Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas Departamento de Astronomia

Thiago Correr Junqueira

DETERMINAÇÃO DA CURVA DE ROTAÇÃO GALÁTICA E ESTUDO DO MÍNIMO PRÓXIMO A R₀

São Paulo 2009

Thiago Correr Junqueira

DETERMINAÇÃO DA CURVA DE ROTAÇÃO GALÁTICA E ESTUDO DO MÍNIMO PRÓXIMO A R₀

Dissertação apresentada ao Departamento de Astronomia do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo como parte dos requisitos para a obtenção do título de Mestre em Ciências.

Área de Concentração: Astronomia Orientador: Prof. Dr. Jacques R. Daniel Lépine

> São Paulo 2009

Dedico este trabalho à toda minha família e à minha namorada Juliana.

Agradecimentos

Agradeço à minha família, em especial minha mãe Carmem e meu pai Paulo, pelo apoio e carinho dado ao longo de todos esses anos.

A minha namorada Juliana, pelo suporte emocional e pela compreensão durante todo este percurso.

Ao meu orientador Jacques, pelo projeto e pelas discussões construtivas que tivemos ao longo destes dois anos.

Ao pesquisador Roberto Ortiz, pela ajuda concedida com as estrelas OH/IR no início do projeto, e à pesquisadora Silvia Rossi, pelas críticas construtivas em relação à gramática.

Aos colegas e amigos do IAG-USP, principalmente aqueles que sempre estiveram ao meu lado durante os momentos difíceis que todos nós encontramos pelo caminho.

À CNPq, pelo apoio financeiro.

Esta dissertação foi escrita em LATEX com a classe IAGTESE, para teses e dissertações do IAG.

Resumo

A curva de rotação da Galáxia apresenta uma anomalia perto do raio da órbita solar R_0 , caracterizada pela presença de um mínimo. Existem trabalhos que, embora não façam uma afirmação categórica, interpretam implicitamente o mínimo como sendo o resultado do decréscimo do efeito do disco, combinado com o aumento do efeito de um hipotético halo de matéria escura. A existência de tal interpretação reforça a importância de um estudo detalhado sobre sua natureza. No presente trabalho nós mapeamos a curva de rotação entre os raios galáticos 5 < R < 12 kpc usando diversas estrelas como traçadoras, por exemplo, Cefeidas, C-Miras, etc. Através de um método original realizamos o estudo cinemático para 322 Cefeidas. A partir desse estudo determinamos os melhores valores para os parâmetros da Galáxia, $V_0 = 202 \pm 15$ km/s e $R_0 = 7.5 \pm 0.5$ kpc. A melhor escolha possível para tais parâmetros é de fundamental importância, pois estes afetam a curva de rotação deduzida a partir de dados observacionais. Após determinarmos os valores de R_0 e V_0 , analisamos as curvas de rotação obtidas por nós e vimos que elas apresentam um mínimo a uma distância de 1.5 ± 0.3 kpc de R_0 . O mínimo apresenta uma velocidade de 30 ± 10 km/s menor que a velocidade encontrada no raio galático igual a R_0 . Simulações computacionais mostraram que esse mínimo pode ser explicado por um déficit gaussiano na densidade superficial de matéria (gás + estrelas) do disco, com um decréscimo máximo de 30% do valor da densidade superficial total próxima a R_0 . Esse déficit pode ser explicado pelo efeito da co-rotação.

Abstract

The Galaxy rotation curve shows an anomaly near the solar radius orbit R_0 , characterized by the presence of a minimum. There are works that implicitly interpret the minimum as the result of the decrease of the effect of the disk, combined with increasing of effect of a hypothetical dark matter halo. The existence of this interpretation reinforces the importance of a detailed study about its nature. In this work we obtained the rotation curve between Galactic radius, 5 < R < 12 kpc, using several stars as tracers, for instance, Cepheids, C-Miras, etc. Through a new method, we studied the kinematic of 322 Cepheids. From this study we determined the best values for the Galaxy parameters, $V_0 = 202 \pm 15$ km/s, and $R_0 = 7.5 \pm 0.5$ kpc. The best possible choice for such parameters is of fundamental importance since they affect the rotation curve inferred from observational data. After determining the values of R_0 , and V_0 , we analyzed the rotation curves obtained by us, and we saw that they have a minimum at a distance of 1.5 ± 0.3 kpc from R_0 . The minimum shows a velocity of 30 ± 10 km/s less than the velocity found at galactic radius R_0 . Computational simulations showed that this minimum can be explained by a Gaussian deficit of surface density of matter (gas + stars) of disk, with a maximum decrease of 30%of the value of surface density total arround R_0 . This deficit is explained by the effect of co-rotation.

Lista de Figuras

1.1	Fotografia de aproximadamente um terço da Via Láctea, obtida pelo fotógrafo	
	Akira Fujii, na Austrália	22
1.2	Esquema da Galáxia vista de fora, com os braços espirais, Georgelin e Ge-	
	orgelin (1976)	23
1.3	Curva de rotação obtida por Lépine e Leroy (2000)	24
1.4	Variação da velocidade radial observada V_{lsr} em função da longitude galáctica	
	l para Galáxia girando diferencialmente.	25
1.5	Relações geométricas para a rotação diferencial.	26
2.1	Curva de rotação de Simonson e Mader (1973)	31
2.2	Curva de rotação de Sanders (1989)	32
2.3	Curva de rotação de Kwee et al. (1954)	33
2.4	Curva de rotação de Kerr (1964) e Shane e Bieger-Smith (1966). \ldots .	33
2.5	Curva de rotação de Clemens (1985)	34
2.6	Curva de rotação de Blitz et al. (1980) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	36
2.7	Curva de rotação de Amaral et al. (1996).	36
2.8	Curvas de rotação de galáxias espirais, Mihalas e Binney (1981) $\ \ldots \ \ldots$	40
3.1	Diagrama HR contendo ilustração da evolução estelar	43
3.2	Perfil do fluxo de três estrelas em 100mJy contra velocidade (km/s), obser-	
	vado por Eder et al. (1988)	44
3.3	Diagrama cor-cor IRAS para estrelas AGBs ricas em oxigênio (Kwok, 1990).	46
3.4	Diagrama cor-cor <i>IRAS</i> das estrelas AGBs (van der Veen e Habing, 1988).	48

3.5	Diagrama H-R. A faixa em amarelo mostra onde as variáveis Cefeidas são encontradas	50
36	A variação de intensidade relativa das principais linhas espectrais das estre	00
5.0	las, em função da temperatura ou do tipo espectral	51
4.1	Diagrama cor-cor usando as cores do 2MASS	55
4.2	Diagrama cor-cor usando as cores do 2MASS	56
4.3	Curva de rotação adotada para calcular as distâncias cinemáticas das estre-	
	las OH/IR	59
4.4	Velocidades observadas ao longo de uma linha que une o Sol a um ponto	
	qualquer dentro do plano galáctico.	60
4.5	Relação entre a magnitude absoluta e o índice de cor para as estrelas OH/IR.	
	A magnitude absoluta foi obtida a partir da distância cinemática	61
4.6	Relação entre a magnitude absoluta e o índice de cor para as estrelas OH/IR.	
	A magnitude absoluta foi obtida a partir da distância cinemática usando	
	somente as fontes próximas ao circulo solar.	61
4.7	Relação entre a magnitude absoluta e o índice de cor para as estrelas $\rm OH/IR$	
	contidas no bojo.	62
4.8	Relação entre magnitude bolométrica e \log do período, em dias, para as	
	C-Miras, Feast et al. (2006)	65
4.9	Relação entre a magnitude absoluta na banda V e o \log do período em dias,	
	Berdnikov et al. (1996)	65
4.10	Esquema de uma fonte se deslocando	66
4.11	Dois espectros estelares comparados: o espectro solar e o espectro da estrela	
	de tipo solar HR3018	67
5.1	Esquema de uma estrela no plano da galáxia.	73
5.2	Ajuste linear da equação 5.15. O coeficiente angular dessas retas é o próprio	
	valor de V_0	76
5.3	Os círculos vermelhos representam os resultados de V_0 obtidos para cada ${\cal R}_0$	
	usando-se a equação 5.15; os quadrados pretos são os valores de R_0 obtidos	
	para cada V_0 usando-se a equação 5.20	78

5.4	A região hachurada representa os valores mais prováveis de R_0 e V_0	79
5.5	Ajuste linear da equação 5.20, onde o coeficiente angular da reta é $\frac{1}{R_0}$. Cada	
	ajuste corresponde a um dado valor de V_0 , os resultados desses ajustes estão	
	na tabela 5.2	80
6.1	Curva de rotação levantada com as Cefeidas	84
6.2	Curva de rotação levantada com as C-Miras	84
6.3	Curva de rotação levantada com estrelas associadas às regiões HII	85
6.4	Curva de rotação levantada com estrelas jovens OB	85
6.5	Curvas de rotação sobrepostas.	86
6.6	Distribuição espacial das Cefeidas na Galáxia.	87
6.7	Distribuição espacial das C-Miras na Galáxia.	88
6.8	Distribuição espacial das estrelas associadas às regiões HII na Galáxia	89
6.9	Distribuição espacial das estrelas jovens OB na Galáxia.	90
6.10	Curava de rotação levantada com as Cefeidas após a aplicação dos critérios	
	de seleção.	91
6.11	Curva de rotação levantada com as C-Miras após a aplicação dos critérios	
	de seleção	91
6.12	Curva de rotação levantada com estrelas associadas às regiões HII após a	
	aplicação dos critérios de seleção.	92
6.13	Curva de rotação levantada com as estrelas jovens OB após a aplicação dos	
	critérios de seleção.	92
6.14	Curvas de rotação sobrepostas após a aplicação dos critérios de seleção	93
6.15	Curvas de rotação ampliadas.	94
6.16	Curva de rotação de uma galáxia (hipotética) ilustrando a possível contri-	
	buição de três componentes.	96
6.17	Perfil de densidade radial do hidrogênio neutro, Burton (1976). Para traçar	
	este perfil foi adotado $R_0 = 10$ kpc	97
6.18	Curvas de rotação para: estrelas associadas às regiões HII (quadrados pre-	
	tos); Cefeidas (círculos vermelhos); C-Miras (triângulos azuis). A linha cheia	
	representa o modelo que descreve a curva de rotação	97

) A curva de rotação em velocidade angular Ω , a freqüência epicicloidal κ , e	6.19
	as curvas $\Omega-\kappa/2$ e $\Omega+\kappa/2,$ em função do raio galáctico. A reta horizontal	
	representa $\Omega_p,$ a velocidade de rotação do padrão espiral.; é uma velocidade	
99	angular que não depende do raio, como a de um disco rígido	

- 6.20 Gráfico da densidade de HI em função do raio galático. Distribuição de gás simulada por Lépine et al. (2001), R_c é o raio de co-rotação, o sol está situado em R_0 =7.5 kpc. A linha pontilhada representa a distribuição do gás no instante t=0; a linha cheia é a distribuição de gás após um período de rotação para distância solar.

Lista de Tabelas

2.1	Tabela com informações de algumas propriedades estelares, de Mihalas e	
	Binney (1981)	38
5.1	Valores de V_0 obtidos para cada R_0 , a partir da equação 5.15	77
5.2	Valores de R_0 obtidos para cada V_0 , a partir da equação 5.20	78
6.1	Tabela de estrelas antes e depois dos critérios de seleção adotados	86
C.1	Tabela das estrelas OH/IR.	128
C.2	Tabela das estrelas jovens OB	146

Sumário

1.	Intro	odução			21		
	1.1	Estrut	ura da Galáxia		21		
	1.2	Curva	de rotação da Galáxia		23		
	1.3	Fórmu	ıla geral da rotação Galática		24		
	1.4	Plano	do trabalho		26		
2.	A ci	ırva de	rotação da nossa Galáxia		29		
	2.1	Parâm	ietros locais de rotação		30		
	2.2	Determ	minação da curva de rotação		30		
		2.2.1	Região central: $R < 0.4R_0$		31		
		2.2.2	Região do padrão espiral: $0.4R_0 < R < R_0$		32		
		2.2.3	Parte externa: $R > R_0$		35		
	2.3	Movim	nentos não circulares		37		
	2.4	Popula	ações estelares e dispersão de velocidades		38		
	2.5	Galáxi	ias externas		39		
3.	Estágios evolutivos das estrelas utilizadas						
	3.1	Ramo	Assintótico das Gigantes		41		
		3.1.1	Estrelas OH/IR		44		
		3.1.2	Estrelas do tipo C-Miras		46		
	3.2	Estrela	as do tipo Cefeidas		48		
	3.3	Estrela	as jovens O-B5		50		

4.	Obt	enção das amostras e suas distâncias heliocêntricas e velocidades radiais 5	53					
	4.1	Obtenção das amostras	53					
		4.1.1 Obtenção das OH/IR	54					
		4.1.2 Obtenção das estrelas jovens O-B5	57					
	4.2	Determinação das distâncias	57					
		4.2.1 Distâncias das estrelas OH/IR	58					
		4.2.2 Distâncias das estrelas jovens	33					
		4.2.3 Distâncias das estrelas C-Miras e Cefeidas	33					
	4.3	Determinação de velocidades	36					
		4.3.1 Correção do LSR	38					
5.	Dete	erminação das constantes Galáticas, $V_0 \in R_0 \dots \dots$	71					
	5.1	Dados utilizados para o cálculo de R_0 e V_0	72					
	5.2	Transformação de unidades	72					
	5.3	O Método	72					
	5.4	Resultados e Discussão dos valores obtidos para $R_0 \in V_0 \dots \dots \dots \dots \dots \dots \dots \dots$	76					
6.	Obt	enção da curva de rotação	31					
	6.1	Introdução	31					
	6.2	Levantando as curvas de rotação	31					
	6.3	Modelagem da curva de rotação	95					
	6.4	O efeito da co-rotação	98					
	6.5	Porque alguns traçadores não mostram o mínimo)0					
7.	Conclusões e Perspectivas							
	7.1	Conclusões)3					
	7.2	Perspectivas)4					
Re	eferên	cias)7					
Aţ	pêndie	ce 11	15					
A.	Supe	orte teórico	17					

A	A .1	Emissão maser	117
A	A .2	Aproximações de Oort	119
A	A .3	Equações de transformação do movimento próprio em coordenadas equato-	
		riais para Galáticas	121
			105
B. E	Erros	•••••••••••••••••••••••••••••••••••••••	125
Ε	3.1	Erros nas velocidades	125
Ε	3.2	Erros nas distâncias	126
C. 7	Tabe	las \ldots	127

Introdução

1.1 Estrutura da Galáxia

Na mitologia grega, a Via Láctea (ver figura 1.1), galáxia onde o sistema solar orbita, originou-se após Hércules apertar com força o seio de Hera, enquanto era amamentado. Já os seguidores de Pitágoras imaginavam-na constituída por fogos. Outras escolas antigas consideravam a Via Láctea o antigo caminho do Sol. Tal qual os rios que deixam suas marcas ao mudar seu rumo, sua marcha permanecia comprovada por um sem-fim de ardentes pegadas. Por ser visível a olho nu, a Via Láctea ou Galáxia (por definição quando nos referimos a nossa própria galáxia, escrevemos galáxia com 'G') provocou a curiosidade do homem desde os tempos mais antigos. Egípcios, árabes, gregos, romanos, vários povos sentiram-se atraídos por esta faixa leitosa que atravessava o céu, e o próprio nome que usamos hoje refere-se ao leite derramado pela deusa Hera (Friaça et al., 2003).

A natureza e estrutura de nossa Galáxia só começaram a ser compreendidas no início deste século, com os trabalhos de Shapley entre 1915 e 1919 sobre a distribuição de aglomerados globulares e a determinação da rotação diferencial das estrelas na vizinhança Solar por Lindblad e Oort, no final da década de 20. As observações indicam que nossa Galáxia é semelhante às outras galáxias espirais, provavelmente Sb ou Sc na classificação de Hubble. De maneira grosseira, podemos dividir nossa Galáxia em três componentes principais: halo, bojo e disco. Halo e bojo formam um sistema com simetria esférica cujos objetos típicos são estrelas pobres em metais (por exemplo, sub-anãs e variáveis RR Lyrae) e aglomerados globulares, com uma lei de distribuição de densidade proporcional a r^{-3} , onde r é a distância ao centro galático. Análises espectroscópicas revelam um forte gradiente radial de metalicidade na componente esferoidal, o que sugere a distinção entre

Figura 1.1: Fotografia de aproximadamente um terço da Via Láctea, obtida pelo fotógrafo Akira Fujii, na Austrália.

halo, que se estende além de 20 kpc, e bojo, com um raio de cerca de 3 kpc. Este sistema é caracterizado por baixa ou nenhuma rotação e alta dispersão de velocidade.

Grosseiramente, o disco Galático é na verdade um cilindro com cerca de 15 kpc de raio e da ordem de 0.5 kpc de altura.

Os constituintes característicos do disco são poeira, gás e estrelas jovens (formadas recentemente nos braços espirais) e estrelas velhas ricas em metais. Contrariamente à componente esferoidal, o disco gira rapidamente e a dispersão de velocidade é menor. A densidade superficial varia de maneira proporcional a $e^{-\frac{R}{R_0}}$ e na direção perpendicular ao plano (coordenada z) a densidade de cada componente pode ser descrita como $sech^2(z/z_0)$.

Na região interior a 3 kpc do centro a densidade do gás sofre um forte declínio. Na região externa o disco gasoso tem uma distorção ("*warp*") em relação ao plano médio interno, um fenômeno também observado em outras galáxias espirais.

O Sol está localizado aproximadamente no plano do disco, numa posição um pouco periférica (7 a 8.5 kpc do centro), próximo ao local onde o fenômeno de distorção começa a ser significativo. A figura 1.2 mostra um esboço da Galáxia como seria vista de fora, ilustrando os braços espirais, delineados por regiões HII brilhantes.

Figura 1.2: Esquema da Galáxia vista de fora, com os braços espirais, Georgelin e Georgelin (1976)

1.2 Curva de rotação da Galáxia

Grande parte da informação sobre a massa de nossa Galáxia é fornecida pelo estudo do movimento de seus constituintes, especialmente no disco, pela determinação da velocidade circular em função da distância ao centro, a chamada 'curva de rotação'. A curva de rotação constitui uma das ferramentas mais poderosas para se estudar a distribuição de massa das galáxias, pois a velocidade de rotação para qualquer raio galáctico traça a força gravitacional em direção ao centro da galáxia, quando estas são sujeitas exclusivamente ao seu potencial gravitacional.

A absorção interestelar limita bastante as observações de estrelas situadas a distâncias além de cerca de 3 kpc do Sol. Por este motivo, a curva de rotação é geralmente obtida por observações do gás na faixa rádio do espectro. Usualmente são utilizadas as linhas de 21 cm do hidrogênio neutro (HI) e 2,6 mm do monóxido de carbono (CO) em nuvens moleculares. Neste caso, as distâncias são definidas por considerações cinemáticas, limitando a

Figura 1.3: Curva de rotação obtida por Lépine e Leroy (2000), está curva é o resultado de um modelo de distribuição de massa para as duas componentes da Galáxia, o disco e o bojo. Os pontos correspondem à velocidade de rotação obtida de observações em regiões do ponto sub-central para o CO, feitas por Clemens (1985).

determinação da curva de rotação ao movimento do gás nos chamados pontos tangenciais (mínima distância ao centro para uma dada linha de visada, interior ao círculo solar). Mas, observações ópticas e rádio de regiões HII, associadas às nuvens moleculares, tornaram possível a determinação da curva de rotação com dados distribuídos em grande parte do disco, com especial atenção à região externa ao círculo solar. Desta forma, a curva de rotação é obtida pelo movimento de objetos jovens, pertencentes à chamada População I. Entretanto, a comparação destes resultados com outros, obtidos com objetos mais velhos (por exemplo, as C-Miras), pode trazer informações adicionais, especialmente para um estudo das perturbações de órbitas estelares na Galáxia.

1.3 Fórmula geral da rotação Galática

O disco da Galáxia encontra-se num estado de rotação diferencial em torno de um eixo que passa pelo CG (Centro Galático). Para uma determinada distância específica R, medida a partir deste centro, existe uma velocidade de rotação do disco galáctico. Abaixo, na figura 1.4, podemos verificar a variação da velocidade radial dividida pela distância do objeto em função da longitude.

Figura 1.4: Variação da velocidade radial observada V_{lsr} em função da longitude galáctica l para Galáxia girando diferencialmente.

Observe que podemos ter velocidades positivas $(0^{o} < l < 90^{o} e \ 180^{o} < l < 270^{o})$ e negativas $(90^{o} < l < 180^{o} e \ 270^{o} < l < 360^{o})$.

A expressão para a velocidade radial para a Galáxia que possui rotação diferencial é deduzida a seguir.

De acordo com a figura 1.5 definimos os seguintes parâmetros:

R = Distância de um ponto geral ao CG

 $R_0 = \text{Distância do Sol ao CG}$

 Θ = Velocidade Linear de Rotação da Galáxia para um raio R

 Θ_0 = Velocidade Linear de Rotação da Galáxia para R_0

- d = Distância do Sol ao objeto
- l = Longitude galática
- b = Latitude galática

Seja V_{lsr} a velocidade radial observada do objeto, relativa ao LSR (Local Standard of Rest, ver seção 4.3.1), $V_{lsr} < 0$ corresponde a uma velocidade de aproximação e $V_{lsr} > 0$ corresponde a uma velocidade de afastamento. Assim sendo, temos:

$$V_{lsr} = \Theta cos(\alpha) cos(b) - \Theta_0 sin(l) cos(b)$$
(1.1)

Figura 1.5: Relações geométricas para a rotação diferencial.

Agora, da lei dos senos,

$$\frac{\sin(l)}{R} = \frac{\sin(90+\alpha)}{R_0} = \frac{\cos(\alpha)}{R_0} \tag{1.2}$$

Isolando $cos(\alpha)$ na equação 1.2 e substituindo na equação 1.1, obtemos:

$$\Theta(R) = \left(\frac{V_{lsr}}{sin(l)cos(b)} + \Theta_0\right) \frac{R}{R_0}$$
(1.3)

Aplicando-se a lei dos cossenos no triângulo S CG O, da Figura 1.5 obtém-se:

$$R^{2} = R_{0}^{2} + (d\cos(b))^{2} - 2dR_{0}\cos(l)\cos(b)$$
(1.4)

A partir dessas equações podemos calcular $\Theta(R)$ em função de R.

1.4 Plano do trabalho

Neste trabalho analisamos uma vasta amostra de estrelas, dentre as quais estão: OH/IR, C-Miras (Carbonadas), Cefeidas Clássicas e estrelas jovem dos tipos O-B5. Utilizamos algumas relações como, por exemplo, relação entre o período e a luminosidade (P-L) e tipo espectral e luminosidade, a fim de obter os módulos de distâncias (m-M) e assim calcular as distâncias heliocêntricas. Fizemos a correção das velocidades heliocêntricas com respeito ao LSR (Local Standard Rest). Determinamos os valores de $R_0 \in \Theta_0$ a partir do estudo cinemático das Cefeidas que contém velocidades radiais e movimentos próprios bem definidos. Por fim, levantamos a curva de rotação para cada amostra e analisamos a existência de um mínimo em torno de $1.2R_0$. Alguns resultados deste trabalho foram apresentados em congressos recentes (Junqueira e Lépine, 2007, 2008).

No capítulo 2 faremos uma revisão de algumas curvas de rotação propostas para Galáxia. Esta discussão pode ser dividida em quatro itens: determinação dos parâmetros locais de rotação e determinação da curva de rotação em várias regiões do disco; (ii) rotação na região central, $R < 0.4R_0$, onde R_0 é a distância do Sol ao centro da Galáxia; (iii) rotação na região intermediária $0.4R_0 < R < R_0$; e (iv) rotação na região externa, onde $R > R_0$. Em seguida apresentaremos uma revisão dos dados sobre populações estelares e propriedades cinemáticas, preparando o caminho para discussão da utilização das estrelas na obtenção da curva de rotação. O capítulo é encerrado com uma discussão abreviada de curvas de rotação de outras Galáxias espirais.

No capítulo 3 será feita a revisão de algumas das principais propriedades das estrelas utilizadas em nosso trabalho. Em seguida, no capítulo 4, discutiremos a obtenção de cada amostra, assim como suas propriedades cinemáticas, além da determinação de suas distâncias heliocêntricas. Discutiremos também como é feita a correção para o LSR, assim como os valores adotados de $U_0, V_0 \in W_0$ solares para tal correção.

No capítulo 5 faremos uma discussão sobre os valores adotados para $R_0 \in \Theta_0$ e iremos propor um novo método para a determinação desses parâmetros. Em seguida, discutiremos o método utilizado e apresentaremos os resultados que obtivemos.

No capítulo 6 discutiremos os resultados obtidos com os objetos selecionados, analisaremos a exitância do mínimo, assim como as possíveis causas de sua existência.

Finalmente, com o capítulo 7, encerraremos este trabalho apresentando as principais conclusões extraídas dos resultados e as perspectivas para desenvolvimentos futuro.

Capítulo 2.

A curva de rotação da nossa Galáxia

Diversos estudos sobre as curvas de rotação de galáxias espirais, em particular a nossa, tem sido realizados há décadas. Desde o trabalho pioneiro de Schmidt (1965), a curva de rotação da Galáxia tem sido usada para estudos de sua própria estrutura. Muitas determinações da curva de rotação são baseadas na observação de componentes gasosas do disco (HI, CO) e se baseiam da hipótese de que a velocidade máxima observada numa dada linha de visada corresponde a velocidade do ponto subcentral, ver por exemplo, (Clemens, 1985; Rohlfs e Kreitschmann, 1987). Entretanto, neste método perturbações do campo de velocidade no ponto subcentral pode afetar a curva de rotação observada. Outra dificuldade é que o método de velocidade terminal pode ser aplicado somente dentro do círculo solar.

Entretanto, é importante também obter a curva de rotação a partir de traçadores que vão além do círculo solar $(R > R_0)$ e para os quais as distâncias individuais possam ser obtidas. Os traçadores ideais seriam as estrelas jovens massivas, que supostamente apresentam velocidades próximas à do gás circundante, do qual elas nasceram. Dentre as determinações da curva de rotação baseada em traçadores estelares, os aglomerados abertos e as Cefeidas clássicas, tem sido muito usadas.

Com a utilização de radiotelescópios para o estudo da emissão HI, constatou-se que frequentemente as curvas de rotações ficam constantes a grandes distâncias do centro galático, frustando a expectativa de uma queda kepleriana, como se esperaria pela gravitação universal com o esgotamento do material da galáxia a tais distâncias. No caso de nossa Galáxia, observamos também um decréscimo na velocidade de rotação próximo a vizinhança solar, apresentando uma velocidade cerca de 30 km/s menor que a curva em regiões de maior ou menor raio. No entanto, a descrição do mínimo varia bastante (p.ex., Olling e Merrifield (1998), Honma e Sofue (1997)). Existem trabalhos (ver, p.ex., Kent (1992)) que, embora não façam uma afirmação categórica, interpretam implicitamente o mínimo como sendo o resultado do decréscimo do efeito do disco, combinado com aumento do efeito de um hipotético halo de matéria escura. A existência de tal interpretação reforça a importância de um estudo detalhado sobre sua natureza.

2.1 Parâmetros locais de rotação

Parâmetros importantes na determinação da curva de rotação são a distância do Sol ao centro Galático, R_0 , e a velocidade circular do LSR (ver seção 4.3.1) na posição do Sol, Θ_0 . Seus efeitos sobre a curva de rotação podem ser avaliados analisando a equação 1.3 com R dado pela equação 1.4. Intimamente relacionados com estes parâmetros estão as chamadas constantes $A \in B$ de Oort (ver apêndice A.2), que fornecem uma descrição da cinemática na vizinhança solar. A definição e o cálculo desses dois parâmetros encontra-se melhor discutida no capítulo 5.

2.2 Determinação da curva de rotação

A curva de rotação de nossa Galáxia pode ser obtida por observações em rádio da componente gasosa para $R < R_0$. Entretanto, o esquema de pontos tangenciais só é confiável para $0.4R_0 < R < 0.9R_0$. Na região $R < 0.4R_0$, fortes movimentos radiais dificultam a interpretação da cinemática e posição do gás. Na região externa, $R > R_0$, a curva de rotação só pode ser obtida a partir de objetos com distâncias independentes da cinemática. Os maiores progressos na obtenção da curva de rotação nesta região foram alcançados após a obtenção de curvas de outras galáxias.

Mihalas e Binney (1981) apresentam uma discussão compacta das propriedades da emissão na linha de 21 cm do H e a obtenção da curva de rotação em nossa Galáxia. Devemos notar que a obtenção da curva de rotação é inseparável do problema da distribuição de matéria, especialmente da componente gasosa.

2.2.1 Região central: $R < 0.4R_0$

Desde os primeiros estudos da rotação galática pela linha de 21 cm (Kwee et al., 1954), o centro Galático revelou-se bastante complexo. Nesta região, as observações indicam movimentos não circulares, com uma distribuição assimétrica. Mihalas e Binney (1981) fazem uma descrição geral da região e revisões detalhadas podem ser encontradas em Oort (1977) e Sanders (1989).

Existem três alternativas para interpretar os movimentos nesta região: atividade nuclear, órbitas ressonantes e presença de barra. A atividade nuclear foi uma das primeiras sugestões para esses movimentos. Entretanto, as energias necessárias para excitar movimentos não-circulares das maiores estruturas são muito altas, sugerindo que elas resultam de órbitas ressonantes (Simonson e Mader, 1973) ou do movimento elíptico do gás no potencial de uma barra central (Sanders e Huntley, 1976).

Figura 2.1: Curva de rotação de Simonson e Mader (1973)

Simonson e Mader (1973) discutem algumas dificuldades observacionais da linha de 21 cm e fornecem um modelo de órbitas ressonantes, comparando-o com um modelo proposto

Figura 2.2: Curva de rotação de Sanders (1989)

por van der Kruit (1971), baseado na hipótese de atividade nuclear. A figura 2.1 mostra a curva utilizada por Simonson e Mader comparada à duas curvas propostas anteriormente (Schmidt, 1965; Vandervoort, 1970). Nesta figura, os parâmetros de rotação local são caracterizados por $R_0 = 10$ kpc e $\Theta_0 = 250$ km/s, e os pontos norte e sul são pontos tangenciais, definidos pela velocidade do pico de intensidade no final dos perfis de linha, corrigidos por 5 km/s devido à dispersão turbulenta.

Na figura 2.2, a linha cheia representa a curva de rotação resultante de um modelo com um disco exponencial (linha traço-ponto) e um bojo (linha pontilhada) com distribuição de matéria igual à da radiação infravermelha com $|b| < 10^{\circ}$ e relação massa-luminosidade comparável ao bojo de M31. A curva tracejada é o ajuste polinomial aos dados propostos por Burton e Gordon (1978) e os pontos são de Sinha (1978). Neste caso, $R_0 = 8.5$ kpc e $\Theta_0 = 220$ km/s.

2.2.2 Região do padrão espiral: $0.4R_0 < R < R_0$

A primeira determinação da curva de rotação pela linha de 21 cm do HI foi realizada na região $0.4R_0 < R < R_0$ por Kwee et al. (1954). Os pontos tangenciais foram definidos por um ajuste gaussiano ao final de cada perfil de linha e os parâmetros de rotação local adotados foram $R_0 = 8.2$ kpc e $\Theta_0 = 216$ km/s. Como mostra a figura 2.3, os pontos não se distribuem por uma curva regular. Os autores interpretam este fato como resultado da ausência de HI em pontos de tangenciais fora dos braços espirais, situados em $R \approx 5$ kpc e $R \approx 6.5$ kpc, propondo que a envoltória, representada pela curva lisa, fosse a velocidade circular. Para R > 7.5 kpc, a curva se ajusta aos dados ópticos.

Figura 2.3: Curva de rotação de Kwee et al. (1954)

Figura 2.4: Curva de rotação de Kerr (1964), linhas, e Shane e Bieger-Smith (1966), pontos.

Figura 2.5: Curva de rotação de Clemens (1985). A figura de cima corresponde à $R_0 = 8.5$ kpc e $V_0 = 220$ km/s; de baixo à $R_0 = 10$ kpc e $V_0 = 250$ km/s.

Posteriormente, Kerr (1962) obteve uma curva um pouco diferente, analisando dados 21 cm para $l < 0^0$. A figura 2.4 mostra a curva de Kerr (1964)-(ver Shane e Bieger-Smith (1966)). Nesta figura, a linha mais grossa representa pontos com $l > 0^0$ e a outra curva para $l < 0^0$. Kerr (1969) comenta que a diferença entre as duas curvas poderia ser resultado de um movimento radial do *LSR*, com uma velocidade u = 7 km/s ou, mais provavelmente, de uma assimetria no disco. Na determinação destas duas curvas adotou-se $R_0 = 10$ kpc e $\Theta_0 = 250$ km/s e a velocidade tangencial é definida como a velocidade de temperatura de brilho média no final do perfil.
Shane e Bieger-Smith utilizaram seus modelos, em sua maioria baseados na curva de Kwee et al. (1954) corrigida para $R_0 = 10$ kpc e $\Theta_0 = 250$ km/s, para construir perfis de linha sintéticos e compará-los aos perfis reais. O principal resultado deste trabalho foi determinar que a velocidade de rotação e a distribuição de HI são funções que variam irregularmente com R, contrariamente ao que foi proposto por Kwee et al. (1954). Notemos, entretanto, que uma curva irregular, como a mostrada na figura 2.4, não representa a velocidade circular. A tendência da curva oscilar em torno de uma média pode ser devido às perturbações na velocidade, provavelmente causadas pelo potencial dos braços espirais, ou pela ausência de HI no ponto subcentral.

Na década de 70, a utilização da linha de 2.6 mm do CO trouxe novas informações sobre a distribuição e cinemática do gás na Galáxia. Uma das curvas mais citadas, levantada a partir da linha de 2.6 mm do CO, é a de Clemens (1985), figura 2.5.

2.2.3 Parte externa: $R > R_0$

De maneira contrária à região interna, as observações rádio não permitem a determinação simultânea da posição e velocidade de rotação do gás. Durante muito tempo acreditou-se que, como a matéria visível diminui drasticamente com R, a curva de rotação em $R > R_0$ deveria ser semelhante à de orbitas keplerianas. Observações de galáxias distantes mostram que suas curvas de rotação tendem a se manter aproximadamente constantes ou mesmo crescentes. Devemos imaginar que nossa Galáxia também tem o mesmo comportamento.

Knapp et al. (1978) realizaram um estudo da emissão 21 cm nas direções $l = 90^{\circ},100^{\circ}$ e 225° com o objetivo de detectar um disco HI extenso em nossa Galáxia, semelhante aos observados em outras galáxias espirais. Concluíram que as observações são melhor descritas por um modelo em que a curva de rotação é plana para $R > R_0$ e $\Theta_0 = 220$ km/s.

