are often more practicable and perform

better than shallow ones (Vidal et al., 2017; Lin et al., 2017). The increased number of

hidden layers allows the MLP to create an improved latent representation of the input

data that optimizes the output predictions (LeCun et al., 2015). Each hidden layer has

the ability to disentangle information (Achille and Soatto, 2017) and highlight features of

the raw input data that are more significant to the prediction or classification task (LeCun

et al., 2015). Lin et al. (2017) further argue that hierarchical physical processes (Markov

chains) are better represented in deeper architectures. However, not until 2006 (Hinton

et al., 2006) it has become possible to train a deep MLP successfully.

A single-layer perceptron is traditionally trained by the Stochastic Gradient Descent,

SGD (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952). The SGD simply evaluates

some error function for a batch of input samples and update the weights and biases towards

the error minimum. Several authors (Werbos, 1974; LeCun, 1985; Rumelhart et al., 1986)

have shown that SGD could be employed to train MLPs with the assistance of the chain-

rule of derivatives to propagate the gradients through the hidden layers. This method is

called “error-backpropagation” or, simply, “backpropagation”.

In principle, the backpropagation could train a MLP of any depth. However, its perfor-

mance dramatically decreases when training deeper architectures (usually more than two

or three hidden layers). This phenomenon, called “vanishing gradient problem”, occurs

when the SGD is applied through several layers with sigmoidal activations (such as Equa-
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tion 2.2), culminating in poor optimization of the bottom layers (i.e., the layers subsequent

to the input). Goodfellow et al. (2016) provide a detailed discussion of this issue. The

vanishing gradient problem, therefore, limited the domain of ANNs to simpler applications,

resulting in a decline of interest in artificial neural networks in the decade of 1990.

Following the work of Hinton et al. (2006), numerous authors provided different ap-

proaches to facilitate the training of deep neural networks (DNNs). Glorot et al. (2011)

introduced the Rectifier Linear Unit (ReLU, Equation 2.3) as a more efficient and biolo-

gically plausible activation function. In contrast to the logistic function, ReLUs are not

affected by the vanishing gradient problem. Note that, despite being linear for positive

values, a summation of ReLU layers can approximate any non-linear continuous function

(Glorot et al., 2011). Figure 2.3 compares ReLU with the logistic function.

y = max (0, x) (2.3)

Figure 2.3: a) Logistic activation function given by Equation 2.2 and b) Rectifier Linear Unit (ReLU)

given by Equation 2.3.

In practice, employing ReLU as activation function will cause a significant portion of

neurons to produce a null output for each input sample. This property, called sparsity,

has some desirable features, as discussed by Glorot et al. (2011). One of these features is

the information disentanglement between neurons. In other words, ReLUs sparsity pro-

motes each neuron to be an unique feature extractor, reducing redundancy of information.

Another desirable property is the “efficient variable-size representation”, underlined by
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Glorot et al. (2011). The fact that some neurons can have a null output imply an adap-

table effective size/complexity of the neural network. In practice, the DNN can activate

different numbers of neurons for different input vectors, adapting itself to the complexity

of each input. As a consequence of these properties, ReLUs have become the prevalent

activation function in deep learning (LeCun et al., 2015).

“Dropout” is another widely adopted technique in most modern DNNs implementati-

ons. It was first proposed by Hinton et al. (2012) as a regularization method that reduces

the model complexity to prevent deep architectures from overfitting the training data.

Overfitting occurs when the model is complex enough to learn even undesirable noise in

the training set, thus worsening the predictions of new observations. Similarly to ReLUs,

dropout also compels the nodes to learn independent features by “turning off” a random

set of neurons in the forward pass1 for each training sample. When predicting new data,

the model uses an approximation of the average of all possible dropout configurations.

Section 5.1. discusses the dropout algorithm in greater detail.

1 Forward pass is the process in which a sample of data is injected at the input layer of an ANN and

returns an output after passing through each hidden layer
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Chapter 3

Data description

This chapter presents an overview of the datasets used in this study1. Two main

categories of data were used: 1) precipitation observations and 2) numeric model output

and reanalysis. The first corresponds to the target values for the statistical models and

the latter corresponds to the explanatory variables. Two types of explanatory datasets

were assembled: one representing an operational situation (model output) and the other

representing an idealized situation (reanalysis).

The choice of a reliable precipitation dataset is particularly sensitive, considering that

the nature of precipitation is highly non-linear both in space and time. CHIRPS (Funk

et al., 2014) was chosen as target dataset to train the DNNs because of its high spatial

resolution (0.05◦) and assimilation of different observational sources. Its assimilation pro-

cedure combines: a) monthly precipitation climatology from CHPClim (Climate Hazard

Precipitation Climatology); b) infrared (IR) precipitation estimates from geostationary

satellites, c) TRMM (Tropical Rainfall Measurement Mission) 3B42 product; d) precipi-

tation fields from CFSv2 (Climate Forecast System version 2) and e) in-situ rain gauges.

The next chapter provides a detailed discussion and evaluation of CHIRPS.

The selection of an explanatory dataset is less sensitive than the choice of a target

dataset for two main reasons: 1) most atmospheric fields (e.g., temperature, pressure,

humidity etc) have relatively smooth spatial configurations and less abrupt changes in time

when compared to precipitation; 2) the hidden layers of the DNNs can compensate offsets

and systematic errors in the input dataset. Nevertheless, it is important to investigate how

1 Further information is contained in the following chapters.
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the quality of the input variables influences the quality of predictions. For this reason, data

from the ERA-Interim reanalysis was employed as an idealized forecast and the output from

GEFS Reforcast Version 2 was employed as an realistic (operational) forecast. Further

details about these datasets are found in the following chapters.

In addition to the GEFS Reforecast and ERA-Interim, three climatic indices were

employed as explanatory variables: AMO, SOI (Southern Oscillation Index) and PDO

(Pacific Decadal Oscillation). As discussed in Section 1.1., these indices have been reported

to influence rainfall in SEB. Also, they can provide information to the model about changes

in the global climatic situation.



Chapter 4

CHIRPS evaluation against in-situ observations

As discussed in the previous chapter, the choice of the precipitation dataset is a sensitive

issue and, for that reason, this chapter is dedicated to evaluate CHIRPS against purely

in-situ observations. CHIRPS itself incorporates rain gauge observations, but it combines

satellite and model data as well. At the same time this diversity of sources is a strong

feature, it may hinder the interpretation of errors. Furthermore, CHIRPS assimilation

procedure is not homogeneous as the availability of its sources changes in time. Figure 4.1

shows the number of rain gauges assimilated in Brazil (4.1a) and its spatial distribution

in 1985 (4.1b) and 2015 (4.1c). Other issues can affect the homogeneity of the time series,

such as the availability of TRMM, that ceased its operation in April 2015.

