Universidade de São Paulo

Instituto de Astronomia, Geofísica e Ciências Atmosféricas

Departamento de Geofísica

Giovanni Moreira

PALEOMAGNETISMO DA FORMAÇÃO PENATECAUA DA PROVÍNCIA MAGMÁTICA DO ATLÂNTICO CENTRAL NA BACIA AMAZÔNICA, BRASIL

São Paulo,

2019

Giovanni Moreira

PALEOMAGNETISMO DA FORMAÇÃO PENATECAUA DA PROVÍNCIA MAGMÁTICA DO ATLÂNTICO CENTRAL NA BACIA AMAZÔNICA, BRASIL

Dissertação apresentada ao Departamento de Geofísica do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo como requisito parcial para a obtenção do título de Mestre em Geofísica.

Área de Concentração: Geofísica

Orientadora: Dra. Marcia Ernesto

São Paulo,

2019

RESUMO

O magmatismo Penatecaua no Estado do Pará faz parte da Província Magmática do Atlântico Central (CAMP) cuja formação precedeu a ruptura do Pangea, o mais recente supercontinente. Nos arredores das cidades de Medicilândia, Placas, Rurópolis, Monte Alegre e Alenquer afloram uma grande quantidade de soleiras de diabásio e diques observados ao longo de estradas. Idades ⁴⁰Ar/³⁹Ar recentes atribuem a idade de ~201 Ma para o magmatismo CAMP nessa região. Estudo paleomagnético nessas intrusões foi realizado em trinta sítios de amostragem nas cinco áreas acima citadas. A magnetização remanente característica dos sítios estudados é de polaridade normal e foi identificada através de desmagnetizações por campos magnéticos alternados e térmicas e interpretada como termorremanente, adquirida na época do resfriamento da rocha. Os portadores magnéticos são magnetitas ou titano-magnetitas com baixo conteúdo de Titânio. O polo paleomagnético calculado com base em 20 sítios de amostragem e incorporando dados da literatura para o mesmo magmatismo, situa-se a 76.5°N 80.5°E (N=30; α₉₅=3.8; k=50) e é coerente com polos de outras ocorrências ígneas da América do Sul já identificadas como pertencentes ao evento CAMP. Essa similaridade de resultados reforça as observações de que o CAMP na América do Sul foi um evento muito rápido e isso é notado claramente no registro magnético das rochas do Penatecaua.

Palavras-chave: Paleomagnetismo, magmatismo Penatecaua, sill de Medicilândia, Província Magmática do Atlântico Central.

ABSTRACT

The Penatecaua magmatism occurring in northern Brazil (Pará State) belongs to the so-called Central Atlantic Magmatic Province (CAMP), which preceded the Pangaea breakup. Near the cities of Medicilândia, Placas. Rurópolis, Monte Alegre e Alenquer diabase sills and dikes outcrop along roads. Recent ⁴⁰Ar/³⁹Ar dating give an age of ~201 Ma for the CAMP magmatism in the area. The paleomagnetic study on 20 sampling sites of the Penatecaua magamtism, revealed stable characteristic magnetization components through alternating magnetic field and thermal demagnetizations. The main magnetic carriers are magnetite or low-Ti titanomagnetites. The paleomagnetic pole based on the studied sites and incorporating data from the literature for the same magmatism is located at 76.5°N 80.5°E (N=30; α_{95} =3.8; k=50) and is coherent to other South American CAMP paleomagnetic poles for which good age control is available. This similarity of results reinforces the observations that the CAMP in South America was a very fast event and this is noticed in the magnetic record of the Penatecaua rocks.

Keywords: Paleomagnetism, Penatecaua magmatism, Medicilandia sill, Central Atlantic Magmatic Province.

"It pays to be obvious, especially if you have a reputation for subtlety"

Salvor Hardin

Agradecimento

Em especial para a elaboração deste trabalho agradeço minha orientadora por confiar e criticar quando necessário fazendo o trabalho agradável e produtivo. Aos colegas geólogos pelas lições no campo, trabalho de laboratório e nas conversas amigas. Às instituições de fomento CAPES e CNPQ pelo financiamento que possibilita a pesquisa.

Agradeço a todos que me ajudaram e acreditaram na minha trajetória e no meu trabalho. Aos colegas de trabalho do laboratório de Paleomagnetismo USPMAG, Departamento de Geofísica, IAG, Física, IME, MAE, IO, IGC, IQ, USP, UNESP, outras universidades e institutos de pesquisa. Incluo nessa lista estudantes, técnicos, pesquisadores e curiosos que visitaram o laboratório. Todos que demonstraram interesse nesta área a qual me dedico me inspiram a continuar.

A minha família por ter me dado condição de uma educação privilegiada. Aos professores que não só me ensinaram o conteúdo como foram exemplos de vida. Os amigos que me incentivaram com boas conversas e pelo apoio.

Não escrevo nomes, pois quem lê pode se identificar e não quero deixar ninguém de fora. Para não errar por uma pequena falta deixo nesta grande lacuna abstrata espaço para ser preenchido por qualquer pessoa que ler isso. Saiba que você foi importante para mim mesmo não tendo sido mencionado nominalmente. Afinal, qual o real valor tem o nome em um agradecimento?

Sumário

Capa

Resumo

Capítulo 1 Introdução

Capítulo 2 — Aspectos Geológicos

- 2.1. Bacia Sedimentar do Amazonas
- 2.2. O Magmatismo Penatecaua

Capítulo 3 – Fundamentos do Magnetismo de Rochas

- 3.1. Minerais Magnéticos em Rochas Ígneas
- 3.2. Estrutura de domínio
- 3.3. Aquisição de Magnetização Remanente
- 3.4. Anisotropia de suscetibilidade magnética
- 3.5. O Registro Paleomagnético
- 3.6. Polos Paleomagnéticos e Curvas de Deriva Polar Aparente

Capítulo 4 – Procedimentos Experimentais

- 4.1. Amostragem e preparação de amostras
- 4.2. Análises de Laboratório
 - 4.2.1. Anisotropia de susceptibilidade magnética (ASM)
 - 4.2.2. Desmagnetizações AF e Térmica
 - 4.2.3. Identificação das Componentes de Magnetização
- 4.3. Mineralogia magnética
 - 4.3.1. Curvas termomagnéticas

4.3.2. Curvas de histerese e magnetização remanente isotérmica (MRI)

Capítulo 5 – Apresentação dos Resultados

5.1. Mineralogia magnética

5.2. Anisotropia de Susceptibilidade Magnética

5.3. Identificação das componentes características de magnetização

Capítulo 6 — Discussão e Conclusões

Anexo I

Capítulo 1 — Introdução

1.1. A Província Magmática do Atlântico Central — CAMP

O supercontinente Pangea existiu entre o Carbonífero e o Jurássico. Sua amalgamação, por volta de 300 Ma se deu pela junção da maioria dos principais blocos cratônicos atuais, já majoritariamente agrupados em dois grandes continentes, Laurásia e Gondwana. Esta junção de blocos resultou em gigantescas zonas de sutura que possivelmente chegaram à escala de milhares de quilômetros. Seu ápice de empacotamento aconteceu próximo a 250 Ma (Rogers, 2004) cercado por um grande oceano, o Pantalassa, provavelmente alguns poucos blocos continentais pequenos, ilhas oceânicas já subductadas e o mar de Tethys a Leste. Durante os cerca de 50 Ma seguintes o supercontinente era cercado por subducções em um círculo de fogo análogo ao atual do Oceano Pacífico que deixou um registro abundante em suas regiões Norte, Sul e Oeste. Sua quebra afetou o registro geológico, com processos que podem ser observados globalmente, como a mudança da Paleogeografia, do clima e da biosfera na transição entre o Triássico e o Jurássico.

Os processos que resultam em quebra de supercontinentes, em geral, envolvem a formação de grandes províncias ígneas, como é o caso da Província Magmática do Paraná-Etendeka (Piccirillo & Melfi, 1988). A Província Magmática do Atlântico Central (CAMP; Central Atlantic Magmatic Province; Marzoli et al., 1999), é um exemplo dessa classe de província, com sub-províncias espalhadas pelos ex-blocos do Pangea que circundavam o atual Atlântico e que são relacionadas pela idade e pela geoquímica. As idades do CAMP variam do final do Triássico ao início do Jurássico. Datações de 40 Ar/ 39 Ar e U/Pb para as soleiras de diabásio da Amazônia, associadas a idades de outras regiões (Davies et al., 2017) atribuem uma idade de 201.52 ± 0.07 Ma para o pico desse magmatismo e que se coloca muito próximo do limite Triássico-Jurássico (201.36 ± 0.17 Ma). Estes novos resultados no Penatecaua indicam uma idade compatível com a interpretação que o CAMP possa ser um mecanismo gatilho para mudanças climáticas relacionadas à extinção do final do Triássico, embora essa associação já tenha sido contestada (Whiteside et al., 2007). O principal mecanismo proposto é a liberação de voláteis pelas camadas sedimentares em que se encaixam as intrusões, adicionando à atmosfera uma enorme quantidade de gases SO₂ e CO2.

Fig. 1.1. Mapa esquemático da província CAMP reconstruída para o Pangea (Marzoli et al., 2017). A linha tracejada demarca a área das ocorrências já conhecidas. Na figura estão demarcadas algumas áreas de ocorrência de alguns tipos específicos de basaltos, inclusive o tipo alto-Titânio (H-Ti).

A Província CAMP é caracterizada por uma extensa região onde ocorrem basaltos toleíticos com idades do limite Triássico-Jurássico (T-J). Esses basaltos são encontrados em todos os continentes que uma vez estiveram amalgamados formando o supercontinente Pangea: América do Norte, Europa, África e América do Sul (Fig. 1.1). A CAMP é uma das maiores províncias ígneas da Terra e deve exceder 10 milhões de km², sendo representada por intrusões rasas e campos de lavas. O pico da atividade ocorreu em cerca de 201Ma e durou não mais do que um milhão de anos (Marzoli et al., 2017), embora o magmatismo tenha continuado por alguns milhões de anos. Nesse intervalo, deve ter acumulado pelo menos 3 milhões de km³ de magma, na forma de soleiras muito volumosas, diques que capazes de atingir 800km de extensão e, embora poucos, campos de lavas que podem ser seguidas por alguns quilômetros nas bacias sedimentares.

De acordo com Marzoli et al. (2017) CAMP é uma província ígnea peculiar porque, diferentemente de outras (Paraná-Etendeka, Deccan e outras), além de apresentar poucos empilhamentos de lavas preservados, não existem rochas alcalinas e tipos ácidos são raros. Os autores observam que as rochas CAMP são enriquecidas em relação aos basaltos das cadeias meso-oceânicas e ilhas oceânicas e que o manto superior que deu origem àquelas rochas deve ter sido contaminado com material da crosta superior e inferior. Estudos geoquímicos e isotópicos mostraram que os basaltos do CAMP não carregam evidências para o envolvimento de uma pluma de manto profundo, mas são originadas no manto superior que foi enriquecido em elementos incompatíveis e em voláteis durante o Proterozóico ou Paleozóico em eventos de subducção (por exemplo, Merle et al., 2011; Callegaro et al., 2013). Entretanto, ainda não é claro qual o mecanismo que geraria fonte de calor tão intensa para gerar um magmatismo dessas proporções em tão pouco tempo.

Fig. 1.2. Diagrama de classificação Alkali-Silica total (Le Bas et al., 1986) para as intrusivas e efusivas do CAMP dos diversos continentes (Marzoli et al., 2017).

1.2. CAMP na América do Sul

Como se observa na Fig. 1.1, na América do Sul as ocorrências do magmatismo CAMP concentram-se no Brasil, Guianas (Nomade et al., 2000), mas existem registros também na Bolívia (Bertrand et al., 2014) e talvez na Venezuela. No Brasil o magmatismo CAMP é reconhecido a até 2000 km da margem atlântica, na forma de soleiras, diques e alguns derrames, como os das formações Anari e Tapirapuã, Mosquito e Lavras da Mangabeira (Montes-Lauar et al., 1994; De Min et al., 2003). Os principais enxames de diques estão em Roraima e Amapá (Marzoli et al., 1999; De Min et al., 2003), mas também no nordeste do Brasil e na Bacia do Paranaíba (Ernesto et al., 2003), bem como na Bacia do Amazonas (Davies et al., 2017). As soleiras de diabásio são muito volumosas na Bacia do Amazonas — a Formação Penatecaua (Davies et al., 2017), e também na Bacia do Parnaíba — Formação Mosquito (Merle et al., 2011; Silva et al., 2017).

Os enxames de diques que afloram de Roraima ao Amapá, incluindo as Guianas, são muito densos, com diques espessos com até 200– 300m e estendo-se a até 300km. Por essa razão podem ser vistos como alimentadores do magma de outras áreas. As soleiras da Bacia do Amazonas têm espessura média de 500m e ocupam área de 1,3 milhões de km², o que representa uma atividade muito intensa.

A região norte brasileira foi intensamente afetada pelo magmatismo CAMP, mas registros de mesma idades são encontrados também na região nordeste. Essas rochas colocam-se na forma de diques (Amapá — magmatismo Caciporé; Roraima - magmatismo Apoteri; e similares nas Guianas), soleiras (Maranhão — magmatismo Mosquito; Bacias Amazônicas — magmatismo Penatecaua) e raramente derrames (Rondonia — magmatismo; Mato Grosso — magmatismo Tapirapuã; Rio Grande do Norte — Lavras da Mangabeira).

Os volumes mais espessos conhecidos de magmas do CAMP estão preservados na região norte. As soleiras da Amazônia (basaltos Pentecaua), como mostrado por De Min et al. (2003).

1.3.Paleomagnetismo das ocorrências CAMP da América do Sul

Alguns trabalhos de Paleomagnetismo já foram executados sobre rochas do CAMP, como Anari-Tapirapuã (Montes-Lauar et al., 1994), Formação Mosquito, Lavras da Mangabeira e diques do Ceará e Rio Grande do Norte (Ernesto et al., 2003), Suriname (Veldkamp et al., 1971), Guiana Francesa (Nomade et al., 2000); da Bacia do Amazonas existem dados de diques da Fm. Penatecaua (Guerreiro& Schult, 1986) e uma soleira da mesma formação (Medicilândia; Moreira & Ernesto, 2017).