A obtenção da curva de rotação nesta região só é possível se tivermos um conjunto de objetos com distâncias independentes da cinemática. Isto se tornou possível com a determinação de distâncias espectrofotométricas de regiões HII, associadas aos complexos moleculares. Blitz et al. (1980) analisaram 184 complexos CO-regiões HII e obtiveram a curva mostrada na figura 2.6. A linha cheia é o ajuste de um polinômio de quarto grau, excluídos os 9 pontos situados em $R \approx 11$ kpc e $\Theta \leq 240$ km/s que pertencem ao braço de Perseus, e apresentam uma anomalia de velocidade.

Figura 2.6: Curva de rotação de Blitz et al. (1980)

Figura 2.7: Curva de rotação de Amaral et al. (1996).

Outra maneira de se determinar a curva de rotação para esta região é a utilização de estrelas como traçadores. Amaral et al. (1996) utilizaram estrelas AGBs e nebulosas planetárias para levantar a curva entre 4 < R < 12 kpc, para $R_0 = 7.9$ kpc, como mostrado na figura 2.7. Os 'x' representam a média das velocidades de rotação em cada bin de raio galático para toda a amostra, os quadrados são a média em cada bin com as distâncias de todos os objetos da amostra aumentada em 30%, e os círculos denotam a mesmo para distâncias diminuídas em 30%.

Mais recentemente Bobylev et al. (2008) levantou a curva de rotação a partir de objetos jovens para 5 < R < 15 kpc e os parâmetros adotados foram $R_0 = 7.5$ kpc, $\Theta_0 = 208$ km/s.

Uma curva de rotação plana ou crescente usualmente é interpretada como indicando a existência de "matéria escura" nos halos das galáxias. Embora modelos simples sejam usados para determinar a massa dentro de um dado raio, a determinação da quantidade de matéria escura não é tão simples. Blitz et al. (1980) determinaram uma massa relativamente elevada para nossa Galáxia, o que pode ser atribuído em parte aos parâmetros adotados: $R_0 = 10$ kpc e $\Theta_0 = 250$ km/s. Outro ponto importante que aparece em muitas curvas de rotação é a presença de um mínimo de velocidade, situado relativamente próximo à R_0 . Kent (1992) interpreta esse mínimo como sendo causado pelo efeito de um decréscimo da matéria visível do disco, combinado com aumento do efeito de um hipotético halo de matéria escura. Mas Amaral et al. (1996) interpretam esse mínimo como sendo efeito de pertubações de velocidade causadas pelo braço espiral.

2.3 Movimentos não circulares

Shuter (1982)argumenta que três distorções em nossa Galáxia, que surgem das observações do gás, são removidas quando adotamos um "padrão de repouso rotacional", isto é, supondo um movimento peculiar do LSR de $U_0 = 4$ à 7 km/s, $V_0 = 0.034\Theta_0$, $W_0 = 0$ km/s. Estas distorções são: (i) assimetria das curvas norte e sul; (ii) as velocidades tangencias se anulam para $l \approx 75^{\circ}$ e não para $l = 90^{\circ}$, como seria de se esperar no caso de movimento circular; (iii) distorção espiral na distribuição do gás da região externa. Devemos notar, entretanto, que este "padrão de repouso rotacional" é apenas um artifício aplicável ao comportamento do gás. Na parte externa da Galáxia, se a assimetria observada for devido à cinemática, deveríamos adotar órbitas elípticas para o gás e estrelas (Kerr e Lynden-Bell, 1986). No entanto, Brand et al. (1985), em um estudo da curva de rotação na parte externa por regiões HII, concluíram que esta assimetria é espacial, fato observado também em outras galáxias espirais.

Burton (1988) formulou a hipótese de que tais distorções resultam dos chamados movimentos de corrente (*streaming motions*) associados aos braços espirais. A principal explicação para estes movimentos de corrente é fornecida pela teoria de ondas de densidade de Lin e Shu (1971), que fornece uma visão intuitiva e qualitativa da cinemática em galáxias espirais.

2.4 Populações estelares e dispersão de velocidades

A evolução de nossa Galáxia deu origem a uma sequência de populações estelares com diferentes propriedades. Mihalas e Binney (1981) discutem as propriedades das populações do disco e da componente esferoidal. São dados a idade média, a dispersão de velocidades $< \sigma^2 >^{1/2}$, o desvio em relação à velocidade circular (componentes u, v, w), a escala de altura < |z| >, a abundância de elementos pesados relativa ao Sol, Z/Z_{\odot} e exemplos típicos de cada população.

	Braços Espirais	Disco Jovem	Disco Intermed.	Disco Velho	Halo
Idade	≤ 0.1	1	5	≤ 10	> 6
(10^9 anos)					
$<\sigma^2>^{1/2}$	15	25	50	80	150
$(\rm km/s)$					
$< u^2 >^{1/2}$	10	20	40	60	150
$(\rm km/s)$					
$< v^2 >^{1/2}$	0	-10	-25	-50	-90
$(\rm km/s)$					
$< w^2 >^{1/2}$	10	15	25	40	100
$(\rm km/s)$					
z	120	200	400	700	2000
(pc)					
Z/Z_{\odot}	1-2	1-2	0.5-1	0.2-0.5	0.001
~ .					

Tabela 2.1 - Populações estelares

Continua na próxima página...

Tabela 2.1 - Continuação							
Braços Espirais	Disco Jovem	Disco Intermed.	Disco Velho	Ha			

	Braços Espirais	Disco Jovem	Disco Intermed.	Disco Velho	Halo
Exemplo	Gás interestelar	estrelas A	Sol	RR Lyrae	Aglom. globulares

Estes dados devem ser considerados apenas como uma indicação das propriedades das diferentes populações, havendo numerosas exceções e discrepâncias entre os objetos de uma mesma classe.

Contrariamente às estrelas da componente esferoidal, a dispersão de velocidades (< $\sigma^2>^{1/2})$ das estrelas do disco não depende apenas da época da sua formação. Os dados indicam que há um "aquecimento" do disco, isto é, um aumento da dispersão de velocidades com o tempo. Mihalas e Binney (1981) incluem em sua discussão algumas dificuldades na caracterização cinemática de grupos estelares. O comportamento da dispersão de velocidades em função da idade das estrelas foi estudado por Wielen (1977).

A primeira explicação teórica convincente para este fenômeno foi fornecida por Spitzer e Schwarzschild (1951) e Spitzer e Schwarzschild (1953), com um mecanismo de colisões entre estrelas e complexos massivos de gás $(10^5 - 10^6 M_{\odot})$. Wielen (1977) retomou estes cálculos com base em uma teoria de difusão. De acordo com seus resultados, a dispersão de velocidades varia de cerca de 10 km/s para objetos mais jovens e até 80 km/s para aqueles formados há cerca de 10¹⁰ anos. As observações indicam também que grupos de objetos com maior dispersão de velocidades na direção radial apresentam maior desvio em relação à velocidade circular (Mihalas e Binney, 1981). Entretanto, uma outra explicação foi dada por Lépine et al. (2003), eles mostraram que a interação entre as estrelas e os braços espirais, em ressonância na co-rotação, desvia fortemente as estrelas de suas trajetórias circulares.

2.5Galáxias externas

Curvas de rotação de outras galáxias espirais fornecem uma melhor base para a interpretação dos dados em nossa Galáxia, especialmente para grandes distâncias do centro galático. Mihalas e Binney (1981) apresentam uma discussão dos métodos e problemas na obtenção da velocidade de rotação em função da distância ao centro de galáxias externas, com alguns exemplos de curvas obtidas. Rubin (1983) fornece um resumo de um extenso trabalho na obtenção de velocidades de rotação de 60 galáxias espirais de campo. Como exemplo, a figura 2.8 mostra algumas curvas de rotação de galáxias espirais obtidas a partir de observações na região óptica (Mihalas e Binney, 1981). Observa-se a semelhança entre muitas destas curvas com aquelas apresentadas na seção 2.2 e que nenhuma delas mostra tendência a um decréscimo até o limite de observação.

Figura 2.8: Curvas de rotação de galáxias espirais, Mihalas e Binney (1981)

Capítulo 3.

Estágios evolutivos das estrelas utilizadas

Para traçar a curva de rotação precisamos conhecer a velocidade na linhas de visada, a distância heliocêntrica (distância do sol até a fonte em questão) e a posição (longitude e latitude galáticas) da estrela. Esta última é obtida diretamente da observação, mas o método para determinar os valores de distância e velocidade depende do tipo de fonte que estamos observando. Sendo assim, é importante que saibamos sobre alguns aspectos teóricos de nossas fontes.

Em nosso trabalho utilizamos quatro grupos de estrelas: as OH/IR, as C-Miras (estrelas variáveis Miras ricas em carbono), as Cefeidas e estrelas jovens (tipo O-B5), cada qual encontrando-se em um diferente estágio evolutivo.

O objetivo deste capítulo é dar uma visão geral sobre as propriedades e características de cada um destes grupos estelares, assim como descrever rapidamente a fase evolutiva em que eles se encontram.

3.1 Ramo Assintótico das Gigantes

Todas as estrelas com massas iniciais entre $1 - 8M_{\odot}$ que estão na sequência principal evoluem através de duas etapas quando vão para a fase de gigantes vermelhas, em seus estágios finais de evolução (Iben e Renzini, 1983), ver figura 3.1. A primeira fase é chamada de Ramo das Gigantes Vermelhas (RGB, do inglês *Red Giant Branch*), a segunda fase é conhecida como o Ramo Assintótico das Gigantes (AGB, do inglês *Asymptotic Giant Branch*), Yang (2008).

Estrelas de baixas massas ou massas intermediárias (1 - $8M_{\odot}$), após exaurirem o He de seus núcleos, desenvolvem um núcleo de C-O com elétrons degenerados. Isto representa o início na fase AGB, Kwok (2000). A AGB pode ser dividida em duas fases: (i) a early-AGB (estrelas que acabaram de entrar na fase AGB), onde a camada que queima H se extinguiu devido a expansão do envoltório e a luminosidade é provida da camada que queima He; e (ii) a AGB termo-pulsante (TP-AGB), que começa com a reignição de uma camada fina de H. Para uma massa do núcleo de $5M_{\odot}$, o tempo de vida na fase *early*-AGB é de aproximadamente 10^7 anos (Iben e Renzini, 1983). Durante 90% da fase TP-AGB a queima na camada de H é a fonte dominante de energia. Entretanto, conforme o H vai sendo transformado em He, a massa da camada de He abaixo da queima de H aumenta, o que levará a um aumento na taxa de reação do processo tripo- α e a um eventual descontrole termonuclear (Schwarzschild e Härm, 1967). Este evento, conhecido como flash da camada de He ou pulso térmico, continua até a camada de He se expandir excessivamente e resfriarse, então a estrela volta a um estado calmo de queima na camada de H. Durante a fase AGB, uma estrela pode passar por diversas pulsações térmicas dependendo de sua massa. Durante cada um desses episódios, muitos eventos interessantes podem ocorrer como, por exemplo, o flash do He e a dragagem de elementos pesados para a superfície do envoltório (Kwok, 2000).

A evolução das estrelas que se encontram no Ramo Assintótico das Gigantes e após este ou simplesmente AGB e pós-AGB tem sido melhor compreendida graças a numerosas buscas (por exemplo, surveys realizados pelo satélite IRAS e, mais recentemente, pelo 2MASS, ambos no infravermelho) feitas em vários comprimentos de onda, que vão desde rádio até o infravermelho.

Além da emissão no infravermelho contínuo, muitas estrelas AGBs exibem uma grande variedade de emissão de linhas moleculares como, por exemplo, CO e HCN para estrelas ricas em carbono e emissões de OH, SiO e H₂O para estrelas ricas em oxigênio. Essa emissão que se origina no envoltório circunstelar, juntamente com outras características observadas no infravermelho, representam a assinatura química [C/O] (razão entre abundância de carbono e oxigênio) na atmosfera da estrela (Ortiz et al., 2005).

A composição química da atmosfera nas AGBs depende principalmente de dois parâmetros: a massa inicial e a fase evolutiva da estrela. Em alguns casos, quando a taxa de perda de massa aumenta, o que acredita-se acontecer no fim da AGB (Ortiz et al., 2005), um envoltório de poeira circunstelar oticamente espesso aparece, tornando a estrela invisível

Figura 3.1: Diagrama HR contendo ilustração da evolução estelar.

para comprimentos de onda na faixa do óptico. Devido a uma expansão de seu envoltório, a estrela torna-se muito luminosa $(L_{bol} \approx 10^3 - 10^6 L_{\odot})$ especialmente no infravermelho, pois a maior parte do fluxo emitido se dá pela emissão de grãos de poeira aquecidos $(T_{grão} \approx 300 - 900K)$, dependendo da composição química) do envoltório. O grande fluxo no infravermelho e baixa temperatura de cor faz com que as estrelas AGBs, juntamente com as estrelas jovens, sejam os principais corpos de detecção no infravermelho. Tanto as estrelas OH/IR quanto as estrelas C-Miras são estrelas AGBs (ver seções 3.1.1 e 3.1.2), logo são detectáveis a grandes distâncias pois a extinção estelar no infravermelho é bem menor que a extinção estelar no óptico. Esta é uma das grandes vantagens de se utilizar essas fontes para levantar a curva de rotação.

3.1.1 Estrelas OH/IR

A perda de massa das AGBs é também manifestada em emissão molecular. Em muitas estrelas AGBs ricas em oxigênio são encontradas emissões maser (*Microwave Amplification by Stimulated Emission of Radiation*) de OH (ver Apêndice A), com frequências típicas de 1612MHz (Herman e Habing, 1985). A emissão OH frequentemente mostra um perfil de dois picos, figura 3.2, que é a manifestação de um contínuo processo de perda de massa, com a velocidade de expansão do envoltório sendo dada pela metade da velocidade de separação entre os dois picos (Kwok, 1976).

Figura 3.2: Perfil do fluxo de três estrelas em 100mJy contra velocidade (km/s), observado por Eder et al. (1988).

Muitas emissões OH que foram descobertas estão associadas a fontes infravermelhas. Desta forma, fontes OH com uma contrapartida não-óptica são conhecidas como estrelas OH/IR. Desde a publicação do *IRAS Point Source Catalog* (PSC), pesquisas com os objetos *IRAS* que possuem cores semelhantes às conhecidas para as estrelas OH/IR foram e continuam sendo realizadas, tais pesquisas revelaram muitas fontes OH (Eder et al., 1988; Lewis et al., 1990; Te Lintel Hekkert et al., 1991; Lépine et al., 1995). O número total de estrelas OH/IR catalogadas até o ano de 2000 passa das 2000, segundo Kwok (2000).

A correlação da variação entre os fluxos OH e infravermelho sugere que a inversão de população necessária para que ocorra o maser OH é causada por fótons no infravermelho. Herman e Habing (1985) monitoram um grupo de aproximadamente 50 estrelas OH/IR não identificadas e encontraram um período médio de 1000 dias para essas fontes, muito maior que o período médio de 350 dias encontrado para as variáveis Miras ópticas. Somente 30% das variáveis Miras ópticas tem emissão OH (Bowers, 1985), provavelmente isto se deve ao fato da emissão OH desenvolver-se somente quando a taxa de perda de massa é alta o suficiente para criar um maser saturado; as estrelas OH/IR provavelmente representam estrelas que estão mais acima, na fase AGB (figura 3.1), do que as variáveis Miras ópticas e acredita-se que, nesta fase da AGB, a taxa de perda de massa aumenta como mencionado em Ortiz et al. (2005). Segundo Eder et al. (1988), a taxa de perda de massa paras as OH/IR está entre $10^{-5} - 10^{-4} M_{\odot} ano^{-1}$. Em um maser não saturado, pequenas mudanças nas taxas colisionais ou na densidade pode levar a uma grande variação na inversão de população das moléculas (Kwok, 1976). No entanto, Harvey et al. (1974) concluíram que as variações na emissão maser OH associadas a estrelas IR são insignificantes, confirmando assim uma emissão saturada.

A figura 3.3 mostra um diagrama cor-cor *IRAS* ([12-25] versus [25-60]) de três grupos de estralas ricas em oxigênio: (i) estrelas ópticamente classificadas como sendo do tipo espectral M e com emissões características de silicatos em $9.7\mu m$; (ii) estrelas que não possuem classificação espectral óptica, mas mostram emissão OH e também emissões características de silicatos; (iii) estrelas que não possuem classificação espectral óptica, mas mostram emissão OH e absorções características de silicatos. Esta figura mostra claramente que os três grupos de estrelas ricas em oxigênio formam uma sequência de cor com um decréscimo na temperatura de cor. Isto fornece fortes evidências de que as estrelas OH/IR representam uma extensão das AGBs formadas por estrelas do tipo espectral M. Além do tipo espectral M10, a extinção causada pelo envoltório circunstelar torna-se muito forte, não sendo mais possível fazer uma classificação espectral no óptico. Logo, a única maneira de se identificar tais fontes é através da espectroscopia rádio ou infravermelha de seus envoltórios (Kwok, 2000).

Muitos autores têm interpretado a sequência de estrelas OH/IR no diagrama cor-cor, como sendo um rastro evolutivo desses objetos (Baud e Habing, 1983; Bedijn, 1987; van der Veen e Habing, 1990). De acordo com esta visão, a taxa de perda de massa das estrelas aumenta continuamente e uma Mira variável torna-se progressivamente uma estrela OH/IR mais obscura. Mas existem outras interpretações (de Jong, 1983; Likkel, 1989; Ortiz e

Figura 3.3: Diagrama cor-cor *IRAS* para estrelas AGBs ricas em oxigênio (Kwok, 1990). Os círculos representam as estrelas do tipo espectral M (i); os triângulos representam as estrelas que não possuem tipo espectral no óptico, (ii) e (iii).

Maciel, 1994) para a sequência encontrada no diagrama cor-cor desses objetos. Lépine et al. (1995) interpreta esse diagrama como sendo uma sequência crescente de massa inicial, ou seja, uma sequência crescente em luminosidade e taxa de perda de massa constante.

E importante que conheçamos bem as características das estrelas OH/IR ao longo de sua sequência, incluindo suas magnitudes absolutas, para que possamos ser capazes de determinar com precisão suas distâncias em larga escala.

A vantagem de se utilizar as estrelas OH/IR para traçar a curva de rotação é que podemos detectá-las a grandes distâncias (acima de 10 kpc) e também calcular suas velocidades radiais na linha de visada com ótima precisão, a partir da emissão maser de OH. O grande desafio aqui é obter valores precisos para distâncias heliocêntricas, como será discutido em 4.2.1.

3.1.2 Estrelas do tipo C-Miras

Por causa da grande luminosidade e raio, os envoltórios de estrelas AGBs são frequentemente instáveis, por isso sofrem grandes amplitudes de pulsação. Essas estrelas são conhecidas como variáveis Miras (nomeadas depois da primeira estrela variável ser detectada, a Mira Ceti, também conhecida como o Ceti). As variáveis Miras tem pulsações radiais com períodos de 200-600 dias. Acredita-se (van der Veen e Habing, 1988) que esta pulsação dinâmica forma ondas de choque na fotosfera estelar e fornece energia para elevar o gás até regiões que são suficientemente frias para formação de grãos. O grão é acelerado pela pressão de radiação, fazendo com que a estrela irradie principalmente em comprimentos de ondas entre 2 e 100μ m. Esses objetos obedecem a uma relação período-luminosidade (PL), ou seja, Miras mais luminosas tem períodos de pulsação mais longos.

As estrelas denominadas como variáveis Miras podem ser ricas em carbono (C-Miras) ou ricas em oxigênio (O-Miras). O elemento carbono é sintetizado pelas reações triplo- α na fase termo-pulsante do Ramo Assintótico das Gigantes (TP-AGB). Os núcleo de C são levados à superfície e reagem com O para formar CO na fotosfera. Uma vez que a abundância de C excede a de O, inúmeras moléculas baseadas em carbono (C₂, C₃, CN, etc.) se formam (Hasegawa e Kwok, 2003). Chan e Kwok (1990) interpretam que as estrelas ricas em carbono são uma sequência evolutiva das estrelas ricas em oxigênio, ou seja, a estrela entra na AGB rica em oxigênio e, após sofrer os processos de "dragagem" (do inglês *dredged up*), que leva o carbono do núcleo até a fotosfera, ela se torna rica em carbono. Entretanto, a estrela pode ou não experimentar processos de dragagens o suficiente para se enriquecer em carbono, podendo assim permanecer rica em oxigênio. A figura 3.4 mostra um diagrama cor-cor *IRAS* onde fica clara a separação entre a evolução de estrelas ricas em carbono e ricas em oxigênio.

Segundo a visão do grupo de Leiden, o caminho evolutivo para as estrelas ricas em O é mostrado pela linha pontilhada na figura 3.4, onde as estrelas evoluem de O-Miras (Miras ricas em O) para estrelas OH/IR. Ainda não está muito clara a evolução das C-Miras. Existem basicamente dois cenários: (i) estas estrelas já são ricas em carbono antes de entrar na fase AGB, mas isso discorda das observações, onde a maior parte das estrelas que iniciam na AGB são ricas em O; (ii) que a razão [C/O] muda de valores pequenos (<1) para valores maiores (>1) e isso pode ocorrer devido a dragagem do material rico em carbono na fase TP-AGB (van der Veen e Habing, 1988).

As observações extragalácticas sugerem que as C-Miras obedecem a uma relação bem definida de período-luminosidade (Feast et al., 1989; Whitelock et al., 2003), com esta

Figura 3.4: Diagrama cor-cor *IRAS* das estrelas AGBs (van der Veen e Habing, 1988). Nas regiões de I à IV temos o caminho evolutivo para as estrelas ricas em O. Em V temos nebulosas planetárias e estrelas não variáveis com camada circunstelar muito fria. Em VIa temos estrelas não variáveis com poeira relativamente fria a grandes distâncias da estrela, uma parte significativa delas são ricas em C. Em VIb temos estrelas variáveis com poeira relativamente quente próxima a estrela e poeira relativamente fria a grandes distâncias, alguns desse objetos podem ser ricos em O. Em VII temos estrelas variáveis com uma camada circunstelar rica em carbono mais evoluída. Em VIII temos diferentes tipos de objetos.

relação é possível determinar suas distâncias, a partir de seus períodos e magnitudes aparentes que podem ser medidos com facilidade. Isso torna as C-Miras ótimas candidatas para traçar a curva de rotação. A determinação das velocidades radiais para as C-Miras será melhor discutida na seção 4.3.

3.2 Estrelas do tipo Cefeidas

A maior parte das estrelas exibem uma luminosidade essencialmente constante. Contudo, existem estrelas que possuem luminosidades variáveis. Essas estrelas exibem variações de magnitude muito regular, que resultam de uma pulsação do envoltório estrelar. A pulsação resulta da não validade da equação 3.1 de equilíbrio hidrostático nas camadas externas da estrela.

$$\frac{dP(r)}{dr} = \frac{-GM(r)\rho(r)}{r^2} \tag{3.1}$$

Para essas estrelas, o balanço entre as forças de pressão e a gravidade é desfeito, originando movimentos que dissipam energia. Para que a pulsação seja mantida, é necessário que haja algum mecanismo que reponha a energia perdida. Esse papel é atribuído à opacidade em zonas de ionização de H e He. A opacidade aumenta nessas zonas causando um aumento da pressão de radiação, até que esta atinge um máximo e o envoltório se expande. Ao se expandir ele se resfria, diminuindo a opacidade então, a energia que ficou retida dentro das zonas de alta opacidade escapa livremente. Quando o envoltório atinge a máxima expansão, ele começa a se contrair novamente aumentando a opacidade, que por sua vez irá gerar uma nova expansão. Assim o processo de pulsação perdura por milhares de anos. As estrelas variáveis mais compreendidas e mais utilizadas para o estudo de estrutura galáctica são as Cefeidas e as RR Lyrae.

As variáveis Cefeidas são supergigantes de classes espectrais F até K (5000 K a 7500 K), são encontradas em uma estreita faixa de instabilidade no diagrama H-R (ver figura 3.5). Todas as estrelas dessa região do diagrama têm envoltórios que são oscilantes. Os períodos típicos para as Cefeidas estão na faixa entre 1 e 50 dias. As Cefeidas são comumente divididas em dois subgrupos, as *Cefeidas Clássicas* e as *W Virginis*. Essas duas categorias podem ser separadas facilmente uma da outra através de suas curvas de luz e de suas propriedades espectrais e fotométricas.

As Cefeidas Clássicas são conhecidas por serem estrelas de alta massa na fase de queima de He em seus núcleos. A interseção da faixa de instabilidade com o caminho evolutivo dessas estrelas em suas fases de maior queima de He determina onde a concentração de Cefeidas de uma dada composição química e dentro de uma dada faixa de massa será encontrada no diagrama H-R (Mihalas e Binney, 1981). Com relação a sua localização espacial, sabemos que as Cefeidas Clássicas são estrelas que compõem o disco Galático.

As variáveis Cefeidas apresentam uma relação muito bem definida entre período-luminosidade, possibilitando assim uma determinação precisa das distâncias. Esta propriedade, junto com

Figura 3.5: Diagrama H-R. A faixa em amarelo mostra onde as variáveis Cefeidas são encontradas

sua localização no disco da Galáxia, faz delas as principais fontes para o estudo da curva de rotação.

Em nosso trabalho nós usamos as Cefeidas Clássicas, mas daqui em diante iremos nos referir à elas somente como Cefeidas.

3.3 Estrelas jovens O-B5

Na seção 3.1.1 nós comentamos que as estrelas AGBs estão no limite da classificação espectral no óptico, representadas pela letra M, as quais possuem temperaturas superficiais na ordem de 3000 K, ou seja, são estrelas vermelhas (frias). As estrelas jovens O-B5 são estrelas que estão na sequência principal, representadas pelos tipos espectrais O e B. Essas estrelas encontram-se no canto superior esquerdo do diagrama H-R, figura 3.5.

A classificação espectral das estrelas teve início por volta de 1880, em Harvard. Williamina P. Fleming publicou um catálogo de 10.000 estrelas separadas em classes denotadas A, B, C, etc. Mas, em 1888, Antonia C. Maury rearranjou estas classes, numa outra ordem. Seu critério foi fazer com que houvesse continuidade nas variações de linhas, tendo em vista que algumas linhas crescem e outras decrescem lentamente, para tipos consecutivos de estrelas. Foi assim que nasceu a seqüência espectral O, B, A, F, G, K, M, utilizada até hoje. Não é difícil entender porque as estrelas O, que não apresentam linha do hidrogênio, tinham sido inicialmente relegadas para a última classe, mas foram posteriormente rearranjadas para primeiras da lista, quando se considerou outras linhas. Mais tarde, Annie J. Cannon introduziu os sub-tipos espectrais, ou seja, divisões decimais. Por exemplo, existem estrelas A0, A1, ..., até A9.

Figura 3.6: A variação da intensidade relativa das principais linhas espectrais das estrelas, em função da temperatura (escala de cima) ou do tipo espectral. A numeração I, II, etc, se refere a estados de ionização.

Posteriormente, o paralelo entre a sequência de tipos espectrais e a seqüência de temperatura ou de índice de cor foi estabelecido e explicado. A sequência de tipos espectrais não passa de uma escala de temperaturas. As estrelas O são as mais quentes e as M as mais frias. Dependendo da temperatura, alguns átomos são ionizados, perdendo um ou mais elétrons, e se comportam como se fossem elementos químicos diferentes do átomo original, apresentando linhas espectrais distintas. É devido aos diversos estados de ionização que as linhas aparecem e desaparecem, em função da temperatura. Um elemento químico não desaparece, ele passa a se apresentar na forma de outro íon. Além da tradição, a razão de se continuar usando os tipos espectrais vem do fato de que a classificação obtida a partir de um espectro é bastante segura, ela não é afetada pela extinção do meio interestelar, como acontece com o índice de cor B-V.

As estrelas de tipos espectrais O são mais azuis, portanto, elas possuem temperaturas efetivas mais altas (por volta de 54.000K) que as de tipos espectrais mais baixos. A temperatura efetiva de uma estrela na sequência principal depende fortemente de sua massa. Desta forma, estrelas mais quentes são mais massivas. O tempo de vida da estrela na sequência principal é inversamente proporcional ao quadrado de sua massa, $t_{SP} \propto M^{-2}$, isto é, as estrelas mais massivas consomem seu hidrogênio nuclear muito mais rapidamente que as menos massivas, permanecendo menos tempo na sequência principal. Daí vem o nome "jovem" para estrelas da sequência principal entre os tipos espectrais O à B, pois se elas ainda estão nessa fase evolutiva significa que são estrelas relativamente jovens (na ordem de 10⁸ anos para estrelas do tipo B5 e 10⁵ anos para estrelas do tipo O), caso contrário já teriam deixado a sequência principal.

Por serem estrelas jovens, elas ainda carregam informações cinemáticas de seus locais de nascimento (nuvens HII, provavelmente localizadas nos braços espirais), o que faz destas estrelas uma amostra interessante para o estudo cinemático da Galáxia.

Capítulo 4_

Obtenção das amostras e suas distâncias heliocêntricas e velocidades radiais

Como já mencionado no capítulo 3, nós utilizamos quatro tipos de estrelas, que foram obtidas de diferentes catálogos. Mas existe uma quinta amostra que utilizamos e não mencionamos no capítulo 3, pois não se trata de um tipo específico de estrela, mas sim de fontes associadas às regiões HII. Na seção 4.1 iremos descrever como cada amostra foi obtida e quais os catálogos que foram atualizados. Nas seções que seguem, nós iremos discutir como foram obtidas as distâncias e velocidades, para cada tipo de estrela, assim como os erros envolvidos.

4.1 Obtenção das amostras

Nossas amostras estão divididas em duas categorias:

- (I) Amostras utilizadas diretamente de catálogos já compilados por outros autores.
- (II) Amostras compiladas por nós mesmos, a partir de um catálogo mais antigo.

As Cefeidas, C-Miras e regiões HII pertencem à categoria (I). As Cefeidas e C-Miras foram obtidas dos catálogos de Berdnikov et al. $(2003)^{-1}$, Menzies et al. $(2006)^{-2}$ e Demers e Battinelli $(2007)^{-3}$, respectivamente. Cada um contém informações cinemáticas e distâncias heliocêntricas (ver seções 4.2.3 e 4.3). Cada catálogo contém respectivamente 440 estrelas Cefeidas, 177 e 102 estrelas C-Miras. Para as regiões HII utilizamos o catálogo

 $^{^1\,\}rm http://www.sai.msu.ru/groups/cluster/CEP/RADVEL/?M=A$

 $^{^2}$ ftp://cdsarc.u-strasbg.fr/pub/cats/J/MNRAS/369/783/

 $^{^3}$ http://cdsarc.u-strasbg.fr/viz-bin/Cat?J/A2bA/473/143

de Russeil (2003)⁴, que possui 209 regiões HII com velocidades e distâncias medidas, algumas distâncias foram revisadas por Russeil et al. (2007).

As estrelas OH/IR e as jovens do tipo O-B5 pertencem à categoria (II). Nas subseções 4.1.1 e 4.1.2 iremos detalhar como fizemos a seleção para cada amostra.

4.1.1 Obtenção das OH/IR

Partimos de um catálogo contendo aproximadamente 1100 estrelas, com cores *IRAS* medidas, então cruzamos ele com o 2MASS e selecionamos as estrelas que seriam possíveis candidatas à estrelas OH/IR. Numa primeira etapa fizemos a identificação com o 2MASS, obtendo assim as cores J, H e K. A figura 4.1 mostra o diagrama cor-cor 2MASS para a primeira seleção. As cores são definidas por letras, cada uma delas corresponde a um certa banda de comprimento de onda. As cores J, H e K estão centradas em $1.25\mu m$, $1.65\mu m$, $2,17\mu m$ respectivamente. Esses comprimentos de onda estão localizados na parte infravermelha do espectro eletromagnético.

Numa segunda etapa nós cruzamos as fontes identificadas no 2MASS com o SIM-BAD (uma base de dados na internet que nos fornece várias informações sobre uma determinada fonte). Para a identificação correta, nós utilizamos alguns critérios de seleção:

- Geralmente, dada a coordenada de uma fonte o 2MASS nos devolve, dentro de uma caixa de erro, um certo número de fontes. Portanto, dentro dessa caixa de erro devemos selecionar a estrela que possivelmente é uma OH/IR. Assim, para cada coordenada, selecionamos a estrela mais brilhante na banda K, dentro de uma dada caixa de erro. Devido a alta taxa de perda de massa que elas possuem, se forma um envoltório oticamente espesso e os grãos que se formam emitem tudo na faixa do infravermelho. Logo estas são sempre mais brilhantes nessa banda de frequência (seção 3.1.1).
- Ter um H-K maior que 0.5 mag. O valor alto desse índice de cor pode ser visto como uma profundidade óptica espessa, que está relacionada com a taxa de perda de massa da estrela. Como estrelas OH/IR apresentam altas taxas de perda de massa, esperamos que o índice de cor H-K seja positivo para tais estrelas.

⁴ ftp://cdsarc.u-strasbg.fr/pub/cats/J/A+A/397/133/

Figura 4.1: Diagrama cor-cor usando as cores do 2MASS. Analisando este diagrama podemos ver que nem todas as fontes contidas nele são estrelas AGBs. Como já mencionamos na seção 3.1.1, as estrelas OH/IR são AGBs e seguem um caminho evolutivo nesse diagrama, sendo assim podemos identificar nele estrelas que podem ou não ser AGBs, como está em Ortiz et al. (2005).

- Como já mencionado, nós cruzamos a amostra que obtivemos no 2MASS, numa primeira etapa, com o SIMBAD. O SIMBAD possui uma ferramenta que fornece o tipo da fonte, ou seja, dada uma certa coordenada ele devolve fontes que estão dentro dessa região delimitada por uma caixa de erro. Nós adotamos o valor de 10 arcseg (segundos de arco, que corresponde a 1/3600 de graus) para esta caixa. Nessa região encontramos diversas fontes, cada uma delas classificadas com seus respectivos tipos, por exemplo: regiões HII, Maser OH, Nebulosa plantaria, etc. Utilizamos esta ferramenta e obtivemos 699 identificações positivas com fontes OH/IR.
- Utilizando um diagrama de H-K versus J-H, podemos obter informações sobre as características de nossa amostra pré-selecionada, uma vez que os índices de cor estão ligados às propriedades das estrelas (ver seção 3.1.1). Com base nessas informações, das 699 estrelas selecionadas no cruzamento entre o 2MASS e o SIMBAD, nós retiramos mais 231 estrelas contidas em nossa amostra, pois estas encontravam-se em posições fora do esperado para o diagrama cor-cor de estrelas OH/IR. Nós nos base-

amos no diagrama cor-cor de Ortiz et al. (2005) como critério de seleção.