4.1 Methodology

Xavier et al. (2016) developed an observational gridded (0.25◦x 0.25◦) dataset with

the interpolation of 3625 rain gauges and 735 meteorological stations throughout Brazil

(hereafter METBR). All stations used in METBR were subjected to a quality control that

verifies homogeneity and removes outliers. This database was chosen to evaluate CHIRPS

since it only assimilates rain gauges, facilitating the interpretation of results.

The coefficient of determination (ρ2), the mean error (ME) and the Root Mean Square

Error (RMSE) were employed to compare CHIRPS precipitation rate (P chirps) with METBR

precipitation rate (P ref ):
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Figure 4.1: Number of Brazil rain gauges used in CHIRPS (a; source:

http://chg.geog.ucsb.edu/data/chirps/stations/) and their location in 1985 (b) and 2015 (c)

ρ2 =

(
cov(P chirps, P ref )

σchirpsσref

)2

(4.1)

ME =
n∑

i=1

P chirps
i − P ref

i

n
(4.2)

RMSE =
n∑

i=1

√
(P chirps

i − P ref
i )2

n
(4.3)

Where σ is the standard deviation.
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4.2 Results and discussion: CHIRPS against METBR

Figure 4.2 compares CHIRPS (disaggregated to a 0.25◦grid) and METBR daily preci-

pitation rates: 4.2a shows the coefficient of determination ρ2 (i.e., explained variance in

%), 4.2b shows the RMSE, 4.2c shows the ME and 4.2d shows the annual average RMSE

and ME. An evident feature of Figures 4.2a and 4.2b is that higher (lower) RMSE (ρ2)

occurs preferentially in regions of higher accumulated rainfall (see Figure 1.1), such as

the coastline and the western region of the States of Paraná and Santa Catarina. This

generally indicates that, when it comes to intense precipitation systems, such as MCSs and

coastal storms, there is less agreement between the two products.

The disagreement between CHIRPS and METBR can be discussed in terms of their

different data sources and procedures. For example, METBR, relies on interpolations that

may not be valid in situations of high spatial variability. CHIRPS, on the other hand, relies

on a numerical model (CFSv2) to disaggregate precipitation pentads 1 into daily rainfall

rate. Numerical models, however, have limited ability to reproduce realistic precipitation

fields, specially in extreme situations (Clark et al., 2009; Hamill, 2014).

Figure 4.2c reveals a few locations where CHIRPS particularly underestimates METBR

precipitation: the valley of São Francisco river in Minas Gerais, the coasts of Rio de Janeiro,

Paraná and the southern coast of São Paulo. These underestimations could be related to

the geostationary satellite IR sensor inability to quantify precipitation from orographic

warm clouds that are favored by the topographic features of these regions. Despite these

limitations, Figure 4.2d shows an increasing agreement between CHIRPS and METBR in

terms of RMSE and ME.

4.3 Results and discussion: CHIRPS against IAG meteorological station

The meteorological station of the Institute of Astronomy, Geophysics and Atmospheric

Sciences (IAG) of the University of São Paulo is a conventional meteorological station

located in the city of São Paulo. Its uninterrupted record of observations date back to 1933

1 CHIRPS procedure produces accumulated precipitation pentads (5 days) from observations. The

pentads are subsequently disaggregated into daily precipitation based on CFSv2 fields.
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Figure 4.2: Evaluation of CHIRPS daily precipitation rate against METBR between 1981 and 2016: (a)

Coefficient of determination (%); (b) RMSE (mm/day); (c) ME (mm/day), where the white contour line

separates positive from negative values; (d) Annual ME and RMSE averaged in the same area displayed

in “a”, “b” and “c” with the respective linear regressions and 95% confidence bands (shaded).

and its data have been extensively used and evaluated (Sugahara et al., 2012; Silva Dias

et al., 2013; Perez and Silva Dias, 2017). On that account, CHIRPS was evaluated against

daily precipitation from the IAG station rain gauge.

Figure 4.3 compares CHIRPS and IAG daily precipitation percentiles, considering

CHIRPS nearest grid point to IAG station. Each point in the plot (known as quantile-

quantile plot or Q-Q plot) corresponds to a percentile (from 0 to 1) and its respective

value in the probability distribution of CHIRPS and IAG station daily precipitation. The

black line is the 1:1 relationship. Except for a small overestimation, the distributions are
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very close together below the 0.9 percentile. For higher percentiles, CHIRPS considerably

underestimates IAG precipitation rate and the probability distributions drift apart.

Figure 4.4 shows the confusion matrix comparing daily precipitation from CHIRPS and

IAG station. The values are binned in 5 and 10 mm intervals. Each position in the matrix

corresponds to the number of days in which the same precipitation interval was observed

both by CHIRPS and IAG station. The lowest bin (0-5 mm) is the most frequent and has

the highest agreement, while the others bins are substantially mismatched. This generally

indicates that, despite CHIRPS high spatial resolution (approx. 5 km grid spacing) relative

to other precipitation products, the spatial variability of rainfall is still significant inside a

25 km2 area.

Figure 4.3: Q-Q plot comparing the percentiles of daily precipitation rates (mm/day) from CHIRPS and

IAG meteorological station (1981-2016). The 0.5, 0.8 and 0.0 percentiles are identified and the black line

illustrates the 1:1.
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Figure 4.4: Confusion matrix of the daily accumulated precipitation (mm) from CHIRPS and IAG

meteorological station station (1981-2016).



Chapter 5

Atmospheric patterns associated with extreme rainfall

The role of the expert in the development, evaluation and improvement of machine

learning models is fundamental. The researcher should have a critical eye on the results

and the rationale of the learning process to assess the physical coherence and validity of

given solutions.

In principle, ANNs can learn solutions (i.e., the weights and biases of the network)

that are not bounded by the physical constraints of the phenomena. In purely engineering

applications, non-physical solutions are not a problem, as long as they output good results.

In opposition to these applications, scientific studies are often concerned in exploiting sta-

tistical models to infer physical properties of nature. In that account, deep neural networks

can be regarded as potential tools for understanding linear and non-linear phenomena.

It is proposed by Lin et al. (2017) that deep neural networks tend to reconstruct

the generative process of physical phenomena. To defend this hypothesis, the authors

argue that physical processes can often be described by low-order polynomials and obey

some properties such as symmetry and locality. Following that idea, this study aims to

employ deep learning not only as a predictive tool, but also as a framework to improve the

understanding of rainfall-related processes.