A maioria dos dados existentes mostra que essas rochas adquiriram magnetização durante um período de polaridade normal do campo geomagnético. Isto implica que a colocação desses magmas deve ter ocorrido em intervalo muito curto, uma vez que o Jurássico Inferior (época do CAMP) é um período de muitas reversões magnéticas.

Fig. 1.3. Polos paleomagnéticos das ocorrências CAMP da América do Sul, representados no polo sul através dos círculos de confiança (Moreira & Ernesto, 2017).

Na Fig. 1.3 os polos paleomagnéticos CAMP da América do Sul, compilados por Moreira & Ernesto (2017) mostra que a maioria dos polos é muito coerente, como se espera para polos

de mesma idade. Entretanto, os polos para Anari-Tapirapuã e diques Penatecaua, coincidem entre si, mas discordam dos demais. A princípio esse resultado pode sugerir diferenças de idade ou deformações internas da placa. Entretanto, os dados preliminares para a soleira de diabásio de Medicilândia diferem do polo dos diques de Guerreiro & Schult (1986) e combina com os demais polos. Isto sugere que, na verdade, as diferenças podem significar apenas problemas nas determinações dos polos paleomagnéticos, devido às influências das variações geomagnéticas (variação secular) que não foi bem removida.

Desta forma, é importante estender o trabalho paleomagnético da formação Penatecaua na Bacia do amazonas, para que se tenha um polo paleomagnético robusto e comparável com dados de outras regiões da América do Sul e de outros continentes. Neste caso, pode-se contribuir para definir melhor as idades das diversas ocorrências e verificar se houve migração do magmatismo, no tempo e no espaço.

O trabalho aqui apresentado refere-se ao Paleomagnetismo de várias soleiras de diabásio da Bacia do Amazonas, Formação Penatecaua, tanto na porção sul como norte da bacia. A amostragem foi feita concomitantemente com amostragens para estudos geoquímicos e geocronológicos, que estão sendo desenvolvidos paralelamente a este trabalho.

Capítulo 2 — Aspectos Geológicos

2.1. Bacia Sedimentar do Amazonas

Duas das mais importantes bacias sedimentares cratônicas da América do Sul situam-se na região amazônica: as bacias do Solimões e do Amazonas (Fig. 2.1). Juntas essas bacias ocupam uma área de cerca de 1.1 milhões de km², ao longo dos rios Solimões-Amazonas.

A Bacia do Amazonas ocupa partes dos estados do Amazonas, Pará e Amapá, este último em menor proporção. Sua área total é de cerca de 515.000 km², com 1.300 km de comprimento e, em média, 380 km de largura. Essa bacia é delimitada pelo Arco de Gurupá a leste, que a separa da Bacia do Solimões e pelo Arco de Purus a oeste. Limita-se ao norte com o Escudo das Guianas e ao sul com o Escudo Brasileiro.

Seu preenchimento sedimentar teve início no Paleozoico Inferior (Ordoviciano) e, de acordo com Cunha (2007), acumulou cerca de 5.000 m de preenchimento sedimentar e ígneo. Esse autor divide o arcabouço estratigráfico em duas megasequências de primeira ordem: uma paleozoica, constituída por rochas sedimentares de naturezas variadas, associadas a um grande volume de intrusões de diques e soleiras de diabásio e outra mesozoica-cenozoica. A sequência paleozoica é marcada por expressivas discordâncias regionais decorrentes dos eventos tectônicos atuantes nas bordas da Placa Gonduânica.

Durante o Carbonífero-Permiano, depositou-se o Grupo Tapajós (Silva et al., 2003), composto pelas formações Monte Alegre, Itaituba, Nova Olinda e Andirá que representam distintos ambientes de sedimentação. O magmatismo basáltico associado ocorreu no início do Jurássico, formando diques e soleiras situados entre as formações Nova Olinda e Alter do Chão (Santos et al. 2002). Esse magmatismo está associado à Província CAMP (Marzolli et al. 1999) e é denominado magmatismo Penatecaua. A sedimentação na Bacia do Amazonas é encerrada pela deposição de duas sequências continentais, uma do Cretáceo Superior (Formação Alter do Chão) e outra Cenozoica (formações, Solimões e Içá), ambas de caráter fluvial.

Fig. 2.1. Mapa de localização das grandes bacias sedimentares da América do Sul (Milani & Zalán, 1999).

2.2. O Magmatismo Penatecaua

O magmatismo Penatecaua, do Jurássico Inferior (Marzolli et al. 1999; Davis et. al. 2017), está presente nas bacias do Amazonas e Solimões (De Min et al., 2003). Análises de amostras provenientes de poços da Petrobras, associadas a estudos geofísicos indicam que quase um milhão de quilômetros cúbicos de magma basáltico foram injetados em vários níveis dentro das sequências sedimentares paleozoicas (Carboníferas e Permianas, principalmente) dessas bacias.

Os afloramentos foram primeiramente descritos pelo projeto RADAM (DNPM, 1974) e também pela CPRM (Vasquez, 2008), principalmente nas margens da bacia e com direções aproximadamente paralelas ao curso atual do rio Amazonas. As soleiras apresentam grandes extensões laterais de até 50 km, como é o caso da soleira de Medicilândia (PA). A maioria das ocorrências é identificada como soleiras, porém no Noroeste da bacia também são descritos diques. Na Bacia do Amazonas as soleiras apresentam basculamento desprezível diferentemente do que ocorre na Bacia do Solimões, provavelmente afetada pela orogenia andina (Caputo, 2016; Munis 2013). Em sub-superfície foram reconhecidos na bacia Amazônica até oito níveis de diabásio encaixados nos sedimentos paleozoicos e com até algumas centenas de metros de espessura.

Fig. 2.2. Coluna estratigráfica das bacias do Amazonas e Solimões, baseado em Milani & Zalán (1999). A flecha indica o momento da geração, migração e acumulação ou remobilização do hidrocarboneto.

Fig. 2.3. Mapas geológicos das bordas norte e sul da Bacia do Amazonas, extraídos do Mapa Geológico do Estado do Pará — CPRM (Vasquez et. al., 2008).

Além das soleiras, também são descritos diques cortando a sequência sedimentar, embora Bigarella (1973) enfatize que os diques que cortam o pacote Siluriano-Devoniano são em maior número que aqueles cortando o Paleozoico Superior. Os diques normalmente tendem NNE-SSW, com espessura média de 150–200 m. Em afloramentos os diques apresentam espessura variando de 5 a 25 m, com alinhamentos preferenciais a NE e raramente E-W (Bischoff, 1963, citado por Caputo, 1984), na borda sul. Na borda norte a direção preferencial é NE, mas também NW e E-W. Entretanto, em campo o reconhecimento desses diques não é tarefa muito simples.

O magmatismo Penatecaua, em geral, ainda é pouco estudado, mas recentemente, alguns estudos concentrados em regiões ou soleiras foram divulgados. A soleira de Medicilândia, localizada em cidade homônima no estado do Pará é a maior em extensão aflorando na borda sul da Bacia Amazônica. Abrange cerca de 300 km² e é composta por diabásios e gabros (Costa & al., 2012). Quimicamente essas rochas são supersaturadas em SiO₂ e classificam-se como basaltos e andesito-basaltos da série toleítica, em diagrama de De La Roche (1980). Distingue-se também quanto ao conteúdo de Titânio, com valores de TiO₂ < 2% para algumas amostras, enquanto outras têm TiO₂ entre 2 e 3%. Segundo Costa et al. (2012), a soleira mostra zoneamento onde as fácies primitivas localizam-se nas bordas, enquanto as evoluídas concentram-se no centro da intrusão. A hipótese provável de evolução da soleira indica uma origem relacionada com diferentes taxas de fusão parcial de uma mesma fonte, seguida por processo de cristalização fracionada.

Mais a oeste, um corpo de diabásio aflora próximo de Rurópolis (PA), onde cortes recentes da BR-163 expõem longo afloramento. De acordo com Silva & al. (2014) esse corpo encontra-se bem preservado, com pouca ação intempérica. Apresenta planos preferenciais de fratura orientados a ENE-WSW, concordando com as estruturas da rocha encaixante. Através de análises petrográficas, os autores concluíram que o corpo de Rurópolis é similar aos outros diabásios Penatecaua encontrados na borda sul da Bacia.

Pouco se sabe sobre as rochas de outras áreas de ocorrência. Alguns trabalhos da literatura têm caráter mais estrutural. Por exemplo, Montalvão & Oliveira (1975) procuraram explicar a ocorrência do domo de Monte Alegre, a aproximadamente 10 km a noroeste da cidade homônima na borda norte da bacia, associando-o às intrusões toleíticas. Figueira et al. (2012) estudaram o registro das deformações nas soleiras e diques do magmatismo Penatecaua que afloram nessa região buscando determinar as paleoextensões que atuaram após o evento

Penatecaua. Lopes & al. (2013) realizaram levantamento gravimétrico no domo de Monte Alegre e concluíram sobre a existência de um corpo com forma tabular similar a um lacólito que teria originado a estrutura do domo. Concluíram também sobre a presença de um graben, colocando em contato rochas da Formação Alter do Chão (Cretáceo) com as rochas do Paleozoico.

Resultados mais abrangentes estão sendo obtidos no âmbito do projeto "Investigações paleomagnéticas, geoquímicas e geocronológicas dos eventos relacionados à Província Magmática do Atlântico Central na América do Sul", do qual faz parte este trabalho. Resultados parciais (Davies & al., 2017) baseados em datações U-Pb das bordas sul e norte (Fig. 2.3), demonstraram que os eventos magmáticos foram muito rápidos, com idades concentradas em 201.525 ± 0.065 para o baixo-Ti e 201.364 ± 0.023 para o alto-Ti (Davies et al., 2017). Esses dados levam à conclusão de que os magmas foram injetados continuamente durante cerca de 200 milhares de anos.

Capítulo 3 – Fundamentos do Magnetismo de Rochas

O estudo científico do campo magnético começou com Petrus Peregrinus, e depois com Gilbert e Gauss, abrindo os caminhos para o conhecimento e interpretação da informação magnética gravada nas rochas. Uma das primeiras grandes provas da teoria de Wegener veio do Paleomagnetismo e foi a construção da curva de deriva polar aparente entre a Europa e a América do Norte, com a análise do Paleoclima (Irving, 1956). Brunhes e Matuyama determinaram períodos recentes de inversão de polaridade (ou reversão) do campo geomagnético. Vine,Matthewse Morley interpretaram as anomalias magnéticas oceânicas em face da magnetização da crosta e das reversões o que permitiuconfirmar a hipótese do "espalhamento do assoalho oceânico" (Hess, 1962). Hoje, observatórios, ainda esparsos pelo mundo e satélites que cobrem toda a área terrestre, registram as variações do CMT que ainda deixam marcas nas rochas e sedimentos.

3.1. Minerais Magnéticos em Rochas Ígneas

Algumas categorias de minerais apresentam magnetismo remanente, ou seja, ao serem expostos a um campo magnético, registraram as propriedades desse campo (direção, sentido e intensidade relativa). O mineral que mais se destaca nessa categoria é a magnetita, um óxido de ferro (Fe₃O₄) muito comum em rochas ígneas. A remanência é uma propriedade dos materiais ferromagnéticos e é a resposta ao campo magnético aplicado, com a mesma direção e sentido deste, e que persiste mesmo após a remoção do campo. Essa propriedade é o resultado do arranjo de spins magnéticos na estrutura cristalina. Em geral, os minerais magnéticos nas rochas classificam-se nas seguintes categorias de ferromagnetismo:

- a) Ferromagnetismo *stricto sensu*, onde todos os momentos magnéticos são paralelos, resultando em uma magnetização espontânea relativamente intensa;
- b) Ferrimagnetismo, onde os momentos magnéticos se dispõem de forma antiparalela, porém, com maior intensidade num sentido doque no outro, resultando também em magnetização espontânea, embora mais fraca que no caso anterior. É nesta categoria que se coloca a magnetita.

 c) Antiferromagnetismo, é a situação análoga ao ferrimagnetismo, porém, os momentos de spin se anulam totalmente.

Fig. 3.1. Representação esquemática dos arranjos de momentos magnéticos em materiais do tipo ferromagnético.

Entretanto, a maior parte dos minerais formadores das rochas pertence às categorias dos minerais paramagnéticos – quando a remanência adquirida decai rapidamente depois de cessados os efeitos do campo magnético indutor; e diamagnéticos, quando a resposta ao campo aplicado se dá no sentido oposto e também não há remanência.

Mesmo em quantidades menores, minerais ferromagnéticos dominam o sinal magnético induzido. Isto porque, o fator de proporcionalidade entre campo aplicado e magnetização induzida é a suscetibilidade magnética, que é maior no grupo dos ferromagnéticos. Vale lembrar que no grupo dos diamagnéticos a suscetibilidade é negativa.

3.2. Estrutura de domínio

Os grãos de minerais magnéticos podem desenvolver regiões denominadas domínios magnéticos. Esses domínios se desenvolvem à medida que os grãos se tornam maiores, possibilitando assim, a diminuição da energia magnetostática.

Grãos pequenos (d<0,1µm em magnetita cúbica) apresentam um só domínio e são chamados de monodomínio. Grãos assim pequenos são mais difíceis de serem polarizados emodificaremsuasorientações por um campo indutor, o que é refletido pela alta coercividade, ou seja, a energia necessária para magnetizar ou desmagnetizar o grão. Conforme o tamanho do grão cresce, a coercividade cai. Desta forma, a direção de magnetização remanente pode ser alterada com mais facilidade por influência de mudançasno campo magnético. Quanto mais coercivo for o mineral, mais hipótese ele terá de preservar o registrado campo magnético do passado.

Fig. 3.2.Representação esquemática de domínios magnéticos (esquerda) em grão multidomínio. Os limites entre os domínios são chamados de paredes de domínio (direita) e podem ser visualizados em microscópio, através de técnicas especiais.

A coercividade é medida pelo campo magnético necessário para destruir a magnetização remanente adquirida por um mineral ferromagnético, ao ser submetido a um campo magnético indutor (Fig. 3.3), num ciclo de histerese.