Conhecendo as propriedades das estrelas que queremos selecionar, temos uma idéia de onde estas se distribuirão no diagrama cor-cor. O diagrama pode ser visto na figura 4.2.

Figura 4.2: Diagrama cor-cor usando as cores do 2MASS.

Assim das 1100 estrelas que tínhamos inicialmente, identificamos 468 delas como sendo certamente fontes associadas a estrelas AGB. O catálogo compilado dessas estrelas está na tabela C.1. A descrição de cada coluna segue abaixo:

Col 1; Longitude galáctica em graus. Col 2; Latitude galáctica em graus. Col 3; Cor 2MASS na banda J, dada em magnitude. Col 4; Cor 2MASS na banda H, dada em magnitude. Col 5; Cor 2MASS na banda K, dada em magnitude. Col 6; Diferença de cor J-H em magnitude. Col 7; Diferença de cor H-K em magnitude. Col 8; Velocidade do pico próximo. Col 9; Velocidade do pico distante, quando o valor não é conhecido colocamos 9999. Col 10; Cor IRAS na banda 12 μm , dada em magnitude. Col 11; Diferença de cor 12-25 em magnitude. Col 12; Diferença de cor 25-60 em magnitude. Col 13; Identificação IRAS da fonte.

4.1.2 Obtenção das estrelas jovens O-B5

Para as estrelas da sequência principal dos tipos espectrais O-B5, nós partimos do catálogo compilado por Rubin et al. (1962) ⁵. Ele possui medidas cinemáticas e fotométricas para 898 estrelas das 1440 estrelas contidas nele.

Nós recompilamos este catálogo fazendo uma busca no *SIMBAD*. Dessa forma, obtivemos valores atualizados para as magnitudes aparentes na banda V e para as velocidades radiais heliocêntricas. Para muitas fontes nós também encontramos medidas de paralaxe.

O catálogo recompilado está na tabela C.2. A primeira coluna é o nome da fonte; as colunas 2 e 3 são longitudes e latitudes galáticas, respectivamente; a coluna 4 é a paralaxe; a coluna 5 é a velocidade radial heliocêntrica; a coluna 6 é a magnitude aparente na banda V; a coluna 7 é a magnitude absoluta na banda V (dados originais de Rubin, 1962); a coluna 8 é a absorção na banda V. Das 1440 estrelas, nós recuperamos 1006.

4.2 Determinação das distâncias

Existem basicamente duas formas para se determinar a distância de uma estrela: (i) por paralaxe trigonométrica; (ii) obtendo-se o módulo de distância (m-M) da estrela. Iremos destacar o segundo método, pois a determinação de distância por paralaxe é restrita à vizinhança solar.

A equação para determinar a distância de uma estrela é relativamente simples. E é dada simplesmente por:

$$m_0 - M = 5\log(d) - 5 \tag{4.1}$$

A diferença m_0 -M é conhecida como módulo de distância. Se incluirmos o efeito da absorção interestelar, temos:

$$m - M - A_V = 5log(d) - 5 \tag{4.2}$$

Conhecendo-se os valores de m, $M \in A_V$, podemos facilmente calcular a distância usando a equação 4.2. Portanto, nosso objetivo é determinar tais parâmetros, mas essa

⁵ http://cdsarc.u-strasbg.fr/viz-bin/Cat?V/31A

tarefa nem sempre é fácil, principalmente para fontes distantes. Nas subseções 4.2.1, 4.2.3 e 4.2.2 iremos descrever os métodos usados para se determinar M.

Tanto a magnitude absoluta, como a aparente, dependem da banda espectral que estamos adotando. Em outras palavras, temos magnitudes absolutas e aparentes nas bandas U, B, V, J, H, K, etc. Cada uma dessas letras corresponde a uma largura de banda, ou seja, são filtros que deixam passar somente um determinado comprimento de onda. O A_V representa a absorção interestelar na banda V (região do visível no espectro eletromagnético).

4.2.1 Distâncias das estrelas OH/IR

Ainda não existe uma forma muito precisa para se obter as distâncias das estrelas OH/IR, tal como existe através da relação P-L para as Cefeidas ou C-Miras. Essa relação não é obtida para as estrelas OH/IR, pois seus períodos são da ordem de 3 anos. Sendo assim, temos que encontrar métodos mais eficientes de se obter distâncias para estas fontes.

Nosso principal objetivo era encontrar uma boa relação entre a magnitude absoluta na banda K e o índice de cor (H-K) para essas estrelas. Utilizamos dois métodos para obter as magnitudes absolutas: (i) o método cinemático; (ii) estrelas OH/IR contidas no bojo.

(i) O método cinemático é relativamente simples. Nós adotamos uma certa curva de rotação, que acreditamos ser a melhor (figura 4.3). A partir desta, nós calculamos qual deve ser a velocidade radial observada na linha de visada para cada valor de raio galáctico (R_{qal}) , usando a equação 4.3.

$$V_{lsr} = \left(\frac{V_{rot}R_0}{R_{gal}} - V_0\right)sin(l)$$
(4.3)

Os valores adotados para $R_0 \in V_0$ foram 7.5 kpc e 202 km/s, ver capítulo 5.

Para cada valor da distância heliocêntrica ao longo da linha de visada nós temos um valor de V_{lrs} , figura 4.4. Como V_{lsr} é uma grandeza observável, nós comparamos o valor teórico com o observado. Quando a diferença entre eles é menor que um certo ϵ (erro adotado), significa que encontramos o valor de distância que se ajusta a curva de rotação adotada (isso é feito pelo método da bissecção) e esta é denominada "distância cinemática".

Com a distância cinemática, podemos calcular a magnitude absoluta na banda K, usando a equação 4.2. Para corrigir a extinção, nós utilizamos o modelo de Beraldo e

Figura 4.3: Curva de rotação adotada para calcular as distâncias cinemáticas das estrelas OH/IR.

Lépine (1985). O método cinemático pode parecer um pouco estranho, pois como podemos determinar a curva de rotação se já supomos uma de antemão? Como já descrito acima, nosso objetivo é encontrar uma boa relação entre a magnitude absoluta na banda K e o índice de cor H-K. Encontrada tal relação, teríamos um método independente do método cinemático para o cálculo das distâncias. Em suma, as magnitudes absolutas seriam obtidas apenas para estrelas com distâncias cinemáticas bem confiáveis. Obtidas tais magnitudes esperávamos, encontrar uma relação estreita entre essa e o índice de cor e ai calcularíamos as distâncias da amostra completa.

Mas tal relação não foi encontrada com uma boa confiabilidade, como pode ser visto na figura 4.5. Alguns erros intrínsecos ao método estão listados abaixo e estes podem ser os motivos pelos quais não conseguimos encontrar uma boa relação entre a magnitude absoluta e o índice de cor.

1. Para certas regiões, o método de se estimar distâncias através do modelo cinemático não se mostra eficiente, por isso devemos evitar regiões com latitudes $|b| > 5^{\circ}$, pois estrelas acima dessa latitude estão mais distantes do plano galáctico, logo não obedecem à curva de rotação. Devemos evitar também as regiões que estão entre as longitudes $345^{\circ} < l < 18^{\circ}$ e $190^{\circ} < l < 170^{\circ}$, pois nessas regiões a velocidade observada na linha de visada não é

Figura 4.4: Velocidades observadas ao longo de uma linha que une o Sol a um ponto qualquer dentro do plano galáctico. As posições do Sol e do centro galáctico estão indicadas. Em qualquer ponto, a velocidade tem a direção da rotação em torno do centro galáctico (flechas maiores). No entanto, a velocidade observada é a projeção desta sobre a linha de visada. A velocidade observada é maior para o ponto A, porque neste ponto a direção da rotação coincide com a direção de observação. Ao contrário, para o ponto B, apenas uma fração da velocidade de rotação será observada.

confiável.

2. Como partimos de uma curva de rotação pré-estabelecida para calcular as distâncias cinemáticas, certos parâmetros adotados, como $R_0 \in V_0$, interferem diretamente no cálculo, assim como a própria curva de rotação adotada. Uma maneira de minimizar os erros gerados pela escolha indevida de uma curva de rotação pré-estabelecida é usar somente fontes que tenham baixas velocidades na linha de visada, entre -10 a 10 km/s, pois tais fontes se encontram próximas a nós ou próximas ao ponto onde à linha de visada corta o circulo de raio R_0 . Esses dois pontos independem da curva de rotação adotada. A relação entre a magnitude absoluta e índice de cor para o circulo solar pode ser vista na figura 4.6. Outro grande problema que o método cinemático traz, é que para regiões dentro do círculo solar existem duas soluções possíveis, a distância cinemática próxima e distante.

(ii) Tentamos calibrar a relação magnitude absoluta versus índice de cor, utilizando

Figura 4.5: Relação entre a magnitude absoluta e o índice de cor para as estrelas OH/IR. A magnitude absoluta foi obtida a partir da distância cinemática.

Figura 4.6: Relação entre a magnitude absoluta e o índice de cor para as estrelas OH/IR. A magnitude absoluta foi obtida a partir da distância cinemática usando somente as fontes próximas ao circulo solar.

estrelas OH/IR contidas no bojo. Esta idéia foi proposta por Ortiz, R. 2008, comunicação particular. Utilizamos os catálogos de Lindqvist et al. (1992), a discussão e a prova de

Figura 4.7: Relação entre a magnitude absoluta e o índice de cor para as estrelas OH/IR contidas no bojo.

que tais estrelas estão contidas no bojo é feita por Ortiz et al. (2002). O catálogo de Lindqvist et al. (1992) não contêm as magnitudes nas bandas J, H e K, portanto, fizemos o cruzamento desse com o 2MASS. Wood et al. (1998) identificou algumas fontes OH/IR contidas no catálogo de Lindqvist et al. (1992) e forneceu seus índices de cor H-K. Usamos esses índices dados por Wood et al. (1998) e comparamos com os que encontramos no cruzamento feito com o 2MASS, aumentando assim a confiabilidade de identificação dessas fontes. A vantagem desse método é que sabemos a priori a distância das fontes OH/IR $(R_0 = 7.5 \text{ kpc})$. A relação entre magnitude absoluta na banda K e índice de cor H-K para a amostra extraída do catálogo de Lindqvist et al. (1992) pode ser vista na figura 4.7.

Nenhum dos métodos que adotamos para tentar calibrar uma relação entre a magnitude absoluta na banda K e o índice de cor H-K foram satisfatórios. Analisando os gráficos das figuras 4.5, 4.6 e 4.7, observamos que todos apresentam alta dispersão em magnitude absoluta. O erro que cometemos na determinação da distância é proporcional a ela e à dispersão em magnitude absoluta, ver apêndice B.2. Dessa forma, nenhuma relação que nós encontramos é confiável para se determinar as distâncias das fontes OH/IR com uma boa precisão. Portanto, não obtivemos sucesso em levantar a curva de rotação com as estrelas OH/IR.

4.2.2 Distâncias das estrelas jovens

Como sabemos, através do diagrama H-R, figura 3.5, as estrelas na sequência principal obedecem a uma relação bem definida entre tipo espectral e magnitude absoluta. Assim, para se determinar as magnitudes absolutas das estrelas O-B5 na sequência principal, basta que tenhamos suas classificações espectrais bem definidas. Na seção 3.3 já descrevemos como é feita esta classificação, maiores detalhes sobre a calibração e o sistema de classificação espectral adotado para esta amostra está em Rubin et al. (1962).

O avermelhamento ou absorção interestelar (A_V) é calculado usando-se a relação abaixo:

$$A_V = R_V E(B - V) \tag{4.4}$$

onde R_V é a razão entre a extinção total e a seletiva. Rubin et al. (1962) adotou este valor igual à R_V =3. O excesso de cor E(B - V) é dado por:

$$E(B-V) = (B-V) - (B-V)_0$$
(4.5)

onde (B - V) é a cor observada e $(B - V)_0$ é a cor intrínseca da estrela. O valor de $(B - V)_0$ depende do tipo espectral da estrela, logo basta que tenhamos a cor (B - V) medida para sabermos o valor de E(B - V) para as estrelas na sequência principal.

Sabendo-se os valores de M, $A_V \in m_0$ que é obtido diretamente das observações, podemos facilmente calcular as distâncias das estrelas usando a equação 4.2.

Para algumas das estrelas jovens OB nós encontramos medidas de paralaxe do catálogo HIPPARCOS. Portanto, para as estrelas jovens OB nós usamos as distâncias trigonométricas (distâncias obtidas a partir da paralaxe usando-se a equação 5.2), quando possível e se essas fossem menores do que 1 kpc. Acima de 1 kpc, a distância trigonométrica não é muito confiável. Para distâncias trigonométricas acima de 1 kpc, nós usamos o método fotométrico descrito acima.

4.2.3 Distâncias das estrelas C-Miras e Cefeidas

As cefeidas têm um papel muito importante como padrões de medidas de distância no Universo graças à relação período-luminosidade que as caracteriza.

Como visto no capítulo 3, seções 3.1.2 e 3.2, tanto as Cefeidas como as C-Miras são

estrelas pulsantes. Portanto, possuem variações de magnitude regulares ou, em outras palavras, elas possuem uma relação intrínseca entre o período de pulsação e a luminosidades, equação 4.6, onde M_{λ} é a magnitude absoluta em um certo comprimento de onda, P é o período de pulsação (geralmente dado em dias) e os valores de a_{λ} , e b_{λ} dependem das estrelas variáveis usadas em questão (Cefeidas, C-Miras, RR Lyrae, etc) e do comprimento de onda. O valor de a_{λ} , conhecido como ponto zero, também depende da procedência das estrelas, ou seja, se estas pertencem ou não à nossa galáxia.

$$M_{\lambda} = a_{\lambda} + b_{\lambda} log(P) \tag{4.6}$$

Portanto, observando a variação da magnitude aparente, encontramos o período de pulsação da estrela (intervalo de tempo entre dois máximos ou mínimos de magnitude). Então, usando a equação 4.6, calculamos a magnitude absoluta. Com a equação 4.4 podemos calcular a extinção interestelar. Uma vez obtido esses três parâmetros, nós determinamos o módulo de distância $(m - M - A_v)$ e, com este, a distância é facilmente determinada usando-se a equação 4.2.

Feast et al. (2006) determinaram a relação P-L para as C-Miras galáticas, equação 4.7, que foi usada por Menzies et al. (2006) para compilar o catálogo de estrelas C-Miras. Já Demers e Battinelli (2007) usaram uma relação entre cor (J-K) e magnitude absoluta na banda K, equação 4.8, usando um avermelhamento médio igual a E(B - V) = 0.2. Berdnikov et al. (1996) obtiveram a relação P-L para as Cefeidas galáticas, equação 4.9, que foi usada por Berdnikov et al. (2003) para compilar o catálogo de Cefeidas.

A relação que Feast et al. (2006) e Berdnikov et al. (2003) obtiveram para essas estrelas podem ser vistas nas figuras 4.8 e 4.9, respectivamente.

$$M_{bol} = -2.54 \log(P) + 2.06 \tag{4.7}$$

$$M_K = -6.31 - 0.99(J - K)_0 \tag{4.8}$$

$$M_V = -2.87 \log(P) - 1.01 \tag{4.9}$$

A relação P-L é uma das formas mais precisas para se determinar distâncias. A partir do momento em que se conhece o período de uma estrela variável, facilmente mensurável, a

Figura 4.8: Relação entre magnitude bolométrica e *log* do período, em dias, para as C-Miras, Feast et al. (2006).

Figura 4.9: Relação entre a magnitude absoluta na banda V e o log do período em dias, Berdnikov et al. (1996).

relação período-luminosidade permite determinar a luminosidade intrínseca dessa estrela. Por uma simples comparação com sua luminosidade aparente, deduz-se sua distância.

Extremamente brilhantes e logo visíveis de longe, as Cefeidas são detectadas atualmente em outras galáxias até a distância de 80 milhões de anos-luz, graças ao telescópio espacial Hubble.

4.3 Determinação de velocidades

Em 1842, Christian Doppler (1803-1853) demonstrou que uma fonte que se distancia do observador tem todos os comprimentos de onda de seu espectro deslocados para o vermelho, isto é, o efeito Doppler desloca os comprimentos de onda para valores maiores, ou menores, caso a fonte se aproxime, figura 4.10. Com o efeito Doppler, é possível calcular a velocidade radial das estrelas, isto é, a velocidade na linha de visada.

A componente da velocidade espacial de um objeto na linha de visada provoca um deslocamento dos comprimentos de onda que não seriam observados caso o objeto estivesse em repouso. Este efeito é relativístico: convencionamos que o deslocamento dos comprimentos de onda será positivo para o afastamento e negativo para a aproximação. A velocidades está relacionada com o deslocamento do comprimento de onda através da equação 4.10.

Figura 4.10: Esquema de uma fonte se deslocando. Para um observador situado na frente da fonte, o comprimento de onda se desloca para o azul; já para outro observador, situado atrás da fonte, o deslocamento é para o vermelho.

$$\frac{\Delta\lambda}{\lambda_0} = \frac{V_h}{c} \tag{4.10}$$

onde c = velocidade da luz no vácuo, sendo esta fórmula aplicável se $V_h \ll c$. Em um espectro contínuo é impossível medir a velocidade radial, pela falta de referências claras em relação às quais pode-se medir o deslocamento dos comprimentos de onda. Esta medida é, porém, possível nos espectros de linhas de absorção ou de emissão, nos quais é aparente o deslocamento dos comprimentos de onda centrais das linhas em relação aos comprimentos de onda de repouso, medidos nos laboratórios. Na figura 4.11 temos o exemplo de um espectro estelar comparado a um espectro solar. Para este último, a escala de comprimentos de onda corresponde ao repouso. A estrela em questão é de tipo espectral, semelhante ao Sol e apresenta, portanto, um rico espectro de linhas de absorção. O deslocamento das linhas espectrais é aparente e sua medida fornece a velocidade radial topocêntrica. Esta deve ser corrigida primeiramente da rotação da Terra, para obtermos a velocidade radial geocêntrica, e depois da translação da Terra ao redor do Sol, para obtermos a velocidade radial heliocêntrica.

Figura 4.11: Dois espectros estelares comparados: o espectro solar e o espectro da estrela de tipo solar HR3018: uma estrela de idade elevada, pobre em metais e de alta velocidade. O deslocamento Doppler das linhas de HR3018 são óbvios, assim como as linhas mais fracas, denotando uma composição química dos metais abaixo da solar.

O efeito Doppler é a forma mais clássica para se determinar velocidades radiais tanto de estrelas como de galáxias. Mas as estrelas OH/IR foram as únicas de nossa amostra em que as velocidades radias forma obtidas de forma distinta.

Para elas, a velocidade na linha de visada é obtida a partir dos espectros de emissão maser, ver figura 3.2. Como já explicamos na seção 3.1.1 e no apêndice A, as estrelas OH/IR apresentam um perfil de dois picos na emissão maser. O primeiro pico é devido a velocidade próxima (V_b) e o segundo pico é a velocidade distante (V_r) . A velocidade da estrela é dada pela média dessas duas velocidades:

$$V_h = \frac{V_b + V_r}{2} \tag{4.11}$$

Essa equação chega a ser intuitiva: imaginemos que a estrela esteja parada em relação a nós, ou seja, $V_h = 0$. Logo, esperaríamos que, para uma simetria esférica do envoltório, a emissão maser exibi-se um perfil de dois picos simétricos, ou seja, $V_b = -V_r$, e é exatamente isso que se observa. Sendo assim, qualquer desvio que faça com que $V_b + V_r \neq 0$ é resultado da própria velocidade da estrela, em relação ao observador.

4.3.1 Correção do LSR

O Sistema Local de Repouso (do inglês, *Local Standard of Rest, LSR*) pode ser definido de duas formas fisicamente diferentes, mas que na prática conduzem ao mesmo resultado.

O Sistema Local Dinâmico está centrado no Sol e gira em órbita circular em torno do Centro Galáctico, com a velocidade apropriada para sua posição na Galáxia. Todas as estrelas próximas ao Sol, em órbitas circulares, deveriam estar em repouso com relação ao LSR - qualquer afastamento da velocidade circular aparecerá como movimentos peculiares.

O Sistema Local de Repouso Cinemático é o sistema centrado no Sol, no qual a média das velocidades espaciais das estrelas próximas ao Sol é zero. Na prática, os dois sistemas coincidem quando são considerados estrelas situadas a distâncias menores que 100pc do Sol, já que a maioria delas descreve órbitas quase perfeitamente circulares em torno do centro Galático.

O movimento do Sol não é perfeitamente circular, ele possui uma velocidade com relação ao LSR. Nós geralmente trabalhamos com as coordenadas $u, v \in w$, onde u está apontada para o anti-centro Galático, v está apontada para direção de rotação da Galáxia e w está apontado para o pólo norte Galático.

Ao longo de anos, diversos autores vêm tentando obter os valores de velocidade para $(U_{\odot}, V_{\odot}, W_{\odot})$. Mihalas e Binney (1981) obtiveram (-10.4, 14.8, 7.3) em km/s, Dehnen e Binney (1998) obtiveram a partir das análises de dados do *Hipparcos* os valores (-10.0, 5.3, 7.2), Bienaymé (1999) também a partir de dados do *Hipparcos* encontrou (-9.7, 5.2, 6.7), e Abad et al. (2003) obtiveram (-9.9, 12.1, 7.5), entre outros. A maior incerteza está em V_{\odot} , já que para os valores de U_{\odot} e W_{\odot} temos uma boa concordância entre os resultados. Devido a esta incerteza entre os autores, que perdura até os dias de hoje, nós decidimos adotar valores médios de U_{\odot}, V_{\odot} e W_{\odot} , portanto os valores utilizados foram:

 $U_{\odot} = -10.0 \ km/s$ (em direção ao anti-centro Galático)

 $V_{\odot} = 10.0 \ km/s$ (na direção de rotação Galática)

 $W_{\odot} = 7.2 \ km/s$ (em direção ao polo norte Galático)

Geralmente os catálogos são publicados com velocidades radias heliocêntricas, ou seja, velocidades radiais não corrigidas para o LSR. Nesses casos, a correção para o LSR é simples:

Projetamos a velocidade radial heliocêntrica nos eixos $u, v \in w$:

$$V_u = -V_h \cos(b)\cos(l) \tag{4.12}$$

$$V_v = V_h \cos(b) \sin(l) \tag{4.13}$$

$$V_w = V_h sin(b) \tag{4.14}$$

onde $l \in b$ são, respectivamente, a longitude e a latitude Galáticas. Depois, somamos as componentes solares em relação ao LSR:

$$V_{ulsr} = -V_u + U_{\odot} \tag{4.15}$$

$$V_{vlsr} = V_v + V_{\odot} \tag{4.16}$$

$$V_{wlsr} = V_w + W_{\odot} \tag{4.17}$$

Feito isso, reprojetamos as velocidades já corrigidas do LSR para a linha de visada:

$$V_{lsr} = -V_{ulsr}cos(l)cos(b) + V_{vlsr}sin(l)cos(b) + V_{wlsr}sin(b)$$

$$(4.18)$$

Mas, há casos em que o catálogo é publicado com velocidades radiais já corrigidas do LSR, então nós temos que recalcular as velocidades em relação ao LSR para valores de U_{\odot}, V_{\odot} e W_{\odot} , que nós adotamos. A correção é feita da seguinte forma:

Usando as equações 4.12, 4.13 e 4.14 nós projetamos V_{lsr} em vez do V_h e, dessa forma, obtemos os valores de V_{ulsr}, V_{vlsr} e V_{wlsr} . Agora temos que fazer a correção em relação aos valores de U_{\odot}, V_{\odot} e W_{\odot} , que nós adotamos:

$$V'_{ulsr} = V_{ulsr} + (U'_{\odot} - U_{\odot})$$
(4.19)

$$V'_{vlsr} = V_{ulsr} + (V'_{\odot} - V_{\odot})$$
(4.20)

$$V'_{wlsr} = V_{ulsr} + (W'_{\odot} - U_{\odot})$$
(4.21)

Onde U'_{\odot}, V'_{\odot} , e W'_{\odot} são os valores adotados por nós. Uma vez que transformamos as velocidades em relação ao LSR para o nosso sistema, usamos a equação 4.18 para reprojetarmos novamente as velocidades para a linha de visada.

Nós fizemos o processo de correção do *LSR* para todos os catálogos que trabalhamos. Dessa forma, todas as velocidades radiais encontram-se num único sistema de correção.
Capítulo 5.

Determinação das constantes Galáticas, $V_0 \in R_0$

Os valores das constantes Galáticas, $R_0 \in V_0$, são de estrema importância para o estudo cinemático da Galáxia, principalmente no estudo da curva de rotação, pois tais parâmetros afetam-na diretamente. Inúmeros autores vêm revisando, até os dias atuais, os valores de $R_0 \in V_0$. Para isso utilizam diversos métodos, entre os quais está o método de Oort (ver A.2) e o estudo do movimento próprio do centro Galático.

As estimativas de R_0 variam de 10 à 6 kpc; Surdin (1980) encontrou um valor de 10.1 ± 0.7 kpc, mas Frenk e White (1982) encontraram 6.8 ± 0.8 kpc. Reid (1989) fez uma revisão dos valores de R_0 , obtidos até então por vários autores e por diferentes métodos, encontrando um valor médio de 7.7 ± 0.7 kpc. Atualmente muitos autores (Lépine et al., 2008; Bobylev et al., 2008) adotam $R_0 = 7.5$ kpc. A mudança desse valor afeta muitos resultados astrofísicos como, por exemplo, todas as distâncias cinemáticas, a massa da Galáxia, distâncias extragaláticas e o próprio V_0 , dentre outros.

Para V_0 a história não é diferente, seus valores calculados variam de 240 à 190 km/s. Atualmente os valores mais aceitos estão entre 200 e 230 km/s. Zabolotskikh et al. (2002) encontraram um valor de 206 ± 20 km/s para R₀=7.5 kpc e 226 ± 20 km/s para R₀=8.5; Bobylev et al. (2008) e Lépine et al. (2008) obtiveram valores de 207 ± 17 km/s e 226 ± 15 km/s, respectivamente.

Devido a importância e às incertezas que envolvem os valores de R_0 e V_0 nós adotamos um método diferente e original para calcular estas constantes. Nas seções que seguem, nesse capítulo, iremos descrever este método em detalhes.

5.1 Dados utilizados para o cálculo de $R_0 \in V_0$

Para determinar as constantes Galáticas, nós utilizamos as Cefeidas contidas no catálogo de Berdnikov et al. (2003), já mencionado na seção 4.1. Nele temos os movimentos próprios, obtidos através dos catálogos *HIPPARCOS* e *TYCHO2*, em coordenadas equatoriais (J2000) e nas unidades de mas/ano (milissegundo de arco por ano).

5.2 Transformação de unidades

Precisamos transformar o movimento próprio de mas/ano para km/s, a transformação é simples e pode ser feita com a equação logo abaixo:

$$v = k\mu d \tag{5.1}$$

onde k é uma constante e vale 4.75 ano-km/s, μ é o movimento próprio em mas/ano e d é a distância heliocêntrica da fonte dada em kpc. Como d está em kpc e μ está em mas/ano, e sabemos que a distância é o inverso da paralaxe:

$$d = \frac{1}{\pi} \tag{5.2}$$

onde π é a paralaxe. Se π está em unidades de mas, d é obtido em unidades de kpc, logo a unidade resultante da transformação dada pela equação 5.1 é km/s. Fizemos também as correções em relação ao LSR, como descrita na seção 4.3.1.

Feita esta transformação de unidades precisamos agora transformar o movimento próprio de coordenadas equatoriais (J2000) para coordenadas galácticas (l, b) e, para tal transformação de coordenadas, usamos as equações descritas no apêndice A.3.

5.3 O Método

A partir das informações cinemáticas (movimento próprio e velocidade radial na linha de visada) das estrelas, nós chegamos a duas equações, das quais podemos obter V_0 e R_0 de forma direta. A figura 5.1 mostra o esquema de uma estrela vista no plano Galático. A única suposição que fazemos para que as equações sejam válidas é que as estrelas tenham órbitas circulares (velocidades residuais próximas de zero) e tenham latitudes Galáticas $b < 5^0$.

Figura 5.1: Esquema de uma estrela no plano da galáxia. Os componentes R_0 , d, R, $l \in \Phi$ são, respectivamente, o raio da órbita solar, a distância heliocêntrica, a distância Galactocêntrica, longitude galática e o ângulo entre $R \in R_0$ no centro da Galáxia. As componentes de velocidades θ_{r_0} , θ_{Φ_0} , θ_r , θ_{Φ} , $v_r \in v_t$ são, respectivamente, a velocidade radial solar em relação ao centro Galáctico, a velocidade circular do sol, velocidade radial da estrela em relação ao centro Galáctico, velocidade de rotação circular da estrela, velocidade radial da estrela na linha de visada e o movimento próprio da estrela.

Sabemos que a velocidade observada na linha de visada é dada por:

$$v_{r} = v_{r} - v_{0} \tag{5.3}$$

onde v_0 é a velocidade do Sol na linha de visada e pode ser expressa por:

$$v_0 = \theta_{\Phi_0} \sin(l) - \theta_{r_0} \cos(l) \tag{5.4}$$

 v_r é a velocidade da estrela na linha de visada, assim temos:

$$v_r = \theta_\Phi \sin(l + \Phi) - \theta_r \cos(l + \Phi) \tag{5.5}$$

portanto, fazendo a substituição de v_r e v_0 na equação 5.3, temos:

$$v*_r = \theta_{\Phi} sin(l+\Phi) - \theta_{\Phi_0} sin(l) + \theta_{r_0} cos(l) - \theta_r cos(l+\Phi)$$
(5.6)

Para o movimento próprio o raciocínio é semelhante. O movimento próprio observado é dado por:

$$v_{t} = v_t - v_{t_0} \tag{5.7}$$

onde v_{t_0} é a velocidade do Sol perpendicular à linha de visada, definimos essa velocidade como sendo positiva no sentido anti-horário da rotação do ângulo l, pois nessa direção l cresce. Portanto v_{t_0} é:

$$v_{t_0} = \theta_{r_0} \sin(l) + \theta_{\Phi_0} \cos(l) \tag{5.8}$$

logo, v_t é expresso por:

$$v_t = \theta_r \sin(\alpha) - \theta_\Phi \cos(\alpha) \tag{5.9}$$

mas, $\alpha = 180 - l - \Phi$, pela lei dos senos e cossenos, temos:

$$sin(180 - (l + \Phi)) = sin(l + \Phi)$$
(5.10)

$$\cos(180 - (l + \Phi)) = -\cos(l + \Phi) \tag{5.11}$$

logo, a equação 5.9 fica:

$$v_t = \theta_r \sin(l + \Phi) + \theta_\Phi \cos(l + \Phi) \tag{5.12}$$

portanto, fazendo a substituição de v_t
e v_{t_0} na equação 5.7, temos:

$$v_{t} = \theta_{r} sin(l+\Phi) + \theta_{\Phi} cos(l+\Phi) - \theta_{r_{0}} sin(l) - \theta_{\Phi_{0}} cos(l)$$

$$(5.13)$$

Agora, se multiplicarmos a equação 5.6 por $cos(l + \Phi)$ e multiplicarmos a equação 5.13 por $sin(l + \Phi)$ e subtrairmos uma da outra, temos:

$$v *_{r} \cos(l+\Phi) - v *_{t} \sin(l+\Phi) = \theta_{r_{0}} \cos(\Phi) - \theta_{r} + \theta_{\Phi_{0}} \sin(\Phi)$$
(5.14)

Segundo a suposição que fizemos de órbitas circulares, o termo $\theta_{r_0} cos(\Phi) - \theta_r$ tem que ser igual a zero, então a equação 5.14 pode ser reescrita como:

$$v *_r \cos(l+\Phi) - v *_t \sin(l+\Phi) = \theta_{\Phi_0} \sin(\Phi)$$
(5.15)

Agora, usando novamente as equações 5.6 e 5.13 e multiplicando-as por cos(l) e sin(l), respectivamente, depois subtraindo uma da outra, temos:

$$v *_{r} \cos(l) - v *_{t} \sin(l) = \theta_{r_{0}} - \theta_{r} \cos(\Phi) + \theta_{\Phi} \sin(\Phi)$$
(5.16)

Com a suposição de órbitas circulares $\theta_{r_0} - \theta_r \cos(\Phi) = 0$ e sabendo que a velocidade circular da estrela é dada por:

$$\theta_{\Phi} = (v *_r + \theta_{\Phi_0} sin(l)) \frac{R}{R_0 sin(l)}$$
(5.17)

logo, a equação 5.16 pode ser reescrita da seguinte forma:

$$v *_{r} \cos(l) - v *_{t} \sin(l) = (v *_{r} + \theta_{\Phi_{0}} \sin(l)) \frac{Rsin(\Phi)}{R_{0}sin(l)}$$
(5.18)

mas, usando a relação dos senos:

$$\sin(\Phi) = \frac{\sin(l)d}{R} \tag{5.19}$$

substituindo 5.19 em 5.18:

$$v *_{r} \cos(l) - v *_{t} \sin(l) = \frac{d}{R_{0}} (v *_{r} + \theta_{\Phi_{0}} \sin(l))$$
(5.20)

Com as equações 5.15 e 5.20 podemos determinar θ_{Φ_0} e R_0 a partir de parâmetros observáveis. Outra grande vantagem desse método é que não precisamos nos preocupar se as estrelas estão próximas ou não ao círculo solar. Em métodos tradicionais, onde se faz o uso das constantes de Oort para calcular as constantes Galácticas, a amostra fica reduzida a estrelas muito próximas ao círculo solar.

Mas existe um pequeno problema que temos que resolver. O único parâmetro que não observamos diretamente e que aparece na equação 5.15 é o ângulo Φ . Ele é calculado a partir de um dado valor de R_0 . Para contornar o problema, nós variamos R_0 de 7.0 à 8.5 kpc (faixa de valores aceitos atualmente) e encontramos para cada R_0 os valores de V_0 . Na equação 5.20, o problema é o fato de termos que supor a priori um valor para V_0 . Para contornar o problema, usamos o mesmo raciocínio para encontrar V_0 na equação 5.15, assim variamos V_0 de 190 à 230 km/s e obtivemos seus respectivos R_0 .

Feito isto, cruzamos os resultados das duas equações a fim de encontrar uma concordância entre seus resultados.

5.4 Resultados e Discussão dos valores obtidos para $R_0 \in V_0$

Nessa seção iremos apresentar os resultados que obtivemos e discutir algumas aproximações feitas.

Usando a equação 5.15 obtivemos os gráficos da figura 5.2. O coeficiente angular da reta é o próprio V_0 . O espalhamento que aparece é devido ao termo que nós desprezamos na equação 5.14.