This chapter highlights atmospheric patterns associated with extreme rainfall, compa-

ring the meteorological variables during extreme events and the climatology. Particularly,

precipitation events occurred in the city of São Paulo are considered. This analysis aims

to underpin the assembly of an explanatory dataset for rainfall forecasting and to support
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the discussions in Section 5.5.

5.1 Methodology and data

ECMWF’s (European Center for Medium-range Weather Forecast) ERA-Interim (Dee

et al., 2011) reanalysis combines atmospheric observations with numerical modeling to

provide a realistic description of the state of the atmosphere. The atmospheric variables

used in this chapter were obtained from ERA-Interim between 1985 and 2015 in a 0.25◦grid

(Table 5.1).

Table 5.1 - Meteorological variables obtained from ERA-Interim between 1985 and 2015 used to compare

the state of the atmosphere during extreme events with the climatology.

Variable name Time (UTC) Vertical level (hPa)

Specific humidity 12 1000 and 500

Temperature 12 and 18 1000

Horizontal wind 12 and 18 1000 and 500

Vertical wind 12 and 18 500

Mean sea level pressure 12 and 18 —

Sea surface temperature 12 —

The daily rainfall in São Paulo was calculated by averaging all CHIRPS grid points

within the city boundaries. The extreme events were defined when the daily rainfall exce-

eded the 0.95 percentile. Subsequently, the mean atmospheric fields (from ERA-Interim)

during extreme events (Xext) were obtained and compared with the climatology1 (X̄). The

Student’s t-test2 (Equation 5.1) was applied to verify whether the climatological average

and the extreme events average were significantly different (p-value).

t =
Xext − X̄

s√
n

(5.1)

Where n is the total of extreme events s is the extreme events standard deviation.

1 Average of ERA-Interim data from 1985 to 2015, including the extreme set
2 For the validity of the test, it is assumed that the sample means are normally distributed
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The probability of obtaining a t-value |t′| greater than |t| was computed (p-value =

Pr(|t′| ≥ |t|)) and a significance level of 0.01 was established.

5.2 Results and discussion

5.2.1 Specific humidity

Specific humidity is defined by the ratio between the masses of water vapor and moist

air. It is a key ingredient to the formation of clouds and rainfall. The moisture available

for cloud processes can originate by local recycling or it can be transported from remote

regions (Trenberth, 1999; Zhou and Yu, 2005).

Figures 5.1 and 5.2 show the specific humidity from ERA-Interim at the vertical levels

of 500 hPa and 1000 hPa, respectively. They reveal that the average concentration of

water vapor is higher during extreme precipitation events. Note that, as Figures 5.1 and

5.2 show no gray shading, there is 99% of confidence that the averages are different in all

grid points.

The specific humidity, in Figure 5.2b, peaks near the coastline, highlighting the role of

the Atlantic Ocean as a source of moisture. The sea breeze is a potential mechanism to

link this remote source to extreme precipitation in the city of São Paulo. Perez and Silva

Dias (2017) show that the sea breeze frontal passage has a significant contribution to the

occurrence of extreme events in São Paulo.

5.2.2 Temperature

Horizontal temperature gradients are important sources of baroclinicity3 and motion

in the atmosphere. Their role in mesoscale circulations can be expressed through the

Bjerkenes Circulation Theorem (Equation 5.2). It states that the line integral (in pressure

coordinates) of the specific volume (α) along a closed path determines the variation of the

absolute circulation (Ca) of the fluid enclosed by that path:

3 Baroclinicity in the atmosphere is defined as a situation where the isosurfaces of density and pressure

are not parallel.
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a b(kg/kg) (kg/kg)

Figure 5.1: a) Specific humidity (kg/kg) climatological average at 12Z and vertical level of 500 hPa

(1985-2015, ERA-Interim); b) Same as “a” but averaged on days in which extreme precipitation (> 95%)

occurred in the city of São Paulo

dCa

dt
= −

∮
αdp , where α ≡ 1

ρ
(5.2)

Considering the ideal gas law α =
p

RTv
, the variation of absolute circulation can be

re-written in terms of virtual temperature4 (Tv):

dCa

dt
= − 1

R

∮
p

Tv
dp (5.3)

Equation 5.3 states that the absolute circulation changes with time provided that tem-

perature is not constant in an isobaric surface. For that reason, horizontal gradients of

temperature are essential to the development of local circulations, such as mountain-valley

circulation and land/sea breeze.

The importance of the temperature field in the development of clouds can be analyzed

in terms of the buoyancy of an air parcel. Buoyancy, as stated by the Archimede’s principle,

is the vertical acceleration of an element of fluid caused by the density difference between

the fluid parcel and the environment. Employing the ideal gas law, the vertical acceleration

may be written in terms of the difference between the virtual temperatures of the air parcel

4 Theoretical temperature in which the moist air should have to equal the density and volume of dry

air.
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a b(kg/kg) (kg/kg)

Figure 5.2: a) Specific humidity (kg/kg) climatological average at 12Z and vertical level of 1000 hPa

(1985-2015, ERA-Interim); b) Same as “a” but averaged on days in which extreme precipitation (> 95%)

occurred in the city of S ao Paulo

(Tv) and the environment (T ′v):

d2z

dt2
= g

T ′v − Tv
Tv

(5.4)

The proximity with the Atlantic Ocean, significant topographic features (Figure 1.3)

and contrasting land uses (Figure 1.4) in ESP are ingredients to intense temperature

gradients. Figures 5.3 (averaged at 09:00 local time) and 5.4 (averaged at 15:00 local

time) compare the climatological temperature with the mean temperature during extreme

precipitation days. In the morning (Figure 5.3), warmer temperatures favor the occurrence

of extreme events. Oppositely, in the afternoon (Figure 5.4), the average temperature in the

continental area is reduced due to the cooling effect of precipitation clouds. In the oceanic

area, the air temperature is higher indicating higher sea surface temperature. Note that,

in Figures 5.4a and 5.4b, a number of the grid points are shaded, indicating they are not

statistically different (t-test).
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Figure 5.3: a) Temperature (◦C) climatological average at 12Z and vertical level of 1000 hPa (1985-2015,

ERA-Interim); b) Same as “a” but averaged on days in which extreme precipitation (> 95%) occurred in

the city of São Paulo

a b(◦C )

27.5

26.5

25.5

24.5

23.5

22.5

(◦C )

27.5

26.5

25.5

24.5

23.5

22.5

Figure 5.4: a) Temperature (◦C) climatological average at 18Z and vertical level of 1000 hPa (1985-2015,

ERA-Interim); b) Same as “a” but averaged on days in which extreme precipitation (> 95%) occurred in

the city of São Paulo

5.2.3 Wind

The wind field influence on the development of clouds and precipitation ranges from

turbulent to synoptic scales. In the eddy scale, the vertical component of the wind is

responsible for transporting the water vapor that supplies the formation cloud droplets. In
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a larger scale perspective, a subsidence region5 may suppress the ascending currents and

prevent the development of clouds, even if local conditions are favorable. The mesoscale

and large scale horizontal winds also play an important role transporting properties such

as temperature, water vapor and momentum.