Fig. 3.3. Representação do ciclo de histerese (fonte: Ciência Hoje, 22/12/2007)

3.3. Aquisição de Magnetização Remanente

O processo de aquisição da magnetização em rochas ígneas é o processo termorremanente. Neste processo, as forças magnéticas internas dos grãos magnéticos crescem, à medida que a temperatura do magma diminui, diminuindo também a agitação térmica que impede o alinhamento dos momentos magnéticos. Às temperaturas em que magmas ascendem à superfície, cerca de 1000°C, o magma já está em processo de cristalização e, com o resfriamento, os grãos minerais deixam de mover. Porém,os momentos magnéticos dos minerais ainda estão em agitação térmica impedindo a orientação ou polarização dos mesmos, o que caracteriza a aquisição da magnetização remanente. Isto só vai acontecer quando a temperatura da rocha caia abaixo da temperatura de bloqueiodos minerais

magnéticos. Para a magnetita, essa temperatura é de aproximadamente 580° C e corresponde à chamada temperatura de Curie (T_C).As temperaturas próximas da T_C a remanência ainda não é estável e decai rapidamente, pois, o tempo de relaxação é muito curto. O tempo de relaxação, segundo Louis Néel, é definido por:

$$\tau = \frac{1}{c} exp\left(\frac{\nu h_C j_s}{2kT}\right),$$

Onde, C = fator de frequência v = volume do grão SD h_C = força coerciva j_S = magnetização de saturação kT = energia térmica

Portanto, o tempo de relaxação depende da temperatura, mas também da coercividade e tamanho do grão. À temperatura ambiente a magnetização remanente pode permanecer estável por bilhões de anos, como mostra o gráfico da Fig. 3.4:

Fig. 3. 4. Gráfico semi-log do tempo de relaxação de magnetita SD em função da temperatura (Fonte: Butler, 1992)

Numa rocha,a magnetização remanente natural (MRN) corresponde à soma dasremanências de todos os minerais magnéticos presentes. Estes podem ser magnetitas de diferentes tamanhos, diferentes composições (conteúdo de Titânio variável) ou diferentes minerais (hematita, maghemita ou outros). Os minerais pouco coercivos tendema perder a magnetização primária e adquirir magnetização secundária de origem viscosa. Essa

magnetização é o resultado da ação do campo magnético ambiente através do tempo. Em Paleomagnetismo essa magnetização é indesejável e considerada ruído; quando ela é intensa, pode mascarar a magnetização primária de origem termorremanente.

Os processos de intemperismo a baixa temperatura podem resultar na oxidação e/ou transformação dos minerais magnéticos e consequente alteração da magnetização primária. A componente de magnetização secundária gerada dessa forma é de origem química. Nesse processo a magnetita dá origem a maghemita e hematita.

3.4. Anisotropia de suscetibilidade magnética

Quando um material é exposto a um campo \vec{H} , ele adquire magnetização induzida \vec{M}_i . Estas grandezas são relacionadas através da susceptibilidade magnética (k).

$$\vec{M}_i = k.\vec{H}$$

A Anisotropia de Susceptibilidade Magnética (ASM) mostra a variação espacial dessa grandeza física num mineral magnético. A ASM depende fortemente do tamanho e da forma desses minerais.Uma análise da resposta magnética em diferentes direções revela um tensor que possui três autovalores e podem ser interpretados como direções preferenciais dos minerais da rocha.Geralmente, representa-se a ASM num elipsóide triaxial (k_1, k_2, k_3) , onde $k_1 \ge k_2 \ge k_3$, como representado na figura abaixo.

Fig. 3. 5. Elipsóide representante da ASM com os eixos principais e planos. (Bispo-Santos, 2017)

A ASM é determinada se integrando uma série de medidas da magnetização em diferentes direções de campo aplicado para produzir um tensor que relaciona a direção da medida e a intensidade da magnetização. Os erros relacionados a cada autovalor são obtidos através da estatística de Jelinek que utiliza matrizes covariantes. Os erros são assumidos como maiores que os erros de medida e que não existe tendência significativa na distribuição dos erros experimentais.

A proporção entre os autovalores define a forma elipsóide resultante se $k_1 \gg k_2 \cong k_3$ temos uma forma prolata, se $k_3 \ll k_2 \cong k_1$ temos uma forma oblata. Nos prolatos o autovalor maior define a direção da lineação magnética, nos oblatos o menor autovalor define o polo do plano de foliação magnética.

3.5. O Registro Paleomagnético

O registro paleomagnético impresso nas rochas pode ser recuperado através de técnicas de laboratório que serão descritas no capítulo seguinte. Através dele é possível reunir informações que contribuem para modelar o campo geomagnético em épocas cada vez mais remotas. O primeiro aspecto ainda em debate é a validade da hipótese do Dipolo Geocêntrico Axial (GAD – 'geocentric axial dipole'). Embora tenha sido demonstrado que o campo médio dos últimos 5 milhões de anos se comportou com um GAD, ainda existem questionamentos sobre se, em outros períodos, essa hipótese se mantém (Evans, 2005; Panzik & Evans, 2014)

A variação secular (VS)corresponde a um conjunto de mudanças no campo geomagnético em diversas escalas de tempo, tanto em intensidade como em direção. Em registros sedimentares a VS pode ser estudada em detalhe, inclusive suas características temporais (Courtillot & Le Mouel, 1988). Em rochas ígneas, devido ao caráter descontínuo do magmatismo, investiga-se principalmente a dispersão angular do campo geomagnético em função da paleolatitude (Cox, 2007). Esses modelos são importantes para testar a validade de polos paleomagnéticos de referência.

3.6. Polos Paleomagnéticos e Curvas de Deriva Polar Aparente

A direçãode magnetização de um sítio de amostragem está associada a uma posição instantânea do polo magnético da Terra, ou polo geomagnético virtual (PGV). Um conjunto de PGVs que cubram um intervalo de tempo suficientemente longo para amostrar adequadamente a variação secular (pelo menos 10.000 anos), permite o cálculo de um polo paleomagnético de referência. A sucessão de polos paleomagnéticos, de um mesmo bloco continental com bom controle geocronológico, descreve a curva de deriva polar aparente (CDPA) para esse bloco. A CDPA representa os deslocamentos do continente através do tempo.

Capítulo 4 – Procedimentos Experimentais

4.1. Amostragem e preparação de amostras

Os trabalhos de campo aconteceram em duas campanhas nos anos de 2014 e 2017, sendo que minha participação se deu na segunda etapa. Foram realizadas amostragens simultâneas para paleomagnetismo, geoquímica e geocronologia. A localização de afloramentos baseou-se em informações prévias da literatura e no mapa da Companhia de Pesquisa de Recursos Minerais (CPRM). Percorrem-se as estradas principais, onde há a maior probabilidade de cortes e exposição de afloramentos, mas também muitos travessões, caminhos atravessando propriedades e pedreiras. A localização dos sítios amostrados pode ser visualizada na imagem de satélite extraída do Google Earthvista abaixo (Fig. 4.1):

Fig.4.1 Mapa com a localização dos pontos de amostragem e com a indicação das localidades de referência para os afloramentos.

Ao sul do Rio Amazonas percorreu-se a rodovia BR-230 (Transamazônica), partindo de Altamiraem direção ao Rio Tapajós. Os afloramentos apropriados para o paleomagnetismo foram encontrados nas cercanias dos municípios de Medicilândia, Placas e Rurópolis. Ao norte do Rio Amazonas os pontos de referência são Monte Alegre, a leste e Alenquer a oeste, sendo que a amostragem estendeu-se a noroeste de Alenquer.No total foram amostrados 28 sítios e que estão descritos na Tabela 4.1. Amostrou-se também um sítio na região de Itaituba, provavelmente correspondente ao Grupo Curuá (Neodevoniano), de acordo com o mapa de Santos et al. (2011). Esta região foi explorada devido às indicações fornecidas por esses autores de que seria cortada por diques mesozóicos, mas nada foi encontrado na área.

Localidade	Sítio	Altitude (m)	Latitude (°)	Longitude (°)
Alenquer	215	35	-1.5769	-54.9856
Alenquer	216	33	-1.5772	-55.0058
Alenquer	217	59	-1.4850	-55.1614
Alenquer	218	41	-1.6293	-54.8625
Alenquer	218	41	-1.6293	-54.8625
Alenquer	219	61	-1.6479	-54.7402
Alenquer	220	80	-1.8324	-54.6866
Monte Alegre	101	86	-1.9258	-54.2620
Monte Alegre	108	57	-1.5557	-54.2847
Monte Alegre	210	35	-1.9086	-54.2139
Monte Alegre	211	35	-1.9086	-54.2139
Monte Alegre	213	90	-1.7000	-54.0000
Monte Alegre	214	56	-1.8788	-54.2435
Medicilândia	123	157	-3.3898	-52.7078
Medicilândia	124	165	-3.4114	-52.7766
Medicilândia	125	196	-3.4411	-52.8412
Medicilândia	127	196	-3.4411	-52.8412
Medicilândia	130	177	-3.4416	-52.8451
Medicilândia	132	227	-3.4670	-52.8471
Medicilândia	134	102	-3.4454	-52.9359
Medicilândia	139	217	-3.5057	-53.0113
Medicilândia	140	150	-3.5524	-53.0888
Placas	142	98	-3.8663	-54.4301
Placas	145	114	-3.8378	-54.1827
Placas	205	227	-3.7584	-53.8476
Placas	206	117	-3.8375	-54.2242
Placas	208	107	-3.9006	-54.5203
Rurópolis	117	156	-3.9391	-54.8582
Rurópolis	146	156	-3.9391	-54.8582
Rurópolis	200	156	-3.9391	-54.8582
Itaituba	201	27	-4.1741	-55.8374

Tabela 4.1 Dados de localidades de referência, identificação e localização dos sítios de amostragem.

Em geral, a qualidade dos afloramentos foi bastante boa, com bons cortes nas estradas, uma vez que as obras de asfaltamento nas mesmas expuseram bem as rochas, como ilustrado nas imagens da Fig. 4.2 (a e b). Em alguns casos a situação não foi tão favorável e só foram encontrados blocos enterrados no chão. Nesses casos, sempre foram amostrados pelo menos três blocos para confrontar os resultados e verificar se estavam *in situ*.

Fig. 4.2. Afloramento na região de Medicilândia (a); pedreira em Monte Alegre (b); blocos no chão da mesma pedreira (c) e na entrada de Alenquer (d).

No trabalho de campo buscamos encontrar o contato entre a rocha intrusiva e a encaixante, para realizar o teste de contato, porém o intemperismo acentuado da região amazônica não permitiu encontrar afloramentoscom os sedimentos preservados. Outra preocupação durante a amostragem foi à observação de evidências que indicassem se houve qualquer alteração da paleohorizontal provocada por alterações no declive do terreno, acomodação com a alteração, plantas ou mesmo a ação antrópica.

A maioria das amostras coletadas para paleomagnetismo foram cilindros orientados, extraídos com um amostrador portátil (moto-serra adaptada); apenas dois blocos de mão foram coletados onde não foi possível utilizar o amostrador. Para orientação dos cilindros utilizou-se o aparato da Pomeroy, OR-2 OrientingFixture acoplado a uma bússola Brunton; insere-se o aparato no furo feito com o amostrador e nivela-se a bússola. Lendo-se o inclinômetro, obtem-se o mergulho do testemunho. É necessário marcar uma linha fiducial na direção axial do cilindro, com um fio de cobre passando por uma fenda no cano do orientador e que serve como referência para a medida do azimute com uma bússola. São descritos na caderneta de campo as posições e diferentes blocos que foram amostrados, muitas vezes um croqui para a análise de possíveis variações locais. Com o mesmo amostrador fazemos a medida do azimute solar que é obtido pelo ângulo da sombra de uma vareta vertical em uma escala angular e ligada à mesma marca fiducial. A leitura da bússola solar é importante para comparar com a leitura da bússola magnética que pode ser afetada pela própria magnetização da rocha, em grandes afloramentos, ou outros efeitos locais - linhas de alta tensão, massas metálicas nas proximidades, etc.

Retira-se então o cilindro orientado que será levado ao laboratório para ser preparado nas medidas padrão (espécimes); alternativamente podemos retirar blocos de mão orientados e levá-los diretamente ao laboratório para a preparação dos espécimes (Fig. 4.3).

Figure 4.3. Foto de bloco de mão já orientado e cilindros extraídos em campo com suas marcas fiduciais.

Em cada sítio foram coletados, em média, cinco cilindros sempre procurando distribuí-los em partes diferentes do afloramento, afastadas de alguns metros, e extraindo pelo menos dois cilindros de cada parte (ou blocos) para avaliar possíveis variações nas direções paleomagnéticas ou problemas do afloramento.

No laboratório de Paleomagnetismodo IAG/USP os cilindros foram cortados no tamanho padrão de 2cm de altura e 2.5cm de diâmetro (Fig. 4.4). Dos blocos orientados foram extraídos cilindros e destes, os espécimes padrão.No total preparou-se 322espécimes.

Fig. 4.4. Conjunto de espécimes padrão preparados para as medidas de magnetização e outros procedimentos.

4.2. Análises de Laboratório

4.2.1. Anisotropia de susceptibilidade magnética (ASM)

Rotineiramente, mede-se a ASM de todas as amostras, antes de serem submetidas aos processos de desmagnetização. As amostras são embaladas em filme plástico para evitar contaminação e a anisotropia medida no aparelho MFK da AGICO. A medida de cada espécime demora cerca de 5 minutos. A determinação da ASM é feita através da indução de campo muito fraco em vários eixos do espécime e a magnetização induzida é então medida. Através do programa SAFYR veiculado pela AGICO obtêm-se os resultados, com as estatísticas correspondentes, como na tela abaixo. Os resultados são posteriormente analisados com ajuda de visualização gráfica oferecida pelo programa ANISOFT, o qual também calcula os parâmetros, médias e estatísticas necessárias.

Fig. 4.5. Captura de tela do softwareSafyr7 da Agico, mostrando o resultado das medidas de ASM e os principais cálculos relacionados à determinação do elipsóide.

4.2.2. Desmagnetizações AF e Térmica

Os processos de desmagnetizações sucessivas são utilizados para identificar as componentes de magnetização nas amostras.