Figura 5.2: Ajuste linear da equação 5.15. O coeficiente angular dessas retas é o próprio valor de V_0 .

Para que a equação 5.15 seja válida, o termo que se refere ao espalhamento, que aparece na equação 5.14, tem que ser desprezível. Portanto, temos que eliminar pontos que estejam distantes dessa aproximação. Assim restringimos a amostra somente aos pontos que possuem velocidade residual entre ± 50 km/s. O cálculo da velocidade residual é realizado com a seguinte expressão:

$$v_{residual} = v *_{r} \cos(l + \Phi) - v *_{t} \sin(l + \Phi) - w_{0}R_{0}\sin(\Phi)$$
(5.21)

Onde w_0 é a velocidade angular do Sol em relação ao centro Galático. Os valores de w_0 variam de 25 à 30 $kms^{-1}kpc^{-1}$. Nós adotamos o valor obtido por Bobylev et al. (2008), que é igual a $w_0 = 27.7 \ kms^{-1}kpc^{-1}$. A variação de w_0 dentro da faixa de valores aceitos não altera o nosso resultado quando restringimos estrelas com velocidades residuais entre $\pm 50 \ \text{km/s}$, que é uma faixa relativamente "larga".

A tabela 5.1 mostra os resultados obtidos pela equação 5.15.

$R_0 ~({ m kpc})$	$V_0 ~({\rm km/s})$	Erro~(km/s)
7	197	6
1	167	0
7.3	196	6
7.5	202	6
7.7	207	6
8	215	7
8.3	222	7
8.5	227	7

Tabela 5.1 - Valores de V_0 obtidos para cada R_0 , a partir da equação 5.15

Agora vamos ao cálculo de R_0 . O raciocínio é muito semelhante ao que foi usado no cálculo de V_0 . Usamos os valores obtidos para V_0 anteriormente, que variam de 187 à 227 km/s, e para cada valor de V_0 nós calculamos R_0 através da equação 5.20. Os gráficos estão na figura 5.5, o coeficiente angular da reta é igual a $\frac{1}{R_0}$. Utilizamos aqui o mesmo artifício usado para obter V_0 . Eliminamos pontos que possuíam velocidades residuais altas e, dessa forma, limitamos a velocidade residual em ±50 km/s. Calculamos a velocidade residual usando a equação abaixo:

$$vresidual = (v *_{r} cos(l) - v *_{t} sin(l)) \frac{V_{0}}{w_{0}} - d(v *_{r} + V_{0} sin(l))$$
(5.22)

Os resultados de R_0 obtidos para cada valor de V_0 podem ser vistos na tabela 5.2.

$R_0 \; (\mathrm{kpc})$	Erro (kpc)	$V_0 ~({\rm km/s})$
6.9	0.1	187
7.1	0.1	196
7.5	0.1	202
7.6	0.1	207
7.9	0.1	215
8.1	0.1	222
8.3	0.1	227

Tabela 5.2 - Valores de ${\cal R}_0$ obtidos para cada $V_0,$ a partir da equação 5.20

Figura 5.3: Os círculos vermelhos representam os resultados de V_0 obtidos para cada R_0 usando-se a equação 5.15; os quadrados pretos são os valores de R_0 obtidos para cada V_0 usando-se a equação 5.20.

O gráfico na figura 5.3 mostra os pontos das tabelas 5.1 e 5.2. Analisando esse gráfico vemos que os pontos obtidos pela equação 5.15 (círculos vermelhos) e pela equação 5.20

Figura 5.4: A região hachurada representa os valores mais prováveis de $R_0 \in V_0$.

(quadrados pretos) não se cruzam, formando praticamente retas paralelas. Mas, por outro lado, o único valor de R_0 para o qual V_0 é o mesmo encontra-se em $R_0 = 7.5$ kpc. Entretanto, se analisarmos com uma precisão de um sigma, vemos que, para $V_0 = 207$ km/s temos $R_0 = 7.6$ e 7.7 kpc, e para $V_0 = 215$ km/s temos $R_0 = 7.9$ e 8.0 kpc, para os demais pontos dado um V_0 os valores de R_0 não se cruzam com uma precisão de dois sigmas. Logo, o valor mais provável de R_0 é 7.5 kpc, e de V_0 é 202 km/s. Assim sendo, nesse trabalho iremos adotar $R_0 = 7.5 \pm 0.5$ kpc e $V_0 = 202 \pm 15$ km/s.

A conclusão final é que este método vincula bem os dois parâmetros, ou seja, dado V_0 podemos determinar com boa precisão R_0 e vice-versa. Mas ele não elimina a incerteza sobre quais dos pares de parâmetros (R_0, V_0) devemos adotar. Entretanto, podemos concluir que os valores mais confiáveis de R_0 e V_0 encontram-se entre 7.3 e 8.1 kpc e 196 e 220 km/s, ver gráfico 5.4, com base nessa incerteza é que determinamos os erros de 0.5 kpc e 15 km/s.

Figura 5.5: Ajuste linear da equação 5.20, onde o coeficiente angular da reta é $\frac{1}{R_0}$. Cada ajuste corresponde a um dado valor de V_0 , os resultados desses ajustes estão na tabela 5.2.

Capítulo 6.

Obtenção da curva de rotação

6.1 Introdução

A velocidade de rotação Galática de um objeto $\Theta(R)$ é calculada pela equação 1.3, onde V_{lsr} é a velocidade com respeito ao padrão local de repouso, $l \in b$ são coordenadas galáticas e Θ_0 a velocidade de rotação Galática em $R = R_0$. Como já mencionamos no capítulo 5, nós adotamos $R_0 = 7.5$ kpc e $\Theta_0 = 202$ km/s. A *IAU* (*International Astronomical Union*) recomendou, em 1985, o uso dos valores $R_0 = 8.5$ kpc e $\Theta_0 = 220$ km/s, mas o valor de R_0 vem baixando nas ultimas décadas e, consequentemente, também os valores de Θ_0 , visto que eles estão ligados entre si pelas constantes de Oort.

Note que a equação 1.3 é valida somente se a rotação em torno do centro Galático é puramente circular.

Neste capítulo iremos apresentar as curvas de rotação obtidas a partir das amostras que descrevemos nos capítulos anteriores. Discutiremos também as possíveis influências da co-rotação sobre a curva de rotação.

6.2 Levantando as curvas de rotação

Nesta seção iremos apresentar as curvas de rotação obtidas por nós e descreveremos os métodos utilizados.

Usando os valores de R_0 e V_0 obtidos pelo método descrito no capítulo 5, nós levantamos as curvas de rotação para as amostras descritas no capítulo 4. Mas, como já dito na seção 4.2.1, não foi possível obter para as estrelas OH/IR uma relação confiável entre a magnitude absoluta e o índice de cor. Consequentemente, suas distâncias calculadas a partir das magnitudes absolutas possuem alto grau de incerteza, prejudicando assim a obtenção e análise da curva de rotação. Portanto, retiramos do nosso trabalho a curva de rotação levantada com estas estrelas.

Abaixo segue a descrição dos métodos utilizados na obtenção da curva de rotação:

1. Para cada *bin* de 0.5 kpc de raio Galático tomamos a média ponderada das velocidades de rotação calculadas com a equação 1.3.

- 2. Utilizamos dois métodos para calcular a média das velocidades:
- Método 1: A média ponderada foi calculada usando-se a equação abaixo:

$$\langle \Theta \rangle = \frac{\sum_{i=1}^{N_{bin}} p_i \Theta_i}{\sum_{i=1}^{N_{bin}} p_i} \tag{6.1}$$

onde N_{bin} é o número total de estrelas contidas em um certo bin de raio galático, Θ_i é a velocidade de rotação da estrela $i \in p_i$ é o peso dado pela equação 6.2. Neste caso, o peso é o inverso da raiz quadrada do erro das velocidades de rotação (σ_{Θ}). Para saber como foi calculado o erro para cada velocidade de rotação, ver apêndice B.

$$p_i = \frac{1}{\sqrt{\sigma_{\Theta_i}}} \tag{6.2}$$

 Método 2: Dentro de um certo *bin* de raio galático, tomamos *bins* de velocidades com larguras de 10 km/s. A média ponderada foi calculada usando-se a equação abaixo.

$$\langle \Theta \rangle = \frac{\sum_{i=1}^{j} p_i \Theta_i}{\sum_{i=1}^{j} p_i}$$

$$(6.3)$$

Mas, nesse caso, Θ_i é dado por:

$$\Theta_i = \Theta_{ini} + i\Delta_{bin} - \frac{\Delta_{bin}}{2} \tag{6.4}$$

onde Θ_{ini} é a velocidade inicial do intervalo de velocidades adotado e Δ_{bin} é a largura do *bin*. O peso é dado pela equação 6.6. Ele é igual ao número de estrelas contidas

dentro de um certo bin de raio galático e velocidade. E j é o número de bins de velocidades, dado pela equação 6.5.

$$j = \frac{\Theta_{fin} - \Theta_{ini}}{\Delta_{bin}} \tag{6.5}$$

$$p_i = N_{estrelas} \tag{6.6}$$

3. Nós só consideramos *bin* que continham mais de 5 estrelas, para que houvesse uma certa relevância estatística.

4. O erro da média das velocidades deduzido para o método 1 é o desvio padrão em torno da média, e o erro deduzido para o método 2 é um sigma para um ajuste gaussiano.

Os resultados para cada amostra estão nos gráficos 6.1, 6.2, 6.3 e 6.4.

Analisando estes gráficos vemos que, para as C-Miras, Cefeidas e estrelas associadas à regiões HII, existe um mínimo em $1.2R_0 \pm 0.3$ kpc. Já para as estrelas jovens OB esse mínimo não é tão evidente. Outro aspecto interessante desses gráficos é a tendência encontrada para raios galáticos além de 10 kpc. Para as Cefeidas e C-Miras, os valores das velocidades caem, enquanto que para as regiões HII eles sobem. Isso pode ser melhor visualizado no gráfico 6.5. Para as estelas jovens não há pontos suficientes para que possamos concluir algo.

Nos gráficos 6.1, 6.2, 6.3, 6.4 e 6.5 construirmos a curva de rotação sem nenhum critério de seleção. A seguir iremos mostrar os resultados obtidos após uma filtragem das amostras, baseada em alguns critérios.

Os critérios adotados são:

 Retiramos das amostras estrelas com mais de 400 pc acima ou abaixo do plano Galático. Dessa forma, restringimos nossa amostra à estrelas contidas no plano Galático. Estrelas muito acima ou abaixo do plano não obedecem à curva de rotação deduzida pela equação 1.3. A distribuição espacial das estrelas são mostradas nas figuras 6.6, 6.7, 6.8 e 6.9.

2. Eliminamos das amostras estrelas com longitudes Galáticas entre $355^{\circ} < l < 15^{\circ}$ (direção do centro Galático) e entre $160^{\circ} < l < 200^{\circ}$ (direção do anti-centro Galático).

Figura 6.1: Curva de rotação levantada com as Cefeidas.

Figura 6.2: Curva de rotação levantada com as C-Miras.

Para essas regiões, a velocidade radial observada numa dada linha de visada deve ser próxima de zero e não informa sobre a curva de rotação.

Os resultados, após a aplicação dos critérios de seleção, são mostrados nos gráficos 6.10, 6.11, 6.12, 6.13 e 6.14. A tabela 6.1 mostra o número de estrelas contidas em cada amostra antes e depois da aplicação dos critérios de seleção.

Figura 6.3: Curva de rotação levantada com estrelas associadas às regiões HII.

Figura 6.4: Curva de rotação levantada com estrelas jovens OB.

Comparando os gráficos 6.5 e 6.14, podemos perceber que a bifurcação que aparece no gráfico 6.5 desaparece. Contudo, podemos concluir que esta bifurcação foi gerada por erros sistemáticos na determinação das velocidades radiais próximas às regiões centrais ou anti-centrais da Galáxia. Entretanto, para as estrelas jovens há dois pontos na curva que causam suspeita. O primeiro é em $R \approx 6$ kpc, a velocidade média de rotação neste ponto é

Figura 6.5: Neste gráfico estão sobrepostas as curvas de rotação obtidas com o Método 1 para: estrelas associadas às regiões HII (quadrados pretos); Cefeidas (círculos vermelhos); C-Miras (triângulos azuis); estrelas jovens OB (estrelas roxas).

cerca de 50 km/s menor que a velocidade média das Cefeidas, para o mesmo raio Galático. O segundo é em $R \approx 10$ kpc, que possui uma velocidade média de aproximadamente 50 km/s maior que a velocidade média das Cefeidas. Mais adiante iremos tentar dar uma possível explicação para tal desacordo.

Tabela 6.1 - A primeira coluna é o número de estrelas antes da aplicação dos critérios de seleção. A coluna 2 é o número de estrelas depois da aplicação dos critérios de seleção.

	N_{antes}^{*}	N^{\ast}_{depois}
Cefeidas	322	266
C-Miras	212	158
Regiões HII	209	171
Jovens OB	1006	816

Figura 6.6: Distribuição espacial das Cefeidas na Galáxia. O eixo z está na direção do norte Galático, y para o anti-centro Galático e x para direção de rotação do Sol. No primeiro gráfico temos uma visão tridimensional da distribuição, seguido das projeções nos respectivos planos xy, xz e yz.

Figura 6.7: Distribuição espacial das C-Miras na Galáxia. O eixo z está na direção do norte Galático, y para o anti-centro Galático e x para direção de rotação do Sol. No primeiro gráfico temos uma visão tridimensional da distribuição, seguido das projeções nos respectivos planos xy, xz e yz.

Figura 6.8: Distribuição espacial das estrelas associadas às regiões HII na Galáxia. O eixo z está na direção do norte galático, y para o anti-centro Galático e x para direção de rotação do Sol. No primeiro gráfico temos uma visão tridimensional da distribuição, seguido das projeções nos respectivos planos xy, xz e yz.

Figura 6.9: Distribuição espacial das estrelas jovens OB na Galáxia. O eixo z está na direção do norte Galático, y para o anti-centro Galático e x para direção de rotação do Sol. No primeiro gráfico temos uma visão tridimensional da distribuição, seguido das projeções nos respectivos planos xy, xz e yz.

Figura 6.10: Curava de rotação levantada com as Cefeidas após a aplicação dos critérios de seleção.

Figura 6.11: Curva de rotação levantada com as C-Miras após a aplicação dos critérios de seleção.

Figura 6.12: Curva de rotação levantada com estrelas associadas às regiões HII após a aplicação dos critérios de seleção.

Figura 6.13: Curva de rotação levantada com as estrelas jovens OB após a aplicação dos critérios de seleção.

Figura 6.14: Neste gráfico estão sobrepostas as curvas de rotação obtidas com o Método 1, depois de serem aplicados os critérios de seleção para: estrelas associadas às regiões HII (quadrados pretos); Cefeidas (círculos vermelhos); C-Miras (triângulos azuis); estrelas jovens OB (estrelas roxas).

Figura 6.15: Curvas de rotação ampliadas: estrelas associadas às regiões HII (quadrados verdes); Cefeidas (círculos abertos azuis); C-Miras (círculos fechados vermelhos); Estrelas jovens OB (triângulos abertos laranjas).

Mesmo após a aplicação dos critérios de seleção, o mínimo na curva de rotação em $R = 1.2R_0 \pm 0.3$ kpc aparece para as Cefeidas, C-miras e estrelas associadas às regiões HII, permanecendo inexpressivo para as estrelas jovens. Na figura 6.15 nós ampliamos a região para que o mínimo ficasse mais evidente. Para as C-Miras e Cefeidas encontramos, respectivamente, uma queda de $\Delta V = 30 \pm 20$ km/s e $\Delta V = 30 \pm 10$ km/s entre $R_0 < R < 1.2R_0$, mas para as estrelas associadas às regiões HII a queda é de $\Delta V = 20 \pm 8$ km/s. O erro na velocidade é grande e não podemos dizer muito sobre a "profundidade" do mínimo, principalmente para as C-Miras, que possuem o maior erro. Mas podemos concluir que ele existe, pois nos dois métodos que utilizamos para o cálculo das médias vimos que há uma tendência sistemática para menores valores de velocidade em torno de $1.2R_0$.

6.3 Modelagem da curva de rotação

É tentador, para os adeptos da interpretação da curva de rotação em termos de matéria escura, dizer que o mínimo é devido ao decréscimo da contribuição do disco, de um lado, e à subida da contribuição do halo escuro, do outro. Kent (1992) apresenta uma curva de rotação explicada em termos de componentes em que esta interpretação está presente.

O efeito da composição de componentes na curva de rotação é ilustrado na figura 6.16. É fácil ver que as contribuições do disco e do halo escuro (se existir) não podem apresentar variações rápidas e o mínimo que é observado em nossa Galáxia é muito estreito para ser explicado desta forma. Acreditamos que o mínimo é um efeito da co-rotação, um conceito que será explicado na próxima seção.

Para explicar o mínimo observado na curva de rotação, nós adotamos um modelo para o perfil de densidade do disco Galático. Esse modelo é baseado no trabalho de Amaral et al. (1996).

O perfil de densidade adotado para o disco é:

$$\sigma(R) = \sigma_0(\exp((R_0 - R)/a) - \exp((R_0 - 2.1R)/a))$$
(6.7)

onde σ_0 é a densidade superficial na vizinhança solar e vale 75 $M_{\odot}pc^{-2}$, *a* é o fator de escala (nós adotamos um valor de 2.4 kpc), *R* é o raio Galático e R_0 é a distância do Sol até o centro Galático.

Figura 6.16: Curva de rotação de uma galáxia (hipotética) ilustrando a possível contribuição de três componentes: bojo, disco e halo escuro. A linha cheia representa a curva observada. As velocidades devidas a cada componente se somam quadraticamente. A contribuição do suposto halo escuro seria a tracejada que domina a grandes distâncias do centro. Nos locais onde as contribuições de componentes se igualam, poderia acontecer um mínimo na curva observada.

Usando a relação entre a força gravitacional e a força centrípeta, podemos escrever que:

$$V(R) = \sqrt{\frac{GM(R)}{R}} \tag{6.8}$$

V(R) é a velocidade de rotação em torno do centro Galático, G é a constante gravitacional e vale (6.6710⁻¹¹ Nm^2kg^{-2}) e M(R) é a massa contida dentro de um círculo de raio R.

O disco foi dividido em anéis concêntricos de tamanhos dr = 0.2 kpc, então a força produzida por cada anel foi calculada. Usando a equação 6.8, calculamos a velocidade de rotação devido a soma das contribuição das forças de cada anel dentro de um certo raio R.

Para explicar o mínimo, baseados no trabalho de Burton (1976), vemos que o perfil de densidade radial do hidrogênio neutro tem um poço perto de R_0 , gráfico 6.17.

Portanto, nós simulamos um decréscimo gaussiano com uma amplitude de 30% do valor da densidade do disco na mesma região, lembrando que adotamos $R_0 = 7.5$ kpc. Então,

Figura 6.17: Perfil de densidade radial do hidrogênio neutro, Burton (1976). Para traçar este perfil foi adotado $R_0 = 10$ kpc.

Figura 6.18: Curvas de rotação para: estrelas associadas às regiões HII (quadrados pretos); Cefeidas (círculos vermelhos); C-Miras (triângulos azuis). A linha cheia representa o modelo que descreve a curva de rotação.

para uma faixa de raio Galático temos:

$$\sigma(R) = \sigma(R) - 0.3\sigma(R) \exp(-(R-8)^2/2)$$
(6.9)

Ou seja, a densidade superficial do disco é a densidade calculada pela equação 6.7, menos um perfil gaussiano. A largura de meia altura para essa gaussiana é de 1 kpc. O resultado dessa simulação está no gráfico 6.18

Excluímos deste gráfico as estrelas jovens, pois a curva para elas não concorda bem com as outras estrelas. Iremos discutir a curva de rotação obtida com estas estrelas mais adiante.

Como podemos perceber, o modelo se ajusta muito bem aos dados. Portanto, podemos explicar o mínimo baseando-se em um decréscimo da densidade de matéria (gás ou estrelas), em torno de R_0 . Na próxima seção iremos discutir qual é o mecanismo que poderia provocar tal déficit de gás em nossa vizinhança.

6.4 O efeito da co-rotação

Como sabemos, nossa galáxia possui braços espirais. Um dos modelos que melhor explica a sua existência é o modelo de ondas de densidades. Esse modelo diz que existem lugares onde as órbitas se aproximam e outros onde ficam mais distantes.

Podemos comparar as órbitas à auto-estradas, onde automóveis regularmente espaçados trafegam. Num determinado lugar, quando duas auto-estradas se juntam numa só, a densidade de automóveis aumenta. Depois as auto-estradas se separam e a densidade de automóveis volta ao que era. Da mesma forma, a densidade de estrelas que trafegam num local é maior quando as órbitas se aproximam e menor quando se afastam.

A definição dos braços dada por Lindblad é que os braços espirais seriam um padrão (ondas de densidade), girando como um corpo rígido no disco com velocidade angular Ω_p .

O movimento da estrela pode ser representado como a soma do movimento circular normal mais um pequeno movimento numa trajetória elíptica em torno do ponto que está na trajetória circular. Tal movimento é chamado de epicicloidal. Portanto, as órbitas estelares não são perfeitamente circulares, mas aproximadamente elípticas, e podem ser abertas ($\Omega = \kappa/n$, para $n \neq inteiro$) ou fechadas ($\Omega = \kappa/n$, para n = inteiro). Para a vizinhança solar, Lépine et al. (2008) encontram $\kappa = 43 \pm 5 \ km s^{-1} kp c^{-1}$, para $R_0 = 7.5$ kpc e $V_0 = 230 \ km s^{-1}$.

Exitem algumas condições para que os braços sejam explicados por ondas de densidade causadas pelas órbitas estelares. 1) Que as órbitas não sejam exatamente circulares, mas

Figura 6.19: A curva de rotação em velocidade angular Ω , a freqüência epicicloidal κ , e as curvas $\Omega - \kappa/2$ e $\Omega + \kappa/2$, em função do raio galáctico. A reta horizontal representa Ω_p , a velocidade de rotação do padrão espiral.; é uma velocidade angular que não depende do raio, como a de um disco rígido.

aproximadamente elípticas, e 2) Que exista uma certa organização das órbitas no disco Galático: todas as estrelas que passam num ponto seguem a mesma órbita fechada, e 3) que órbitas sucessivas (com raios crescentes) tenham orientação que varia lentamente de uma para outra.

Essas condições são satisfeitas dentro da ressonância interna de Lindblad, onde $\Omega_p = \Omega - \kappa/2$, e da ressonância externa de Lindblad, onde $\Omega_p = \Omega + \kappa/2$. Ω é a velocidade angular da estrela e κ é a sua frequência epicicloidal, figura 6.19. Entre estas ressonâncias existem soluções auto-consistentes que permitem a existência de braços estáveis (soluções onde as órbitas se fecham); fora do intervalo das ressonâncias, não encontramos soluções, assim não devem existir braços.

Outra ressonância acontece para o raio no qual $\Omega_p = \Omega$, este é o chamado raio de co-rotação, pois a frequência de rotação das estrelas é igual a frequência de rotação dos braços espirais. Pelo que podemos constatar da figura 6.19, o raio de co-rotação (raio no qual a curva de rotação Ω cruza a linha Ω_p) situa-se a cerca de 7,5 kpc do centro Galático. Isto é perto de onde vivemos, na Galáxia.

Um efeito interessante da co-rotação é que ela funciona como um divisor de águas para o meio interestelar. Devido a interação com os braços espirais, o gás que se encontra em raios maiores que a co-rotação tenderá a fluir para fora e o que se encontra em raios menores, fluirá para dentro. É um efeito de hidrodinâmica da interação do gás com os braços. Este efeito próximo à R_0 seria o responsável pelo deficit de gás que observamos em nossa vizinhança. Uma simulação feita por Lépine et al. (2001) mostra como o potêncial gravitacional devido aos braços espirais pode influênciar a distribuição de matéria na Galáxia. Na figura 6.20, obtida por Lépine et al. (2001), o déficit de gás próximo a co-rotação é evidente.

Figura 6.20: Gráfico da densidade de HI em função do raio galático. Distribuição de gás simulada por Lépine et al. (2001), R_c é o raio de co-rotação, o sol está situado em $R_0=7.5$ kpc. A linha pontilhada representa a distribuição do gás no instante t=0; a linha cheia é a distribuição de gás após um período de rotação para distância solar.

6.5 Porque alguns traçadores não mostram o mínimo

Como vimos na seção 6.2, a curva de rotação para as estrelas jovens OB mostrou-se fora do padrão das outras curvas, em particular para os raios $R \approx 6$ kpc e $R \approx 10$ kpc. Esses desvios podem ser causados por perturbações locais, gerando erros sistemáticos na velocidade radial. Como sabemos, as estrelas jovens ainda estão embebidas em seus locais de nascimento (possivelmente os braços espirais), causando assim erros sistemáticos e não aleatórios. Desta forma, a curva de rotação que obtivemos para essas estrelas pode estar "viciada", devido a tais erros sistêmicos. Para verificar tal hipótese, nós geramos uma lista de 500 estrelas que obedecem rigorasamente a uma curva de rotação. Depois geramos erros sistemáticos nas velocidades radiais, que variam de 5 à 20 km/s, e erros aleatórios nas distâncias de -1 à 1 kpc. Numa segunda etapa nós geramos erros aleatórios nas velocidades radiais de -10 à 10 km/s e erros aleatórios nas distâncias de -0.5 à 0.5 kpc, a fim de verificar a influência de cada erro sobre a curva de rotação. A curva hipotética segue a equação de uma curva plana com um mínimo gaussiano:

$$\Theta(R) = 200 - 30 \exp(-(R - 9.3)^2) \tag{6.10}$$

Os resultados estão no gráfico 6.21.

Figura 6.21: As linhas representam a curva de rotação ideal, dada pela equação 6.10. No primeiro gráfico os círculos azuis são as médias das velocidades calculada pelo método 1 após uma perturbação sistemática. No segundo gráfico os círculos verdes são as médias das velocidades calculada pelo método 1 após uma perturbação aleatória.

Como podemos ver, se existirem erros sistemáticos, eles podem gerar pontos muito abaixo ou acima da curva. Podemos perceber também que o mínimo desaparece. Já para os erros aleatórios, na média a curva não é afetada. Devemos também chamar a atenção para a distância. Se tivermos erros muito maiores do que 0.5 kpc, a curva de rotação deduzida é afetada consideravelmente.

Nossa intenção aqui é mostrar que se há erros sistemáticos nas velocidades radiais e grandes erros nas distâncias, estes erros podem alterar a curva deduzida. No gráfico 6.21 esta influência fica clara. Portanto, podemos atribuir os desvios encontrados na curva de rotação, deduzida a partir das estrelas jovens OB, aos possíveis erros sistemáticos nas velocidades radiais provocados por perturbações locais e também aos possíveis erros na determinação dos valores das distâncias.

Capítulo 7.

Conclusões e Perspectivas

7.1 Conclusões

Neste trabalho apresentamos inicialmente uma revisão sobre a curva de rotação da Galáxia. Também estudamos as propriedades físicas das amostras usadas, abrindo caminho para descrever a obtenção das suas velocidades radiais e distâncias heliocêntricas.

Inicialmente queríamos obter a curva de rotação usando as estrelas OH/IR, pois elas possuem velocidades radiais muito bem determinadas a partir da emissão maser de OH. Porém, não obtivemos sucesso em encontrar uma boa relação para determinar as distâncias dessas estrelas. As relações entre cores e magnitudes absolutas mostraram-se muito dispersas. Desta forma, não construímos a curva de rotação para as estrelas OH/IR. O trabalho teve sucesso, no entanto, para as outras estrelas.

As principais fontes de incertezas que envolvem a curva de rotação são os parâmetros locais de rotação (R_0, V_0) . Devido a essas incertezas, resolvemos criar um método próprio para determinar $R_0 \, e \, V_0$. O método é baseado no estudo cinemático de estrelas com distâncias bem definidas e que tenham medidas de movimentos próprios e velocidades radiais. Nós analisamos 322 Cefeidas com o método descrito no capítulo 5 e encontramos uma faixa de valores confiáveis para esses parâmetros: R_0 está entre 7.3 e 8.1 kpc e V_0 está entre 196 e 220 km/s. Em nosso trabalho adotamos $R_0 = 7.5$ kpc e $V_0 = 202$ km/s.

Existem trabalhos (Brand e Blitz, 1993; Clemens, 1985; Amaral et al., 1996) em que um mínimo na curva de rotação perto da vizinhança solar é evidente, mas sua natureza não tem sido totalmente discutida. A fim de confirmar se o mínimo realmente existe e verificar o que poderia causar a sua existência, nós estudamos as curvas de rotação obtidas a partir das Cefeidas, C-miras, estrelas jovens OB e estrelas associadas às regiões HII. A análise dessas curvas confirmaram a existência de um mínimo para 3 das 4 amostras que usamos, somente para as estrelas jovens OB o mínimo não ficou muito evidente. Para as outras amostras, encontramos um mínimo entorno de $1.2R_0 \pm 0.3$, com uma velocidade de 30 ± 10 km/s menor que a velocidade encontrada no raio Galático igual a R_0 . Este resultado está de acordo com o obtido por Brand e Blitz (1993) e outros autores.

Na seção 6.3, apresentamos um modelo que descreve a densidade superficial de gás no disco e mostramos que o mínimo pode ser explicado por um déficit gaussiano da mesma próximo a R_0 , com um decréscimo máximo de 30% de seu valor. Esse déficit é observado por Burton (1976) e é explicado na seção 6.4 pelo efeito da co-rotação.

Na seção 6.5, fizemos uma análise de como os erros nas distâncias e velocidades radiais afetam a curva de rotação deduzida. Concluímos que erros sistemáticos na ordem de 10 km/s (sempre positivos ou sempre negativos) nas velocidades radiais e erros muito maiores do que 0.5 kpc nas distâncias podem afetar a curva de rotação consideravelmente, chegando a "destruir" o mínimo. Este efeito pode ter contribuído para a discrepância observada entre a curva de rotação obtida para as estrelas jovens OB e o resto da amostra.

7.2 Perspectivas

O presente trabalho permite a sugestão de diversas possibilidades de desenvolvimento futuro. Abaixo seguem algumas das sugestões de futuras pesquisas e melhoras no trabalho.

- Compilação de novos Catálogos: No momento estamos compilando um novo catálogo com aproximadamente 10000 estrelas jovens OB, com medidas de paralaxe feitas pelo *HIPPARCOS* e com velocidades radiais publicadas. Com este novo catálogo, iremos reobter a curva de rotação para estas estrelas, para realizar novos estudos.
- Estudo da parte mais externa da curva de rotação: Uma curva de rotação plana ou crescente tem implicações básicas sobre a distribuição de massa na Galáxia e sobre sua massa total. Em nosso trabalho, a curva de rotação chega até R=12 kpc, dessa forma não podemos dizer muito sobre o aspecto da curva além desse raio. Portanto, seria interessante realizar um estudo da parte mais externa da Galáxia, utilizando uma amostra mais completa em termos de raios Galáticos.