Figures 5.5 and 5.6 show the horizontal wind at 1000 hPa from ERA-Interim. The

strong northern wind component (5.5b) combined with the temperature field (5.3b) reveals

a positive temperature advection towards São Paulo in the morning of extreme rainfall

days. Figure 5.6, on the other hand, shows that neither the temperature advection or

the strength of the sea breeze are determinant factors in the afternoon. Instead, a clear

pattern of convergence between the sea breeze and northwesterly winds can be seen along

the coastline.

Figure 5.7 shows the vertical wind speed in pressure coordinates at the level of 500

hPa. The level of 500 hPa situates roughly at 5000 meters of altitude and it is a proxy of

the large-scale influence in the ascension of air parcels. Figure 5.7b shows that the vertical

speed have a greater magnitude 6 in extreme precipitation days, facilitating the ascension

of air parcels from the planetary boundary layer.

a b(m/s) (m/s)

Figure 5.5: Horizontal wind vector field with shaded wind speed (m/s), where (a) is the climatological

average (1985-2015, Era-Interim) at 12Z and vertical level of 1000 hPa and (b) is the same as “a” but

averaged on days in which extreme precipitation was observed in the city of São Paulo.

5 Region with negative (positive) vertical wind speed in Cartesian (pressure) coordinates
6 Note that pressure coordinates increases towards the ground
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a b(m/s) (m/s)

Figure 5.6: Horizontal wind vector field with shaded wind speed (m/s), where (a) is the climatological

average (1985-2015, Era-Interim) at 18Z and vertical level of 1000 hPa and (b) is the same as “a” but

averaged on days in which extreme precipitation was observed in the city of São Paulo.

a b(Pa/s) (Pa/s)

Figure 5.7: Vertical wind speed (Pa/s), where (a) is the climatological average (1985-2015, Era-Interim)

at 12Z and vertical level of 500 hPa and (b) is the same as “a” but averaged on days in which extreme

precipitation was observed in the city of São Paulo.



Chapter 6

Precipitation forecast in the city of São Paulo

This chapter presents and evaluates a machine learning framework to forecast daily

total precipitation in the city of São Paulo. Two situations were explored: an idealized

and a realistic. The ERA-Interim reanalysis represents an ideal atmospheric model with

minimum uncertainty and the GEFS reforecast represents an operational model available

to the weather forecaster. Both of these situations are compared with observations.

6.1 Data

As discussed in Chapter 2, two explanatory datasets were explored: the GEFS refore-

cast Version 2 (Hamill et al., 2013) and the ERA-Interim reanalysis. The GEFS reforecast

is a historical dataset of ensemble weather forecasts produced with a recent version of

NOAA’s Global Forecast System model. Only the control member of the ensemble was

used (hereafter, GFS). Table 6.1 lists the variables chosen as input to the DNNs and Fi-

gure 6.1 shows GFS (red) and ERA-Interim (blue) horizontal meshes in the area where

the variables where extracted.

ERA-Interim data was not inputed directly in the DNNs. As shown in Figure 6.1, there

are 384 grid points per vertical level and time for each variable. Using all ERA-Interim

grid points would lead to a very large number of explanatory variables. Dealing with such

large number of variables would hinder the comprehensibility of results and significantly

increases the computational efforts. The next chapter discusses the approach undertaken

to tackle this dimensionality issue.
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Figure 6.1: Horizontal meshes of ERA-Interim (blue) and GFS (red)

6.2 Linear dimensionality reduction of the ERA-Interim dataset

Considering non-turbulent scales, most atmospheric variables present a relatively smo-

oth and continuous spatial distribution (with some exceptions such as precipitation). The

diurnal cycle of such variables is often smooth as well (again, above the time scale of

turbulent vortices). Some exceptions may occur in the case of a subtle humid air mass

intrusion in a normally dry area by the means of sea breeze, for example. In general, it

is reasonable to expect that the explanatory variables listed in Table 6.1 can be, without

major losses of information, projected into a lower-dimensional space.

Principal Component Analysis (PCA) is a linear transformation that projects a n-

dimensional dataset X into a n-dimensional orthogonal basis in which the variables of

the rotated dataset Z are linearly uncorrelated (Figure 6.2). This transformation can be

achieved by eigendecomposition of the correlation matrix (Equation 6.1). The eigenvectors

of the decomposition correspond to the columns of matrix W (principal components). The

eigenvalues α1..n determine the fraction of the linear variance explained by each principal

component (PC): vari =
αi∑n
i=1 αi

.
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Table 6.1 - Meteorological variables obtained from ERA-Interim, GFS and climatic indices gathered

between 1985 and 2015 to assemble the explanatory datasets.

Variable name and ab-

breviation

Time (UTC) Vertical level (hPa) Source

Specific humidity (q) 12 and 18 1000, 500 and 925 GFS and ERA-Interim

Temperature (T) 12 and 18 1000, 500 and 200 GFS and ERA-Interim

Horizontal wind (u and

v)

12 and 18 925, 500 and 200 GFS and ERA-Interim

Vertical wind (w) 12 and 18 500 GFS and ERA-Interim

Geopotential height

(z)

12 and 18 500 and 200 GFS and ERA-Interim

Mean sea level pres-

sure (P)

12 and 18 — GFS and ERA-Interim

Total column water

(tcw)

12 and 18 — GFS and ERA-Interim

SOI (Monthly) — NOAA Climate-CPC

AMO (Monthly) — NOAA-PSD

PDO (Monthly) — JISAO

Zn,m = Xn,mWm,m (6.1)

Figure 6.3 shows the fraction of the variance explained by the 20 highest ranked 1

principal components in the eigendecomposition of the original ERA-Interim dataset. The

dimensionality reduction is reasonably efficient at upper atmospheric levels (200 hPa). At

medium and lower atmospheric levels (500, 925 and 1000 hPa and mean sea level), the

1 Sorted by explained variance

Figure 6.2: 2-dimensional example of PCA rotation from X to Z. Extracted from Goodfellow et al. (2016)
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Figure 6.3: Accumulated variance explained by the 20 highest ranked principal components by the

eigendecomposition of the original ERA-Interim dataset. The dotted vertical line marks the fifth principal

component.

spatial distribution of the explanatory variables becomes increasingly non-linear, causing

the PCA dimensionality reduction to be less efficient. Nevertheless, except for the ver-

tical wind component (w), five principal components suffice to preserve more than 50%

of the original dataset linear variance. For this reason, the lower dimension dataset was

constituted with the projection of the original data in the five highest ranked PCs.