A desmagnetização por campos magnéticos alternados(AF)é eficiente em eliminar eventuais componentes secundárias e isolar a magnetização primária das rochas ígneas. O método consiste em aplicar campos alternados de intensidade máxima inicial igual H_{AF}que possui forma de onda senoidal e decresce linearmente com o tempo (Figura 4.6). Esse processo é repetido diversas vezes com valores de H_{AF} cada vez maiores. Ao final de cada etapa de desmagnetização, os minerais que possuírem coercividade magnética inferior a ao campo aplicado terão direções de magnetização aleatórias. Caso não haja campo magnético ambiente, a resultante será nula.Desta forma, obtêm-se uma resultante de magnetização nula nos minerais de coercividade inferior ao campo aplicado, enquanto os minerais de

coercividade superior preservam suas remanências. Incrementos progressivos no campo AF (p.ex. de 5 mT)são utilizados na desmagnetização AF,até a completa desmagnetização da amostra. O procedimento foi executadonos aparelhos LDA 3 e LDA 5 da Agico que possuem blindagem magnética para garantir que não haja campo magnético ambiente que induza magnetização nas amostras.

Fig. 4.6. Representação do decaimento do campo magnético alternado de intensidade máxima H_{AF} , com o tempo.

A magnetização remanente depois de cada passo de desmagnetização foi medida no magnetômetro JR6 da AGICO. Todo o processo demora em média cerca de uma hora por amostra. O objetivo é aplicar campos magnéticos sucessivamente maiores até a completa desmagnetização da amostra. Quando o portador magnético é de baixa coercividade, como a magnetita, campos magnéticos máximos da ordem de 60mT são suficientes para eliminar toda a remanência.

O procedimento para a desmagnetização térmica envolve aquecer uma amostra em uma temperatura (T_{demag}) e depois levar as amostras à temperatura ambiente novamente, em

campo magnético nulo. Isso faz com que os grãos com temperatura de bloqueio (T_B) $<T_{demag}$ tenham seus momentos magnéticos randomizados, apagando assim a MRN desses grãos. Se o processo for repetido sucessivamente a temperaturas crescentes, até a mais alta temperatura de Curie dos minerais presentes na rocha, o espécime será totalmente desmagnetizado. Cada etapa de aquecimento e resfriamento é seguida pela medida da magnetização remanente. Neste trabalho foi utilizado o forno TD48 da marca ASCScientific.

Antes de submeter às amostras às etapas de aquecimento, realizou-se etapas de desmagnetização AF até 15 mT, removendo assim, total ou parcialmente, a componente viscosa. A desmagnetização térmica, ao contrário da desmagnetização AF, pode alterar a mineralogia magnética devido a processos de oxidação, destruição de minerais (caso da maguemita), ou outras alterações do estado físico-químico. Portanto, é importante controlar a suscetibilidade magnética após cada etapa de aquecimento-resfriamento.

4.2.3. Identificação das Componentes de Magnetização

Após as etapas de desmagnetização, as componentes de remanência magnética presentes nos minerais magnéticos de cada espécime, são identificadas através da Análise de Componentes Principais (PCA), usando do software REMASOFT da Agico, Fig. 4.7.Cada vetor magnetização é decomposto em suas componentes de um sistema triortogonal, que vem a ser o diagrama de Zijderveld (Zijderveld, 1967). Através de inspeção visual, segmentos de retas são ajustados aos dados da componente horizontal e vertical, com os respectivos valores das variâncias, estatística dos erros e outros parâmetros envolvidos que ajudam a superar a sobreposição de coercividades de diferentes conjuntos de minerais, e que pode prejudicar a separação correta das componentes.

Fig. 4.7 Exemplo da rotina do programa Remasoft para selecionar o intervalo de passos no diagrama de Zijderveldresultando em componentes representadas por retas.

Se a amostra foi totalmente desmagnetizada e apenas uma componente de magnetização estiver presente ao final do processo, então os segmentos de reta convergirão para o centro do sistema de eixos.

4.3. Mineralogia magnética

Para a identificação e caracterização da mineralogia magnética utilizam-se várias metodologias: curvas termomagnéticas, ciclos de histerese e curvas de magnetização remanente isotérmica (MRI).

4.3.1. Curvas termomagnéticas

Para este procedimento preparou-se material moído e que será submetido a temperaturas extremas, aproximadamente do nitrogênio líquido e do ponto de fusão do alumínio. Logo, são acondicionadas em tubos de quartzo especiais que tem características magnéticas muito estáveis com a mudança da temperatura, como esse da imagem do site da Empresa de Instrumentação Geofísica da República Tcheca, AGICO:

Fig. 4.8 Tubo para realização de curvas termomagnéticas, reprodução do seite da AGICO.

Para obtenção das curvas termomagnéticas, a amostra é submetida a um ciclo de aquecimento desde uma temperatura próxima ao ponto de ebulição do nitrogênio até a temperatura ambiente, para verificar a presença da transição de Verwey. A transição de Verwey acontece a uma temperatura de aproximadamente -140°C e se dá devido à mudança de simetria da estrutura cristalina da magnetita causada pelo balanço das forças fundamentais envolvidas na ordenação dos átomos de ferro na rede, zerando a constante da anisotropia magnetocristalina.

O passo seguinte é obter uma curva termomagnética desde a temperatura ambiente até a temperatura de desbloqueio da magnetização (próxima à temperatura de Curie, T_C). Quando as forças caóticas envolvidas na agitação térmica superam a ordenação magnética atingimos a temperatura de desbloqueio do grão. O pico de Hopkinson é um crescimento da susceptibilidade magnética observado próximo à T_C (Fig.4.9)e acontece, pois a temperatura de desbloqueio dos grãos é menor que a T_C .

Fig.4.9 Exemplo de curva termomagnética de alta temperatura, onde se observa o pico de Hopkinson.

4.3.2. Curvas de histerese e magnetização remanente isotérmica (MRI)

Um pedaço de amostra de rocha de aproximadamente um centímetro é colocado em um magnetômetro de vibração (VSM) da marca Micromag Princeton amplamente utilizado em laboratórios de paleomagnetismo no mundo. Esse aparelho registra a variação da magnetização adquirida pela amostras à medida que o campo magnético aplicado aumenta. O campo máximo que o aparelho pode atingir é 1 T, o que é suficiente para atingir a saturação da magnetização com campos decrescentes e também com aumento e diminuição do campo em sentido oposto, completando-se assim o ciclo de histerese.

Fig. 4.10 Curvas de aquisição da MRI. Note-se que a magnetita satura rapidamente, porém a hematita não atingiu a magnetização de saturação até o campo de 700mT.

No mesmo equipamento, deixando a amostra no mesmo lugar, pode-se repetir o processo com a aplicação de campos magnéticos sucessivamente maiores e obter a curva de MRI. A MRI avalia apenas a parte ferromagnética, pois a medida da remanência é realizada com campo nulo.

Capítulo 5 – Apresentação dos Resultados

5.1. Mineralogia magnética

Curvas termomagnéticas (suscetibilidade em função da temperatura) alta e baixa temperatura (Fig. 5.1) para amostras das áreas estudadas indicaram a presença de magnetita como principal portador da remanência. No intervalo de baixas temperaturas é possível verificar, em alguns casos, a inflexão das curvas a temperaturas próximas a -180°C, onde acontece a transição de Verwey, característica da magnetita. A altas temperaturas nota-se o pico de Hopkinson antes da queda de suscetibilidade a temperaturas próximas da T_C da magnetita.

Fig. 5.1.Curvas termomagnéticas de alta e baixa temperatura das áreas estudadas. As curvas foram normalizadas. As curvas da região norte estão em azul e do sul, em verde. Círculos indicam aquecimento e cruzes, resfriamento.

O intervalo observado para essas temperaturas foi de ~500 a 600 °C. Desta forma, verifica-se que se trata de magnetitas muito oxidadas a altas temperaturas, isto é, com muito baixo conteúdo de Ti. Em alguns sítios nota-se a presença exclusiva de magnetita, como é o caso de ERP142 de Placas. As demais curvas são irreversíveis e, embora não apresentem inflexões durante o

aquecimento sugestivas da presença de outro mineral, as curvas de resfriamento indicam que houve transformação mineralógica durante o processo. Em lâminas delgadas notou-se a presença de sulfetos que pode ser pirita, uma vez que aparentemente não há indicação de ser portador de remanência. De acordo com Wang et al. (2008), a pirita sofre transformação ao ser aquecida na atmosfera, num processo que leva à formação de hematita (pirita→pirrotita→magnetita→hematita). Desta forma, no final do processo haveria diminuição de suscetibilidade.

Fig. 5.2.Curvas de aquisição de magnetização (IRM) e histerese para amostras das áreas de estudo. As curvas de IRM e histerese foram normalizadas e o campo máximo aplicado foi de 1 T. Cores identificam,nas curvas de histerese e IRM, as regiões de estudo:azul, Medicilândia; vermelho escuro, Placas; verde escuro, Rurópolis; vermelho claro, Monte Alegree verde claro, Alenquer.

As curvas de aquisição da magnetização isotérmica (IRM)foram obtidas submetendo as amostras a campos máximos de 1 T e atingem a saturação rapidamente, como esperado para magnetitas. Esse comportamento foi verificado para todas as amostras.As curvas IRM mostradas na Fig. 5.2 são muito similares para todas as regiões e não mostram evidências de um segundo portador magnético.

As curvas de histerese (Fig. 5.2) foram obtidas variando o campo aplicado a até 1 T e foram corrigidas da parte paramagnética. A magnetização de saturação é atingida rapidamente em torno de 120 mT e o campo coercivo médio é de aproximadamente 15 mT, o que é característico de

minerais de baixa a média coercividade. As curvas são similares, e não apresentam formas ou inflexões (p. ex., cintura de vespa) que indiquem a presença de outras populações de minerais.

Os dados acima apontam claramente para um único portador magnético nas amostras Penatecaua – a magnetita – apontando para magnetização remanente de origem térmica e, portanto, primária.

5.2. Anisotropia de Susceptibilidade Magnética

Os resultados de ASM estão dispostos na Fig. 5.3. e estão organizados por áreas, como os demais dados e repreesntou-se os dados por espécime analisado. Foram descartados dados de amostras com claras evidências de não estar *in situ*.Nos diagramas direcionais, nota-se que existe uma tendência das direções do menor autovalor (eixo k3) de se agrupar ao redor de uma média próximo à vertical; o eixo k1 (maior autovalor), por sua vez, é, em geral, horizontal ou sub-horizontal (Inc<30°). O eixo k2, de forma geral, também se distribui no plano horizontal a sub-horizontal, indicando que a máxima suscetibilidade está contida nesses planos. Este padrão é compatível com a ASM esperada para fluxos de magma colocados como derrames ou soleiras. Indicam também que não houve alteração da paleohorizontal depois da colocação dos corpos.

Fig. 5.3. Resultados da ASM, por localidade e se excluindo sítios ou blocos com indícios de não estar *in situ*, indicando os eixos médios (k1, k2, k3), histograma de susceptibilidade, variação do grau de anisotropia (P) em função da susceptibilidade e variação do fator de forma(T) em função de P.

Entretanto, na região de Monte Alegre, nota-se dispersão maior dos dados, com maiores ângulos para k1 e k2. Essas diferenças podem ser vistas na Fig. 5.4 e correspondem aos sítios ERP101 e ERP214, com inclinações médias de k1 e ~40° e 51°, respectivamente. Esses sítios podem corresponder a diques que não foram reconhecidos no campo devido à condição dos afloramentos, mas também podem ter seus resultados alterados devido ao tectonismo da região de Monte Alegre (Domo de Monte Alegre), como descritoem diversos trabalhos (Figueira et al., 2012; Montalvão et al., 1975).Este aspecto será analisado na próxima sessão.

A suscetibilidade magnética de volume apresentada na forma de histogramas (Fig. 5.3) é muito similar entre as diversas regiões. Os histogramas apresentam maior frequência de valores no intervalo 25-40 x 10^{-3} SI. O grau de anisotropia representado pelo parâmetro P é relativamente baixo, chegando no máximo a 1.09.

Os parâmetros de anisotropia relacionados à forma revelam tendência geral para a forma oblata (gráficos T x P) para a maioria das amostras e comportamento de foliação horizontal. Em particular, as amostras de Alenquer mostram essa forma quase que exclusivamente. Embora alguns sítios mostrem agrupamentos dos eixos de maior autovalor, não é possível definir lineação ou tendência clara quando se considera o conjunto de sítios relacionados à mesma soleira. Exceção é feito à região de Alenquer, onde provavelmente a predominância é de diques, com orientação NNW-SSE e o mesmo se verifica na tendeência geral dos eixos k1.O resumo geral de todos os resultados de ASM estão no Anexo I.

Fig. 5.4. Distribuição dos eixos de anisotropia dos sítios ERP101 e ERP214 de Monte Alegre.

5.3. Identificação das componentes características de magnetização

Foi realizada desmagnetização AF em amostras de todos os sítios, em campos de até 60mT, em passos de 5 ou 10 mT. Em geral, acima de 50mT os resultados já apresentavam bastante ruido e dispersão das direções, com intensidades da remanênciamneor do que 10% do valor total da MRN. (Fig. 5.5a).As desmagnetizações térmicas foram realizadas em temperaturas de até 580°C, em passos de 50°C. Antes, porém, realizou-se desmagnetizações AF de até 15mT que removem com facilidade as componentes secundárias existentes nos minerais de menor coercividade (Fig. 5.5b). A magnetização remanente foi totalmente eliminada em cerca de 580°C. Esses resultados confirmam a magnetita ou titanomagnetita com baixo teor de Ti como principal portador magnético.

Fig. 5.5. Exemplos de desmagnetização por campos magnéticos alternados (a) e desmagnetização térmica (b). O comportamento do vetor magnetização durante as etapas dos processos de desmagnetização está representado em rede estereográfica e em projeções no plano horizontal e vertical (diagramas de Zijderveld). Os gráficos cartesianos representam a variação da intensidade da remanência em função do campo aplicado ou temperatura.

Ambos os processos foram eficientes em desmagnetizar as amostras e revelar a componente mais estável da remanência, como visto no exemplo da Fig. 5.6, para dois espécimes de um mesmo sítio da região de Medicilândia. Nota-se, entretanto, que as duas amostras apresentam componentes de baixa coercividade facilmente removidas nos passos iniciais das desmagnetizações.

Fig. 5.6. Exemplos de desmagnetização AF (esquerda) e térmica (direita) para espécimes do mesmo sítio.