- Modelagem da curva: Em nosso atual modelo, geramos artificialmente a falta de gás perto do raio Galático, onde acreditamos ser a co-rotação. Porém, seria interessante um modelo, onde tal efeito fosse simulado somente a partir de considerações dinâmicas relativas ao fluido (gás + estrelas).
- Cálculo de R_0 e V_0 : Como descrevemos no capítulo 5, propusemos um método original para determinar as constantes Galáticas. Porém, nós só utilizamos as Cefeidas para tal estudo. Um estudo com outras estrelas, que possuam movimentos próprios, distâncias e velocidades radiais bem definidas, seria interessante.
Referências Bibliográficas

- Abad C., Vieira K., Bongiovanni A., Romero L., Vicente B., An extension of Herschel's method for dense and extensive catalogues. Application to the determination of solar motion, A&A, 2003, vol. 397, p. 345
- Amaral L. H., Ortiz R., Lépine J. R. D., Maciel W. J., The rotation curve of the Galaxy obtained from planetary nebulae and AGB stars, MNRAS, 1996, vol. 281, p. 339
- Baud B., Habing H. J., The maser strength of OH/IR stars, evolution of mass loss and the creation of a superwind, A&A, 1983, vol. 127, p. 73
- Bedijn P. J., Dust shells around Miras and OH/IR stars Interpretation of IRAS and other infrared measurements, A&A, 1987, vol. 186, p. 136
- Beraldo N., Lépine J. R. D., Estudo da extincao interestelar : analise de modelo com silicatos irradiados, Tese de Mestrado (IAG-USP), 1985
- Berdnikov L. N., Rastorguev A. S., Dambis A. K., Glushkova E. V., A catalogue of data on Galactic Cepheids., 2003
- Berdnikov L. N., Vozyakova O. V., Dambis A. K., The BVRIJHK period-luminosity relations for Galactic classical Cepheids, Astronomy Letters, 1996, vol. 22, p. 838
- Bienaymé O., The local stellar velocity distribution of the Galaxy. Galactic structure and potential, A&A, 1999, vol. 341, p. 86
- Blitz L., Fich M., Stark A. A., The galactic rotation curve to R = 18 KPC. In Interstellar Molecules , vol. 87 of IAU Symposium, 1980, p. 213

- Bobylev V. V., Bajkova A. T., Stepanishchev A. S., Galactic rotation curve and the effect of density waves from data on young objects, Astronomy Letters, 2008, vol. 34, p. 515
- Bowers P. F., Maser emission as a tool to study mass loss from evolved stars. In Mass Loss from Red Giants , vol. 117 of Astrophysics and Space Science Library, 1985, p. 189
- Brand J., Blitz L., The Velocity Field of the Outer Galaxy, A&A, 1993, vol. 275, p. 67
- Brand J., Blitz L., Wouterloot J., Steps towards a rotation curve of the southern outer Galaxy, Mitteilungen der Astronomischen Gesellschaft Hamburg, 1985, vol. 63, p. 207
- Burton W. B., The morphology of hydrogen and of other tracers in the Galaxy, ARA&A, 1976, vol. 14, p. 275
- Burton W. B., , 1988 The structure of our Galaxy derived from observations of neutral hydrogen. Galactic and Extragalactic Radio Astronomy pp 295–358
- Burton W. B., Gordon M. A., Carbon monoxide in the Galaxy. III The overall nature of its distribution in the equatorial plane, A&A, 1978, vol. 63, p. 7
- Chan S. J., Kwok S., Evolution of infrared carbon stars, A&A, 1990, vol. 237, p. 354
- Clemens D. P., Massachusetts-Stony Brook Galactic plane CO survey The Galactic disk rotation curve, ApJ, 1985, vol. 295, p. 422
- de Jong T., OH/IR stars Late stages of evolution of intermediate-mass stars, ApJ, 1983, vol. 274, p. 252
- Dehnen W., Binney J. J., Local stellar kinematics from HIPPARCOS data, MNRAS, 1998, vol. 298, p. 387
- Demers S., Battinelli P., C stars as kinematic probes of the Milky Way disk from 9 to 15 kpc, A&A, 2007, vol. 473, p. 143
- Eder J., Lewis B. M., Terzian Y., New OH/IR stars from color-selected IRAS sources -1612 MHz observations, ApJS, 1988, vol. 66, p. 183
- Feast M. W., Glass I. S., Whitelock P. A., Catchpole R. M., A period-luminosity-colour relation for Mira variables, MNRAS, 1989, vol. 241, p. 375

- Feast M. W., Whitelock P. A., Menzies J. W., Carbon-rich Mira variables: kinematics and absolute magnitudes, MNRAS, 2006, vol. 369, p. 791
- Frenk C. S., White S. D. M., The form of the galactic globular cluster system and the distance to the Galactic Centre, MNRAS, 1982, vol. 198, p. 173
- Friaça A. C. S., Dal Pino E., Sodré L., Pereira V., Astronomia. In Uma Visão Geral do Universo, 2003, p. 273
- Georgelin Y. M., Georgelin Y. P., The spiral structure of our Galaxy determined from H II regions, A&A, 1976, vol. 49, p. 57
- Green R. M., Spherical astronomy. Cambridge and New York, Cambridge University Press, 1985, 533 p., 1985
- Harvey P. M., Bechis K. P., Wilson W. J., Ball J. A., Time Variations in the OH Microwave and Infrared Emission from Late-Type Stars, ApJS, 1974, vol. 27, p. 331
- Hasegawa T. I., Kwok S., Neutral Carbon in Post-Asymptotic Giant Branch Stars and Planetary Nebulae, ApJ, 2003, vol. 585, p. 475
- Herman J., Habing H. J., Time variations and shell sizes of OH masers in late-type stars, A&AS, 1985, vol. 59, p. 523
- Honma M., Sofue Y., Rotation Curve of the Galaxy, PASJ, 1997, vol. 49, p. 453
- Iben Jr. I., Renzini A., Asymptotic giant branch evolution and beyond, ARA&A, 1983, vol. 21, p. 271
- Junqueira T. C., Lépine J. R. D., O Mínimo da curva de rotação gálactica a cerca de 1kpc do sol, SAB, 2007, vol. 27, p. ?
- Junqueira T. C., Lépine J. R. D., O Mínimo da curva de rotação gálactica a cerca de 1kpc do sol, SAB, 2008, vol. 28, p. 228
- Kent S. M., Galactic structure from the spacelab infrared telescope. III A dynamical model for the Milky Way bulge, ApJ, 1992, vol. 387, p. 181

- Kerr F. J., Galactic velocity models and the interpretation of 21-cm surveys, MNRAS, 1962, vol. 123, p. 327
- Kerr F. J., High-resolution studies of the galactic equator region. In The Galaxy and the Magellanic Clouds , vol. 20 of IAU Symposium, 1964, p. 81
- Kerr F. J., The Large-Scale Distribution of Hydrogen in the Galaxy, ARA&A, 1969, vol. 7, p. 39
- Kerr F. J., Lynden-Bell D., Review of galactic constants, MNRAS, 1986, vol. 221, p. 1023
- Knapp G. R., Tremaine S. D., Gunn J. E., The global properties of the Galaxy. I The H I distribution outside the solar circle, AJ, 1978, vol. 83, p. 1585
- Kwee K. K., Muller C. A., Westerhout G., The rotation of the inner parts of the Galactic System, Bull. Astron. Inst. Netherlands, 1954, vol. 12, p. 211
- Kwok S., A study of the velocity pattern of maser emission from infrared stars, JRASC, 1976, vol. 70, p. 49
- Kwok S., An infrared sequence in the late stages of stellar evolution, MNRAS, 1990, vol. 244, p. 179
- Kwok S., The Origin and Evolution of Planetary Nebulae. The origin and evolution of planetary nebulae / Sun Kwok. Cambridge ; New York : Cambridge University Press, 2000. (Cambridge astrophysics series ; 33), 2000
- Lépine J. R. D., Acharova I. A., Mishurov Y. N., Corotation, Stellar Wandering, and Fine Structure of the Galactic Abundance Pattern, ApJ, 2003, vol. 589, p. 210
- Lépine J. R. D., Dias W. S., Mishurov Y., Measurement of the epicycle frequency in the Galactic disc and initial velocities of open clusters, MNRAS, 2008, vol. 386, p. 2081
- Lépine J. R. D., Mishurov Y. N., Dedikov S. Y., A New Model for the Spiral Structure of the Galaxy: Superposition of 2- and 4-armed Patterns, ApJ, 2001, vol. 546, p. 234
- Lewis B. M., Eder J., Terzian Y., New OH/IR stars from color-selected IRAS sources. II - an unbiased 1612 MHz survey, ApJ, 1990, vol. 362, p. 634

Likkel L., OH and H2O observations of cold IRAS stars, ApJ, 1989, vol. 344, p. 350

- Lin C. C., Shu F. H.-S., Density wave theory of spiral structure. In Astrophysics and general relativity, Vol. 2, p. 235 - 329, vol. 2, 1971, p. 235
- Lindqvist M., Winnberg A., Habing H. J., Matthews H. E., OH/IR stars close to the Galactic Centre. I - Observational data, A&AS, 1992, vol. 92, p. 43
- Lépine J. R. D., Tese de Livre Docência (IAG-USP), 1986
- Lépine J. R. D., Leroy P., A new model for the infrared brightness of the Galaxy, MNRAS, 2000, vol. 313, p. 263
- Lépine J. R. D., Ortiz R., Epchtein N., OH/IR stars: near-infrared photometry, and discussion of the Mira-OH/IR sequence., A&A, 1995, vol. 299, p. 453
- Menzies J. W., Feast M. W., Whitelock P. A., Carbon-rich Mira variables: radial velocities and distances, MNRAS, 2006, vol. 369, p. 783
- Mihalas D., Binney J., Galactic astronomy: Structure and kinematics /2nd edition/. San Francisco, CA, W. H. Freeman and Co., 1981. 608 p., 1981
- Olling R. P., Merrifield M. R., Refining the Oort and Galactic constants, MNRAS, 1998, vol. 297, p. 943
- Oort J. H., The galactic center, ARA&A, 1977, vol. 15, p. 295
- Ortiz R., Blommaert J. A. D. L., Copet E., Ganesh S., Habing H. J., Messineo M., Omont A., Schultheis M., Schuller F., OH/IR stars in the inner bulge detected by ISOGAL, A&A, 2002, vol. 388, p. 279
- Ortiz R., Lorenz-Martins S., Maciel W. J., Rangel E. M., Evolution from AGB to planetary nebula in the MSX survey, A&A, 2005, vol. 431, p. 565
- Ortiz R., Maciel W. J., The OH/IR-planetary nebula connection: Space distribution and kinematics, A&A, 1994, vol. 287, p. 552
- Reid M. J., The Distance to the Galactic Center: R_0 (review). In The Center of the Galaxy , vol. 136 of IAU Symposium, 1989, p. 37

- Rohlfs K., Kreitschmann J., Kinematics and physical parameters of neutral hydrogen in the inner Galaxy, A&A, 1987, vol. 178, p. 95
- Rubin V. C., Systematics of H II rotation curves. In Internal Kinematics and Dynamics of Galaxies , vol. 100 of IAU Symposium, 1983, p. 3
- Rubin V. C., Burtley J., Kiasatpoor A., Klock B., Pease G., Rutscheidt E., Smith C., Kinematic studies of early-type stars. I. Photometric survey, space motions, and comparison with radio observations., AJ, 1962, vol. 67, p. 491
- Russeil D., Star-forming complexes and the spiral structure of our Galaxy, A&A, 2003, vol. 397, p. 133
- Russeil D., Adami C., Georgelin Y. M., Revised distances of Northern HII regions, A&A, 2007, vol. 470, p. 161
- Sanders R. H., Non-Circular Gas Motions in the Inner Galaxy (review). In The Center of the Galaxy , vol. 136 of IAU Symposium, 1989, p. 77
- Sanders R. H., Huntley J. M., Gas response to oval distortions in disk galaxies, ApJ, 1976, vol. 209, p. 53
- Schmidt M., Rotation Parameters and Distribution of Mass in the Galaxy. In Galactic Structure, 1965, p. 513
- Schwarzschild M., Härm R., Hydrogen Mixing by Helium-Shell Flashes, ApJ, 1967, vol. 150, p. 961
- Shane W. W., Bieger-Smith G. P., The galactic rotation curve derived from observations of neutral hydrogen, Bull. Astron. Inst. Netherlands, 1966, vol. 18, p. 263
- Shuter W. L. H., A rotational standard of rest, MNRAS, 1982, vol. 199, p. 109
- Simonson III S. C., Mader G. L., Motions near the Galactic Center and the "3-kpc arm", A&A, 1973, vol. 27, p. 337
- Sinha R. P., A Reexamination of the Rotation Curve for the Galaxy, A&A, 1978, vol. 69, p. 227

- Spitzer L. J., Schwarzschild M., The Possible Influence of Interstellar Clouds on Stellar Velocities., ApJ, 1951, vol. 114, p. 385
- Spitzer L. J., Schwarzschild M., The Possible Influence of Interstellar Clouds on Stellar Velocities. II., ApJ, 1953, vol. 118, p. 106
- Surdin V. G., A New Method for Determining the Distance of the Galactic Center, Soviet Astronomy, 1980, vol. 24, p. 550
- Te Lintel Hekkert P., Caswell J. L., Habing H. J., Haynes R. F., Haynes R. F., Norris R. P., 1612 MHz OH survey of IRAS point sources. I - Observations made at Dwingeloo, Effelsberg and Parkes, A&AS, 1991, vol. 90, p. 327
- van der Kruit P. C., Attempt to Explain the Motions of the Gas in the Central Region of the Galaxy by Explosive Events in its Nucleus, A&A, 1971, vol. 13, p. 405
- van der Veen W. E. C. J., Habing H. J., The IRAS two-colour diagram as a tool for studying late stages of stellar evolution, A&A, 1988, vol. 194, p. 125
- van der Veen W. E. C. J., Habing H. J., Far evolved AGB stars in the Galactic bulge, A&A, 1990, vol. 231, p. 404
- Vandervoort P. O., The Equilibria of a Highly Flattened, Rapidly Rotating Galaxy, ApJ, 1970, vol. 161, p. 67
- Weinreb S., Barrett A. H., Meeks M. L., Henry J. C., Radio Observations of OH in the Interstellar Medium, Nature, 1963, vol. 200, p. 829
- Whitelock P. A., Feast M. W., van Loon J. T., Zijlstra A. A., Obscured asymptotic giant branch variables in the Large Magellanic Cloud and the period-luminosity relation, MNRAS, 2003, vol. 342, p. 86
- Wielen R., The diffusion of stellar orbits derived from the observed age-dependence of the velocity dispersion, A&A, 1977, vol. 60, p. 263
- Wood P. R., Habing H. J., McGregor P. J., Infrared monitoring of OH/IR stars near the Galactic Center, A&A, 1998, vol. 336, p. 925

Yang X., Dust envelopes of two S-type AGB stars, New Astronomy, 2008, vol. 13, p. 593

Zabolotskikh M. V., Rastorguev A. S., Dambis A. K., Kinematic Parameters of Young Subsystems and the Galactic Rotation Curve, Astronomy Letters, 2002, vol. 28, p. 454 Apêndice

Apêndice A_

Suporte teórico

A.1 Emissão maser

Após a segunda guerra mundial, houve um avanço considerável na tecnologia de microondas; esse avanço se deve ao grande interesse por desenvolvimento de radares. A partir desse ponto a espectroscopia de microondas tornou-se possível e ganhou grande impulso na década de 50. O desenvolvimento da espectroscopia molecular encorajou os radioastrônomos a tentarem observar transições moleculares no espaço, uma das primeiras detecções dessas transições foi feita por Weinreb et al. (1963), na direção de Cassiopéia.

A partir da década de 60, detectou-se várias moléculas no meio interestelar, NH_3 , H_2O , SiO, OH, etc. Mas, entre as linhas de emissão de moléculas, existem algumas (SiO, H_2O e OH) que se destacam por sua forte intensidade, que não pode ser explicada por um processo "normal" de emissão. A essa emissão dá-se o nome maser (*Microwave Amplification by Stimulated Emission*). Trata-se de uma emissão amplificada e induzida por fótons que tem a mesma energia dos fótons emitidos pela molécula. Este tipo de emissão está normalmente associada a gás aquecido por ondas de choque, nas proximidades de regiões HII ou em envelopes estelares.

Para que ocorra a emissão maser é necessário que haja uma inversão do nível populacional, ou seja, é preciso que a maior parte das moléculas estejam em um nível excitado de energia e não em um estado de energia inferior. A figura A.1 ilustra melhor essa inversão.

A figura A.1 mostra um caso anormal, pois em equilíbrio termodinâmico a população encontrada no nível 2 seria menor do que a população encontrada no nível 1. Esse fato ocorre devido a um processo de "bombeamento", que joga as moléculas do estado 1 para o 3 de energia e a passagem de 3 para 2 é uma transição "permitida" (transição com alta

Figura A.1: Esquema de 3 níveis de energia de moléculas com emissão maser. Os círculos representam a proporção de moléculas que se encontram em cada estado. A transição do nível 1 para 2 é devida ao "bombeamento"; a de 3 para 2 é espontânea; acumula-se uma população anômala em 2 porque a transição 2-1 é improvável; a transição será induzida pela passagem de um fóton com energia igual à da transição 2-1.

probabilidade de ocorrer), já a passagem do estado 2 para o 1 é uma transição "proibida" (transição com baixa probabilidade de ocorrer), o que explica o acumulo de população no nível 2. Quando um fóton com a mesma frequência da transição do nível 2 para 1 passa pela molécula, ele induz esta transição fazendo com que a molécula emita um fóton de mesma frequência, figura A.2, e a energia emitida se soma com a incidente, saindo na mesma direção. Desta forma ocorre a amplificação da radiação, à medida que ela atravessa a região com inversão de população. Os mecanismos que podem bombear o maser, no meio interestelar, são as ondas de choque que provocam colisões energéticas entre moléculas e a radiação infravermelha.

Para que a emissão maser ocorra, é necessário que exista uma relação entre o bombeamento e a transição induzida. Temos basicamente dois tipos de emissão maser, a não saturada e a saturada. O maser não saturado é aquele no qual a taxa de transição induzida é desprezível quando comparada com as taxas de bombeamento; já na emissão saturada, a taxa de transição induzida desempenha um papel importante no controle da população dos níveis (Lépine, 1986). Para que haja emissão maser em envelopes circunstelares, é necessário também um gradiente de velocidade nulo, em outras palavras, o envelope tem que estar se expandindo com velocidade terminal. Isso se faz necessário, pois a emissão

Figura A.2: Esta figura ilustra uma emissão induzida. Um fóton passa com a mesma energia da transição do nível 2 para o 1 induzindo esta transição, fazendo com que o átomo ou molécula emita um fóton com a mesma energia do fóton incidente. Logo um observador irá ver dois fótons sendo emitidos.

maser tem uma largura de linha muito estreita e moléculas apresentando velocidades com diferença maior que a largura de linha não serão capazes de afetar as outras e a amplificação não ocorrerá. Isso acontece devido ao deslocamento Doppler no qual a velocidade da molécula está relacionada com o deslocamento do comprimento de onda de acordo com a expressão:

$$\frac{v}{c} = \frac{\Delta\lambda}{\lambda_0} \tag{A.1}$$

onde v é a velocidade da molécula, c é a velocidade da luz, $\Delta \lambda$ é o deslocamento Doppler e λ_0 é o comprimento de onda visto no repouso.

Os masers se tornaram uma ferramenta poderosa para estudar o meio interestelar e a estrutura da Galáxia. Pelo fato da emissão ser intensa, ela pode ser detectada mesmo a grandes distâncias. Permitem também localizar as regiões de formação estelar associadas aos braços espirais da Galáxia.

A.2 Aproximações de Oort

O método de Oort é baseado na expansão da velocidade angular em Taylor de primeira ordem, em torno de R_0 e na hipótese de órbitas circulares. As constantes $A \in B$ de Oort são determinadas como descrito a seguir:

Partindo da equação:

$$v_{r} = (w - w_0) R_0 sin(l)$$
 (A.2)

que é uma aproximação da equação 5.6, onde $w \in w_0$ são as velocidades angulares de rotação da estrela e do Sol, respectivamente. Fazemos a expansão do termo $(w - w_0)$ em torno de R_0 :

$$(w - w_0) \approx \left(\frac{dw}{dR}\right)_{R_0} (R - R_0)$$
 (A.3)

Agora

$$\frac{dw}{dR} = \frac{d}{dR} \left(\frac{\Theta}{R}\right) = \frac{1}{R} \frac{d\Theta}{dR} - \frac{\Theta}{R^2}$$
(A.4)

então temos

$$\left(\frac{dw}{dR}\right)_{R_0} = \frac{1}{R_0} \left(\frac{d\Theta}{dR}\right)_{R_0} - \frac{\Theta_0}{{R_0}^2} \tag{A.5}$$

logo, substituindo A.5 em A.3, depois em A.2 temos

$$v*_{r} = \left[\left(\frac{d\Theta}{dR} \right)_{R_{0}} - \frac{\Theta_{0}}{R_{0}} \right] (R - R_{0}) sinl$$
(A.6)

Agora, como $d << R_0,$ segundo a aproximação que fizemos, uma bo
a aproximação é

$$R_0 - R \approx d\cos(l) \tag{A.7}$$

quando substituímos A.7 em A.6

$$v*_{r} = \left[\frac{\Theta_{0}}{R_{0}} - \left(\frac{d\Theta}{dR}\right)_{R_{0}}\right] dsin(l)cos(l)$$
(A.8)

Então, usando a identidade trigonométrica $sin(l)cos(l) = \frac{1}{2}sin(2l)$ e definindo

$$A = \frac{1}{2} \left[\frac{\Theta_0}{R_0} - \left(\frac{d\Theta}{dR} \right)_{R_0} \right]$$
(A.9)

a qual é chamada de constante A de Oort, nós obtemos

$$v*_r = Adsin(2l) \tag{A.10}$$

Agora, considerando a equação abaixo, onde $v *_t$ é a velocidade observada perpendicular à linha de visada.

$$v_{t} = (w - w_0)R_0 cos(l) - wd$$
(A.11)

Esta equação é uma variação da equação 5.13. Agora, usando a equação A.3

$$v_{t} = \left[\frac{\Theta_{0}}{R_{0}} - \left(\frac{d\Theta}{dR}\right)_{R_{0}}\right] d\cos^{2}(l) - \left(\frac{\Theta_{0}}{R_{0}}\right) d \tag{A.12}$$

ou, usando a relação trigonométrica $\cos^2(l) = \frac{1}{2}(1 + \cos(2l)),$

$$v*_{t} = \frac{1}{2} \left[\frac{\Theta_{0}}{R_{0}} - \left(\frac{d\Theta}{dR} \right)_{R_{0}} \right] d\cos(2l) - \frac{1}{2} \left[\frac{\Theta_{0}}{R_{0}} + \left(\frac{d\Theta}{R} \right)_{R_{0}} \right] d \tag{A.13}$$

E agora usando a equação A.9 e definindo a constante B de Oort como,

$$B = -\frac{1}{2} \left[\frac{\Theta_0}{R_0} + \left(\frac{d\Theta}{dR} \right)_{R_0} \right]$$
(A.14)

nós finalmente obtemos

$$v_{t} = d(A\cos(2l) + B) \tag{A.15}$$

Em termos de movimento próprio, como sabemos da equação 5.1 que $v *_t = \mu kd$, então

$$\mu_l = \frac{A\cos(2l) + B}{k} \tag{A.16}$$

Através das equações A.10 e A.16, nós obtemos as constantes $A \in B$ de Oort. Através dessas constantes é possível calcular w_0 , usando a relação abaixo.

$$w_0 = \frac{\Theta_0}{R_0} = A - B \tag{A.17}$$

Através desse método nós só podemos calcular a razão entre Θ_0 , e R_0 .

A.3 Equações de transformação do movimento próprio em coordenadas equatoriais para Galáticas

Para as coordenadas Galáticas, o plano principal é definido pelo plano do disco da Via Láctea (nossa Galáxia é uma espiral, provavelmente barrada), o Equador Galático. A origem é dada pela direção do centro Galático, que se encontra na constelação de Sagitário, com coordenadas $\alpha = 17^{h}45^{m}6$ e $\delta = 28^{0}56'$ (J2000), veja figura A.3. O "polo norte galáctico" se encontra em $\alpha = 12^{h}51^{m}4$ e $\delta = 27^{0}7'$.

Figura A.3: Sistema de coordenadas Galáticas. O astro M tem coordenadas: longitude galáctica (l) e latitude (b). O ponto N é a intersecção do plano Galático com o equador celeste (o nodo), C.G. é a direção do centro da Galáxia (que fica na constelação de Sagitário) e i é a inclinação do plano Galático em relação ao equador celeste.

A transformação de coordenadas equatoriais em galáticas é dada pelas equações:

$$sin(\delta) = cos(b)sin(l - l')sin(i) + sin(b)cos(i)$$
(A.18)

$$\cos(\delta)\sin(\alpha - \alpha_N) = \cos(b)\sin(l - l')\cos(i) - \sin(b)\sin(i)$$
(A.19)

Para o referencial de J2000, adota-se $i = 62, 9^0, l' = 33^0$ e $\alpha_N = 282, 77^0$.

Fazendo a derivada temporal dessas duas equações, podemos obter a matriz transformação para os movimentos próprios de uma coordenada para outra, Green (1985).

$$\begin{pmatrix} \mu_{\alpha}\cos(\delta) \\ \mu_{\delta} \end{pmatrix} = \begin{pmatrix} \frac{\partial\alpha}{\partial l}\cos(\delta) & \frac{\partial\alpha}{\partial b}\cos(\delta) \\ \frac{\partial\delta}{\partial l} & \frac{\partial\delta}{\partial b} \end{pmatrix} \begin{pmatrix} \mu_{l} \\ \mu_{b} \end{pmatrix}$$
(A.20)

As derivadas parciais que aparecem na matriz transformação podem ser calculadas derivando-se as equações A.18 e A.19.

$$\frac{\partial \alpha}{\partial l} = \frac{\cos(b)\cos(l-l')\cos(i) + \sin(\delta)\sin(\alpha - \alpha_N)(\partial \delta/\partial l)}{\cos(\delta)\cos(\alpha - \alpha_N)}$$
(A.21)

$$\frac{\partial \alpha}{\partial b} = \frac{-\sin(b)\sin(l-l')\cos(i) - \cos(b)\sin(i) + \sin(\delta)\sin(\alpha - \alpha_N)(\partial \delta/\partial b)}{\cos(\delta)\cos(\alpha - \alpha_N)}$$
(A.22)

$$\frac{\partial \delta}{\partial l} = \frac{\cos(b)\cos(l-l')\sin(i)}{\cos(\delta)} \tag{A.23}$$

$$\frac{\partial \delta}{\partial b} = \frac{\cos(b)\cos(i) - \sin(b)\sin(l - l')\sin(i)}{\cos(\delta)} \tag{A.24}$$

Uma vez obtidos esses coeficientes, podemos fazer a transformação do movimento próprio de coordenadas equatoriais ($\alpha \in \delta$) para coordenadas galácticas ($l \in b$) e vice-vera.

Apêndice B_

Erros

B.1 Erros nas velocidades

Os erros calculados para a velocidade de rotação das estrelas foram obtidos usando-se a equação de propagação de erro.

$$\sigma_y = \sqrt{\left(\sigma_x \frac{\partial y}{\partial x}\right)^2 + \left(\sigma_z \frac{\partial y}{\partial z}\right)^2 \dots}$$
(B.1)

O erro que cometemos na determinação da velocidade de rotação da estrela (Θ) é devido aos erros cometidos em velocidade radial (V_{lsr}) e raio Galático (R). Logo, temos

$$\sigma_{\Theta} = \sqrt{\left(\sigma_{v_{lsr}} \frac{\partial \Theta}{\partial V_{lsr}}\right)^2 + \left(\sigma_R \frac{\partial \Theta}{\partial R}\right)^2} \tag{B.2}$$

Os valores de $\frac{\partial \Theta}{\partial v_{lsr}}$ e $\frac{\partial \Theta}{\partial R}$ podem ser obtidos através da equação 5.17

$$\frac{\partial \Theta}{\partial v_{lsr}} = \frac{R}{R_0 sin(l)} \tag{B.3}$$

$$\frac{\partial \Theta}{\partial R} = \frac{\Theta}{R} \tag{B.4}$$

Assim, a equação para propagação do erro cometido para o cálculo de $\Theta(R)$ é:

$$\sigma_{\Theta} = \sqrt{\left(\sigma_{v_{lsr}} \frac{R}{R_0 sin(l)}\right)^2 + \left(\sigma_R \frac{\Theta}{R}\right)^2} \tag{B.5}$$

As velocidades radias obtidas pelos métodos explicados na seção 4.3 tem precisão na ordem de 5 km/s. Mas, devido às incertezas nas correções do LSR, nós adotamos um erro máximo de 10 km/s para todas as estrelas. Portanto, $\sigma_{v_{lsr}} = 10 \text{ km/s}$

B.2 Erros nas distâncias

O raio Galático é calculado pela equação logo abaixo

$$R = \sqrt{R_0^2 + d^2 - 2R_0 d\cos(l)}$$
(B.6)

O valor do erro cometido para o raio Galático (σ_R) pode ser obtido pela equação abaixo

$$\sigma_R = \sqrt{\left(\sigma_d \frac{\partial R}{\partial d}\right)^2 + \left(\sigma_{R_0} \frac{\partial R}{\partial R_0}\right)^2} \tag{B.7}$$

As derivadas parciais $\frac{\partial R}{\partial d}$ e $\frac{\partial R}{\partial R_0}$ são dadas por:

$$\frac{\partial R}{\partial d} = \frac{2d - 2R_0 \cos(l)}{2R} \tag{B.8}$$

$$\frac{\partial R}{\partial R_0} = \frac{2R_0 - 2d\cos(l)}{2R} \tag{B.9}$$

O valor de $\sigma_{R_0} = 0.3$ kpc, esse é o erro que encontramos para o valor de R_0 , no capítulo 5. Já o valor de σ_d depende do método que foi utilizado para se determinar as distâncias. Em todos os casos nós usamos a equação 4.1 para obter as distâncias, logo σ_d é dado por:

$$\sigma_d = \frac{\sigma_M ln(10)d}{5} \tag{B.10}$$

Portando, o erro na distância está associado ao erro que cometemos na obtenção da magnitude absoluta (σ_M). Para as Cefeidas e C-Miras temos que $\sigma_M \approx 0.2$, para as estrelas jovens O-B5 temos $\sigma_M \approx 0.3$. Somente para o catálogo de estrelas associadas às regiões HII, temos o erro σ_d , dado por Russeil et al. (2007). Apêndice C_____

Tabelas

1^{0}	\mathbf{b}^{0}	J	Н	К	J-H	H-K	$\mathbf{V}_b \ km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu \mathrm{m}$	25-60 $\mu {\rm m}$	Nome IRAS
199 649	50 107	7 497	4 6 4 1	0.017	2 706	2 424	0.400	27.000	4 0 9 7	1 267	240	ID A S01027 + 1910
120.042	-30.107	1.437	4.041	2.217	2.790	2.424	-9.400	21.000	-4.027	1.007	.249	IRAS01057+1219
101.473	-41.919	4.037	3.210	2.001	.827	.609	16.000	24.000	.052	1.003	.142	IRAS02420+1200
301.394	-29.419	0.575	3.903	2.897	1.072	1.000	-2.100	19.800	-1.202	1.521	.065	IRAS03074-8732
187.713	-17.572	8.735	6.425	4.861	2.310	1.564	-10.900	13.500	-1.680	1.469	108	IRAS04575+1251
249.981	-31.594	3.834	3.041	2.506	.793	.535	15.200	22.400	.726	1.215	033	IRAS05345-4406
179.831	.072	5.117	3.591	2.460	1.526	1.131	17.800	39.000	610	1.300	.440	IRAS05423+2905
184.955	856	12.546	10.241	8.333	2.305	1.908	.500	10.100	.690	3.140	2.400	IRAS05506+2414
191.439	-3.432	7.902	6.317	5.328	1.585	.989	31.800	57.700	1.280	1.320	.100	IRAS05552+1720
233.170	-1.980	9.542	7.671	6.258	1.871	1.413	15.100	40.700	.294	1.184	322	IRAS07200-1846
252.814	998	6.971	5.305	4.242	1.666	1.063	59.400	87.000	342	1.451	.091	IRAS08089-3511
269.442	-5.450	13.789	12.191	10.831	1.598	1.360	74.800	82.000	2.749	2.328	.603	IRAS08425-5116
253.985	12.477	6.931	5.639	4.677	1.292	.962	81.300	96.900	.865	1.419	.346	IRAS09027-2758
250.091	17.537	10.212	7.962	6.241	2.250	1.721	77.300	107.400	.928	1.588	.275	IRAS09089-2149
270.509	.960	15.904	11.024	7.691	4.880	3.333	-13.900	16.500	.726	2.150	.706	IRAS09165-4749
269.085	3.098	6.042	4.794	3.919	1.248	.875	35.400	57.900	505	1.286	130	IRAS09194-4518
277.719	-5.594	10.591	8.594	7.146	1.997	1.448	110.200	116.100	1.645	1.774	100	IRAS09195-5732
278.547	-3.313	13.970	10.724	8.478	3.246	2.246	34.000	63.800	.364	1.792	.254	IRAS09354-5627
190.595	49.771	1.710	.551	077	1.159	.628	-2.600	4.600	-2.940	.600	210	IRAS09425 + 3444
274.001	4.190	8.886	6.857	5.222	2.029	1.635	5.200	37.700	265	1.762	.283	IRAS09448-4748
280.043	924	11.312	8.946	7.320	2.366	1.626	-10.300	7.300	1.711	1.686	.257	IRAS09545-5534
280.648	605	11.464	8.152	5.742	3.312	2.410	-15.800	12.200	812	1.739	.182	IRAS09593-5540
279.149	4.252	8.958	7.179	6.022	1.779	1.157	43.400	74.100	1.103	1.261	113	IRAS10101-5051
287.609	-7.879	10.063	7.615	5.965	2.448	1.650	31.900	61.600	095	1.293	010	IRAS10106-6538
281.658	3.960	10.382	7.538	5.530	2.844	2.008	6.500	47.800	742	1.896	.244	IRAS10226-5229
288.226	-4.631	9.395	7.746	6.409	1.649	1.337	7.300	32.500	.184	1.308	203	IRAS10315-6313
291.656	-9.023	10.818	8.888	7.401	1.930	1.487	28.900	51.100	2.152	1.769	.286	IRAS10394-6843
292.712	-9.346	9.529	7.329	5.796	2.200	1.533	-42.700	8.100	262	1.819	290	IRAS10481-6930

10	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \; km/s$	$V_r \ km/s$	$12 \ \mu {\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
287.804	.787	5.067	3.883	3.241	1.184	.642	-9.100	24.000	080	1.368	072	IRAS10495-5815
285.626	5.950	8.555	6.777	5.579	1.778	1.198	4.900	32.600	.249	1.433	231	IRAS10517-5239
291.303	-4.972	13.817	10.585	8.196	3.232	2.389	59.700	84.200	1.236	1.926	.509	IRAS10550-6457
287.034	6.751	7.982	6.395	5.112	1.587	1.283	-40.800	-19.000	.623	1.466	.267	IRAS11023-5231
292.370	-4.040	13.641	10.880	8.526	2.761	2.354	3.600	32.700	.877	1.917	.243	IRAS11076-6431
283.713	16.748	4.791	3.504	2.833	1.287	.671	42.200	9999.000	060	.860	013	IRAS11081-4203
294.066	-6.186	6.941	5.487	4.566	1.454	.921	-29.900	-8.600	1.033	1.759	.666	IRAS11152-6709
290.853	3.830	8.054	6.099	4.752	1.955	1.347	17.500	50.700	.427	1.557	.202	IRAS11192-5638
289.468	8.536	11.625	9.338	7.347	2.287	1.991	7.900	34.700	1.950	1.645	.103	IRAS11212-5144
287.602	14.839	8.649	6.917	5.635	1.732	1.282	-33.600	-17.400	.036	1.619	177	IRAS11235-4511
288.428	15.817	7.074	5.085	3.707	1.989	1.378	-17.400	17.700	443	1.650	.097	IRAS11296-4431
293.053	3.261	9.654	8.342	7.108	1.312	1.234	11.000	31.900	.998	1.333	.135	IRAS11333-5752
293.866	3.936	9.773	7.572	6.080	2.201	1.492	15.000	35.500	.812	1.593	.222	IRAS11405-5726
295.480	633	10.979	8.292	6.299	2.687	1.993	-19.800	13.000	1.225	1.803	.991	IRAS11436-6216
295.431	2.367	13.777	10.864	8.708	2.913	2.156	-11.500	23.300	2.239	1.759	.466	IRAS11491-5921
294.803	5.384	6.475	4.576	3.359	1.899	1.217	-21.400	11.200	.042	1.816	.188	IRAS11497-5616
294.005	10.648	4.780	3.514	2.734	1.266	.780	19.000	21.000	-1.315	1.260	082	IRAS11525-5057
295.829	2.773	11.285	8.733	6.960	2.552	1.773	10.800	16.800	.210	1.520	070	IRAS11528-5902
296.597	2.885	7.992	6.722	5.617	1.270	1.105	-13.200	3.600	.924	1.119	.093	IRAS11589-5905
298.312	-4.587	9.831	7.697	6.243	2.134	1.454	-8.800	9999.000	1.867	1.807	.342	IRAS12013-6645
295.812	11.128	6.313	5.157	4.316	1.156	.841	-22.700	-4.100	.144	1.259	134	IRAS12041-5050
299.469	-2.354	12.768	10.961	9.768	1.807	1.193	-6.700	10.400	1.542	2.958	.924	IRAS12158-6443
300.123	-5.627	9.517	7.588	6.174	1.929	1.414	-49.500	-22.800	1.570	1.818	.054	IRAS12182-6803
299.561	383	14.185	10.548	7.951	3.637	2.597	18.100	50.700	.632	1.735	048	IRAS12188-6246
299.218	3.991	9.702	7.345	5.848	2.357	1.497	-19.900	9.400	.764	1.603	.018	IRAS12201-5823
300.812	-3.977	14.158	10.888	8.556	3.270	2.332	15.200	38.600	1.949	1.700	.175	IRAS12270-6629
300.485	6.102	6.283	5.162	4.349	1.121	.813	18.900	32.300	.019	1.180	196	IRAS12309-5624
301.634	1.521	6.286	4.611	3.172	1.675	1.439	-62.700	-21.900	-1.700	1.364	022	IRAS12377-6102