6.3 Deep neural networks architecture and training

6.3.1 Comment on recurrent and convolutional neural networks

There are several neural network architectures available to build discriminator or pre-

dictive models depending on the nature of objective function. If the objective function is a

time series where the current time depends upon past states of the model, recurrent neural

networks (RNNs) are the prevailing technique (Graves et al., 2013). RNNs are frequently

employed for speech recognition, text translation, handwriting recognition, among others.

In the field of image recognition, the predominant approach is to employ convolutional
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hidden-layers in the neural network. These convolutional neural networks (CNNs) explore

some common properties found in images, such as locality: each pixel tend to be more

related to its vicinity. The convolutional layers apply small sized (e.g. 4x4) kernels th-

rough the image channels (e.g., red, green and blue) aiming to recognize features such as

edges and particular shapes. This convolution “trick” dramatically reduces the number of

parameters in the network, allowing processing larger images that would be impracticable

in fully connected multi-layer perceptrons.

Even though both RNNs and CNNs conceptually have desirable properties for a pre-

dictive model, there is a literature vacuum concerning how these classes of neural networks

behave in the context of meteorological processes. RNNs might have been an appropriate

choice to forecast the hourly precipitation rate because, in this time scale, the model would

take advantage of temporal sequences such as the life cycle of a storm or the propagation

of sea breeze fronts. In the case of 24-hour precipitation forecast, however, one cannot

assume such temporal dependence exists, except under particular circumstances where a

persistent precipitation system, such as the SACZ, is active.

Nevertheless, the ability of CNNs to identify spatial patterns and handle large 2-

dimensional grids should not be ignored. Recently, Cao et al. (2017) developed a network

combining convolutional and recurrent layers to predict the hourly wind field in the Uni-

ted States. The network was trained to use only the past wind field as input, treating

its evolution as a sequence that depends solely upon itself. This approach is valid for a

limited time span, since the wind field evolves in function of dynamical forces such as the

pressure gradient. Further research must be made in the direction of understanding how

convolutional and recursive layers should be employed to predict a meteorological variable

(such as precipitation) considering the complete atmospheric state.

6.3.2 Deep multi-layer perceptron architecture

A fully-connected deep multi-layer perceptron (Figure 2.2) was chosen as predictive

model for the 24-hour rainfall forecast. It has been found to be an appropriate method

because it does not assume any spatial or temporal relationship between the inputs. Mo-

reover, since the dimensionality of the input dataset was reduced with PCA, the size of
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the weight matrices did not impose any limitations.

The input layer consists of all the variables listed in Table 6.1 (projected in five PCs

in the case of ERA-Interim), followed by four hidden-layers of 200 nodes each and a single

node on the output layer. Because of the nature of ReLU activation function (Equation

2.3), the precise number of hidden nodes is not a sensible parameter in the model – i.e.,

similar results could be achieved varying the number of nodes per layer from approximately

150 to 250. Glorot et al. (2011) argue that ReLU gives to the network flexibility to control

the effective number of nodes, allowing it to increase or decrease the dimensionality of

the representation depending on the amount of information/complexity for each set of

explanatory variables. To contextualize this argument with a meteorological example,

picture the task of predicting two different types of rainfall systems: local convective

storms and large-scale organized precipitation (e.g, cold front). During the training phase,

the neural network might learn that, to forecast local convective storms, a more complex

representation is required (i.e., more active neurons per layer) than to forecast large-scale

organized precipitation.

6.3.3 Training of the deep multi-layer perceptron

This subsection will introduce the algorithms employed during the training phase of the

multi-layer perceptron. Initially, the explanatory datasets (Era-Interim + climate indices

and GFS + climate indices) and the target dataset (24-hour precipitation from CHIRPS)

were divided in three random sets:

1. Training set (50% of the total days) : the data effectively used to train the neural

networks;

2. Validation set (20% of the total days): the data used during the training phase to

assure that no overfitting occurred;

3. Test set (30% of the total days): the data employed during the test phase, completely

ignored during the training phase.

The difference between the validation set and the test set may seem unclear, but the
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distinction is important. During the training phase, the performance of the neural networks

is evaluated against the validation set. This procedure is useful to check if the model is

overfitting the training set. The test set, on the other hand, will not be considered during

the training phase at all, working as new unseen data.

The first step of the training phase is to feed the training set in the input layer of the

neural network and iterate through the net until the output layer. This procedure is called

“forward-pass”. Algorithm 1 describes the forward-pass algorithm combined with dropout

(discussed in Section 2).

Algorithm 1 MLP forward pass with dropout

Given a randomly initialized MLP with L (0 < l ≤ L) integer layers and I (0 < i ≤ I)

nodes per hidden-layer, let:

zl be the input vector for layer l;

yl be the output vector of layer l;

wl be the weight matrix at layer l;

bl be the bias at layer l;

f be an activation function and

let rl be a random binary vector such that each element has probability p of being 1

or zero otherwise.

for l from 1 to L-1

do

for i from 1 to I

do

1: zl+1
i = wl+1

i · (yl · rl) + bl+1
i

2: yl+1
i = f(zl+1

i )

After the computation of the the network output yL, a loss function should be defined

to evaluate the prediction against the corresponding observed value yref . Considering that

the quantitative precipitation forecast is a regression task, the mean squared error (MSE,

Equation 6.2) was chosen as an appropriate loss function. It is defined by:
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MSE =
n∑
i

(yL − yref )2

n
(6.2)

The learning process consists in minimizing the loss function MSE. Therefore, the

gradient of MSE with respect to each weight wi,l must be computed. The procedure of

computing the output layer gradient and propagating it through the previous layers is

called backpropagation. A brief intuition of the backpropagation algorithm is given below

(a detailed discussion can be found in Bishop (1995)).

To support the intuition of backpropagation, Figure 6.4 shows the final two layers (L−1

and L) of a multi-layer perceptron. The gradient of MSE with respect to the output yL

of layer L is given by equation 6.3.

dMSE

dyL
= 2(yL − yref ) (6.3)

y2,L−1 w2,L Σ g

activation

function

yL

Output

y1,L−1 w1,L

y3,L−1 w3,L

zL
Outputs of L-1

Figure 6.4: Diagram of the last 2 layers of a MLP to support the derivation of the backpropagation

algorithm.