Outros exemplos da eficiência da desmagnetização são dados na Fig. 5.7.As componentes de magnetização de cada espécime foram calculadas através daAnálise de Componentes Principais (PCA) e, para cada sítio calculou-se a direção média característica. Os resultados estão dispostos na Tabela 1.

Fig. 5.7. Diagramas de Zijderveld de algumas amostras representativas das localidades analisadas neste estudo.

Fig. 5.8. Direções características médias para os sítios das diferentes áreas estudadas. Círculos abertos representam inclinações negativas e o círculo fechado, inclinação positiva. A estrela é o campo magnético atual, calculado para um ponto médio da área.

			Direçã	o de Magn	etização	Média		PGVs		
Localidade	Sítio	n	Dec.(°)	Inc. (°)	α ₉₅ (°)	k	R	Lat. (°)	Long.(°)	
Alenquer	215*	7	7.70	-54.10	9.8	39.17	6.85	56.1	113.6	
Alenquer	216	6	12.50	-39.80	9.2	54.13	5.91	65.7	96	
Alenquer	217*	7	15.20	-63.00	8.1	56.44	6.89	44.9	109.5	
Alenquer	218*	4	20.80	-63.40	11.3	67.14	3.96	43	105.1	
Alenquer	219	6	8.90	-54.10	11	38.23	5.87	55.9	112.1	
Alenquer	220	5	353.10	45.80	17.6	19.82	4.80	60.3	292.9	
Medicilândia	123	7	354.50	-14.70	5.9	106.55	6.94	83.2	280.3	
Medicilândia	124	6	16.70	-11.20	6.9	96.35	5.95	73.2	45.5	
Medicilândia	125	6	3.80	-14.10	3.1	463.23	5.99	84.7	82.6	
Medicilândia	127	6	13.10	-17.60	4.4	232.74	5.98	75.8	61.2	
Medicilândia	130	7	10.10	-14.80	6.7	83.25	6.93	79.2	60	
Medicilândia	132	7	11.30	-15.00	5.5	121.95	6.95	78	57.9	
Medicilândia	134	7	6.60	-12.70	4.3	195.72	6.97	82.7	62.1	
Medicilândia	139	7	13.30	-24.70	4.8	160.30	6.96	73.8	73.5	
Medicilândia	140*	6	237.50	-20.20	6.1	123.32	5.96	-31	202.5	
Monte Alegre	101	6	10.10	-12.40	8.5	63.11	5.92	79	59.4	
Monte Alegre	108	5	8.30	-32.70	19.1	16.97	4.76	71.9	99.5	
Monte Alegre	210	6	15.00	-27.10	9.8	48.00	5.90	70.7	76.7	
Monte Alegre	211	7	11.70	-24.10	3.8	251.62	6.98	74.2	79	
Monte Alegre	214*	6	335.50	-40.50	18.7	13.85	5.64	58.1	172	
Placas	142	6	10.70	-9.30	12.1	31.47	5.84	79.3	40.2	
Placas	145	6	356.20	-11.80	9.9	47.00	5.89	85.6	186.0	
Placas	205	4	17.40	-3.80	24.5	15.07	3.80	72.6	30.1	
Placas	206*	4	286.30	-42.20	7.8	140.07	3.98	16.4	191.5	
Placas	208	7	8.50	-8.30	9.2	44.12	6.86	81.5	37.5	
Rurópolis	117	6	350.90	-24.30	3.6	344.01	5.99	77.4	169.9	
Rurópolis	146	6	0.20	-16.70	4.1	263.22	5.98	85.4	122.5	
Rurópolis	200	7	5.00	-13.30	6.2	95.70	6.94	84.2	64.8	

Tabela 5.1. Direções médias por sítios de amostragem e respectivos PGVs

Para o cálculo das direções médias selecionou-se as direções obtidas pela PCA de um número N>3 de espécimes com direções concordantes e que não apresentavam indícios de pertencer a blocos que não estavam *in situ*. As direções de magnetização características da Tabela 1 estão representadas na Fig. 5.8. Note-se que a maioria das direções apresentam inclinações negativas e declinações próximas nos quadrantes um e quatro, o que corresponde a magnetização de polaridade normal.

Capítulo 6 — Discussão e Conclusões

Na sessão anterior, a Fig. 5.8 mostra que as direções paleomagnéticas da parte sul (Medicilândia, Placas e Rurópolis) formam grupos muito coesos, indicando que essas soleiras, apesar do volume de magma, tiveram resfriamento rápido registrando pouca variação do campo geomagnético. Na parte norte (Monte Alegre e Alenquer) existe dispersão muito maior dos dados paleomagnéticos, em especial em Alenquer, cujos dados se afastam mais do grupo do sul, embora sejam coerentes entre si. Considerando que o intervalo de idades determinadas para o magmatismo Penatecaua (Davies et al., 2017) é muito pequeno (201.525±0.065Ma), conclui-se que a dispersão dos dados deve significar o registro de diferentes fases da variação secular. De qualquer forma, deve-se ressaltar que todas as direções são de polaridade normal, embora aparentemente alguns sítios (ERP220, ERP140, ERP206) apresentem direções anômalas. Note-se também, que as direções diferem do campo geomagnético atual na área de estudo.

Fig. 6.1. PGVs para correspondentes a cada sítio de amostragem, diferenciando as áreas de proveniência. Os losangos correspondem aos dados de Guerreiro & Schult (1986) da área de Monte Alegre. Símbolos abertos são PGVs no hemisfério norte e cheio, no hemisfério sul.

Para cada direção média de magnetização calculou-se o polo geomagnético virtual (PGV) correspondente. Os PGVs estão representados na Fig. 6.1. Nessa figura incluiu-se também os PGVs calculados anteriormente para o Penatecaua (Guerreiro & Schult, 1986) nas proximidades de Monte Alegre.Os dados de Guerreiro & Schult (1986) estão listados na tabela da Fig. 6.2. Esses dados combinam muito bem com aqueles calculados neste trabalho. Os dados que diferem do conjunto são os de Alenquer que se situam a menores latitudes. PGVscom latitudes menores do que 60º também são encontrados em outras áreas e podem estar relacionados a um campo transicional.

	Código	Long.	Lat.
L / Cb / GAAS	SG1	87.0	73.4
+ 1°50'	SG2	65.0	65.4
54°15°W \ 54°10'	SG4	69.0	60.6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SG5*	27.0	47.0
TASA- She ASS	SG6	59.0	64.6
B-K &	SG7	80.0	66.9
Monte Alegre Amazonas	SG9	96.0	76.0
	SG5A	74.0	72.4
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	SG7A	122.0	83.8

Fig. 6.2. Dados paleomagnéticos (PGVs) de Guerreiro & Schult (1986) para diques da região de Monte Alegre que estão localizados na figura da esquerda.

Para o cálculo do polo paleomagnético, utilizou-se o método de Vandamme (1994) para selecionar os dados que realmente representam a variação secular e eliminar os dados anômalos. Os dados descartados estão identificados na Tabela 5.1 com asteriscos. O polo norte calculado tem coordenadas 80°N 79.6°E (N=20). Incorporando-se os dados de Guerreiro & Schult (1986) aos dados deste trabalho, recalculou-se o polo e, segundo os critérios de Vandamme obtemos um polo localizado a76.5°N 80.5°E (N=30; α_{95} =3.8; k=50; R=29.4)que consideramos ser o polo paleomagnético do diabásio Penatecaua. Os dois resultados não diferem significativamente.

O pólo paleomagnético do Penatecaua satisfaz aos critérios de confiabilidade propostos por Van der Voo (1990), numa escala de $0 \le Q \le 7$, a saber:

- Idade da rocha bem determinada e a pressuposição de que a magnetização é da mesma idade.
- 2) O polo deve apresentar um número suficiente de amostras (N > 24, $k \ge 10$ e $\alpha_{95} \le 16$).
- 3) Desmagnetização adequada.
- Testes de campo que limitam a idade da magnetização (este critério refere-se principalmente a testes de contato).
- 5) Controle estrutural e coerência tectônica com o craton ou bloco envolvido:
- 6) Presença de reversões:
- 7) O polo não se assemelha a paleopolos de idades mais jovens:

Esses critérios, entretanto, não são adequados para situações como a estudada aqui, pois tratase de área com estabilidade cratônica, magnetizações adquiridas dentro de um único intervalo de polaridade e pouco deslocamento da placa da América do Sul durante o Mesozóico o que pode dificultar a discriminação dos polos de outras idades mais jovens.

Com idades da maior qualidade possível e com um controle estatístico e mineralógico detalhado foi estabelecido um pólo magnético com fator de qualidade de no mínimo 6 em uma escala de 0 a 7 (Van der Voo, 1990). Portanto, um polo de referência. Ressalte-se que temos: titanomagnetita com baixo teor de titânio como principal mineral portador da magnetização termorremanente de idade compatível com a formação da rocha; paleohorizontal mantida, não existindo evidências apreciáveis que indiquem um tectonismo significante na região e controlada através da ASM; indicações de um campo anômalo com indícios de uma reversão, que precedeu ou que iria ocorrer após a magnetização de polaridade normal do maior conjunto de sítios estudados.

O polo paleomagnético resultante pode ser apreciado (Tabela 6.2. e Fig. 6.5.) junto com outros polos associados ao CAMP na América do Sul (Ernesto *et.al.*, 2003). A dispersão angular da média dos PGVs (S= 8.6°) está menor do que o esperado, para o intervalo de paleolatitude e idades similares, seguindo uma estimativa média de 18.5° , com limites estatísticos inferiores e superiores com 95% de confiança entre 16.6 ° e 21 ° (McFadden et.

al., 1991). Porém se utilizarmos os dados em conjunto com os antigos para o Penatecaua produzimos um polo combinado com uma dispersão angular um pouco maior 13.2°, possivelmente mais adequado ao amostrar a variação secular e removê-la na média.

Região	Ν	Latitude	Longitude	Desvio Angular
		(°N)	(°E)	(°)
Penatecaua	20	80	79.6	8.6
Penatecaua- combinado	30	76.5	80.5	13.2
Venezuela	10	76.1	85.8	14.3
Suriname	26	81.2	55.1	4
Guiana	7	63.3	42	12.4
Caciporé	17	79.8	28.6	5.2
Roraima	7	80.1	55.1	6.6
Anari-Tapirapuã	15	65.5	70.3	3.6
Magmatismo do NE do Brasil	33	78.1	43.9	5.2

Tabela 6.2. Polos associados ao CAMP na América do Sul e desvio angular da média dos respectivos PGVs. Compilados de Ernesto et al. (2003)

Fig.6.3 Polos paleomagnéticos associados ao CAMP na América do Sul vistos no hemisfério norte, destacando o polo Penatecaua combinado (vermelho) e o polo médio CAMP da América do Sul (lilás). Os círculos de confiança de cada polo também estão representados.

Como observado na Fig. 6.5. o novo polo Penatecaua está bem de acordo com os demais polos relacionados ao CAMP da América do Sul, com os círculos de confiança se superpondo. Neste caso, entende-se que dentro dos erros de determinação esses polos são de mesma idade e refletem o mesmo intervalo de tempo. Entretanto, alguns polos se afastam um pouco da distribuição principal e podem significar diferenças de idade. Por outro lado, temos que os intervalos de tempo característicos da variação secular, refletida pelas dispersões angulares dos PGVs, são menores que os erros geocronológicos, portanto potencialmente o dado paleomagnético pode resolver diferenças de idades menores que a Geocronologia.

Em trabalho de revisão recente (Marzoli et al., 2017) reuniram os dados radiométricos existentes para as diversas áreas afetadas pelo CAMP em todos os continentes e verificaram que o pico de máxima atividade situa-se em torno de 201Ma (Fig. 6. 4) mas pode se estender por vários milhões de anos em atividades esporádicas. Portanto, algumas áreas já estudadas do CAMP da América do Sul devem ser reestudadas e as datações radiométricas, se existentes, refinadas.

Fig.6.3. Distribuição de probabilidade e densidade de Kernel de uma base de dados de diferentes métodos de geocronológicos. As estrelas são os produtos principais das análises indicando os três principais pulsos de magmatismo sugeridos (Marzoli *et. al.*, 2017).

Uma informação importante resultante deste trabalho é a existência de direções anômalas de magnetização que tanto podem refletir o comportamento da variação secular em um período com alta taxa de reversões ou o próprio campo transicional.Entretanto, esta última hipótese

não pode ser confirmada porque, como já foi dito anteriormente, a dispersão dos dados é menor do que a esperada para conjuntos de dados que tenham eliminado os efeitos da variação secular. Tanto a distribuição das direções médias (Fig. 5.8), como dos PGVs (Fig. 6.1) não são distribuições Fisherianas (ou Gaussianas na esfera) como se espera para o registro completo da variação secular. É possível então, as direções aparentemente anômalas de Alenquer sejam apenas o registro de outro momento do ciclo de variação secular. O método de Vandamme para a seleção dos dados para compor a média é muito restritivo e se baseia em excluir os dados que se afastam da distribuição principal e que geram a distribuição esperada para modelos do campo geomagnético atual.

Por outro lado, a qualidade de alguns sítios de amostragem não permitiram a observação de contatos ou planos de acamamento que permitissem inferir se a paleohorizontal estava preservada. Desta forma pode ser que alguns dados estejam afetados por tectonismo, porém são muito poucos, uma vez que a ASM nos deu informações de que essa condição estava satisfeita na maioria dos sítios. Outro ponto a considerar é que para longos intervalos de polaridade única registra-se menor dispersão dos dados paleomagnéticos, ou seja, a variação secular é menos intensa (p.ex., Biggin et al., 2008; Oliveira et al., 2018). Embora o CAMP não esteja inserido num supercron, a escala de reversões para o Jurássico Inferior ainda não é completamente estabelecida e, tampouco o comportamento da variação secular durante esse período.