Tabela C.1 - Continuação

								-				
10	\mathbf{b}^0	J	Н	K	J-H	H-K	$\mathbf{V}_b \ km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
301.081	16.945	9.861	7.519	5.776	2.342	1.743	-49.500	-23.000	-1.953	1.439	024	IRAS12384-4536
303.217	089	15.618	11.207	8.229	4.411	2.978	-64.200	-34.100	.185	1.751	.181	IRAS12508-6241
303.583	8.014	6.790	5.635	4.800	1.155	.835	-33.800	-9.600	.824	1.086	.019	IRAS12529-5434
325.572	85.690	4.967	4.006	3.270	.961	.736	9.000	23.000	189	.977	.049	IRAS12562 + 2324
304.030	3.567	11.244	9.205	7.563	2.039	1.642	-1.500	25.500	1.452	1.581	.059	IRAS12569-5901
304.076	2.958	9.786	7.709	6.089	2.077	1.620	5.900	31.900	1.318	1.800	.133	IRAS12575-5937
304.432	-1.691	12.497	9.924	8.118	2.573	1.806	-27.000	-3.000	2.189	1.840	1.327	IRAS13021-6415
304.929	-1.376	16.983	12.359	8.742	4.624	3.617	-24.600	3.800	.073	2.020	.573	IRAS13065-6354
305.814	-2.482	13.529	11.036	9.132	2.493	1.904	-60.400	-36.300	2.450	1.675	.375	IRAS13155-6456
307.448	6.714	6.702	4.852	3.757	1.850	1.095	-55.900	-30.500	-1.692	1.310	.063	IRAS13203-5536
306.768	061	4.786	3.082	2.273	1.704	.809	-40.700	-14.000	965	1.345	134	IRAS13216-6225
307.611	-1.521	11.848	8.483	6.332	3.365	2.151	-50.700	-15.700	.833	2.128	.454	IRAS13308-6344
308.001	559	17.299	12.116	8.472	5.183	3.644	-85.500	-35.300	-1.473	1.854	.260	IRAS13328-6244
308.608	2.071	14.180	10.684	8.229	3.496	2.455	-18.500	-2.700	1.280	2.104	.553	IRAS13341-6002
308.142	627	7.486	5.223	3.706	2.263	1.517	-38.300	-4.900	-1.260	1.261	.093	IRAS13341-6246
308.895	3.556	9.045	7.238	5.993	1.807	1.245	-21.900	-2.700	2.355	1.775	.135	IRAS13342-5831
307.856	-2.719	7.354	5.877	4.973	1.477	.904	-53.900	-37.200	.324	1.341	240	IRAS13349-6453
308.465	738	12.057	8.445	5.670	3.612	2.775	-51.000	-11.100	-1.263	1.778	.386	IRAS13371-6249
310.142	7.479	5.140	4.135	3.390	1.005	.745	-7.300	13.000	635	1.269	012	IRAS13379-5426
309.343	2.109	13.372	11.813	10.655	1.559	1.158	-12.400	-3.200	2.660	2.430	.900	IRAS13398-5951
311.533	7.017	7.134	5.350	4.168	1.784	1.182	-40.400	-5.000	-1.274	1.372	113	IRAS13479-5436
309.513	-3.461	10.073	7.201	5.252	2.872	1.949	-39.000	-3.200	-1.474	1.599	.113	IRAS13517-6515
310.109	-2.578	11.079	8.825	7.193	2.254	1.632	-83.700	-57.500	1.787	1.813	.946	IRAS13551-6415
310.056	-3.028	10.989	9.513	8.447	1.476	1.066	-3.400	400	191	2.247	.864	IRAS13557-6442
311.679	1.931	14.783	10.897	7.531	3.886	3.366	-90.300	-48.300	-1.532	2.054	.467	IRAS13581-5930
312.693	4.249	9.600	7.221	5.669	2.379	1.552	-32.700	.010	282	1.261	300	IRAS14008-5659
310.079	-6.300	16.033	11.798	8.818	4.235	2.980	-6.000	21.700	1.234	1.935	.651	IRAS14048-6751
313.730	4.115	10.763	8.260	6.491	2.503	1.769	-101.100	-76.400	.776	1.512	.036	IRAS14083-5649

Tabela C.1 - Continuação

10	b^0	J	Н	K	J-H	H-K	$\mathrm{V}_b \; km/s$	$V_r \ km/s$	$12 \ \mu {\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
310.039	-7.612	7.997	5.788	4.281	2.209	1.507	-51.000	-24.200	-1.305	1.426	080	IRAS14086-6907
312.315	-1.347	11.673	8.603	6.302	3.070	2.301	-81.800	-39.200	.689	2.123	.420	IRAS14109-6227
311.655	-3.697	10.378	7.541	5.380	2.837	2.161	-52.000	-26.200	317	2.204	.436	IRAS14119-6453
314.672	1.024	10.522	8.506	7.334	2.016	1.172	2.700	24.600	1.512	1.613	.180	IRAS14227-5926
325.327	25.630	8.680	7.282	5.830	1.398	1.452	-30.800	-13.400	215	1.102	.100	IRAS14251-3246
315.045	.711	15.665	13.916	12.918	1.749	.998	-105.300	-78.600	1.626	1.766	.840	IRAS14264-5935
321.665	16.844	5.755	4.715	3.708	1.040	1.007	-69.700	-51.400	402	1.012	240	IRAS14266-4211
313.981	-2.846	14.468	11.868	10.050	2.600	1.818	-16.500	9999.000	1.426	1.458	090	IRAS14291-6317
308.749	-15.611	8.581	6.674	5.261	1.907	1.413	-48.100	-25.500	.357	1.747	087	IRAS14310-7703
310.893	-10.904	8.322	6.961	5.677	1.361	1.284	-77.900	-60.200	1.040	1.342	.000	IRAS14319-7154
318.714	6.972	7.372	6.061	5.164	1.311	.897	-15.800	5.000	.775	1.342	.071	IRAS14336-5224
317.656	3.935	9.563	7.486	5.897	2.077	1.589	-49.500	-18.900	.009	1.450	005	IRAS14352-5537
320.700	10.767	9.815	7.297	5.570	2.518	1.727	-57.200	-28.800	.354	1.892	.230	IRAS14353-4809
314.874	-3.203	11.180	8.802	6.890	2.378	1.912	-119.300	9999.000	1.022	1.463	127	IRAS14377-6316
317.829	2.792	13.418	10.592	8.592	2.826	2.000	-58.800	-35.500	1.331	1.694	.540	IRAS14396-5635
319.107	4.792	16.134	11.665	8.176	4.469	3.489	-112.100	-86.300	.895	2.163	.796	IRAS14419-5414
316.988	-1.571	11.489	8.700	6.583	2.789	2.117	-32.900	-3.000	.343	1.367	.246	IRAS14481-6054
319.097	1.188	12.596	9.603	7.505	2.993	2.098	-109.700	-85.700	1.117	1.841	.333	IRAS14531-5729
317.689	-3.528	10.987	8.615	6.995	2.372	1.620	-66.100	9999.000	1.528	1.564	.435	IRAS15010-6218
321.565	1.274	15.029	11.143	8.333	3.886	2.810	-25.600	5.700	134	1.624	.291	IRAS15086-5613
322.259	2.097	8.493	6.015	4.320	2.478	1.695	-80.200	-42.700	-2.633	1.292	.013	IRAS15099-5509
324.313	5.409	14.120	10.993	8.702	3.127	2.291	-2.600	27.100	1.156	2.063	.399	IRAS15103-5115
315.875	-9.077	7.396	6.247	5.381	1.149	.866	-21.100	-3.400	1.062	1.263	247	IRAS15129-6800
322.449	1.242	15.022	13.522	12.939	1.500	.583	-29.800	-6.600	.494	1.537	.264	IRAS15142-5547
321.753	216	8.531	6.121	4.574	2.410	1.547	-26.500	6.900	262	1.804	190	IRAS15155-5723
319.738	-3.787	8.818	7.070	5.767	1.748	1.303	-65.600	-46.600	.455	1.527	059	IRAS15170-6129
326.842	7.259	10.099	8.140	6.439	1.959	1.701	-85.800	-59.800	.516	1.547	.059	IRAS15174-4821
326.203	5.745	11.876	9.567	7.873	2.309	1.694	-81.500	-58.200	1.824	1.740	.358	IRAS15192-4958

Tabela C.1 - Continuação

10	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \ km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
320.530	-3.177	6.007	4.959	4.175	1.048	.784	-37.900	-21.900	.786	1.219	165	IRAS15198-6032
330.428	11.473	6.735	5.494	4.596	1.241	.898	-33.600	-11.700	.020	.950	117	IRAS15211-4254
315.464	-11.056	6.840	5.935	5.207	.905	.728	-19.700	-10.900	1.027	1.248	439	IRAS15211-6953
323.268	.362	9.071	6.638	4.679	2.433	1.959	-36.800	2.300	874	1.822	.921	IRAS15225-5605
321.410	-2.626	15.788	12.052	9.285	3.736	2.767	-54.600	-27.700	1.404	1.948	.504	IRAS15233-5936
319.814	-5.291	11.658	8.687	6.607	2.971	2.080	12.200	35.700	1.567	2.147	.859	IRAS15246-6242
323.117	476	12.596	9.072	6.585	3.524	2.487	-87.800	-52.800	.186	1.673	.268	IRAS15249-5652
311.355	-17.309	6.454	5.029	3.856	1.425	1.173	-14.600	8.000	191	1.486	.226	IRAS15254-7718
325.835	2.820	10.728	8.270	6.571	2.458	1.699	-65.200	9999.000	1.949	1.745	.443	IRAS15276-5237
322.797	-1.848	4.441	2.787	1.996	1.654	.791	-71.900	-24.100	-2.172	1.308	.063	IRAS15287-5811
324.826	.686	13.441	8.806	6.293	4.635	2.513	-92.800	-44.800	386	1.982	.413	IRAS15303-5456
319.563	-7.319	5.364	3.711	2.762	1.653	.949	-44.400	-9.500	938	1.239	.238	IRAS15332-6430
326.609	2.296	9.352	7.510	6.225	1.842	1.285	-58.200	-48.100	1.354	1.630	100	IRAS15338-5236
324.459	860	5.275	3.551	2.661	1.724	.890	-29.700	-10.000	209	1.104	030	IRAS15345-5624
318.035	-9.766	6.883	5.271	3.964	1.612	1.307	-47.300	-44.400	899	1.551	069	IRAS15356-6722
329.059	5.134	14.472	11.241	8.824	3.231	2.417	-86.600	-64.700	.992	1.790	.226	IRAS15357-4851
326.808	2.080	15.121	10.762	7.886	4.359	2.876	-75.700	-40.500	213	1.839	.246	IRAS15357-5239
321.838	-5.114	10.954	8.451	6.811	2.503	1.640	-66.100	-34.900	1.043	1.287	016	IRAS15377-6123
326.475	.370	7.583	4.769	3.066	2.814	1.703	-105.200	-101.100	-1.930	2.360	.630	IRAS15408-5413
326.475	.370	7.583	4.769	3.066	2.814	1.703	-105.200	-101.100	-1.930	2.360	.630	IRAS15408-5413
326.475	.370	7.583	4.769	3.066	2.814	1.703	-105.200	-101.100	-1.930	2.360	.630	IRAS15408-5413
324.143	-3.217	14.739	11.214	8.618	3.525	2.596	-116.300	-94.500	1.340	1.926	.442	IRAS15432-5829
327.405	067	16.386	14.936	13.422	1.450	1.514	-106.000	-61.000	339	1.974	.738	IRAS15476-5400
329.746	2.679	12.276	9.583	7.475	2.693	2.108	-156.200	-125.500	1.868	1.676	.359	IRAS15483-5023
327.448	627	8.244	5.601	3.954	2.643	1.647	-22.000	6.000	-2.145	1.445	.218	IRAS15502-5424
327.448	627	8.244	5.601	3.954	2.643	1.647	-22.000	6.000	-2.145	1.445	.218	IRAS15502-5424
327.448	627	8.244	5.601	3.954	2.643	1.647	-22.000	6.000	-2.145	1.445	.218	IRAS15502-5424
323.702	-5.686	8.597	6.700	5.247	1.897	1.453	-130.100	-106.200	.318	1.449	.157	IRAS15527-6041

Tabela C.1 - Continuação

10	b^0	J	Н	К	J-H	H-K	$\mathrm{V}_b \; km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
331.859	3.984	10.686	8.560	6.850	2.126	1.710	-77.200	-51.200	.424	1.546	.231	IRAS15532-4802
326.320	-2.684	12.446	9.933	8.074	2.513	1.859	-96.000	-64.900	1.411	1.583	477	IRAS15533-5642
328.053	776	9.934	6.812	4.774	3.122	2.038	-93.800	-48.200	-1.430	1.397	.171	IRAS15541-5408
328.737	223	12.970	9.256	6.887	3.714	2.369	-40.000	-19.000	.508	1.782	2.374	IRAS15552-5316
338.525	9.740	8.028	6.212	4.982	1.816	1.230	-102.700	-79.400	.981	1.293	.304	IRAS16001-3922
314.319	-17.176	6.486	5.071	4.216	1.415	.855	-25.400	9999.000	.217	1.237	279	IRAS16009-7522
330.503	.012	2.751	1.616	1.026	1.135	.590	-22.100	9999.000	-1.280	1.120	060	IRAS16030-5156
334.624	4.449	11.643	9.351	7.576	2.292	1.775	-116.200	-96.500	1.527	1.640	.505	IRAS16037-4553
333.826	3.482	15.868	14.184	12.746	1.684	1.438	-78.500	-62.800	3.488	2.992	1.342	IRAS16040-4708
335.143	4.613	7.807	5.922	4.668	1.885	1.254	-10.900	19.300	.191	1.431	.260	IRAS16052-4525
334.546	3.890	16.036	15.255	14.568	.781	.687	-62.500	-31.100	646	1.723	.267	IRAS16055-4621
337.619	6.979	7.916	6.050	4.722	1.866	1.328	-5.500	24.200	172	1.596	.476	IRAS16064-4200
326.576	-5.297	7.496	5.255	3.708	2.241	1.547	-69.900	-49.600	356	1.532	348	IRAS16077-5830
326.968	-5.350	8.565	6.713	5.335	1.852	1.378	-68.600	-60.600	.810	1.706	.176	IRAS16101-5816
334.875	2.892	8.149	6.116	4.789	2.033	1.327	-69.300	-42.400	053	1.197	.188	IRAS16109-4651
331.040	-1.551	15.500	11.739	9.068	3.761	2.671	-65.800	-31.000	.966	2.207	.474	IRAS16125-5243
334.279	1.354	13.991	10.428	8.076	3.563	2.352	-170.300	-147.700	1.401	1.570	1.015	IRAS16146-4823
331.108	-1.939	9.962	7.505	5.632	2.457	1.873	-112.200	-77.900	446	1.318	177	IRAS16146-5257
334.727	1.615	7.125	5.385	4.151	1.740	1.234	35.200	9999.000	526	1.155	007	IRAS16154-4753
334.711	1.561	13.131	9.391	6.666	3.740	2.725	-59.600	-27.700	196	1.851	.539	IRAS16156-4756
355.584	21.109	13.315	11.960	10.751	1.355	1.209	-56.000	-51.500	4.992	2.754	2.077	IRAS16166-1943
346.265	12.601	8.284	6.792	5.690	1.492	1.102	-70.900	-52.900	.864	1.228	025	IRAS16173-3202
333.412	-1.198	6.535	4.823	3.467	1.712	1.356	-68.600	-32.100	-1.972	1.432	.105	IRAS16219-5048
335.715	.991	7.334	5.141	3.485	2.193	1.656	-42.300	-8.100	-1.506	1.566	.004	IRAS16222-4738
337.983	3.017	6.105	4.903	4.095	1.202	.808	11.600	15.500	.959	1.053	.066	IRAS16231-4436
56.375	43.529	5.014	3.657	2.511	1.357	1.146	42.000	66.500	856	1.314	.170	IRAS16260 + 3454
325.069	-10.074	7.714	6.547	5.666	1.167	.881	-60.500	-44.400	1.051	1.455	041	IRAS16266-6256
331.978	-3.876	10.189	7.598	5.882	2.591	1.716	-71.400	-41.600	438	1.500	.107	IRAS16279-5342

Tabela C.1 - Continuação

1 ⁰	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b~km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
340.549	4.229	11.773	9.610	7.425	2.163	2.185	-18.800	-1.700	519	1.477	.059	IRAS16280-4154
334.750	-1.522	5.732	4.073	3.063	1.659	1.010	-12.000	25.000	-1.372	1.311	107	IRAS16292-5004
334.829	-1.935	7.075	5.403	4.400	1.672	1.003	-70.000	-33.700	.021	1.252	501	IRAS16314-5018
330.494	-5.940	9.242	6.813	5.156	2.429	1.657	-47.500	-10.600	.252	1.925	.186	IRAS16314-5611
339.284	2.052	10.829	8.111	6.156	2.718	1.955	60.200	83.300	.578	1.723	.172	IRAS16320-4419
340.637	3.185	9.304	7.104	5.750	2.200	1.354	-41.700	-12.800	.814	1.237	.179	IRAS16324-4233
336.074	-1.083	11.130	8.032	5.789	3.098	2.243	-90.300	-53.500	-1.625	2.129	.558	IRAS16327-4848
337.538	.130	17.757	13.982	11.793	3.775	2.189	-144.000	-92.000	487	1.791	.984	IRAS16333-4654
337.405	044	7.867	5.360	3.788	2.507	1.572	-43.800	-13.300	-2.120	1.540	.110	IRAS16335-4707
337.859	.272	3.445	2.039	1.263	1.406	.776	-84.700	-39.600	-3.233	1.240	.417	IRAS16340-4634
338.581	.123	11.087	7.931	5.743	3.156	2.188	-144.400	-115.100	859	1.467	.903	IRAS16374-4608
336.087	-2.483	15.547	11.889	9.394	3.658	2.495	-132.400	-103.900	2.661	2.190	1.124	IRAS16392-4944
337.029	-1.796	14.235	10.666	8.063	3.569	2.603	-179.700	-148.300	.910	1.718	1.025	IRAS16398-4834
346.665	6.608	9.526	7.455	5.975	2.071	1.480	-68.400	-46.800	182	1.638	.064	IRAS16399-3548
350.348	8.679	14.593	11.140	8.007	3.453	3.133	-34.500	-5.200	1.027	2.171	.560	IRAS16437-3140
340.029	075	15.082	13.737	13.178	1.345	.559	-52.800	-10.800	010	2.157	.210	IRAS16437-4510
339.895	344	10.401	7.949	6.544	2.452	1.405	-81.900	-42.100	-1.020	1.930	.380	IRAS16444-4527
339.895	344	10.401	7.949	6.544	2.452	1.405	-81.900	-42.100	-1.020	1.930	.380	IRAS16444-4527
339.895	344	10.401	7.949	6.544	2.452	1.405	-81.900	-42.100	-1.020	1.930	.380	IRAS16444-4527
341.993	1.401	9.560	6.728	4.865	2.832	1.863	-88.700	-48.000	665	1.598	.268	IRAS16446-4243
342.094	.977	15.283	13.515	12.795	1.768	.720	-69.300	-35.800	.238	1.752	.214	IRAS16467-4255
341.938	.772	14.576	12.189	10.136	2.387	2.053	-173.900	-148.500	1.845	2.228	1.445	IRAS16470-4310
335.612	-4.702	10.206	8.231	6.912	1.975	1.319	-83.600	-55.800	1.850	1.788	.670	IRAS16479-5132
352.141	8.783	5.128	3.845	3.222	1.283	.623	40.000	60.000	374	1.241	150	IRAS16486-3014
343.384	1.310	13.929	9.335	5.990	4.594	3.345	-64.000	-21.000	368	2.023	.781	IRAS16498-4143
343.004	.904	16.107	15.145	14.497	.962	.648	-121.300	-79.000	.540	2.195	1.029	IRAS16502-4216
334.282	-6.338	15.199	11.890	10.080	3.309	1.810	-92.000	-62.800	.040	1.464	015	IRAS16506-5336
345.040	1.968	15.262	13.962	13.381	1.300	.581	-83.200	-59.800	.484	1.994	.692	IRAS16527-4001

Tabela C.1 - Continuação

1 ⁰	b^0	J	Н	К	J-H	H-K	$\mathrm{V}_b \; km/s$	$V_r \ km/s$	$12 \ \mu {\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
338.914	-3.407	13.420	9.813	7.192	3.607	2.621	-86.800	-54.800	.347	1.838	.347	IRAS16545-4810
350.532	5.813	10.120	8.321	6.989	1.799	1.332	37.200	54.000	2.338	1.716	.651	IRAS16548-3321
340.898	-2.038	9.974	7.542	5.917	2.432	1.625	-51.600	-22.800	.564	1.466	.096	IRAS16555-4545
341.102	-1.911	7.004	5.045	3.821	1.959	1.224	-64.100	-31.400	506	1.536	.299	IRAS16557-4531
347.840	3.382	9.715	7.488	6.085	2.227	1.403	-44.600	-19.800	1.318	1.562	.555	IRAS16560-3657
340.066	-2.960	8.025	5.277	3.651	2.748	1.626	-25.400	7.100	237	1.612	.266	IRAS16567-4659
351.131	5.206	10.037	7.514	5.407	2.523	2.107	-17.800	15.000	806	1.548	129	IRAS16589-3315
339.879	-3.727	12.073	8.772	6.321	3.301	2.451	-63.400	-32.700	.022	1.800	.264	IRAS16596-4736
335.878	-7.248	6.157	4.836	3.686	1.321	1.150	29.800	56.600	-1.110	1.220	305	IRAS17020-5254
340.406	-3.951	6.156	4.598	3.381	1.558	1.217	-51.100	-28.500	900	1.250	090	IRAS17025-4719
338.646	-5.305	9.124	6.703	5.030	2.421	1.673	-70.600	-41.300	.360	1.845	.139	IRAS17026-4932
345.331	269	15.916	11.669	8.455	4.247	3.214	19.000	51.100	.452	1.789	1.180	IRAS17029-4111
37.696	30.522	4.597	3.600	3.059	.997	.541	-75.300	9999.000	1.429	1.016	046	IRAS17050+1714
351.734	3.877	11.046	8.972	7.573	2.074	1.399	-109.400	-89.700	1.576	1.575	.366	IRAS17057-3334
341.150	-4.463	10.717	7.373	5.081	3.344	2.292	-1.900	29.200	174	1.925	.365	IRAS17076-4702
345.051	-1.855	13.208	11.891	11.328	1.317	.563	-11.000	18.000	447	2.754	1.681	IRAS17088-4221
353.078	3.499	10.748	8.149	6.042	2.599	2.107	-100.500	-69.100	189	1.487	.279	IRAS17109-3243
359.599	8.036	6.817	5.354	4.399	1.463	.955	-80.700	-53.900	.031	1.291	092	IRAS17114-2448
357.809	6.542	6.565	4.568	2.996	1.997	1.572	-30.300	600	560	1.710	.634	IRAS17122-2707
339.246	-6.987	8.419	6.430	5.055	1.989	1.375	35.700	58.200	378	1.693	.005	IRAS17132-5003
346.001	-2.502	7.790	5.883	4.717	1.907	1.166	-16.900	15.800	.059	1.551	019	IRAS17146-4158
343.581	-4.367	10.686	9.134	8.081	1.552	1.053	-90.300	-87.900	.961	1.327	093	IRAS17153-4501
359.337	6.714	9.095	6.833	5.417	2.262	1.416	-52.200	-18.600	.768	1.773	.576	IRAS17155-2546
355.262	3.593	14.304	12.424	10.680	1.880	1.744	-94.000	-82.500	2.653	1.996	1.318	IRAS17165-3053
349.804	320	15.637	14.684	14.179	.953	.505	-18.000	8.000	1.153	3.003	2.162	IRAS17168-3736
342.971	-5.267	5.821	4.518	3.766	1.303	.752	-46.200	-13.400	528	1.191	209	IRAS17175-4602
2.476	8.126	10.303	8.308	6.912	1.995	1.396	-65.900	-37.600	1.173	1.345	075	IRAS17181-2225
346.294	-3.213	9.373	6.968	5.320	2.405	1.648	-12.800	22.100	.392	1.396	.155	IRAS17186-4208

Tabela C.1 - Continuação

10	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \ km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
326.929	-15.882	9.801	7.752	6.181	2.049	1.571	-56.500	-37.500	071	1.887	.215	IRAS17189-6501
358.427	5.124	12.186	9.211	7.295	2.975	1.916	-27.700	9999.000	1.844	1.585	.569	IRAS17190-2725
347.868	-2.279	10.060	8.027	6.408	2.033	1.619	-97.800	-68.800	.829	1.474	.025	IRAS17193-4019
353.594	1.410	15.660	14.406	13.454	1.254	.952	-234.300	-206.700	2.216	2.415	1.816	IRAS17205-3330
347.224	-3.060	5.380	3.911	3.272	1.469	.639	68.800	95.000	.478	1.286	.322	IRAS17208-4117
355.780	2.761	15.220	13.559	12.667	1.661	.892	2.900	20.400	2.205	2.140	1.184	IRAS17211-3056
357.710	4.052	13.597	12.601	11.789	.996	.812	-73.100	-54.000	2.093	2.120	.558	IRAS17212-2837
354.812	2.072	15.151	14.039	13.561	1.112	.478	114.700	138.200	2.018	2.034	1.496	IRAS17212-3207
.124	5.112	14.934	13.881	13.099	1.053	.782	-151.000	-135.000	2.211	2.705	1.458	IRAS17233-2602
352.605	183	16.066	14.457	12.761	1.609	1.696	-47.600	-6.300	-1.428	1.291	.295	IRAS17239-2812
327.683	-16.126	5.873	4.817	3.836	1.056	.981	11.300	9999.000	.340	.992	110	IRAS17244-6431
1.462	5.604	10.590	8.204	6.770	2.386	1.434	37.000	41.300	1.622	1.427	.372	IRAS17248-2439
347.728	-3.868	7.313	6.171	5.305	1.142	.866	-8.300	1.600	1.519	1.638	.329	IRAS17259-4119
357.113	2.332	14.394	13.204	12.480	1.190	.724	-76.600	-48.300	2.330	2.145	1.477	IRAS17262-3005
340.416	-8.720	7.694	5.916	4.712	1.778	1.204	-92.100	-62.400	.336	1.570	097	IRAS17262-5003
.185	4.289	13.750	10.055	7.627	3.695	2.428	-73.500	-41.700	.809	1.411	069	IRAS17265-2626
2.809	5.984	14.694	13.654	13.088	1.040	.566	-75.600	-51.600	.476	1.480	.107	IRAS17266-2319
4.628	6.708	12.501	9.945	8.214	2.556	1.731	19.800	38.200	2.063	1.678	.593	IRAS17283-2125
358.883	2.494	10.293	8.848	7.930	1.445	.918	-64.300	-39.100	2.102	1.980	1.128	IRAS17301-2831
8.042	8.329	11.462	8.873	7.023	2.589	1.850	59.700	85.200	1.705	1.701	.262	IRAS17303-1741
353.298	-1.537	16.890	14.583	13.006	2.307	1.577	48.700	73.300	1.168	2.581	1.160	IRAS17316-3523
359.910	2.663	13.846	12.794	12.271	1.052	.523	36.500	59.000	1.999	1.734	.830	IRAS17320-2734
.687	2.980	9.706	8.399	7.514	1.307	.885	-133.200	-130.500	2.323	1.603	.464	IRAS17327-2644
4.806	5.476	15.488	11.671	8.968	3.817	2.703	-37.800	-5.500	2.346	1.732	.519	IRAS17332-2156
2.080	3.590	9.209	7.053	5.780	2.156	1.273	6.100	9999.000	1.031	1.410	.546	IRAS17337-2514
359.428	1.897	11.601	8.806	6.967	2.795	1.839	-126.800	-88.500	1.967	1.971	1.160	IRAS17337-2823
359.991	2.230	13.128	9.906	7.691	3.222	2.215	-123.300	-88.500	1.536	1.827	.322	IRAS17338-2744
2.147	3.458	14.067	12.787	12.223	1.280	.564	19.500	35.400	2.503	1.954	.707	IRAS17344-2515

Tabela C.1 - Continuação

10	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \; km/s$	$\mathbf{V}_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
5.456	5.421	11.245	9.189	7.655	2.056	1.534	22.900	9999.000	2.558	1.775	.369	IRAS17349-2125
3.901	4.381	12.875	9.852	7.854	3.023	1.998	166.500	189.100	2.291	1.693	.848	IRAS17351-2317
353.170	-2.492	12.991	11.282	9.502	1.709	1.780	33.800	55.400	2.482	1.810	.862	IRAS17352-3601
350.713	-4.083	11.594	9.196	7.231	2.398	1.965	-56.200	-23.900	.407	1.510	.157	IRAS17353-3856
359.141	1.137	12.754	11.315	10.440	1.439	.875	-145.000	-127.000	2.855	3.517	1.353	IRAS17359-2902
.080	1.683	11.205	8.863	6.834	2.342	2.029	136.600	173.400	1.890	1.900	1.220	IRAS17361-2757
359.592	1.330	13.641	12.203	11.601	1.438	.602	17.700	43.100	1.871	2.368	1.398	IRAS17363-2833
.776	1.885	11.790	10.446	9.947	1.344	.499	-136.600	-106.700	2.000	1.660	.260	IRAS17370-2715
344.434	-8.360	14.459	11.177	8.852	3.282	2.325	-89.200	-63.000	1.706	1.692	.096	IRAS17371-4630
.583	1.651	13.708	10.317	8.200	3.391	2.117	-5.100	9999.000	1.890	1.725	.761	IRAS17374-2732
358.235	.113	5.978	3.466	2.266	2.512	1.200	-28.000	11.000	-2.037	1.197	.327	IRAS17376-3021
355.328	-1.791	8.986	7.711	7.146	1.275	.565	68.300	79.800	2.499	1.747	1.168	IRAS17379-3349
359.708	.879	13.079	11.310	10.554	1.769	.756	31.300	46.600	2.522	2.234	2.153	IRAS17383-2841
355.641	-1.743	10.484	9.528	9.018	.956	.510	-246.000	-224.900	2.480	3.216	1.576	IRAS17385-3332
1.380	1.765	14.520	13.041	12.563	1.479	.478	-142.700	9999.000	2.224	2.227	1.705	IRAS17389-2648
5.519	4.083	8.879	6.940	5.632	1.939	1.308	-11.600	8.100	.494	1.434	.042	IRAS17399-2204
334.970	-14.303	8.154	6.397	5.168	1.757	1.229	-70.200	-49.900	.366	1.674	.241	IRAS17401-5730
352.652	-4.027	10.994	8.603	6.757	2.391	1.846	.200	33.800	.421	1.365	.145	IRAS17403-3716
5.239	3.739	13.032	10.282	8.389	2.750	1.893	-90.700	9999.000	2.355	1.622	.777	IRAS17405-2229
4.150	2.961	8.024	6.562	5.606	1.462	.956	19.000	37.900	1.897	1.831	.112	IRAS17409-2349
350.250	-6.047	10.834	8.129	6.384	2.705	1.745	-145.000	-108.500	1.026	1.446	.013	IRAS17427-4022
353.258	-4.309	10.920	8.636	6.978	2.284	1.658	-79.400	-49.300	1.130	1.386	.111	IRAS17431-3654
3.098	1.679	8.336	6.125	4.670	2.211	1.455	-23.800	16.000	967	1.139	076	IRAS17433-2523
11.396	6.617	15.426	13.801	12.287	1.625	1.514	-1.800	29.500	243	1.560	.353	IRAS17436-1545
355.684	-2.976	13.432	11.190	9.260	2.242	1.930	-187.700	-160.600	2.121	1.728	.655	IRAS17437-3409
5.263	2.583	16.222	12.733	9.677	3.489	3.056	-138.900	-110.000	1.908	1.922	.594	IRAS17448-2304
11.405	6.109	8.437	6.772	5.590	1.665	1.182	6.900	31.400	1.050	1.333	.136	IRAS17455-1601
355.234	-3.712	6.566	5.011	4.055	1.555	.956	600	9999.000	161	1.080	.047	IRAS17456-3454

Tabela C.1 - Continuação

								-				
10	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \; km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
358.656	-1.710	7.187	5.432	4.279	1.755	1.153	-7.800	19.800	749	1.880	.665	IRAS17459-3057
7.831	3.720	10.868	8.188	6.448	2.680	1.740	130.100	9999.000	2.044	1.740	.512	IRAS17464-2017
9.414	4.609	11.032	8.524	6.969	2.508	1.555	-54.300	-33.800	2.799	2.172	004	IRAS17466-1829
12.396	6.317	8.508	6.336	5.044	2.172	1.292	-44.000	-8.800	.342	1.319	.089	IRAS17468-1503
5.128	1.489	14.744	11.050	7.920	3.694	3.130	105.700	134.800	.790	1.860	.548	IRAS17486-2345
11.063	5.007	10.311	7.784	6.144	2.527	1.640	49.000	75.000	1.011	1.776	.158	IRAS17487-1652
9.897	3.826	10.150	7.693	6.083	2.457	1.610	-17.200	8.800	1.328	1.667	.027	IRAS17505-1828
359.752	-2.554	12.551	11.144	10.606	1.407	.538	40.200	67.600	2.007	2.119	.703	IRAS17519-3027
10.513	3.474	13.281	9.388	6.896	3.893	2.492	132.200	165.300	1.472	1.575	.764	IRAS17531-1807
7.961	1.445	14.898	13.726	13.210	1.172	.516	-34.000	-9.000	1.802	3.042	2.293	IRAS17550-2120
16.177	6.123	10.179	8.278	6.941	1.901	1.337	3.800	25.200	1.485	1.451	.219	IRAS17553-1154
55.422	24.025	3.589	2.787	2.239	.802	.548	-39.900	-24.900	.170	1.010	.260	IRAS17554 + 2946
8.222	1.188	9.993	7.772	6.096	2.221	1.676	-51.400	-35.400	.701	1.391	.737	IRAS17566-2115
15.665	5.236	15.352	14.483	13.925	.869	.558	-19.100	900	1.028	1.387	.235	IRAS17574-1247
3.356	-2.422	6.189	5.128	4.526	1.061	.602	-46.200	-14.000	.358	1.104	.195	IRAS17596-2716
11.897	2.187	13.299	11.791	10.478	1.508	1.313	3.620	28.620	1.674	2.582	1.361	IRAS18006-1734
13.589	3.084	9.712	7.267	5.615	2.445	1.652	-41.100	9999.000	310	1.440	.000	IRAS18009-1539
9.103	.297	14.472	12.559	11.687	1.913	.872	-14.400	9999.000	.006	1.743	.871	IRAS18017-2055
348.064	-11.489	6.349	5.133	4.369	1.216	.764	-79.400	-57.500	.109	.950	.090	IRAS18028-4455
13.696	2.487	15.001	13.881	13.370	1.120	.511	-9.900	9.500	1.793	1.967	1.248	IRAS18033-1551
48.758	19.780	6.343	5.468	4.745	.875	.723	21.900	27.300	1.700	1.210	.010	IRAS18033+2229
10.981	.782	14.842	13.422	12.886	1.420	.536	143.300	170.100	2.079	2.623	1.427	IRAS18039-1903
9.834	.007	14.797	10.545	8.026	4.252	2.519	59.100	97.700	1.840	1.540	3.160	IRAS18044-2026
23.155	7.238	7.550	5.912	4.761	1.638	1.151	-34.200	-20.300	252	1.399	173	IRAS18050-0518
3.243	-4.084	15.373	11.393	8.491	3.980	2.902	-30.300	-3.400	1.736	1.951	.660	IRAS18059-2811
.203	-5.806	9.032	7.538	6.244	1.494	1.294	214.900	243.900	.936	1.352	212	IRAS18061-3140
.203	-5.806	9.032	7.538	6.244	1.494	1.294	214.900	243.900	.936	1.352	212	IRAS18061-3140
61.473	23.164	7.612	5.687	4.404	1.925	1.283	-9.100	18.200	135	1.379	.096	IRAS18076 + 3445