The chain-rule of derivatives can be used to obtain the gradient of the loss function

with respect to the input zL of layer L:

dMSE

dzL
=
dMSE

dyL
dyL

dzL
(6.4)

Similarly, the chain-rule can be applied to compute the gradient of MSE with respect

to the weights w1,L, w2,L and w3,L:

dMSE

dwi,L

=
dMSE

dzL
dzL

dwi,L

(6.5)
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Recalling that zL =
∑3

i=1wi,Lyi, the term
dzL

dwiLj

from Equation 6.5 simply equals to

yi,L−1. Using Equations 6.3 and 6.4, Equation 6.5 becomes:

dMSE

dwi,L

= 2(yL − yref )
dyL

dzL
yi,L−1 (6.6)

The last remaining term to expand is the derivative of the output yL of layer L with

respect to the input zL. Recalling that yL = g(zL), where g is the activation function, it

is only required to derive g with respect to zL.

Iterating this method up to the input layer, it is possible to compute the gradient gi,l of

the loss function with respect to the weights. Subsequently, the weights must be updated

in order to minimize the MSE. There are several first-order methods available to perform

this update. The most popular methods are based on gradient descent, i.e., updating the

weights in the opposite direction of gradient g (Equation 6.7).

wt+1
i,l = wt

i,l − ηgi,l (6.7)

The hyper-parameter η is called “learning-rate”. It determines the size of the step

taken in the opposite direction of the gradient g. The choice of a suitable learning-rate is

determinant for the convergence and computational speed of the training phase. A large

η may cause the error to oscillate around a local minimum while a small η may lead to a

prohibitively slow convergence. The algorithm ADADELTA (Zeiler, 2012) was employed

to alleviate the task of choosing an appropriate η. It calculates an adaptive learning-rate

based on the running average of the gradient in the previous iterations. Meaning that the

convergence accelerates if the gradient points in the same direction for several iterations

and the convergence slows down near the local minimum.

6.4 Precipitation forecast in the city of São Paulo

To evaluate the 24-hour precipitation forecast in the city of São Paulo, the Hit Rate

(HR) and False Alarm Rate (FR) (Equation 6.8) were computed on the test set. HR
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and FR are evaluation metrics for binary predictions and are calculated in function of the

terms a, b, c and d (Equation 6.8). The term a corresponds to the number of times that a

precipitation event above a certain threshold was both observed and forecasted. The term

b corresponds to the number of forecasted events above a certain threshold that were not

observed. The term c corresponds to the number of unpredicted events above a certain

threshold. The term d is the number of times that a precipitation event above a certain

threshold was neither predicted or observed.

The thresholds defined to compute HR and FR are based on the quantiles of the statis-

tical distribution of the daily precipitation rate in the city of São Paulo. The equivalence

between these quantiles and the precipitation rate in milliliters per day is given in Table

6.2.

Table 6.2 - Quantiles of the daily precipitation rate (mm/day) from CHIRPS in São Paulo.

Quantiles Prec. rate

(mm/day)

0.6 0

0.7 2.2

0.8 7.5

0.9 16.2

0.95 24.6

HR =
a

a+ c
and FR =

b

b+ d
(6.8)

Figure 6.5 shows the HR and FR of the 24-hour precipitation forecast in São Paulo

with the ERA-Interim reanalysis as explanatory set. The HR and FR were computed on

50 random subsets of the validation set with 500 observations each. The boxplot shows

the first (25%) and third (75%) quartiles as well as the median and outliers. The median

HR is above 50% for quantiles below 0.9 and the median FR is below 25% for all quantiles.

The FR variance is noticeably smaller than the HR, meaning that it is very unlikely that

a high FR is observed in any random set of predictions. As a complementary evaluation,

Figure 6.6 shows the confusion matrix of the DNNs predictions compared with CHIRPS

observed precipitation.

Similarly to Figure 6.5, Figure 6.7 shows the HR and FR of the DNN forecast in São
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Paulo, but trained with the GFS explanatory dataset. The results are very similar to

Figure 6.5, except for quantiles above 0.9. This difference highlights the importance of

a quality input dataset to forecast extreme precipitation events. Nevertheless, Figure 6.7

shows very promising results for the employment of the methodology in a realistic weather

forecasting situation.

To highlight the improvements provided by the deep learning methodology, the same

evaluation procedure was employed with the GFS precipitation output. Figure 6.8 shows

the HR and FR of the GFS 24-hour precipitation forecast. Comparing with Figure 6.7, it

is unequivocal that the neural networks predictions are much more realistic than the GFS

precipitation output. It is relevant to recall that neither the precipitation outputs from

GFS or ERA-Interim were used as input to the DNNs (see the explanatory variables in

Table 6.1).

Figure 6.5: Hit Rate (HR) and False Alarm Rate (FR) of the DNN 24-hour precipitation forecast in the

city of São Paulo. In this case, the DNN was trained using ERA-Interim explanatory data.
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Figure 6.6: Confusion matrix of the DNN 24-hour precipitation forecast in the city of São Paulo. In this

case, the DNN was trained using ERA-Interim explanatory data.

Figure 6.7: Hit Rate (HR) and False Alarm Rate (FR) of the DNN 24-hour precipitation forecast in the

city of São Paulo. In this case, the DNN was trained using GFS explanatory data.
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Figure 6.8: Hit Rate (HR) and False Alarm Rate (FR) of the GFS 24-hour precipitation forecast in the

city of São Paulo.

6.5 Evaluating the predictors importance

During the learning stage, the stochastic gradient descent updates the weights matrix of

the network to minimize the loss function. The weights of the first layer store the strength

of the connections (also known as synapses) between the input neurons and the next layer.

In a shallow network, i.e., a single-layer ANN, the magnitude of the weights are the direct

measure of how much each input influences the output. In a fully-connected multi-layer

perceptron, however, such evaluation is not as straightforward. Complex combinations

between the inputs are allowed, meaning that, even if an input alone is not a relevant

predictor, it may become relevant when combined with a certain configuration of inputs.

An empirical procedure was employed to verify the influence of each input variable

alone in the network output. The input layer of the DNN (trained with the ERA-Interim

dataset) was stimulated with a one-hot vector 2 for each input variable. The scaled outputs

of the one-hot stimulations were defined as the relative importance of each input variable.

Table 6.3 shows the relative importances and the meteorological interpretation of the 5

2 One-hot vector is a vector containing the value one in a certain position and zero in the others.
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most relevant input variables and Figures 6.9 to 6.13 display the rotation matrix of the

principal components listed in Table 6.3.