Referências

- Bertrand, H., Fornari, M., Marzoli, A., García-Duarte, R., Sempere, T., 2014.The Central AtlanticMagmatic Province extends into Bolivia. Lithos 188:33–43.
- Bigarella, J.J., 1973. Geology of the Amazon and Parnaiba Basins, 1973. In: A.E.M. Nairn et al. (eds.), The South Atlantic. Springer Science, New York, 25-86.
- Biggin, A. J., Van Hinsbergen, D. J., Langereis, C. G., Straathof, G. B., & Deenen, M. H. (2008b). Geomagnetic secular variation in the CretaceousNormal Superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 169(1-4), 3-19.
- Bischoff, G. O., 1963 Zur Geologie des Amazonbeckens: Geol. Jb., v. 80, p. 777-794.
- Bispo-Santos, F., 2017. Noções básicas do estudo da anisotropia de susceptibilidade magnética (ASM) em rochas e suas aplicações, Boletim do Museu de Geociências da Amazônia, Ano 4, Número 4, Artigo 7.
- Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic terranes, Blackwell Scientific Publications.
- Callegaro, Sara *et al.* Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America. In: *Earth and Planetary Science Letters*, 2013, vol. 376, p. 186-199. https://archive-ouverte.unige.ch/unige:29379
- Caputo, M. V. (1984). Stratigraphy, Tectonics, Paleoclimatology and Paleogeography of Northern Basins of Brazil, A PhD Dissertation of Philosophy in Geology, University of California.
- Caputo, Mario Vicente, & Soares, Emilio Alberto Amaral. (2016). Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system. *Brazilian Journal of Geology*, 46(2), 301-328. <u>https://dx.doi.org/10.1590/2317-4889201620160066</u>
- Costa, J., Vasconcellos, E.M.G., Barros, C.E.M., Cury, L.F., Juk, K.F.V., 2012. Petrologia e geoquímica da soleira de Medicilândia, diabásio Penatecaua, PA, Rev. Bras. Geoc., 42: 754-771.
- Courtillot, V., Le Mouel, J.-L., 1988. Time variations of the Earth's magnetic field: from daily to secular. Ann. Rev. Earth Planet. Sci. 16: 389-476.
- Cox, A., 2007. Latitude Dependence of the Angular Dispersion of the Geomagnetic Field. Geophys. J. Int. 20: 253-269.

- Cunha P.R.C., Gonzaga EG., Coutinho L.EC., Feijó EJ. 1994. Bacia do Amazonas. Boletim de Geociências da Petrobrás, 8: 47-55.
- Cunha, P.R.C., Melo, J.H.G., Silva, O.B., 2007. Bacia do Amazonas. Bol. Geoc. Petrobras 15 (2), 227–251.
- Davies, J.H.F.L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., Chaltegger, U., 2017. End-Triassic mass extintion started by intrusive CAMP activity. Nature Commun. 8:15596: 1-8. doi: 10.1038/ncomms15596.
- De La Roche H., Leterrier J., Grandclaude P., Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2 diagram and major element analyses its relationships with current nomenclature. Chemical Geology, 29:183-210.
- De Min, A., Piccirillo, E. M., & Marzoli, A. (2003). The Central Atlantic Magmatic Province (CAMP) in Brazil: petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications. *Geophysical Monograph Series*, 136(October), 91–128. https://doi.org/10.1029/136GM06
- DNPM Departamento Nacional de Produção Mineral. Projeto Radam Folha SA.22 Belém; geologia, geomorfologia, solos, vegetação e uso potencial da terra. Rio de Janeiro, 1974.
- Ernesto, M., Bellieni, G. et al. 2003. Paleomagnetic and geochemical constraints on the timing and duration of the CAMP activity in northeastern Brazil. In: HAMES, W., MCHONE, J., RENNE, P. & RUPPEL, C. (eds) The Central Atlantic Magmatic Province: Insights from Fragments of Pangea. American Geophysical Union, Geophysical Monograph Series, 136, 129–149.
- Evans, M.E., 2005. Testing the geomagnetic dipole hypothesis: palaeolatitudes sampled by large continents. Geophys.J.Int. 161: 266–267
- Figueira I.F.R., Salamuni E., Mancini F., 2012. Deformação rúptil em rochas do magmatismo Penatecaua no domo de Monte Alegre (PA). Revista Brasileira de Geociências 42 (4), 772-784
- Guerreiro S.D.C., Schult A., 1986. Palaeomagnetism of Jurassic tholeiitic intrusions in the Amazon Basin. Veröffentlichung des Geophysikalischen Observatoriums Fürstenfeldbruck, Münchener Universitätsschriften, B Series, 10: 61-72.

- Hess, H.H., 1962. History of Ocean Basins. In A.E.J. Engel; Harold L. James; B. F. Leonard. Petrologic studies: a volume in honor of A. F. Buddington. Boulder, CO: Geological Society of America. pp. 599–620.
- Irving, E., Palaeomagnetic and palaeoclimatological aspects of polar wandering, Geofis. Pura Appl., 33, 23-41, 1956.
- Lopes, E.C.S., Luiz, J.G., Villas, R.N.N., 2013. Modelagem gravimétrica do domo de Monte Algre – PA. Anais do 13º Simpósio de Geologia da Amazônia, Belém. Atas, 473-477.
- Marzolli, A., Renne, P.R., Picirillo, E.M., Ernesto, M., Bellieni, G., Min, A. 1999. Extensive 200-Million-year-old continental flood basaltsof the Central Atlantic Magmatic Province. Science, 284:616-618.
- Marzoli, A., Callegaro, S., Dal Corso, J., Davies, J. H. F. L., Chiaradia, M., Youbi, N.,Bertrand, H., Reisberg, L., Merle, R., Jourdan, F., 2017. The Central Atlantic Magmatic Province (CAMP): A Review. The Late Triassic World, 91–125.
- Merle R., Marzoli A., Bertrand H., Reisberg L., Verati C., Zimmermann C., Chiaradia M., Bellieni G., Ernesto M., 2011. ⁴⁰Ar/³⁹Ar ages and Sr-Nd-Pb-Os geochemistry of CAMP tholeiites from Western Maranhão basin (NE Brazil). Lithos, 122:137-151.
- McFadden, P. L., Merrill, R. T., McElhinny, M. W., & Lee, S. (1991). Reversals of the Earth's magnetic field and temporal variations of thedynamo families. Journal of Geophysical Research, 96(B3), 3923–3933. <u>https://doi.org/10.1029/90JB02275</u>
- Milani, E.J., Zalán, P.V., 1999. An outline of the geology and petroleum systems of the Paleozoic interior basins of South America. Episodes, 22: 199-205.
- Montalvão R.M.G., Oliveira A.S. 1975. Geologia branquianticlinal de Monte Alegre e da Rodovia Monte Alegre – Prainha. Belém, Projeto Radam Brasil, 409 p.
- Montes-Lauar, C. R., Pacca, I. G., Melfi, A. J., Piccirillo, E. M., Bellieni, G., Petrini, R., & Rizzieri, R. (1994). The Anari and Tapirapuã Jurassic formations, western Brazil: paleomagnetism, geochemistry and geochronology. *Earth and Planetary Science Letters*, 128(3–4), 357–371. https://doi.org/10.1016/0012-821X(94)90156-2

- Moreira, G., & Ernesto, M. (2017). PALEOMAGNETISM OF THE MEDICILANDIA SILL FROM THE CENTRAL ATLANTIC MAGMATIC PROVINCE, AMAZON BASIN, BRAZIL, Latinmag Letters, Volume 7, Special Issue (2017), PM31, 1-4.
- Munis, M. B., 2013. Arco Purus: Um gráben invertido revelado pela geofísica separando as Bacias do Solimões e do Amazonas. Contribuições à Geologia da Amazônia. SBG Núcleo Norte, Belém. Volume 8, 117 – 133.
- Nomade S, Theveniaut, H., Chen Y., Pouclet A, Rigollet, C., 2000. Paleomagnetic study of French Guyana Early Jurassicdolerites: hypothesis of a multistage magmatic event. EPSL, 184: 155-168.
- Oliveira, W. P., Franco, D. R.,Brandt, D., Ernesto, M.,da Ponte Neto, C. F., Zhao, X., et al., 2018. Behavior of the paleosecularvariation during the Permian-Carboniferous Reversed Superchronand comparisons to the low reversalfrequency intervals since Precambriantimes. Geochemistry, Geophysics, Geosystems, 19: 1035–1048.
- Panzik, EJ.E., Evans, D.A.D., 2014. Assessing the GAD hypothesis with paleomagnetic data from large Proterozoic dike swarms. EPSL, 406: 134–141.
- Piccirillo, E.M. & Melfi, A.J. (1988). The Mesozoic Flood Volcanism of the Paraná Basin: Petrogenetic and Geophysical Aspects. Instituto Astronômico e Geofísico - University of São Paulo, 600p., São Paulo.
- Rezende, W.M., Brito, C.G., 1973. Avaliação geológica da bacia paleozóica do Amazonas. Anais do XXVII Congr.Brasil. Geol., Aracaju, SE, 3: 227--245.
- Rogers, J.J.W., Santosh, M., 2004. Continents and Supercontinents. Oxford University Press, Oxford. 289 pp
- Silva, A.G., Almeida, C.N., Valente, S.C., Almeida, L.F.B., 2017. The petrogenesis of tholeiitic diabases in eastern Parnaíba Basin: evidence for geochemical heterogeneities in the subcontinental lithospheric mantle in NE Brazil Braz. J. Geol., 47: 109-126.
- Silva, A.J.P., Lopes, R. C., Vasconcelos, A.M., Ruy B. C. Bahia, R.B.C., 2003. Bacias Sedimentares Paleozóicas e Meso-Cenozóicas Interiores, In: L. A. Bizzi, C. Schobbenhaus, R. M. Vidotti e J. H. Gonçalves (eds.) Geologia, Tectônica e Recursos Minerais do Brasil, 55, CPRM, Brasília.

- Silva, E.F., Pinto, M.B., Peregovich, B.G., Brenner, W.W., 2014.Petrologia do diabásio Penatecaua, soleira de Rurópolis,Pará, Brasil.Comunicações Geológicas 101, Especial I: 213-216.
- Santos, J.O.S., Hartmann, L.A., McNaughton, N.J., Fletcher, I.R. 2002. Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon craton – Evidence from baddeleyite and zircon U-Pb SHRIMP geochronology. J. South American Earth Sci., 15:409-429.
- Vandamme D., 1994. A new method to determine paleosecular variation. Phys. Earth planet. Inter., 85: 131–142.
- Van der Voo, R. (1990), The reliability of paleomagnetic data, Tectonophysics, 184, 1-9
- Vasquez, M.L., Sousa, C.S., Carvalho, J.M.A. (orgs), 2008. Mapa geológico e de recursos minerais do Estado do Pará, escala 1:1.000.000. Programa Geologia do Brasil.
- Veldkamp, J., Mulder, F.G., Zijderveld, J.D.A., 1971. Paleomagnetism of Suriname dolerites. PEPI, 4: 370-380.
- Zijderveld, J. D. A., 1967. A. C. Demagnetization of Rocks: Analysis of Results. In: Methods and Techiniques in Paleomagnetism, D. W. Collison et. al. (eds.), Elsevier, Amsterdam: 254-286.

ANEXO I

Especime	Kmean (SI)	L	F	Р	Т	k1D	k1I	k2D	k2I	k3D	k3I
ERP101A1	2.97E-02	1.023	1.033	1.057	175	179	33	72	23	314	48
ERP101A2	2.49E-02	1.008	1.017	1.026	350	162	58	259	5	352	32
ERP101B1	3.67E-02	1.007	1.033	1.041	630	203	29	101	21	340	53
ERP101B2	2.63E-02	1.013	1.024	1.037	292	175	46	63	20	317	37
ERP101C1	3.02E-02	1.017	1.027	1.044	214	195	53	72	22	329	28
ERP101C2	2.21E-02	1.022	1.033	1.056	185	191	44	70	28	320	33
ERP101D1	2.94E-02	1.016	1.028	1.045	266	200	31	91	30	326	45
ERP101D2	3.75E-02	1.015	1.031	1.046	337	194	30	79	36	312	39
ERP101D3	1.67E-02	1.021	1.040	1.062	317	187	27	57	51	291	25
ERP101E1	3.21E-02	1.025	1.027	1.052	27	197	42	70	34	318	29
ERP101E2	2.02E-02	1.018	1.033	1.051	298	198	35	80	33	320	37
ERP108A1	2.95E-02	1.005	1.010	1.014	339	181	19	83	22	309	60
ERP108A2	5.35E-02	1.009	1.025	1.034	473	249	50	340	0	70	40
ERP108B1	3.15E-02	1.005	1.019	1.024	587	27	7	296	14	144	74
ERP108B2	2.58E-02	1.018	1.003	1.020	-739	40	1	308	62	130	28
ERP108C1	5.60E-02	1.019	1.008	1.027	-404	347	3	256	13	92	76
ERP108D1	2.30E-02	1.007	1.045	1.052	730	208	9	117	8	345	78
ERP108D2	3.91E-02	1.003	1.014	1.017	636	166	11	75	3	331	78
ERP108E1	3.93E-02	1.022	1.013	1.035	-242	109	7	201	21	2	67
ERP108E2	3.68E-02	1.023	1.022	1.045	-18	116	13	210	14	344	71
ERP108F1	4.38E-02	1.015	1.013	1.028	-43	161	54	358	34	262	8
ERP108G1	3.39E-02	1.013	1.011	1.025	-65	332	5	78	72	240	18
ERP108G2	2.70E-02	1.011	1.017	1.028	241	44	2	134	1	251	88
ERP117A1	3.23E-02	1.016	1.011	1.028	-192	201	12	297	27	90	60
ERP117A2	2.92E-02	1.016	1.010	1.026	-199	205	8	296	9	75	77
ERP117A3	3.02E-02	1.013	1.010	1.024	-140	173	8	264	5	26	81
ERP117B2	3.06E-02	1.020	1.021	1.041	31	198	14	290	7	46	74
ERP117B3	2.75E-02	1.022	1.012	1.034	-292	207	16	299	8	54	73
ERP123A1	2.95E-02	1.008	1.013	1.021	273	298	19	51	49	195	35
ERP123A2	3.27E-02	1.024	1.019	1.044	-122	284	2	15	24	189	66
ERP123C1	3.00E-02	1.012	1.028	1.041	394	60	1	330	14	153	76
ERP123D1	3.30E-02	1.018	1.010	1.028	-275	91	1	1	26	183	64
ERP123D2	3.09E-02	1.013	1.012	1.026	-53	89	2	358	14	185	76
ERP123E1	2.95E-02	1.016	1.010	1.027	-215	92	0	1	73	182	17
ERP123F1	3.13E-02	1.020	1.005	1.025	-612	94	2	4	9	195	80
ERP123F2	3.06E-02	1.011	1.008	1.020	-138	286	4	21	52	193	38
ERP123F3	3.28E-02	1.014	1.015	1.030	15	291	32	37	24	157	48
ERP123G1	2.22E-02	1.003	1.020	1.023	731	331	1	61	8	234	82
ERP123G2	2.44E-02	1.009	1.023	1.033	426	334	2	65	10	233	80
ERP123H1	2.54E-02	1.008	1.008	1.016	-16	96	7	3	19	205	69
ERP123H2	2.31E-02	1.010	1.013	1.023	150	65	4	334	9	181	80