Tabela C.1 - Continuação

10	b^0	J	Н	К	J-H	H-K	$\mathrm{V}_b \; km/s$	$V_r \ km/s$	$12 \ \mu {\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
25.010	7.335	12.414	10.553	9.317	1.861	1.236	5.000	8.300	.085	2.613	.716	IRAS18081-0338
58.263	21.637	6.083	5.117	4.267	.966	.850	15.100	33.200	.070	1.180	330	IRAS18099+3127
11.273	848	13.779	12.915	12.409	.864	.506	8.000	25.000	1.466	2.641	1.185	IRAS18105-1935
22.196	5.086	15.596	11.074	7.869	4.522	3.205	7.200	29.000	1.352	2.381	1.113	IRAS18107-0710
10.361	-1.957	11.019	8.566	6.794	2.453	1.772	-56.600	9999.000	.528	1.281	.496	IRAS18128-2055
12.819	901	15.237	13.555	12.608	1.682	.947	-67.000	-45.000	.964	1.966	1.665	IRAS18139-1816
1.916	-6.873	17.371	13.572	10.382	3.799	3.190	-11.100	16.000	1.061	1.554	.126	IRAS18143-3040
20.384	2.984	15.986	12.663	10.082	3.323	2.581	32.400	9999.000	1.112	1.998	.616	IRAS18147-0946
5.710	-5.061	12.059	9.404	7.575	2.655	1.829	83.600	115.500	1.757	1.562	.069	IRAS18151-2629
5.853	-5.342	7.025	5.587	4.541	1.438	1.046	3.000	7.900	.092	1.110	001	IRAS18165-2629
8.954	-3.888	14.556	11.366	9.327	3.190	2.039	-9.300	22.500	951	1.102	123	IRAS18172-2305
27.591	5.724	13.609	11.997	10.783	1.612	1.214	45.100	51.900	4.220	2.753	.846	IRAS18187-0208
23.217	3.294	10.721	8.464	6.946	2.257	1.518	80.900	103.600	1.979	1.438	.525	IRAS18191-0707
16.847	212	12.886	11.386	10.694	1.500	.692	4.400	33.500	.255	1.718	.873	IRAS18193-1424
20.449	1.361	10.832	8.093	6.128	2.739	1.965	21.000	56.000	.346	2.003	121	IRAS18207-1029
26.597	4.482	18.017	13.708	10.032	4.309	3.676	7.000	8.200	1.744	2.075	.476	IRAS18212-0335
41.020	11.470	6.601	5.772	5.176	.829	.596	40.000	50.000	1.620	.830	.100	IRAS18223+1217
20.591	.421	13.450	11.919	10.878	1.531	1.041	35.500	63.900	1.540	2.090	1.489	IRAS18243-1048
1.264	-9.784	6.829	5.342	4.278	1.487	1.064	-17.600	9999.000	.132	1.178	.112	IRAS18251-3234
8.749	-6.107	11.412	9.284	7.682	2.128	1.602	115.000	134.000	2.074	1.666	.095	IRAS18254-2418
21.456	.491	16.678	14.366	13.500	2.312	.866	97.000	135.100	535	2.597	1.839	IRAS18257-1000
20.763	-1.465	14.176	11.636	10.418	2.540	1.218	49.500	9999.000	-1.790	1.030	.130	IRAS18314-1131
25.045	.277	17.410	11.999	8.587	5.411	3.412	72.700	113.600	2.000	1.670	3.260	IRAS18332-0655
20.206	-2.526	13.305	10.156	7.803	3.149	2.353	9.400	41.500	.600	1.529	027	IRAS18342-1230
25.057	350	15.852	13.121	11.528	2.731	1.593	130.300	155.000	3.035	3.856	2.723	IRAS18355-0712
30.990	2.569	15.582	14.351	13.772	1.231	.579	32.200	54.600	3.297	2.685	1.577	IRAS18361-0036
21.597	-2.327	13.173	11.541	9.888	1.632	1.653	19.600	52.100	054	1.401	.108	IRAS18361-1111
20.827	-2.729	11.727	10.627	10.027	1.100	.600	12.900	19.700	2.751	2.391	1.478	IRAS18361-1203

Tabela C.1 - Continuação

10	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \ km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu \mathrm{m}$	25-60 $\mu {\rm m}$	Nome IRAS
15.128	-5.980	5.380	4.222	3.410	1.158	.812	33.400	9999.000	498	1.181	431	IRAS18373-1835
25.076	-1.188	14.228	9.910	7.261	4.318	2.649	-14.500	19.300	1.759	2.020	1.215	IRAS18386-0734
23.078	-2.274	14.201	13.147	12.205	1.054	.942	-78.700	-47.000	1.518	2.308	.648	IRAS18387-0951
26.821	-1.394	13.035	10.243	7.681	2.792	2.562	38.900	73.000	1.702	1.780	1.065	IRAS18425-0607
52.496	11.071	7.846	6.792	6.128	1.054	.664	-15.400	-1.800	3.029	1.326	.512	IRAS18441+2216
33.008	.541	14.072	12.454	10.765	1.618	1.689	33.800	41.900	2.094	2.594	1.578	IRAS18470+0015
19.937	-6.285	11.519	8.553	6.520	2.966	2.033	48.900	83.200	2.144	2.368	.327	IRAS18475-1428
35.274	1.540	9.805	7.620	6.180	2.185	1.440	107.200	136.300	1.103	1.340	.412	IRAS18477+0243
17.941	-7.363	5.335	4.178	3.415	1.157	.763	39.400	9999.000	.392	1.287	.267	IRAS18478-1643
15.490	-8.570	5.948	4.958	4.281	.990	.677	1.500	19.700	1.031	1.690	.616	IRAS18478-1926
35.708	1.378	12.478	9.130	6.935	3.348	2.195	113.800	149.200	1.687	1.927	1.067	IRAS18490+0302
41.383	3.862	8.087	6.269	4.961	1.818	1.308	37.200	59.000	1.364	1.617	.375	IRAS18506+0912
36.292	.271	14.106	9.757	6.968	4.349	2.789	84.000	121.000	.457	2.063	.846	IRAS18540+0302
45.790	4.798	7.936	6.737	5.964	1.199	.773	94.200	109.300	1.956	1.378	.115	IRAS18554+1333
46.357	5.013	11.565	9.226	7.449	2.339	1.777	70.800	101.700	1.735	1.333	.387	IRAS18556+1409
57.096	10.016	8.238	7.256	6.571	.982	.685	45.400	53.600	2.243	1.326	275	IRAS18568 + 2554
49.387	6.203	6.489	5.510	4.852	.979	.658	-1.100	6.200	2.520	.950	.390	IRAS18569+1722
39.432	1.044	16.883	12.907	10.192	3.976	2.715	20.900	49.900	2.715	2.203	1.652	IRAS18571+0611
41.585	1.956	10.956	7.847	5.735	3.109	2.112	34.800	63.800	1.202	2.068	.718	IRAS18578+0831
10.818	-13.321	10.408	7.425	5.602	2.983	1.823	-4.900	9999.000	.086	1.761	.050	IRAS18580-2536
46.580	4.274	10.546	8.779	7.137	1.767	1.642	51.800	77.200	.468	1.614	189	IRAS18588+1400
16.804	-10.829	8.855	6.625	5.180	2.230	1.445	6.500	31.100	.107	1.415	.017	IRAS18588-1915
37.118	847	16.501	14.945	14.311	1.556	.634	72.700	101.500	2.592	3.400	2.387	IRAS18596 + 0315
49.343	5.155	9.120	7.746	6.797	1.374	.949	20.900	37.200	2.045	1.377	116	IRAS19007+1652
42.467	1.578	10.005	7.640	5.917	2.365	1.723	-4.900	24.600	1.426	1.452	.263	IRAS19008+0907
46.035	3.387	11.200	8.302	6.286	2.898	2.016	46.300	78.100	1.407	1.954	.215	IRAS19010+1307
46.108	2.993	14.331	11.096	9.002	3.235	2.094	-53.100	-22.600	2.250	1.810	.540	IRAS19026+1300
46.726	3.272	11.526	9.370	7.724	2.156	1.646	30.000	65.400	2.775	1.494	.600	IRAS19027+1341

Tabela C.1 - Continuação

l0	b^0	J	Н	Κ	J-H	H-K	$\mathbf{V}_b \; km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
48.993	4.430	12.001	9.840	8.284	2.161	1.556	-87.500	-58.900	2.470	1.310	020	IRAS19028+1613
50.351	4.760	8.138	6.749	5.891	1.389	.858	25.000	53.200	1.630	1.100	.060	IRAS19041+1734
43.158	.868	16.958	13.187	10.259	3.771	2.928	-70.100	-43.900	1.997	1.728	.913	IRAS19047+0924
47.761	3.123	8.850	7.245	6.242	1.605	1.003	-1.800	55.400	2.488	1.602	.118	IRAS19052+1431
37.062	-2.547	13.621	10.782	8.862	2.839	1.920	4.600	36.300	1.270	1.928	.182	IRAS19055+0225
28.405	-7.071	6.654	5.429	4.620	1.225	.809	53.100	72.000	.932	1.221	310	IRAS19058-0718
49.332	3.740	5.636	4.647	4.009	.989	.638	-114.400	9999.000	2.270	.980	.550	IRAS19060+1612
44.461	1.156	10.867	8.358	6.731	2.509	1.627	19.100	54.500	1.187	1.673	.312	IRAS19061+1041
46.488	1.815	11.816	10.042	8.750	1.774	1.292	40.000	54.500	2.667	1.877	.736	IRAS19076+1247
45.470	.943	8.062	6.491	5.351	1.571	1.140	23.600	42.700	.643	1.387	687	IRAS19088+1129
33.445	-6.326	12.935	10.113	8.125	2.822	1.988	82.000	90.800	1.209	2.318	.215	IRAS19122-0230
60.669	7.740	6.912	5.751	4.934	1.161	.817	38.800	9999.000	.664	1.037	153	IRAS19129+2803
20.529	-13.550	6.654	4.860	3.457	1.794	1.403	-36.200	-6.900	-1.702	1.101	066	IRAS19157-1706
57.125	5.116	13.439	9.646	6.883	3.793	2.763	10.900	46.300	-1.496	1.777	.268	IRAS19161+2343
53.885	3.102	15.925	11.505	8.436	4.420	3.069	34.500	58.100	1.910	1.958	.764	IRAS19172+1956
45.134	-1.654	13.713	10.702	8.489	3.011	2.213	31.800	59.900	1.587	1.692	303	IRAS19175+0958
53.683	2.910	9.164	7.191	6.148	1.973	1.043	37.700	64.100	1.292	1.468	.404	IRAS19176+1939
56.186	3.954	9.795	7.840	6.659	1.955	1.181	-31.300	3.700	1.920	1.160	.260	IRAS19187+2221
46.144	-1.474	15.639	14.690	14.142	.949	.548	-34.800	-7.600	2.118	2.352	1.366	IRAS19188+1057
52.333	1.837	6.232	4.958	4.223	1.274	.735	1.000	29.100	1.640	1.070	.670	IRAS19189+1758
63.549	7.720	11.655	9.387	7.677	2.268	1.710	-10.900	14.500	1.811	1.878	.135	IRAS19190+3035
52.468	1.805	18.027	15.564	14.289	2.463	1.275	.000	29.000	4.308	4.637	2.481	IRAS19193+1804
55.508	3.079	11.262	9.023	7.438	2.239	1.585	32.000	57.300	1.092	1.293	003	IRAS19206 + 2121
58.985	4.934	7.307	6.263	5.555	1.044	.708	17.300	40.000	1.812	1.213	198	IRAS19206 + 2517
56.314	3.523	10.989	8.964	7.378	2.025	1.586	20.500	43.700	1.560	1.380	.190	IRAS19206+2216
51.928	.579	7.732	5.443	4.244	2.289	1.199	3.700	26.800	660	2.010	.320	IRAS19227+1700
52.069	.596	6.311	4.648	3.589	1.663	1.059	14.600	18.700	530	1.280	.200	IRAS19229+1708
68.743	9.394	6.030	4.633	3.649	1.397	.984	-34.900	-14.000	-1.490	1.330	230	IRAS19231+3555

Tabela C.1 - Continuação

								-				
1^{0}	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \ km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
49.843	831	7.558	5.715	4.496	1.843	1.219	62.700	88.100	.462	1.777	.032	IRAS19237+1430
50.125	977	6.962	5.297	4.345	1.665	.952	36.800	9999.000	1.540	1.030	.630	IRAS19248+1441
58.647	3.582	8.025	6.593	5.708	1.432	.885	-40.300	-17.600	1.430	1.130	330	IRAS19252+2420
51.804	225	17.839	15.797	14.799	2.042	.998	-17.000	21.000	.581	2.636	1.655	IRAS19254+1631
50.201	-1.308	11.578	8.710	6.853	2.868	1.857	32.700	63.600	1.647	1.828	.147	IRAS19261+1435
53.903	.727	14.109	10.054	7.461	4.055	2.593	-82.500	-62.100	1.270	1.930	1.050	IRAS19261+1849
64.908	6.602	5.843	4.992	4.352	.851	.640	22.800	38.700	1.460	1.190	.010	IRAS19265+3116
51.221	950	14.895	10.883	8.299	4.012	2.584	-74.400	-54.000	2.360	1.910	1.160	IRAS19268+1539
22.123	-16.111	7.545	6.140	5.054	1.405	1.086	-85.000	-65.300	.148	1.286	416	IRAS19281-1646
51.816	-1.558	11.968	9.080	7.086	2.888	1.994	-10.900	22.700	1.072	1.478	186	IRAS19303+1553
56.143	.668	11.656	9.245	7.340	2.411	1.905	-15.800	8.700	1.650	1.300	.010	IRAS19310 + 2044
48.090	-3.873	9.044	7.292	6.028	1.752	1.264	45.900	79.800	1.135	1.271	047	IRAS19312+1130
56.401	.709	15.043	11.164	8.667	3.879	2.497	-9.900	24.600	2.800	1.670	.840	IRAS19314 + 2059
57.550	1.217	13.668	12.003	10.747	1.665	1.256	12.300	29.100	2.370	2.350	1.060	IRAS19319+2214
49.397	-3.646	6.614	5.370	4.638	1.244	.732	16.400	42.700	1.669	1.361	.262	IRAS19330 + 1245
55.148	506	10.517	8.021	6.319	2.496	1.702	-38.800	-3.300	.152	1.390	.287	IRAS19333+1918
60.200	2.041	16.413	11.986	8.883	4.427	3.103	-17.700	5.700	1.893	2.111	.179	IRAS19344 + 2457
56.410	308	13.087	10.636	8.445	2.451	2.191	-26.200	-1.480	452	2.455	.991	IRAS19352 + 2030
56.410	308	13.087	10.636	8.445	2.451	2.191	-26.200	-1.480	452	2.455	.991	IRAS19352 + 2030
55.308	936	11.540	8.812	6.954	2.728	1.858	-33.500	7.300	.950	1.480	.140	IRAS19352 + 1914
55.720	913	14.580	12.018	9.776	2.562	2.242	37.300	62.700	2.710	1.770	.480	IRAS19359 + 1936
68.912	6.495	11.177	8.457	6.585	2.720	1.872	-79.900	-55.400	1.510	2.019	.247	IRAS19360 + 3442
63.955	3.476	6.045	4.605	3.933	1.440	.672	8.800	38.400	630	1.280	170	IRAS19371 + 2855
76.747	10.396	7.499	5.882	4.767	1.617	1.115	-41.700	-11.000	.077	1.390	050	IRAS19375 + 4322
68.508	5.763	7.814	6.610	5.797	1.204	.813	-6.300	11.900	1.440	1.370	280	IRAS19382+3400
52.218	-3.627	5.776	4.198	3.650	1.578	.548	-11.600	21.600	325	1.418	299	IRAS19386 + 1513
52.438	-3.540	8.710	6.852	5.691	1.858	1.161	48.100	74.500	1.600	1.752	.044	IRAS19387+1527
55.134	-2.203	8.049	6.314	5.243	1.735	1.071	-15.400	10.100	1.320	1.330	.250	IRAS19395 + 1827

Tabela C.1 - Continuação
1 ⁰	b^0	J	Н	К	J-H	H-K	$\mathbf{V}_b \; km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu {\rm m}$	25-60 $\mu {\rm m}$	Nome IRAS
56.322	-1.523	9.413	7.233	5.846	2.180	1.387	25.000	28.200	1.140	1.380	.180	IRAS19395+1949
59.650	.358	16.502	12.183	9.352	4.319	2.831	-7.700	21.400	1.660	1.960	.750	IRAS19396+2338
73.253	7.911	7.339	6.018	5.224	1.321	.794	-10.800	12.900	1.448	1.606	.080	IRAS19403+3909
58.972	501	4.288	3.347	2.670	.941	.677	10.900	47.200	.313	1.112	340	IRAS19414+2237
69.887	5.593	9.182	6.924	5.301	2.258	1.623	-65.500	-31.200	-2.139	1.382	077	IRAS19422+3506
68.419	4.673	6.900	5.545	4.596	1.355	.949	-3.100	22.300	090	1.080	420	IRAS19425+3323
77.481	9.730	7.239	6.074	5.331	1.165	.743	-58.700	-41.500	.577	.898	323	IRAS19426+4342
56.733	-2.943	12.905	10.375	8.616	2.530	1.759	-81.700	-55.400	2.751	1.754	.205	IRAS19456+1927
59.463	-1.515	9.090	6.825	5.489	2.265	1.336	900	26.300	.440	1.399	.000	IRAS19462+2232
70.424	4.923	14.634	10.884	8.149	3.750	2.735	11.400	35.400	.895	1.755	.416	IRAS19464+3514
65.766	1.993	7.312	5.896	5.023	1.416	.873	-57.100	-29.500	1.360	1.500	070	IRAS19471+2944
58.498	-2.534	7.150	5.785	4.864	1.365	.921	2.800	9.600	1.170	.970	410	IRAS19479+2111
65.439	1.250	10.205	7.504	5.576	2.701	1.928	-39.000	-5.000	.256	2.028	024	IRAS19493+2905
63.677	.168	6.745	4.928	3.779	1.817	1.149	8.200	47.300	.230	1.560	.940	IRAS19494+2701
59.172	-2.677	7.789	6.210	5.133	1.579	1.077	-5.400	10.000	1.087	1.518	.111	IRAS19499+2141
60.014	-2.198	9.990	8.245	7.021	1.745	1.224	23.800	51.500	1.601	1.548	.005	IRAS19500+2239
58.031	-3.604	10.933	9.269	7.936	1.664	1.333	-72.600	-57.200	1.851	1.790	209	IRAS19508+2014
63.827	124	9.586	6.947	5.312	2.639	1.635	-10.000	20.000	.006	1.619	.111	IRAS19508+2659
59.892	-2.707	7.924	6.770	6.100	1.154	.670	-8.100	-4.900	2.440	1.170	.260	IRAS19516 + 2217
63.892	428	11.396	8.846	7.522	2.550	1.324	-47.100	-14.500	1.810	1.230	.610	IRAS19522+2653
72.245	4.471	7.528	6.392	5.724	1.136	.668	-15.800	-7.200	1.910	1.070	.480	IRAS19529 + 3634
68.451	1.268	13.628	10.906	8.713	2.722	2.193	10.000	31.400	1.640	2.460	.650	IRAS19565 + 3140
66.714	162	7.756	6.250	5.321	1.506	.929	9.100	9999.000	1.760	1.120	110	IRAS19579 + 2926
69.224	1.408	5.218	4.122	3.369	1.096	.753	-1.800	11.900	.460	.950	.100	IRAS19579+3223
63.644	-2.317	14.156	11.424	9.342	2.732	2.082	-24.500	41.800	2.270	1.670	.540	IRAS19588 + 2541
67.897	371	4.070	2.714	1.998	1.356	.716	5.500	7.300	-1.900	1.190	.240	IRAS20015+3019
36.358	-20.417	6.906	3.923	2.059	2.983	1.864	-32.000	-7.500	-4.118	1.376	.151	IRAS20077-0625
74.347	.774	6.382	5.071	4.294	1.311	.777	-17.600	6.400	.820	1.320	1.550	IRAS20140+3620

Tabela C.1 - Continuação

1^{0}	b^0	J	Н	K	J-H	H-K	$\mathbf{V}_b \ km/s$	$V_r \ km/s$	$12~\mu{\rm m}$	12-25 $\mu \mathrm{m}$	25-60 $\mu {\rm m}$	Nome IRAS
72.899	855	3.717	2.646	1.873	1.071	.773	11.900	18.700	-1.400	.940	400	IRAS20165+3413
67.438	-4.726	8.798	6.691	5.179	2.107	1.512	34.500	59.000	.662	1.489	.291	IRAS20171+2732
59.013	-10.989	5.305	4.442	3.759	.863	.683	23.700	33.200	.630	.960	.110	IRAS20194+1707
70 792	-3 477	10 867	8 509	6 749	2 358	1 760	-14 500	11 800	761	1 549	- 208	IBAS20211+3100
71 730	-2.038	6 665	5.036	4 080	1 620	956	-19 100	4 500	- 446	1.516	- 092	IRAS20211 $+ 3205$
71.755	12.900	0.000 F 7F0	4.052	4.000	1.029	.900	-19.100	4.500	440	1.510	092	ID A $COOPAG + 1.45G$
57.845	-13.239	5.758	4.953	4.265	.805	.688	78.600	89.500	.660	.960	290	IRAS20246+1456
63.337	-10.196	8.792	6.310	4.340	2.482	1.970	-88.900	-56.300	835	1.562	.539	IRAS20267+2105
67.999	-7.303	8.461	6.582	5.127	1.879	1.455	2.800	9.000	.553	1.711	111	IRAS20280+2631
67.999	-7.303	8.461	6.582	5.127	1.879	1.455	2.800	9.000	.553	1.711	111	IRAS20280+2631
75.638	-3.593	6.469	5.183	4.327	1.286	.856	-10.800	.500	.170	1.110	300	IRAS20351+3450
75.136	-4.281	7.242	6.007	5.121	1.235	.886	7.300	20.900	1.646	1.344	312	IRAS20363+3401
78.004	-3.101	8.486	6.195	4.662	2.291	1.533	-64.400	-36.300	870	1.190	.200	IRAS20403+3700
73.814	-6.343	9.305	7.002	5.555	2.303	1.447	-32.700	1.800	1.073	1.798	123	IRAS20403+3143
72.399	-7.630	7.401	6.277	5.615	1.124	.662	3.700	25.100	2.740	1.320	.290	IRAS20410+2949
74.315	-6.762	10.784	8.813	7.250	1.971	1.563	-112.500	-87.100	1.790	1.446	764	IRAS20432+3151
6.229	-40.796	5.291	4.074	3.432	1.217	.642	-17.500	9999.000	.146	1.208	025	IRAS20571-3706
67.139	-19.580	5.962	5.113	4.538	.849	.575	-2.700	5.500	1.470	1.100	220	IRAS21079+1822
70.474	-17.563	8.883	7.948	7.294	.935	.654	-55.000	-37.800	3.574	1.723	.660	IRAS21100+2205
104.908	2.414	16.407	10.725	6.857	5.682	3.868	-40.000	-9.800	-1.598	2.231	.875	IRAS22177+5936
89.594	-20.241	5.412	4.584	4.026	.828	.558	-21.200	-12.600	1.200	.940	.120	IRAS22180+3225
97.905	-20.560	5.155	4.088	3.556	1.067	.532	-57.300	9999.000	1.194	.989	.187	IRAS22510+3614
			'	/		'						

Tabela C.1 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD502	117 7889	02 7807	1.66	3	6 704	3.6	0.87
11D1999	110.0174	-02.1691	1.00	-5	7.62	-5.0	1.50
ПD1565	119.0174	-00.8925	0.00	-40	7.05	-0.5	1.00
HD1/43	119.5117	-00.4914	-0.37	-50	8.33	-5.4	1.02
HD1810	119.6144	-00.4463	2.24	-52	8.11	-5.0	1.50
HD1976	118.6839	-10.6275	2.38	-7	5.575	-1.8	0.15
HD2083	120.9137	+09.0357	1.07	-5	6.906	-3.6	0.87
HD2329	119.8285	-04.1746	2.03	-14	7.459	-1.7	0.81
HD2451	120.3225	-00.2507	-1.11	-37	8.74	-4.5	1.41
HD2654	120.5281	-00.4209	2.05	-1	7.392	-1.7	0.99
HD2905	120.8361	+00.1351	0.79	-2.3	4.189	-6.9	0.96
HD3360	120.7757	-08.9143	5.46	2.0	3.666	-2.5	0.24
HD3366	121.9112	+10.0502	2.87	-15.1	6.968	-1.7	0.99
HD3950	121.5642	-10.5112	0.22	-92	6.944	-4.4	1.29
HD4768	122.8090	-03.1998	-1.31	-35.0	7.57	-5.8	1.38
HD4841	122.9313	+00.9094	-1.15	-26	6.921	-7.0	1.95
HD5005	123.1231	-06.2436	-0.81	-24	7.76	-5.5	1.11
HD5394	123.5769	-02.1484	5.32	-6.8	2.39	-5.0	1.11
HD5458	123.6281	-00.2956		-42	9.02	-2.5	1.44
HD5551	123.7079	+00.8524	-0.48	-51.0	7.76	-6.0	2.37
HD6182	124.4223	-01.0247	0.72	-47	8.33	-6.1	1.95
HD6343	124.4038	+03.1406	3.97	-7.8	7.257	-0.4	0.84
HD6417	124.8897	-05.0597	2.63	-24	7.107	-1.0	0.75
HD7252	125.6820	-01.8678	2.30	-3.8	7.185	-3.6	1.05
HD7636	126.4201	-05.0635	1.79	-10	6.891	-3.6	1.17
HD7694	126.7000	-07.2331	0.67	-8.9	7.388	-3.6	0.57
HD7902	126.6801	-04.4566	1.18	-29	6.997	-5.7	1.38
HD8965	127.6845	-02.2655	0.07	1	7.297	-4.0	0.90

nome	1^{0}	\mathbf{b}^{0}	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD9105	127.3846	+00.8210	-0.58	-37.7	7.54	-6.3	1.89
HD9311	128.0284	-01.7711	2.44	-39.3	7.261	-5.8	1.56
HD11241	131.5739	-06.7051	3.17	-3	5.511	-2.5	0.06
HD11415	129.8451	+01.6466	7.38	-8.1	3.342	-1.7	0.27
HD11606	131.0706	-02.5788	3.78	12.5	7.02	-3.6	0.93
HD12302	131.8088	-01.9514	2.94	7	8.11	-3.6	1.53
HD12509	130.7819	+02.6412	-0.18	-18.6	7.136	-4.4	1.83
HD13561	134.2135	-04.5480		-44	8.85	-4.0	1.11
HD13716	133.9986	-03.2875	2.69	-50	8.30	-4.9	1.80
HD13831	134.4577	-04.2149	1.03	-45	8.26	-5.4	1.20
HD13841	134.3783	-03.9338	1.83	-38.9	7.39	-6.0	1.17
HD13854	134.3814	-03.9054	1.37	-41.5	6.499	-6.3	1.38
HD13866	134.5037	-04.2192	2.92	-45.2	7.51	-6.0	1.05
HD13970	134.6348	-04.2559	-0.58	-27	8.43	-1.0	0.96
HD14134	134.6393	-03.7308	-0.93	-43.7	6.543	-7.1	1.77
HD14143	134.6483	-03.6919	0.69	-41.7	6.65	-7.1	2.04
HD14162	134.6874	-03.7108		-37	9.37	-4.0	1.98
HD14220	136.2555	-08.0140	2.52	-45.8	7.188	-1.1	0.63
HD14250	134.8039	-03.7116		-48	9.09	-4.0	1.80
HD14302	135.1039	-04.4208		-43	8.64	-4.9	1.53
HD14357	135.0001	-03.8887		-41.1	8.59	-4.9	1.59
HD14434	135.0766	-03.8190	-0.97	-20	8.59	-5.5	1.44
HD14443	135.0116	-03.5873		-39.2	8.05	-6.0	1.53
HD14605	135.4127	-04.0477		-28	9.58	-4.0	1.65
HD14818	135.6167	-03.9333	0.92	-46.0	6.269	-7.1	1.41
HD14956	135.4233	-02.8622	0.98	-24	7.24	-7.1	2.64
HD15325	135.9919	-03.1013		-35	8.63	-4.1	2.04
HD15472	131.1259	+09.7256	1.00	-47.3	7.91	-2.5	0.81

m 1 1	aa	a	~
Tabela	(22-	(Continu	2020
Labora	0.2	Comunia	acao

					-		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD15558	134.7243	+00.9248	2.01	-50	7.95	-5.5	2.61
HD15571	136.2211	-02.8141		-42.5	8.39	-5.3	2.43
HD15629	134.7692	+01.0144	2.13	-48	8.46	-5.5	2.25
HD15690	136.3205	-02.6557	0.77	-45	8.02	-6.0	2.46
HD17505	137.1905	+00.9027	1.98	-17	7.10	-5.5	2.16
HD18326	138.0260	+01.5002	1.80	-38	7.94	-5.2	2.07
HD18352	137.7273	+02.1610	1.76	-1.5	6.845	-3.6	1.47
HD19243	138.1317	+03.6412	1.62	-24.7	6.503	-3.6	1.44
HD19268	143.1409	-05.2146	4.70	6.0	6.30	-1.0	0.75
HD20017	145.9026	-07.6710	1.99	-28	7.91	-0.4	1.23
HD20134	140.1639	+02.1589	2.54	-12.5	7.47	-3.6	1.14
HD20336	137.4570	+07.0610	4.07	-3.4	4.728	-3.6	0.39
HD20365	145.6002	-06.0578	6.18	-4	5.158	-1.7	0.51
HD20418	145.7366	-06.1223	6.78	3.3	5.036	-1.1	0.45
HD20809	146.7784	-06.5014	5.22	3.6	5.30	-1.2	0.45
HD21278	147.5226	-06.1853	5.72	2.3	4.97	-1.7	0.87
HD21428	147.4461	-05.6961	5.84	-2.0	4.678	-1.0	0.63
HD21448	149.9945	-09.3715	1.38	-14.3	7.14	-2.6	1.80
HD21803	150.6082	-09.1796	2.09	2.4	6.41	-3.3	0.81
HD22192	149.1729	-06.0897	4.66	-1.1	4.310	-1.0	0.24
HD22253	144.2776	+00.9244	-0.07	5	6.545	-4.9	1.83
HD22928	150.2834	-05.7684	6.18	4	2.99	-2.2	0.06
HD23675	148.1032	-01.2905	0.33	2	6.82	-4.9	2.10
HD23800	148.3254	-01.3348	2.34	-18	6.98	-4.1	1.74
HD23982	141.6439	+07.4252	1.91	-15	8.08	-3.6	1.47
HD24431	148.8384	-00.7085	0.48	-9.9	6.795	-5.3	2.07
HD24432	151.1206	-03.4953	-0.41	-10.8	6.874	-4.4	2.19
HD24560	153.8943	-06.5329	0.35	-14.9	7.78	-3.6	1.38

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD25090	143.1862	+07.3411	2.23	-3	7.34	-3.6	1.92
HD25443	143.6820	+07.3544	1.45	-1.6	6.784	-4.9	1.83
HD25638	143.6704	+07.6576	3.03	-9	6.93	-5.6	2.31
HD25940	153.6542	-03.0451	5.89	0.8	4.003	-2.5	0.54
HD26420	157.9981	-06.6580	5.49	-4.1	8.02	-2.5	1.56
HD26906	155.7426	-03.1140	-0.64	-13	8.01	-3.5	1.29
HD27192	152.8033	+00.5738	2.74	-15.8	5.546	-3.3	0.87
HD27396	156.0804	-02.4046	7.03	1.3	4.814	-1.9	0.51
HD27795	156.8108	-02.1710	1.86	-21	7.424	-1.7	1.62
HD28446	151.9143	+03.9508	-1.53	-7	5.772	-5.4	1.29
HD29866	163.0614	-03.2835	6.02	41	6.096	-0.4	0.63
HD30650	161.8026	-00.4460		35	7.48	-1.0	0.63
HD31327	168.1414	-04.4022	0.28	-5	6.098	-6.0	1.71
HD31617	162.8908	+00.4976	1.89	3.5	7.40	-3.3	0.72
HD32343	150.9872	+10.7958	4.86	-11.0	5.03	-3.6	0.45
HD32630	165.3538	+00.2717	14.87	7.3	3.158	-1.7	0.27
HD32641	179.9050	-10.7283	4.02	1	6.711	-1.0	1.02
HD32656	177.1763	-08.6986	4.49	16.9	6.604	-1.0	0.81
HD32672	167.5261	-01.3526	1.29	2.2	7.77	-1.7	0.99
HD32990	179.2494	-09.5637	1.01	16.2	5.504	-2.5	1.11
HD33152	169.1414	-01.7263	0.14	-5.5	8.13	-3.6	1.65
HD33203	168.9461	-01.4900	1.59	8.6	6.76	-4.9	2.85
HD33232	166.0220	+00.7811	3.09	0	8.24	-2.5	0.81
HD33357	165.1851	+01.6060	3.16	3	8.55	-3.6	0.78
HD33604	166.9465	+00.6746	0.28	7.0	7.38	-3.6	0.87
HD33988	162.2218	+04.7735		-32.9	6.95	-3.6	1.47
HD34078	172.0813	-02.2592	2.24	59.1	5.998	-4.6	1.38
HD34333	170.4281	-00.5788	2.70	-1.1	7.83	-1.0	1.14