It may be surprising to note the absence of some variables such as specific humidity and

temperature in Table 6.3. Nonetheless, this procedure ignores the interactions between

the input variables. Instead, it classifies the variables that can – alone – influence the

precipitation forecast. It means, for instance, that a humid atmosphere is not sufficient to

produce rainfall without relying on other conditions. Large-scale dynamical mechanisms,

on the other hand, seem to have more ability of controlling rainfall alone.

Table 6.3 shows that the first principal component of the vertical wind at 500 hPa is

the most relevant predictor. It express the role of the large-scale vertical flow in controlling

local convection. This pattern was identified in Figure 5.7b. The second most relevant

predictor is the second principal component of the meridional wind at 925 hPa. The

pattern revealed in Figure 6.10 can be associated with cold front passage in São Paulo.

The third and fourth most relevant predictors are also related with large-scale dynamics:

Figures 6.11 and 6.12 reveal the geopotential trough and the high-level jet. The fifth most

relevant predictor is the third principal component of the zonal wind at 925 hPa. Figure

6.13 displays a pattern similar to Figure 5.6. This pattern can be associated to a mesoscale

low-level convergence between the sea-breeze and northwesterly winds.

The interactions between two input variables were briefly analyzed with two-hot vectors

3 stimulation. The most relevant combination is the first principal component of the 500

hPa vertical wind with the third principal component of specific humidity, highlighting

the combination of ascending currents and water vapor availability. The importance of

the near-surface temperature is highlighted by the second most relevant combination of

predictors: the second principal component of the geopotential height at 500 hPa with

the third principal component of temperature at 1000 hPa. This combination identifies

the cold front passage associating the geopotential trough with horizontal temperature

gradients.

3 The two-hot vector contains the value one in two positions and zero in the others.
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Figure 6.9: First principal component of

the vertical wind at 500 hPa.

Figure 6.10: Second principal component

of the meridional wind at 925 hPa.

Figure 6.11: Second principal component

of the geopotential height at 500 hPa.

Figure 6.12: First principal component of

the meridional wind at 200 hPa

Figure 6.13: Third principal component

of the zonal wind at 925 hPa.

Figures 5.9 to 5.13: Spatial patterns of the most relevant explanatory variables ranked in Table 6.3.



68 Chapter 6. Precipitation forecast in the city of São Paulo

Table 6.3 - Relative importance and meteorological interpretation of the five most relevant predictors.

Stimulated

variable

Level

(hPa)

Princ. Comp. Relative impor-

tance

Meteorological

interpretation

w 500 1 1 Medium-level air

ascension

v 925 2 0.86 Cold-front passage

z 500 2 0.78 Geopotential

trough

v 200 1 0.71 High-level jet

u 925 3 0.67 Sea-breeze and low-

level convergence



Chapter 7

Precipitation forecast in the East region of the State of

São Paulo

This chapter comprises the methodology and results of the spatial precipitation forecast

in ESP. The neural networks architecture and training procedure is similar to Chapter 5.

The main methodological difference lies on how to achieve a forecast for hundreds of grid

points. Section 6.1. discusses the undertaken approach to reduce the dimensionality of the

precipitation field in order to facilitate the spatial precipitation forecast.

Regarding the explanatory dataset, the procedure is similar to Chapter 5. It consists of

the ERA-Interim variables listed in Table 6.1 projected on the five first principal compo-

nents. Figure 7.1a shows the spatial grid where the explanatory variables were extracted

and Figure 7.1b shows the grid where CHIRPS precipitation data was extracted.

7.1 Non-linear representation of the precipitation dataset

The precipitation mesh in the study area (Figure 7.1b) consists of 260 grid points.

Training a single neural network for each point is feasible, yet computationally expensive.

In the case of a larger study area, a single network for each point would become imprac-

ticable. For this reason, a more general approach was chosen. Similarly to Section 5.2., a

dimensionality reduction technique was employed.

The task of reducing the dimensionality of the precipitation field, however, may not be

as simple as other atmospheric variables. Figure 6.3 shows that five principal components
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Figure 7.1: a) Spatial grid (0.25◦x 0.25◦) where the explanatory ERA-Interim dataset was extracted and

b) Spatial grid where CHIRPS (0.10◦x 0.10◦) precipitation data was extracted.

suffice for representing variables with a more linear behavior while they fail when it comes

to less linear fields, such as vertical wind speed. Considering the highly non-linear nature

of precipitation, a linear technique such as PCA would not be appropriate for an efficient

dimensionality reduction.

Hinton and Salakhutdinov (2006) proposed a dimensionality reduction technique based

on neural networks called deep autoencoders. Autoencoders are a class of neural networks

in which the output layer aim to approximate the input vectors. Figure 7.2 shows a generic

diagram of a deep autoencoder based on a multi-layer perceptron. The first hidden-layer

encodes the information of a higher dimensional input layer to a lower dimensional “bottle-

neck layer”. The hidden-layer next to the bottleneck layer decodes the lower dimensional

information into an output layer of the same dimension as the input. After the network

parameters are trained (with stochastic gradient-descent, for example), the outputs of the

bottleneck layer correspond to the “non-linear principal components” of the input dataset.
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In other words, in a non-linear perspective, it is the best possible lower-dimensional repre-

sentation of the input dataset. Hinton and Salakhutdinov (2006) shows that well-trained

deep autoencoders provide a much better dimensionality reduction than PCA.
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Figure 7.2: Diagram of a generic MLP deep autoencoder architecture with ten input variables and two

neurons in the bottleneck layer.

A deep autoencoder with 10 neurons on the bottleneck layer was trained to reduce

the dimensionality of the precipitation field. Figure 7.4 exemplifies a decompressed pre-

cipitation field after encoding and decoding the original precipitation (Figure 7.3). The

reconstructed precipitation have smoother features while keeping the main characteristics

of the original field. Now, instead of 260 points, the compressed target dataset consists of

10 non-linear principal components for each day of the training set.
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Figure 7.3: 24-hour total precipitation

from CHIRPS on 14 April 2009.

Figure 7.4: Reconstruction of the 24-hour

total precipitation on 14 April 2009 by

deep autoencoders.

7.2 Results and discussion

The spatial precipitation forecast in the East region of the state of São Paulo was

achieved with a combination of multi-layer perceptrons and an autoencoder. As discussed

in the previous section, an autoencoder was trained to project the spatial precipitation

into 10 non-linear principal components. Following to that, 10 multi-layer perceptrons

were trained to predict each non-linear component. The autoencoder is employed one

more time to decode the predicted low-dimension projections and construct the predicted

precipitation field.