Dados de Anisotropia de Suscetibilidade Magnética por Espécime

ERP123I1	2.70E-02	1.009	1.011	1.019	94	164	4	73	14	272	75
ERP124A1	7.15E-02	1.007	1.019	1.026	480	42	3	132	1	240	86
ERP124B1	7.31E-02	1.004	1.028	1.032	729	178	1	86	65	268	25
ERP124B2	6.62E-02	1.004	1.013	1.018	493	134	49	18	21	273	33
ERP124C1	7.74E-02	1.002	1.024	1.026	846	68	0	158	8	334	82
ERP124D1	6.92E-02	1.003	1.022	1.025	770	298	1	207	7	35	83
ERP124E1	5.70E-02	1.020	1.013	1.033	-203	70	0	340	2	163	88
ERP124F1	6.14E-02	1.012	1.017	1.030	172	264	4	174	2	59	86
ERP125A1	4.64E-02	1.004	1.018	1.022	649	158	2	67	17	254	73
ERP125B1	4.80E-02	1.018	1.026	1.044	183	3	7	94	4	211	82
ERP125B2	3.82E-02	1.021	1.016	1.037	-142	11	15	104	10	227	72
ERP125C1	2.12E-02	1.010	1.002	1.012	-635	288	10	98	79	198	2
ERP125D1	2.34E-02	1.010	1.005	1.014	-359	273	8	150	76	5	12
ERP125F1	1.58E-02	1.010	1.020	1.030	357	74	1	344	9	169	81
ERP125G1	7.68E-03	1.012	1.016	1.029	147	81	4	350	4	213	84
ERP125H1	6.83E-03	1.002	1.011	1.012	714	151	1	61	1	267	89
ERP125H2	6.74E-03	1.013	1.017	1.030	115	267	0	177	4	2	86
ERP127A1	4.50E-03	1.001	1.012	1.013	791	233	5	324	9	117	80
ERP127A2	3.86E-03	1.005	1.013	1.018	420	22	4	291	22	121	67
ERP127B1	1.76E-03	1.002	1.005	1.007	484	224	8	315	6	84	80
ERP127B2	1.38E-03	1.001	1.005	1.006	776	183	2	273	8	81	82
ERP127C2	1.41E-03	1.002	1.004	1.007	262	224	3	315	15	123	74
ERP127D1	2.60E-03	1.003	1.009	1.012	504	175	4	85	0	348	86
ERP127E2	2.81E-03	1.001	1.005	1.006	579	96	0	6	6	188	84
ERP127F2	2.15E-03	1.011	1.005	1.015	-374	107	0	17	21	197	69
ERP127H1	1.74E-03	1.005	1.009	1.014	304	319	7	229	0	137	83
ERP127H2	1.62E-03	1.006	1.007	1.012	85	327	8	237	2	136	82
ERP130A2	3.52E-03	1.007	1.005	1.013	-145	60	12	151	1	246	78
ERP130B2	1.95E-03	1.003	1.007	1.009	432	133	28	240	29	7	48
ERP130B3	3.25E-02	1.005	1.003	1.008	-320	300	1	31	12	204	78
ERP130C2	2.96E-02	1.007	1.004	1.010	-308	359	9	100	49	261	39
ERP130C3	2.53E-02	1.003	1.007	1.010	369	176	6	80	42	273	47
ERP130D1	3.52E-02	1.002	1.002	1.004	-66	19	31	136	38	262	37
ERP130D2	3.57E-02	1.003	1.009	1.012	485	0	24	115	43	250	37
ERP130E1	1.60E-02	1.011	1.014	1.025	107	117	9	208	5	329	80
ERP130F2	2.45E-02	1.014	1.006	1.021	-375	121	62	278	26	13	9
ERP130F3	2.36E-02	1.014	1.004	1.018	-559	120	65	260	20	355	15
ERP130G1	3.75E-02	1.003	1.003	1.006	53	136	18	7	62	233	20
ERP130G2	3.20E-02	1.005	1.002	1.007	-290	141	16	328	74	231	2
ERP130H1	4.03E-02	1.004	1.003	1.007	-243	157	19	348	70	249	3
ERP130H2	3.85E-02	1.004	1.004	1.008	-63	146	20	333	70	237	2
ERP132A1	8.82E-02	1.003	1.039	1.042	846	84	14	353	5	243	75
ERP132A2	8.70E-02	1.001	1.037	1.038	941	35	9	126	6	248	79
ERP132B1	8.30E-02	1.002	1.037	1.039	877	144	9	52	15	264	73
ERP132C1	7.85E-02	1.004	1.035	1.040	772	106	6	16	5	243	82
ERP132C2	8.90E-02	1.004	1.036	1.040	805	122	4	32	8	237	81

ERP132D1	7.79E-02	1.004	1.033	1.037	786	112	6	21	3	265	83
ERP132E1	7.65E-02	1.005	1.033	1.038	752	115	11	24	5	269	78
ERP132E2	7.59E-02	1.004	1.026	1.030	727	112	11	202	1	298	79
ERP134A1	4.08E-02	1.019	1.010	1.029	-290	348	8	256	13	110	75
ERP134A2	4.32E-02	1.005	1.010	1.015	286	152	9	59	18	268	69
ERP134B1	2.98E-02	1.008	1.036	1.044	639	109	5	199	0	294	85
ERP134C1	3.09E-02	1.008	1.018	1.026	378	180	1	270	3	66	87
ERP134D1	2.62E-02	1.020	1.007	1.027	-493	140	19	44	17	276	64
ERP134E1	1.66E-02	1.008	1.013	1.021	263	26	5	117	4	245	84
ERP134F1	2.70E-02	1.009	1.016	1.025	261	187	19	277	1	10	71
ERP134F2	2.64E-02	1.019	1.021	1.040	58	341	2	251	6	90	83
ERP134G2	2.74E-02	1.024	1.008	1.032	-483	308	6	216	19	55	70
ERP139A1	3.08E-02	1.026	1.006	1.032	-626	144	29	22	44	255	32
ERP139B1	3.44E-02	1.018	1.035	1.053	307	143	39	257	27	12	39
ERP139C1	3.56E-02	1.017	1.013	1.030	-156	186	48	19	41	283	6
ERP139D1	7.17E-02	1.001	1.026	1.027	897	8	10	103	29	261	59
ERP139E1	5.39E-02	1.020	1.010	1.030	-340	309	3	216	50	42	39
ERP140A1	1.94E-03	1.002	1.006	1.009	504	199	6	61	81	289	6
ERP140A3	1.64E-03	1.004	1.004	1.007	-2	33	67	188	21	282	9
ERP140B1	2.08E-03	1.002	1.004	1.006	311	323	28	227	10	119	59
ERP140C1	2.30E-03	1.001	1.004	1.006	503	228	51	337	14	77	35
ERP140C3	1.82E-03	1.009	1.005	1.014	-304	190	22	310	51	86	30
ERP140D1	4.33E-03	1.006	1.001	1.007	-657	126	27	269	57	27	17
ERP140D2	4.77E-03	1.005	1.007	1.011	154	92	7	306	81	183	5
ERP140E1	4.07E-03	1.006	1.003	1.008	-389	166	7	261	33	65	56
ERP140G1	7.83E-02	1.004	1.027	1.031	712	47	57	229	32	138	1
ERP140H1	7.25E-02	1.006	1.025	1.031	584	58	51	225	38	320	6
ERP140I1	7.23E-02	1.007	1.025	1.032	573	86	82	227	7	318	5
ERP140J1	2.14E-03	1.002	1.005	1.008	362	4	6	267	52	99	37
ERP140J2	2.03E-03	1.003	1.006	1.009	378	352	10	256	31	97	57
ERP140K1	3.28E-03	1.003	1.008	1.011	462	202	27	19	63	111	1
ERP140K2	3.24E-03	1.003	1.003	1.005	-48	240	8	143	39	340	50
ERP140L1	2.31E-03	1.004	1.004	1.008	-56	205	25	111	8	4	64
ERP140L2	2.03E-03	1.005	1.001	1.006	-604	202	2	108	61	293	28
ERP142A1	1.16E-02	1.014	1.003	1.017	-646	43	20	271	61	141	20
ERP142A2	7.71E-03	1.012	1.003	1.015	-590	45	15	250	73	137	7
ERP142A3	9.82E-03	1.011	1.003	1.014	-531	46	18	253	70	139	8
ERP142A4	9.32E-03	1.007	1.005	1.013	-157	51	12	293	65	145	21
ERP142B1	1.16E-02	1.012	1.005	1.017	-450	34	32	288	23	168	49
ERP142B2	1.08E-02	1.012	1.003	1.015	-598	32	28	286	28	158	48
ERP142B3	8.45E-03	1.009	1.003	1.012	-520	37	20	251	66	132	13
ERP142B4	4.11E-03	1.005	1.005	1.010	-73	39	7	281	75	131	13
ERP142C1	1.33E-02	1.002	1.003	1.006	258	301	39	37	7	135	50
ERP142C2	9.57E-03	1.001	1.006	1.007	852	12	28	270	22	148	53
ERP142D1	1.97E-02	1.009	1.008	1.017	-33	277	24	30	42	166	38
ERP142D2	2.15E-02	1.008	1.008	1.016	-21	277	25	32	42	167	38

ERP142E2	1.07E-02	1.010	1.007	1.017	-136	268	26	25	44	158	36
ERP142E3	1.57E-02	1.010	1.007	1.017	-153	270	26	27	43	159	36
ERP142F1	7.58E-03	1.003	1.005	1.007	290	62	38	192	39	307	28
ERP142F2	1.11E-02	1.002	1.005	1.007	322	44	15	146	37	295	49
ERP142G1	1.34E-02	1.009	1.004	1.013	-347	71	12	209	75	339	10
ERP142G3	1.40E-02	1.007	1.008	1.014	86	71	15	203	69	337	15
ERP142H1	3.53E-03	1.007	1.007	1.014	25	71	10	199	73	339	13
ERP142H2	4.35E-03	1.007	1.010	1.016	190	70	11	197	72	337	14
ERP142H3	1.11E-02	1.005	1.011	1.016	414	72	23	227	65	338	9
ERP145A1	3.53E-02	1.008	1.040	1.048	679	47	53	287	21	185	29
ERP145A2	2.79E-02	1.009	1.029	1.039	512	97	5	357	61	190	29
ERP145A3	2.93E-02	1.004	1.042	1.046	841	93	12	341	59	190	28
ERP145A4	3.47E-02	1.009	1.031	1.041	551	75	44	300	36	191	24
ERP145C1	3.98E-02	1.009	1.025	1.035	455	50	18	143	10	260	69
ERP145D1	3.70E-02	1.005	1.031	1.037	717	180	2	89	19	275	71
ERP145D3	2.99E-02	1.007	1.032	1.039	627	34	13	126	8	247	75
ERP145F1	3.81E-02	1.014	1.027	1.041	313	26	19	292	9	178	69
ERP145F2	2.69E-02	1.011	1.025	1.036	362	27	10	296	2	193	79
ERP145G1	3.59E-02	1.002	1.038	1.039	919	329	18	237	8	125	70
ERP146B1	3.02E-02	1.019	1.009	1.028	-350	36	4	305	14	142	75
ERP146C1	2.93E-02	1.020	1.004	1.024	-656	28	18	292	19	158	63
ERP146C2	2.98E-02	1.026	1.002	1.029	-839	27	8	129	57	292	31
ERP146C3	3.05E-02	1.015	1.008	1.023	-276	51	5	144	32	314	58
ERP146D2	3.08E-02	1.012	1.011	1.023	-9	61	22	314	35	177	47
ERP146D3	2.72E-02	1.010	1.006	1.017	-265	87	20	344	31	205	52
ERP146E1	3.20E-02	1.006	1.006	1.012	-36	139	30	229	0	319	60
ERP146E3	3.13E-02	1.003	1.011	1.015	558	168	15	259	6	11	73
ERP146F2	3.04E-02	1.004	1.005	1.009	120	288	9	183	59	23	29
ERP146G1	2.93E-02	1.003	1.009	1.012	526	272	27	10	15	125	58
ERP200A1	2.91E-02	1.007	1.007	1.014	57	25	4	116	10	274	79
ERP200A2	2.24E-02	1.006	1.009	1.015	256	201	8	109	16	317	72
ERP200A3	1.73E-02	1.008	1.008	1.017	2	98	0	8	2	196	88
ERP200C1	2.39E-02	1.016	1.029	1.045	300	88	3	179	10	342	80
ERP200C2	1.51E-02	1.019	1.027	1.047	168	136	8	227	5	349	80
ERP200C3	8.93E-03	1.017	1.019	1.037	44	85	18	178	9	294	70
ERP200D1	2.15E-02	1.001	1.036	1.037	932	148	8	58	4	303	81
ERP200D2	1.91E-02	1.013	1.022	1.035	241	284	1	14	4	184	86
ERP200D3	1.48E-02	1.042	1.016	1.059	-430	113	3	204	13	12	77
ERP200F1	2.52E-02	1.003	1.011	1.014	576	293	16	199	14	70	68
ERP205A1	2.41E-02	1.007	1.012	1.020	243	140	89	349	1	259	0
ERP205B1	2.30E-02	1.003	1.016	1.019	696	350	54	176	36	84	3
ERP205B2	2.42E-02	1.002	1.012	1.013	763	157	21	342	69	248	2
ERP205C2	1.85E-02	1.011	1.012	1.023	34	138	49	349	37	247	16
ERP205D1	1.84E-02	1.015	1.015	1.030	3	25	17	140	54	284	31
ERP205D2	2.29E-02	1.015	1.012	1.027	-134	21	16	132	52	280	34
ERP205E1	2.29E-02	1.015	1.028	1.044	290	186	29	55	49	291	25

ERP205E2	1.12E-02	1.009	1.031	1.041	536	167	37	38	40	281	29
ERP205F1	3.17E-02	1.007	1.028	1.035	602	21	1	112	50	290	40
ERP206A1	2.72E-02	1.011	1.013	1.024	76	246	12	18	73	153	12
ERP206A2	2.78E-02	1.007	1.018	1.025	443	324	71	57	1	147	19
ERP206B1	2.42E-02	1.005	1.002	1.008	-381	189	3	280	14	87	76
ERP206C1	2.28E-02	1.007	1.011	1.019	230	251	5	346	44	157	45
ERP206C2	1.75E-02	1.011	1.005	1.016	-422	248	15	27	70	154	13
ERP206D1	2.65E-02	1.006	1.016	1.022	439	131	6	250	78	40	10
ERP206D2	2.53E-02	1.013	1.011	1.024	-99	137	13	293	76	46	6
ERP206E1	2.51E-02	1.021	1.002	1.024	-790	315	26	45	1	137	64
ERP206E2	2.90E-02	1.004	1.011	1.016	429	317	13	114	76	226	5
ERP206F1	2.19E-02	1.014	1.002	1.016	-768	320	28	92	51	216	24
ERP206F2	2.13E-02	1.017	1.007	1.024	-386	316	17	160	71	49	7
ERP208A1	1.81E-02	1.008	1.031	1.039	602	27	0	117	17	296	73
ERP208A2	2.20E-02	1.020	1.013	1.034	-201	26	8	295	5	172	80
ERP208B1	2.18E-02	1.020	1.021	1.041	41	42	2	312	3	164	86
ERP208B2	2.78E-02	1.019	1.025	1.045	137	35	3	125	12	289	77
ERP208C1	2.68E-02	1.013	1.015	1.028	84	316	18	226	2	130	72
ERP208C2	2.07E-02	1.015	1.017	1.032	84	118	1	28	4	223	86
ERP208D1	2.45E-02	1.005	1.019	1.024	563	120	6	28	16	231	73
ERP208D2	3.15E-02	1.008	1.003	1.011	-451	64	52	331	2	239	38
ERP208E1	2.34E-02	1.013	1.034	1.047	444	29	13	298	3	196	76
ERP208E2	2.60E-02	1.012	1.024	1.037	326	84	15	351	11	227	72
ERP208F1	2.65E-02	1.003	1.036	1.039	820	69	8	159	2	264	81
ERP208F2	2.93E-02	1.006	1.036	1.043	694	50	12	319	3	216	77
ERP208F3	2.94E-02	1.003	1.031	1.034	819	19	9	110	5	227	80
ERP210A1	4.47E-02	1.019	1.010	1.029	-315	3	28	104	20	224	54
ERP210A2	3.11E-02	1.011	1.027	1.038	431	16	42	127	22	237	40
ERP210A3	4.40E-02	1.016	1.016	1.032	18	1	37	119	32	236	37
ERP210B1	2.01E-02	1.014	1.006	1.020	-402	172	7	264	14	55	74
ERP210B2	2.80E-02	1.011	1.004	1.015	-457	170	6	80	1	340	84
ERP210C1	9.81E-03	1.010	1.005	1.015	-366	155	2	247	38	63	52
ERP210C2	2.35E-02	1.011	1.008	1.019	-160	345	3	76	11	242	79
ERP210DA1	6.31E-02	1.012	1.015	1.027	118	153	1	244	6	49	84
ERP210DA2	7.12E-02	1.008	1.017	1.025	329	349	1	259	3	106	87
ERP210DA3	5.83E-02	1.014	1.019	1.033	139	158	4	68	0	338	86
ERP210DE1	4.49E-02	1.014	1.011	1.025	-105	344	14	75	5	186	75
ERP210DE2	3.59E-02	1.024	1.015	1.040	-227	339	6	70	7	209	81
ERP210DE3	7.84E-02	1.016	1.019	1.035	74	352	6	262	0	171	84
ERP210DE4	6.82E-02	1.008	1.020	1.028	424	338	2	248	4	90	86
ERP210G1	7.08E-02	1.011	1.017	1.028	212	131	3	41	5	252	85
ERP210G2	7.35E-02	1.010	1.013	1.024	139	326	2	235	2	90	87
ERP211A1	2.24E-02	1.017	1.018	1.035	47	323	10	54	8	181	77
ERP211A2	2.42E-02	1.019	1.006	1.026	-506	144	2	241	75	54	15
ERP211B1	3.07E-02	1.027	1.009	1.035	-510	333	13	68	21	213	65
ERP211B2	3.78E-02	1.017	1.002	1.019	-739	340	22	84	30	219	51

ERP211C1	5.14E-02	1.010	1.009	1.019	-66	147	0	237	12	55	78
ERP211C2	4.70E-02	1.013	1.009	1.022	-154	116	1	206	14	20	76
ERP211EA1	4.90E-02	1.017	1.015	1.033	-54	17	0	287	20	107	70
ERP211EA2	4.72E-02	1.014	1.010	1.024	-174	194	11	286	10	59	75
ERP211EC1	5.63E-02	1.011	1.010	1.021	-69	188	11	279	7	41	77
ERP211EC2	5.38E-02	1.009	1.008	1.017	-81	176	11	266	2	5	78
ERP211EE1	5.79E-02	1.025	1.009	1.034	-480	180	5	274	37	84	53
ERP211EE2	5.75E-02	1.021	1.008	1.029	-454	187	6	278	13	74	76
ERP213A1	4.42E-02	1.009	1.016	1.025	257	7	7	134	78	276	9
ERP214A1	1.08E-02	1.021	1.016	1.037	-126	137	33	238	17	351	51
ERP214B1	1.45E-02	1.024	1.014	1.039	-268	134	37	244	24	358	43
ERP214B2	5.69E-03	1.029	1.011	1.040	-439	146	45	238	2	330	45
ERP214C1	9.75E-03	1.017	1.007	1.024	-421	290	14	74	73	198	10
ERP214C2	1.94E-02	1.014	1.016	1.030	60	272	2	64	87	182	1
ERP214D1	1.57E-02	1.019	1.010	1.030	-298	273	12	140	73	6	12
ERP214D2	1.52E-02	1.013	1.009	1.022	-173	274	16	120	72	6	7
ERP214E1	1.29E-02	1.014	1.017	1.031	124	156	57	43	14	305	29
ERP214F1	8.27E-03	1.007	1.020	1.027	505	192	43	61	35	310	27
ERP214F2	1.80E-02	1.014	1.010	1.024	-166	129	76	29	3	298	14
ERP215A1	4.13E-02	1.001	1.024	1.025	896	106	4	16	5	233	84
ERP215A2	2.17E-02	1.009	1.010	1.020	46	192	15	93	30	304	56
ERP215B1	3.10E-02	1.006	1.024	1.029	614	197	6	106	11	316	78
ERP215B2	4.11E-02	1.012	1.013	1.026	44	94	6	185	11	335	78
ERP215C1	4.20E-02	1.004	1.019	1.023	644	120	7	211	6	342	81
ERP215C2	4.08E-02	1.001	1.022	1.024	890	95	5	186	12	342	77
ERP215D1	3.59E-02	1.004	1.027	1.031	710	216	7	121	36	315	53
ERP215D2	2.75E-02	1.003	1.013	1.017	597	37	9	130	19	283	69
ERP215D3	2.22E-02	1.009	1.014	1.023	223	168	12	72	26	280	61
ERP215E1	2.81E-02	1.004	1.026	1.029	735	51	11	141	2	240	79
ERP215E2	1.79E-02	1.025	1.011	1.037	-380	106	8	12	23	214	66
ERP215F1	3.05E-02	1.012	1.010	1.022	-117	128	6	36	24	232	65
ERP215F2	2.62E-02	1.010	1.010	1.021	-16	121	10	25	31	226	57
ERP216A1	2.54E-02	1.007	1.019	1.026	452	306	8	39	21	197	67
ERP216A2	3.73E-02	1.009	1.012	1.021	126	316	7	224	14	73	75
ERP216B1	5.14E-02	1.004	1.018	1.022	672	311	2	42	18	214	71
ERP216C1	5.69E-02	1.006	1.044	1.051	742	149	2	59	2	283	87
ERP216D1	6.14E-02	1.002	1.040	1.042	916	333	2	243	6	82	84
ERP216E1	6.51E-02	1.004	1.042	1.047	820	296	9	206	2	104	81
ERP216E2	7.15E-02	1.011	1.030	1.041	473	294	9	203	5	86	80
ERP216F1	6.90E-02	1.009	1.037	1.046	608	88	7	357	11	211	77
ERP216F2	5.31E-02	1.011	1.034	1.045	528	284	3	15	11	180	79
ERP216G1	6.35E-02	1.007	1.041	1.048	701	286	5	17	5	153	83
ERP216G2	3.58E-02	1.023	1.022	1.046	-23	278	7	13	32	177	57
ERP217A1	4.97E-02	1.016	1.063	1.080	593	98	6	7	5	240	82
ERP217A2	2.93E-02	1.008	1.056	1.065	737	111	6	19	12	228	76
ERP217B1	4.11E-02	1.010	1.071	1.081	753	337	3	67	7	226	83

ERP217C1	6.19E-02	1.008	1.047	1.056	705	282	6	12	3	127	83
ERP217C2	1.82E-02	1.011	1.059	1.070	689	351	10	261	2	160	79
ERP217D1	1.63E-02	1.007	1.018	1.025	459	262	1	352	4	157	85
ERP217D2	1.88E-02	1.008	1.010	1.018	150	80	1	170	14	346	76
ERP217E1	1.34E-02	1.012	1.006	1.018	-347	238	15	130	48	340	37
ERP217F1	8.22E-03	1.003	1.014	1.017	589	94	14	2	7	245	75
ERP217F2	4.41E-03	1.007	1.011	1.017	233	133	9	38	29	239	60
ERP217G1	5.17E-02	1.004	1.019	1.023	636	348	18	79	3	179	72
ERP217G2	6.07E-02	1.003	1.017	1.019	732	229	5	319	2	67	85
ERP217H1	4.95E-02	1.021	1.029	1.051	160	271	1	181	26	3	64
ERP217H2	6.13E-02	1.011	1.015	1.026	151	113	10	203	2	302	80
ERP217I1	8.65E-02	1.005	1.030	1.036	690	101	2	11	0	278	88
ERP217I2	7.79E-02	1.006	1.025	1.031	624	111	5	202	6	337	82
ERP217I3	3.48E-02	1.010	1.019	1.029	311	273	5	4	7	146	82
ERP218A1	2.47E-02	1.004	1.015	1.018	595	176	10	84	10	311	76
ERP218A2	2.04E-02	1.005	1.022	1.027	610	120	9	29	7	262	79
ERP218B1	2.99E-02	1.003	1.016	1.020	673	353	20	84	1	177	70
ERP218B2	2.31E-02	1.007	1.017	1.024	444	331	25	64	6	166	64
ERP218C1	4.41E-02	1.003	1.030	1.033	840	92	2	183	8	351	82
ERP218C2	3.25E-02	1.004	1.032	1.036	769	174	2	84	4	289	85
ERP218D1	4.64E-02	1.007	1.016	1.023	391	96	7	189	17	346	71
ERP218E1	3.88E-02	1.002	1.027	1.030	835	101	3	192	18	3	72
ERP218E2	3.33E-02	1.001	1.029	1.029	955	242	4	151	16	344	73
ERP218F1	3.67E-02	1.004	1.027	1.031	754	137	12	231	20	17	67
ERP218F2	3.74E-02	1.002	1.026	1.028	861	234	12	142	11	10	74
ERP218G1	3.61E-02	1.008	1.025	1.034	505	200	5	291	18	95	72
ERP218G2	1.84E-02	1.004	1.035	1.040	775	187	5	278	15	77	74
ERP218H1	4.16E-02	1.006	1.016	1.022	477	217	8	308	11	93	76
ERP219A2	4.38E-02	1.008	1.026	1.034	534	105	3	196	16	3	74
ERP219B1	4.93E-02	1.008	1.032	1.041	594	96	10	189	13	330	74
ERP219B2	4.94E-02	1.008	1.035	1.043	612	100	6	192	18	353	71
ERP219C1	5.09E-02	1.002	1.035	1.037	888	91	5	182	11	336	77
ERP219C2	4.98E-02	1.001	1.035	1.036	940	90	7	182	14	335	74
ERP219C3	3.48E-02	1.003	1.028	1.031	810	234	6	142	18	343	71
ERP219D1	5.44E-02	1.001	1.031	1.032	929	200	7	109	8	331	80
ERP219D2	5.19E-02	1.004	1.036	1.039	815	89	7	180	13	331	75
ERP219D3	5.09E-02	1.003	1.030	1.033	835	97	8	188	10	327	77
ERP219E1	5.50E-02	1.001	1.035	1.037	918	275	7	184	4	61	82
ERP219E2	4.31E-02	1.001	1.033	1.034	924	245	11	154	6	37	77
ERP220A1	9.02E-03	1.012	1.032	1.045	441	94	83	332	4	242	6
ERP220A2	2.55E-02	1.009	1.036	1.046	594	76	79	330	3	239	11
ERP220B1	1.47E-02	1.002	1.035	1.037	895	352	72	134	14	227	11
ERP220C1	1.26E-02	1.006	1.046	1.052	761	125	57	328	31	231	11
ERP220C2	3.25E-03	1.003	1.029	1.032	817	322	28	109	58	224	15
ERP220D1	1.17E-02	1.008	1.031	1.040	581	109	47	328	36	223	20
ERP220E1	1.93E-02	1.009	1.038	1.047	627	114	53	326	32	226	16

ERP220E2	1.65E-02	1.007	1.031	1.038	630	134	45	323	45	229	4
ERP220F1	1.68E-02	1.009	1.039	1.048	629	43	25	306	15	187	60
ERP220F2	2.49E-03	1.006	1.034	1.041	687	40	21	306	11	189	66
ERP220G1	2.05E-02	1.014	1.035	1.050	416	36	27	303	6	202	62
ERP220G2	1.56E-02	1.006	1.034	1.040	714	36	24	301	9	192	64