Figures 7.6 and 7.7 shows the RMSE and linear correlation between the predicted

precipitation field and CHIRPS data. The evaluation was performed on the test set using

ERA-Interim explanatory dataset. Both metrics indicate a good performance on the largest

porion of the study area. However, the error rate is higher and the correlation is lower near

to the Sierra do Mar mountain range. This loss of performance could be related with two

main reasons: (1) the complex topography increases the complexity of physical processes,

thus hindering the model’s ability to produce realistic rainfall or (2) the CHIRPS rainfall

estimate is less realistic near the mountain range. The second argument is related to the

satellite IR sensor limitation of estimating warm clouds precipitation.
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Figure 7.6: Pearson coefficient between the deep learning daily

precipitation forecast and CHIRPS data. The coefficient was

evaluated on the test set using ERA-Interim explanatory data-

set.

Figure 7.7: RMSE between the deep learning daily precipitation

forecast and CHIRPS data. The error was evaluated on the test

set using ERA-Interim explanatory dataset.
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Chapter 8

Summary, final remarks and future work

The central conclusion of this project is that recent deep learning implementations

substantially improve the quantitative precipitation forecast in the area of study. Under a

practical point of view, the results presented here highlight the applicability of the metho-

dology in weather forecasting. In a theoretical perspective, the results point towards the

understanding of how deep neural networks behave when learning meteorological pheno-

mena. More broadly, the large potential of artificial intelligence applications in atmospheric

sciences is emphasized. The improvements obtained here are aligned with trends observed

in several other applied areas such as image classification and speech recognition.

The issue of developing a machine learning algorithm for rainfall forecasting begins with

the choice of an appropriate precipitation dataset. CHIRPS was the dataset of choice.

Chapter 3 presents a short evaluation of CHIRPS daily precipitation estimates against

purely in-situ observations. Despite the inhomogeneity of CHIRPS data sources, an overall

improvement was observed since 1981. The RMSE, in the order of 7 mm/day, and the

determination coefficient, in the order of 40%, were considered satisfactory. The most

relevant remark in the usage of this dataset is the limitations that CHIRPS assimilation

procedure may have near topographic features such as Sierra do Mar mountain range.

Chapter 4 shows that extreme precipitation events have certain distinguishable pat-

terns: positive temperature advection, higher specific humidity, ascending currents at 500

hPa and low-level convergence along the coastline. This discussion served two purpo-

ses. Firstly, to indicate that information about rainfall daily rate is contained in the

0.25◦resolution ERA-Interim, and, therefore, it can be used as explanatory dataset. Secon-
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dly, to provide reference of which patterns the neural networks were expected to prioritize

in Section 5.5.

Chapter 5 is evaluates the DNNs forecasts in the city of São Paulo. In Section 5.2., it is

argued that 5 linear principal components are enough to preserve most of the information

contained in the ERA-Interim explanatory dataset. The PCA dimensionality reduction

was not required in the GFS explanatory dataset, because of its lower spatial resolution.

Figures 6.5 to 6.8 conclusively show that DNNs trained with either GFS or ERA-Interim

inputs perform far better than the GFS 24-hour rainfall output. Concerning the DNN

explanatory datasets, ERA-Interim reanalyisis has a slightly improved performance than

GFS reforecast, revealing that better results can be achieved with a more realistic input

set.

Except for applied fields where the machine learning developing community 1 is closely

involved, such as image recognition, it is seldom discussed in scientific literature how DNNs

learn the underlying physical processes of natural phenomena. This fact has created a

widespread idea among academicians, particularly in earth sciences, that machine learning

algorithms are black-boxes unrelated to physics. In fact, in this moment of the discussion,

it is relevant to punctuate that a number of procedures (e.g., convective parameterizations)

widely adopted in traditional numerical weather prediction are not necessarily related to

physics, instead, they explore statistical properties of the atmosphere. Regardless, recent

studies are concerned in unraveling this black-box and providing clearer intepretations of

artificial neural networks and machine learning in general. Lin et al. (2017) presented a

pioneering discussion about the relationship of DNNs and physical processes, arguing that

DNNs take advantage of the hierarchy often found in physical phenomena.

The discussion presented in Section 5.5. intends to narrow the aforementioned gap

between machine learning algorithms and physics. When stimulated with one-hot and

two-hot vectors, the DNNs behave in agreement with the theoretical understanding of

local atmospheric dynamics and with the results in Chapter 4. It indicates that DNNs can

be employed to quantitatively evaluate physical relationships in rainfall processes. Ranking

the most relevant atmospheric patterns for rainfall prediction could support the weather

1 To name a few: professor Geoffrey Hinton group at University of Toronto, professor Yann LeCun

group at New York University and tech companies research labs such as Google, Microsoft and IBM.
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forecaster decisions, particularly in regions where the precipitation mechanisms are not

well understood.

Chapter 6 shows that it is possible to achieve a satisfactory spatial rainfall forecast

with a small number of deep multi-layer perceptrons. To achieve that, a deep autoencoder

was employed to create a low-dimensional representation of the spatial precipitation field.

The task of predicting the complete precipitation field is then reduced to predicting the

non-linear principal components.

Preliminary results not shown in this monograph reveal that similar quality predictions

can be achieved for 24 and 48 hour forecast in other areas of Brazil. It indicates that the

applicability of this methodology is not limited to ESP and to the 24-hour time window.

The perspective for future studies regarding AI and rainfall forecast is vast. As briefly

discussed in Section 5.3.1., modern implementations of recurrent and convolutional neu-

ral networks are very successful in a number of prediction and classification tasks. These

techniques have interesting properties that might enhance the overall forecast skill. A pro-

perly trained CNN, for instance, might dismiss the need of the autoencoder dimensionality

reduction, since it is designed to recognize patterns in high-dimensional images. SELU

AI is today one of the most active research field in computer science, applied mathema-

tics and related subjects. It is being progressively recognized by society as an important

tool for innovation in science and engineering. The high research activity currently under-

taken in AI culminates on a large volume of novel methodologies with potential applications

in atmospheric sciences.

Recently, Stanford University has published the 2017 Annual Report (AI Index Team,

2017) to summarize the undergoing activity and progress in AI. The Report highlights

that the number of AI papers produced by year is nine times higher today than it was in

1996. In contrast, the average number of papers produced by years in all fields increased

only two times. This growth of interest also manifests in the business sector: the number

of AI startups in the US increased 14 times and, since 2013, the number of AI related job

openings in the US increased 4.5 times.

In conclusion, AI might not provide a definitive solution for meteorological issues such
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as rainfall forecast. However, the progressively large number of novel techniques may

temporarily relief some of meteorology’s old struggles.
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Appendix A

Figure A.1: Monthly averaged precipitation (mm/month, 1981 - 2016) from CHIRPS in ESP during

austral summer (a), autumn (b), winter (c) and spring (d).
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