Tabela C.2 - Continuação

nome	l^0	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD34576	170.6049	-00.2523	0.38	-0.4	7.50	-1.0	0.75
HD34656	170.0380	+00.2706	-0.13	0	6.801	-5.5	1.50
HD34759	166.5652	+02.9270	5.08	13.1	5.200	-0.8	0.39
HD34921	170.0534	+00.7103	0.39	-20.5	7.45	-5.0	1.32
HD35395	184.5796	-08.3918	1.76	11.5	6.771	-4.9	1.86
HD35532	188.0045	-10.3182	4.98	31.4	6.229	-1.7	0.51
HD35653	173.7297	-00.5141	1.69	3	7.497	-4.0	1.20
HD35671	187.0657	-09.4221	4.88	18.0	5.398	-1.0	0.51
HD35708	183.7529	-07.1715	4.69	13.1	4.865	-1.7	0.33
HD35921	172.7613	+00.6103	1.78	-29	6.85	-5.7	1.50
HD36371	175.7664	-00.6120	0.80	-0.2	4.744	-6.3	1.14
HD36374	180.1066	-03.5004	3.22	20	7.2	-1.2	1.32
HD36653	191.0806	-09.9940	6.35	19.1	5.588	-1.7	0.51
HD36819	182.9544	-04.5207	5.44	23.0	5.371	-1.7	0.57
HD37202	185.6864	-05.6360	7.82	20	3.03	-3.6	0.33
HD37366	177.6302	-00.1136	2.13	25	7.64	-1.0	0.75
HD37367	179.0360	-01.0258	2.77	19.6	5.989	-2.5	1.32
HD37438	181.8989	-02.7087	6.58	14.8	5.162	-2.5	0.39
HD37657	167.5683	+06.7886	1.61	47.8	7.25	-3.6	1.08
HD37711	190.0929	-07.3135	4.36	21.1	4.832	-2.5	0.39
HD37967	184.6216	-03.4329	2.97	16.4	6.227	-2.5	0.42
HD38010	182.7534	-02.2002	3.81	20	6.82	-3.6	1.11
HD38622	193.1739	-07.3303	4.08	29.2	5.268	-2.5	0.33
HD39477	179.7188	+02.3553		4	7.69	-1.0	1.38
HD39680	194.0744	-05.8765	0.37	18.4	7.89	-5.5	1.02
HD39698	188.9800	-02.8837	2.32	7.2	5.901	-2.5	0.51
HD40005	192.1505	-04.1927	3.52	32	7.23	-1.4	0.69
HD40111	183.9655	+00.8388	1.55	8	4.823	-6.1	0.36

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD41117	189.6918	-00.8604	0.10	16.8	4.646	-7.1	1.26
HD41253	204.8881	-09.2072	3.03	33.8	7.31	-0.8	0.93
HD41285	192.8334	-02.3732	3.32	-5.0	7.79	-1.0	0.45
HD41398	182.2568	+03.8739	-1.30	17.9	7.49	-6.0	1.44
HD41541	170.2207	+10.6783	4.67	4.6	7.064	-1.0	0.75
HD41690	188.6036	+00.7466	0.85	16.6	7.75	-3.6	1.44
HD41753	194.8064	-02.7212	6.10	24.1	4.403	-1.7	0.12
HD41943	195.6147	-02.9091	2.66	15	6.94	9.9	0.54
HD41997	194.1450	-01.9811	1.10	-18	8.46	-5.5	2.10
HD42087	187.7518	+01.7688	-0.51	16	5.765	-5.9	1.02
HD42088	190.0428	+00.4848	2.38	23.4	7.56	-5.5	1.17
HD42352	196.1555	-02.5736	1.18	14	6.928	-3.8	0.75
HD42545	194.1344	-01.1180	4.21	22.0	4.947	-1.0	0.15
HD42560	195.8074	-02.0649	5.14	24	4.442	-1.7	0.27
HD42597	201.8162	-05.3103	1.11	23	7.05	-2.5	0.57
HD42655	199.2532	-03.8492	2.89	6.5	7.49	-1.0	0.51
HD42896	190.8225	+01.2454	-0.70	-7	8.62	-3.6	0.57
HD42908	200.8519	-04.3082	1.29	-22	8.10	-2.5	0.72
HD43112	196.4932	-01.5540	2.38	36	5.891	-3.6	0.00
HD43285	203.4236	-05.1276	4.39	26	6.050	-1.0	0.15
HD43301	208.0641	-07.5973	3.37	9	7.2	-1.0	0.39
HD43317	205.0189	-05.9381	2.85	13	6.611	-1.0	0.45
HD43384	187.9942	+03.5287	1.56	13.2	6.291	-6.3	1.71
HD43818	188.4873	+03.8746	1.45	18.2	6.923	-5.7	1.74
HD44112	216.3616	-10.5868	3.96	29	5.246	-2.5	0.12
HD44172	196.4153	+00.1033	3.80	-17	7.33	-0.5	0.27
HD44173	199.0002	-01.3162	0.15	18.8	6.539	-1.0	0.39
HD44637	196.3370	+00.8013	2.51	43	8.00	-3.6	1.44

Tabela C.2 - Continuação

					-		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD44700	206.3574	-04.5190	2.97	29.6	6.381	-2.5	0.45
HD44701	212.6184	-07.8130	2.93	8	6.541	-1.9	0.39
HD44811	192.4013	+03.2098	1.22	10	8.44	-5.3	1.35
HD44965	199.5636	-00.4096	-0.27	28	7.83	-4.4	1.47
HD45314	196.9593	+01.5246	2.19	-1.9	6.598	-4.8	1.38
HD45321	214.2108	-07.6201	2.69	10	6.141	-0.9	0.51
HD45418	214.0432	-07.4130	3.02	14.6	6.485	-1.0	0.39
HD45542	192.4207	+04.3455	6.49	39.4	4.14	-0.7	0.09
HD45546	214.5161	-07.3862	2.41	24.5	5.035	-2.5	0.18
HD45677	222.0883	-10.9763	2.82	21.6	8.05	-2.5	0.69
HD45725	216.6614	-08.2139	4.72	20	4.60	-2.5	0.15
HD45727	216.6631	-08.2124		23	5.60	-2.5	0.40
HD45910	205.3273	-01.9468	0.12	6.5	6.74	-3.6	1.68
HD46056	206.3359	-02.2472		21	8.16	-5.2	1.50
HD46064	222.4211	-10.5144	2.84	2.3	6.16	-2.5	0.24
HD46149	206.2200	-02.0389	-0.15	36.5	7.594	-5.2	1.50
HD46150	206.3058	-02.0695	1.97	36.3	6.75	-5.5	1.35
HD46185	221.9706	-10.0784	2.22	6.9	6.790	-1.0	0.27
HD46202	206.3134	-02.0035		28.4	8.204	-4.8	1.20
HD46223	206.4382	-02.0737	0.57	43.4	7.32	-5.5	1.62
HD46380	217.5275	-07.5604	0.63	15	8.05	-3.6	2.07
HD46484	206.7824	-01.7606	1.10	18	7.65	-3.6	1.86
HD46485	206.8975	-01.8363	2.15	15	8.20	-5.2	1.92
HD46487	211.9875	-04.5179	6.08	25	5.083	-1.0	0.33
HD46573	208.7297	-02.6311	0.83	29	7.96	-5.5	1.95
HD46769	210.2926	-03.1910	1.14	10.2	5.791	-1.7	0.75
HD46867	206.4380	-01.0178	-1.81	19	8.34	-4.0	1.50
HD46883	202.0472	+01.3230	-0.15	10	7.79	-4.0	2.04

Tabela C.2 - Continuação

nome	l^0	\mathbf{b}^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD46966	205.8096	-00.5491	-1.22	42.6	6.865	-5.2	0.81
HD47032	207.0827	-01.1108	0.13	10	8.89	-5.4	2.25
HD47129	205.8740	-00.3111	-0.74	24.5	6.060	-5.2	1.11
HD47240	206.9758	-00.7466	-0.68	33	6.183	-6.1	0.96
HD47299	219.1065	-06.9924		22	8.93	-1.7	0.63
HD47360	207.3292	-00.7869	0.07	20	8.18	-4.0	1.23
HD47382	207.3548	-00.7743	-0.70	27	7.16	-5.4	1.41
HD47398	207.3527	-00.7356		6.2	8.69	-2.5	0.81
HD47417	205.3523	+00.3492	-0.31	32	6.95	-5.0	0.93
HD47432	210.0349	-02.1105	0.96	58.4	6.236	-5.9	1.50
HD47761	215.8239	-04.6748	1.33	29	8.72	-3.6	1.23
HD47777	203.1191	+02.0292	1.50	13	7.95	9.9	0.30
HD47839	202.9363	+02.1985	3.19	33.2	4.66	-5.5	0.30
HD47887	203.3395	+02.0423		20.2	7.17	-3.6	0.18
HD47961	203.0272	+02.2841	3.03	23.3	7.51	-2.1	0.24
HD48038	222.6615	-07.8164	-0.60	-10	6.923	-1.7	0.99
HD48099	206.2096	+00.7982	-0.08	31.0	6.366	-5.5	0.81
HD48215	217.3276	-04.8489	4.06	23	7.004	-0.4	0.00
HD48279	210.4053	-01.1658	-0.66	15	7.98	-5.2	1.26
HD48282	221.2773	-06.7931	2.35	24	8.78	-2.9	1.50
HD48434	208.5443	+00.0621	-0.14	34.5	5.873	-5.4	0.87
HD48914	210.0688	-00.1065	1.11	16	7.22	-3.1	0.39
HD48977	204.7281	+02.8247	2.92	10.3	5.92	-1.7	0.21
HD49330	211.8441	-00.4211	3.36	-0.8	8.95	-4.4	1.68
HD49567	211.7691	-00.0719	1.65	23.2	6.146	-3.7	0.30
HD49787	217.6706	-02.8462	1.30	9.9	7.54	-3.6	0.57
HD49888	224.0267	-05.9863	0.62	3.0	7.23	-3.6	0.39
HD49977	225.4371	-06.6002	1.48	16	7.99	-3.6	1.32

TabelaC.2 - Continuação

					-		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD50083	208.4412	+02.3880	-0.26	5.7	6.92	-3.6	0.90
HD50091	224.7079	-06.0777	1.47	12	8.48	-1.7	0.66
HD50463	227.5823	-07.0280	1.67	16.6	7.125	-1.0	0.51
HD50696	213.1042	+00.7351		36	8.87	-3.6	0.75
HD50707	231.3029	-08.6235	2.02	28.0	4.806	-4.1	0.09
HD51193	216.8761	-00.6514	1.27	59.8	8.06	-3.6	0.69
HD51283	234.0094	-09.3348	1.51	38	5.30	-3.7	0.00
HD51309	228.7030	-06.6777	1.06	41.0	4.385	-4.4	0.33
HD51354	197.5499	+09.4018	2.57	8.4	7.15	-2.5	0.06
HD51756	216.4242	+00.1839	0.56	25	7.18	-4.5	0.63
HD52018	236.5529	-09.8214	3.13	28	5.577	-1.7	0.09
HD52244	228.3264	-05.5170	1.59	-1.2	9.19	-3.6	1.65
HD52266	219.1317	-00.6798	2.06	5	7.23	-4.8	0.90
HD52382	222.1707	-02.1549	1.11	51	6.519	-6.1	1.14
HD52437	233.7232	-08.0327	2.46	9	6.513	-1.3	0.00
HD52559	209.1666	+04.8565	1.59	33.8	6.584	-2.5	0.87
HD52721	224.1711	-02.8553	1.10	21.7	6.58	-3.6	0.90
HD52918	218.0123	+00.6139	2.92	24.8	4.99	-3.6	0.45
HD53138	235.5546	-08.2280	1.27	48.4	3.00	-7.1	0.12
HD53367	223.7092	-01.9008	4.05	18	7.04	-5.0	2.22
HD53456	224.6848	-02.3438	0.47	18.0	7.34	-1.0	0.69
HD53667	222.3066	-00.8552		38	7.76	-4.9	1.56
HD53754	222.4050	-00.8350	1.91	41.5	8.20	-5.3	1.35
HD53755	224.0500	-01.6888	0.92	16	6.49	-4.4	0.75
HD53756	225.9501	-02.7018	0.49	19	7.33	-3.3	0.48
HD53974	224.7096	-01.7938	1.15	31	5.39	-4.5	0.99
HD53975	225.6786	-02.3157	0.66	33	6.479	-5.2	0.63
HD54031	242.0760	-10.5944	3.93	5	6.325	-2.5	0.03

TabelaC.2 - Continuação

nome	10	b ⁰	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD54575	229.0731	-03.4655	-0.39	-28	8.53	-0.7	1.26
HD54662	224.1685	-00.7784	0.56	58	6.232	-5.5	1.08
HD54764	229.4250	-03.4396	-0.09	6.4	6.057	-5.3	0.78
HD54911	229.0011	-03.0610	0.19	16.9	7.32	-4.9	0.42
HD55135	224.4697	-00.3780	1.36	14	7.32	-0.7	0.27
HD55538	229.1283	-02.4189	0.77	17.3	7.83	-3.6	0.69
HD55879	224.7259	+00.3548	1.34	32.6	5.997	-5.0	0.36
HD55885	229.2095	-02.0336	1.86	57	9.53	-1.0	1.02
HD55958	243.2039	-09.2771	2.71	28	6.557	-1.7	0.06
HD56014	238.9727	-07.0737	2.07	0	4.65	-2.5	0.24
HD56139	239.4072	-07.1521	3.53	26	4.028	-2.5	0.06
HD57060	237.8244	-05.3679	1.09	-11	4.98	-7.0	0.42
HD57061	238.1809	-05.5430	1.02	40.4	4.39	-6.1	0.27
HD57150	248.7798	-10.9117	3.85	18.6	4.70	-2.5	0.12
HD57219	248.8171	-10.8560	3.90	18	5.088	-1.7	0.09
HD57236	235.6410	-04.0175	2.11	19	8.79	-5.2	1.53
HD57291	213.0711	+08.1461	1.50	6.8	6.868	-1.3	0.27
HD57573	236.5405	-04.1279	1.86	10	6.574	-1.7	0.12
HD57682	224.4144	+02.6274	-0.81	23.0	6.403	-4.8	0.60
HD58260	248.8729	-09.8330	1.21	36	6.734	-2.9	0.18
HD58286	245.1558	-07.9254	2.82	21.3	5.39	-1.7	0.03
HD58325	243.4139	-06.9437	1.56	7	6.577	-1.7	0.00
HD58343	231.0872	-00.2141	3.45	-4.5	5.20	-3.6	0.51
HD58416	235.0669	-02.3388	2.83	16	9.37	-3.6	0.87
HD58510	235.5203	-02.4717	0.22	20.2	6.80	-2.5	0.99
HD58784	214.8277	+09.0947	0.18	16	8.56	-2.5	0.69
HD58978	237.4106	-02.9978	2.30	25	5.605	-5.0	0.42
HD59094	231.3556	+00.5090	1.39	14.7	8.48	-3.6	1.17

TabelaC.2 - Continuação

					-		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD59211	226.1162	+03.5460	1.76	30	6.622	-0.8	0.39
HD59543	229.7439	+01.9507	2.04	4.7	7.19	-1.0	0.81
HD59550	245.0384	-06.5352	2.85	8	5.762	-2.5	0.00
HD59813	234.2027	-00.1945	0.43	16	9.00	-5.4	2.49
HD59934	232.7589	+00.7756	1.07	16	7.99	-2.5	0.63
HD60098	249.4582	-08.2936	3.52	21	6.649	-2.2	0.12
HD60325	230.4540	+02.5195	2.16	21.7	6.203	-3.6	0.81
HD60606	249.8536	-07.9482	2.56	-9	5.41	-2.5	0.36
HD60855	230.9054	+03.0159	1.97	21.1	5.656	-3.6	0.42
HD61068	235.5303	+00.6084	1.92	22	5.693	-3.6	0.18
HD61556	241.9659	-02.4371		33	4.62	-1.0	0.00
HD61641	250.4637	-07.1586	3.38	19	5.769	-1.0	0.00
HD61831	252.1378	-07.8979	5.68	26.4	4.826	-1.7	0.00
HD61899	252.1281	-07.8163	2.92	22.6	5.751	-1.7	0.36
HD61925	251.5408	-07.4610	2.41	7	6.004	-2.5	0.48
HD62532	234.8255	+02.9295		30	8.39	-3.6	1.02
HD62542	255.9153	-09.2371	4.06	18	8.03	-1.0	0.99
HD62729	233.3728	+04.0682	1.01	15	8.30	-2.5	0.54
HD63118	257.5084	-09.5340	3.68	35	6.015	-1.0	0.24
HD63271	239.1940	+01.3439	3.30	7	5.884	-4.1	0.18
HD63425	255.6805	-08.1530	1.00	45	6.909	-5.3	0.18
HD63465	253.0802	-06.6332	2.63	12.2	5.070	-1.7	0.24
HD63578	260.2454	-10.5571	1.95	34	5.213	-3.6	0.45
HD63806	257.4335	-08.7561	2.65	34	7.113	-2.9	0.18
HD63868	255.1729	-07.4109	2.84	23	6.504	-1.0	0.03
HD63922	260.1797	-10.1854	1.66	24.0	4.091	-5.7	0.27
HD63949	260.6090	-10.4227	1.70	25.2	5.812	-2.5	0.24
HD64287	257.4682	-08.2563	2.06	14	6.329	-1.7	0.06

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD64318	261.0973	-10.2953	2.16	27	6.523	-2.9	0.24
HD64503	253.8994	-05.9253	5.09	-31	4.480	-2.5	0.00
HD64760	262.0569	-10.4234	1.68	41	4.234	-6.1	0.09
HD64802	251.4749	-04.1435	4.07	27.7	5.462	-1.0	0.00
HD65307	228.5895	+10.4356	-0.49	24	9.73	-1.7	0.21
HD65315	255.8909	-06.2553	2.57	13.8	6.766	-1.7	0.03
HD65818	263.4756	-10.2792	2.80	19	4.45	-2.5	0.18
HD65930	262.7772	-09.7338	1.49	18	6.842	-2.5	0.33
HD66464	264.0625	-10.0334	1.24	11	7.226	-2.9	0.27
HD66765	263.0679	-09.1474	1.56	24	6.622	-2.2	0.00
HD66811	255.9759	-04.7057	2.33	-24.0	2.210	-7.0	0.12
HD66834	238.9026	+06.2754	2.07	13.8	6.096	-1.7	0.09
HD67621	263.5449	-08.7026	2.38	18	6.316	-2.9	0.00
HD67797	239.0350	+07.3983	6.90	19.0	4.390	-1.7	0.09
HD67880	236.5250	+09.0769	3.54	32.9	5.645	-1.7	0.06
HD68217	260.0743	-05.9564	2.87	8	5.181	-1.7	0.00
HD68273	262.8026	-07.6858	3.88	35	1.808	-5.5	1.74
HD68324	263.3327	-07.9789	3.54	5	5.217	-1.7	0.00
HD68450	254.4689	-02.0230	1.33	39	6.453	-6.3	0.63
HD68451	264.3210	-08.4855	3.44	20.1	7.32	-3.6	0.27
HD68608	264.5983	-08.5179	2.36	14.4	7.88	-2.2	0.12
HD68980	253.5766	-00.8445	3.33	35	4.81	-2.5	0.24
HD68982	255.6815	-02.2655	0.98	22	7.53	-1.7	0.90
HD69080	250.5241	+01.3538	2.07	-49	6.056	-1.7	0.09
HD69404	262.5754	-06.4616	2.45	13	6.430	-1.7	0.15
HD69973	264.0143	-06.8985	2.40	14	6.860	-1.0	0.03
HD70556	254.9496	+00.1408	2.00	16	5.171	-1.7	0.00
HD70930	264.9776	-06.4970	2.16	27	4.812	-3.6	0.24

Tabela C.2 - Continuação

					~		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD71302	260.5029	-02.8884	1.05	23	5.958	-1.7	0.06
HD71801	254.6046	+02.0305	3.26	24.7	5.737	-1.7	0.12
HD72108	265.1429	-05.2807	1.99	27	5.33	-1.0	0.03
HD72350	262.7051	-03.1949	1.46	24	6.318	-1.8	0.00
HD72787	257.8678	+00.9769	2.39	10	6.462	-1.7	0.03
HD72798	263.7737	-03.4564	1.33	22	6.349	-2.2	0.06
HD73127	268.2368	-06.4245	2.95	7	6.560	-1.0	0.00
HD73390	274.1443	-10.5168	3.39	21	5.241	-1.7	0.15
HD73882	260.1816	+00.6431	2.00	22	7.271	-5.2	2.13
HD74195	270.2507	-06.8002	6.59	16.1	3.63	-1.7	0.06
HD74196	270.3256	-06.8569	6.91	14.6	5.544	0.1	0.00
HD74234	266.5607	-03.8729	1.59	8	6.930	-2.5	0.21
HD74273	267.1345	-04.2723	2.03	18	5.878	-2.5	0.06
HD74371	264.4435	-02.0059	1.21	24.2	5.239	-6.3	0.90
HD74375	275.8221	-10.8598	2.31	12.9	4.318	-3.6	0.36
HD74455	266.6016	-03.6135	1.93	42	5.463	-1.7	0.00
HD74560	270.6001	-06.6620	6.80	22.2	4.817	-1.8	0.00
HD74575	254.9931	+05.7696	3.86	15.3	3.675	-4.9	0.12
HD74753	268.1062	-04.4919	2.15	28	5.131	-1.7	0.00
HD75311	273.8957	-08.4141	5.97	27	4.51	-2.5	0.27
HD75549	263.9417	+00.0116	3.03	20	7.304	-1.7	0.18
HD75821	266.2520	-01.5362	1.21	7	5.094	-5.9	0.14
HD75860	264.1438	+00.2735	1.25	23	7.67	-6.3	2.67
HD75869	260.2306	+03.5767	0.64	30	6.981	-2.5	0.12
HD76161	267.8883	-02.4299	3.00	3	5.889	-0.7	0.00
HD76538	277.3216	-09.9184	2.37	2	5.771	-1.0	0.18
HD76566	265.6415	+00.0542	3.49	22	6.244	-1.7	0.09
HD76640	275.7506	-08.4746	3.75	13	6.348	-2.2	0.12

Tabela C.2 - Continuação

nome	10	\mathbf{b}^{0}	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD76805	271.6157	-04.7861	8.68	22.2	4.699	-1.0	0.09
HD76898	265.2991	+00.8490	2.91	20	7.39	-1.0	0.03
HD77464	271.1594	-03.5233	1.77	27.9	6.69	-2.5	0.18
HD78548	274.9329	-05.6819	2.75	29	6.085	-1.0	0.00
HD78616	266.7858	+01.9728	0.80	26	6.786	-3.6	0.72
HD78958	266.4706	+02.7289	0.74	35	9.02	-6.1	2.64
HD79186	267.3648	+02.2514	-0.26	33.9	5.022	-7.1	1.02
HD79275	268.6751	+01.1395	2.85	7	5.765	-3.3	0.06
HD79351	277.6907	-07.3727	7.79	23.3	3.40	-2.5	0.03
HD79447	280.2161	-09.6057	6.53	17.5	3.947	-2.5	0.03
HD79735	266.5822	+03.8132	5.86	15	5.237	-1.0	0.00
HD81038	280.7272	-08.5971	2.33	17	6.895	-1.0	0.15
HD81188	275.8822	-03.5374	6.05	21.9	2.464	-3.3	0.15
HD81347	271.2958	+01.3854	2.34	20	6.258	-1.0	0.03
HD81370	274.4116	-01.8075	1.27	13	8.81	-5.0	1.29
HD81848	275.1757	-01.9440	7.72	24	5.088	-1.0	0.12
HD82419	274.3086	-00.1984	7.85	10	5.441	-1.0	0.18
HD82919	278.4051	-04.0069	0.72	6	7.11	-1.0	0.33
HD82984	273.0265	+02.0397	3.40	27.4	5.12	-1.3	0.15
HD83043	276.1767	-01.3540		16	8.52	-3.6	0.93
HD83865	277.5256	-01.6452	1.96	13	6.817	-1.0	0.06
HD84816	271.8466	+06.6685	2.27	-4	5.545	-2.5	0.15
HD85953	276.8698	+02.5101	1.91	10.1	5.932	-3.6	0.24
HD85980	273.2544	+07.1374	3.86	5	5.71	-1.3	0.18
HD86352	277.2983	+02.6069	0.70	9.0	6.370	-1.7	0.06
HD86466	278.1992	+01.6570	0.95	19	6.108	-1.7	0.18
HD87026	277.3507	+03.7306	0.92	5	6.882	-1.0	0.03
HD87152	279.1775	+01.4915	2.26	6	6.186	-1.0	0.06

TabelaC.2 - Continuação

nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD87380	280.0511	+00.6533	-0.15	-6	9.10	-4.1	0.87
HD88015	276.8951	+06.1531	2.51	17	6.381	-2.9	0.12
HD88115	285.3155	-05.5300	1.19	-18	8.31	-4.4	0.81
HD88206	279.1499	+03.3956	3.01	14	4.849	-1.8	0.06
HD88825	284.2722	-02.9158	1.65	-2	6.090	-1.0	0.24
HD88907	285.2966	-04.3253	3.19	13	6.405	-1.7	0.24
HD89104	281.7330	+01.3375	2.29	8	6.136	-1.7	0.06
HD89137	279.6941	+04.4484	-1.39	3	7.98	-4.6	0.69
HD89174	280.2494	+03.6794	0.48	-19	7.95	-4.4	1.02
HD89587	279.8352	+05.1930	0.60	7	6.871	-2.2	0.03
HD89740	284.5424	-01.8042	3.28	18	6.942	-1.7	0.21
HD89890	282.9890	+00.8868		10.4	4.50	-1.8	0.09
HD90087	285.1587	-02.1314		-2	7.80	-4.6	1.05
HD90657	285.0172	-00.9032	1.72	6	9.70	-3.6	1.86
HD91272	289.7426	-07.8037	2.64	-8	6.188	-1.0	0.51
HD91465	287.1801	-03.1539	6.56	26.0	3.361	-2.5	0.18
HD91850	285.7298	+00.0510		-9	9.24	-4.4	1.20
HD91943	285.8206	+00.0960	0.70	-7	6.69	-6.3	0.81
HD91969	285.8501	+00.0767	0.68	-2	6.51	-6.3	0.78
HD92044	285.9273	+00.0598		-12	8.37	-4.9	1.29
HD92155	283.8635	+03.9741	1.97	10	6.410	-1.7	0.15
HD92206	286.2243	-00.1694		-10	8.22	-5.5	1.70
HD92287	285.6310	+01.0651	2.55	-9	5.879	-2.9	0.15
HD92464	285.1743	+02.2607	2.46	32	7.112	-1.0	0.18
HD92554	287.6021	-02.0206	-0.04	-38	9.50	-4.4	1.74
HD92714	286.6188	+00.1101		3	9.46	-3.6	1.14
HD92938	289.5635	-05.0021	7.15	24.2	4.82	-1.7	0.18
HD92964	287.1091	-00.3583	0.48	-2.3	5.402	-7.1	1.05

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD00000	226 6022	100 4510	0.95	0	0.00	F 0	1 00
HD92982	286.6982	+00.4516	-0.35	2	8.80	-5.3	1.77
HD93010	288.0866	-02.0500	3.86	4	6.63	-2.9	0.60
HD93030	289.5978	-04.9017	7.43	24	2.78	-4.4	0.24
HD93163	289.6146	-04.7277	3.23	10.5	5.754	-1.0	0.51
HD93194	289.5037	-04.4602	6.74	25.5	4.786	-1.7	0.18
HD93206	287.6660	-00.9423	1.23	-16	6.24	-6.2	1.20
HD93607	289.9660	-04.6948	7.26	16	4.85	-2.1	0.09
HD93714	290.1196	-04.7998	2.90	-1	6.545	-2.9	0.69
HD93843	288.2419	-00.9025		-9	7.33	-5.5	0.81
HD94491	288.1832	+00.5549	2.07	-11	6.242	-1.0	0.18
HD94909	287.9638	+01.9387	-0.34	-29	7.35	-6.2	2.13
HD95029	285.6349	+07.1727	-0.06	-31	8.90	-2.5	0.69
HD95275	287.1694	+04.5087	0.19	-27	8.57	-4.8	0.90
HD96088	289.0539	+01.9922	1.10	12	6.149	-2.9	0.09
HD96706	294.5083	-09.7369	2.89	7.4	5.57	-2.9	0.42
HD97522	292.7799	-04.3205	0.19	4	7.73	-5.7	1.59
HD97670	290.8327	+00.9322	1.79	17.7	5.732	-1.7	0.24
HD98718	289.9556	+06.0864	10.15	9.4	3.90	-1.0	0.00
HD98927	292.3663	-00.0430	-0.84	-9	9.26	-3.6	1.14
HD99556	292.8663	+00.0875	2.10	9.2	5.30	-1.8	0.15
HD99857	294.7778	-04.9402	2.07	-10	7.47	-6.1	1.02
HD99890	291.7512	+04.4294	0.25	-10	8.31	-4.0	0.60
HD99953	293.9332	-02.1273	0.66	2.0	6.479	-7.1	1.44
HD100276	293.3097	+00.7690	1.09	-3.5	7.22	-6.1	0.75
HD100929	293.9736	+00.5070	2.23	11.3	5.833	-2.5	0.30
HD101131	294.7783	-01.6230	1.41	-8	7.16	-5.5	1.05
HD101964	295.2105	-00.6812		-3	8.37	-4.9	0.78
HD102567	295.6111	-00.2402	1.98	-17	8.94	-3.6	0.87

m 1 1	aa	a	~
Tabela	(22-	(Continu	19090
rancia	0.2	Comunia	acao

nome	1^{0}	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD102776	296.1765	-01.7296	7.10	29	4.313	-1.0	0.00
HD102997	295.8919	+00.1997	-0.17	3	6.553	-7.0	1.20
HD103146	295.9640	+00.5474	-0.12	-37	8.36	-4.4	0.90
HD103715	298.5871	-09.2458		-23	9.21	-3.6	1.14
HD103884	296.7590	-00.2232	5.45	19.5	5.552	-1.7	0.12
HD104841	297.6439	-00.7787	4.33	16.3	4.718	-3.3	0.45
HD105627	298.1529	-00.0976	0.03	2	8.18	-4.8	1.02
HD105937	296.7837	+10.0277	9.53	15	3.951	-1.7	0.12
HD106325	298.6094	+00.2666	0.64	2	8.55	-4.4	1.50
HD106343	298.9318	-01.8257	-0.16	-7.0	6.238	-7.1	0.78
HD106344	299.2403	-03.9436	1.98	9	7.121	-1.0	0.42
HD106490	298.2289	+03.7910	8.96	22.2	2.775	-3.3	0.03
HD106730	299.1957	-01.8977		-5	8.47	-3.6	1.10
HD106871	298.4706	+04.4139	0.42	-4	8.48	-5.0	1.20
HD106983	299.3248	-01.3627	9.03	15.8	4.040	-1.7	0.06
HD108248	300.1265	-00.3627		-11.2	1.4	-4.1	0.03
HD108250	300.1194	-00.3867		27	4.786	-2.1	0.15
HD109026	301.4589	-09.3155	10.07	2.5	3.830	-1.8	0.00
HD109668	301.6557	-06.2991	10.67	13	2.677	-2.5	0.00
HD109867	301.7113	-04.3511	0.03	-16	6.264	-6.3	0.78
HD109978	301.5660	+00.4068	0.64	-7	8.85	-5.8	2.25
HD110660	302.1648	-01.1940	0.46	-26	9.93	-3.6	2.43
HD110785	302.1386	+03.2256		-26	10.00	-2.5	0.69
HD110863	302.2507	+02.3129	0.54	-31	9.19	-3.6	1.80
HD110879	302.4492	-05.2412	10.48	42	3.07	-1.7	0.06
HD110956	302.2293	+06.3760	8.24	16.6	4.612	-1.7	0.12
HD111123	302.4622	+03.1796	9.25	15.6	1.297	-5.4	0.18
HD112078	303.3450	+03.7225	9.06	12	4.602	-1.7	0.12

Tabela C.2 - Continuação

nome	l^0	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD112091	303.3646	+05.7004	9.03	13	5.113	-1.0	0.06
HD112092	303.3617	+05.6912	8.64	13.9	3.988	-1.7	0.06
HD112147	303.4095	+03.8496	2.20	-29	9.15	-5.0	1.80
HD112272	303.4864	-01.4947	1.14	-38	7.385	-6.8	3.06
HD112825	304.0641	+03.1666		-5	9.70	-3.6	1.80
HD112843	303.6734	-09.7722	-0.05	-43	9.53	-3.6	1.05
HD113016	304.0565	-01.7781		6	9.15	-2.5	1.23
HD113120	303.8675	-08.6251	2.07	-5	5.958	-3.6	0.93
HD113708	304.5431	-02.3885	0.29	-17	8.14	-4.9	0.78
HD113904	304.6745	-02.4907	0.03	-28.4	5.69	-4.4	0.84
HD114441	305.8034	+07.4031	-0.01	-8	8.050	-3.6	1.26
HD114733	305.8307	+04.3851		-46	9.58	-4.0	1.53
HD114800	305.4781	-00.6145	2.62	-28	7.97	-3.6	1.11
HD114886	305.5205	-00.8265	2.60	-11	6.89	-4.8	1.29
HD115034	305.6154	-01.1398	-0.47	-7	8.81	-3.6	0.96
HD115363	305.8832	-00.9683	0.66	-71	7.82	-6.9	2.43
HD115842	307.0804	+06.8343	0.00	-3	6.041	-6.3	1.56
HD116072	306.7046	+01.6712		3	6.198	-1.3	0.12
HD116087	306.7068	+01.6545	9.20	6	4.505	-1.8	0.06
HD116168	306.7511	+01.4793		-22	9.25	-3.3	1.11
HD116766	306.8774	-01.1801		-20	10.00	-2.5	1.11
HD116849	306.6155	-03.6707	2.08	-36	9.18	-3.6	1.26
HD117024	307.0630	-01.3047	0.47	-12	7.118	-2.5	0.87
HD117111	306.9098	-02.9278	0.27	-19	7.68	-3.6	1.11
HD117216	307.0372	-02.5709	0.18	14	10.28	-3.6	1.68
HD117357	307.6285	+00.7755		-24	9.14	-4.4	1.35
HD117797	307.8593	+00.0448		-25.0	9.22	-5.0	2.16
HD118681	308.8587	+01.7344		8	9.59	-2.5	1.02

Tabela C.2 - Continuação

nome	1^0	\mathbf{b}^{0}	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD118716	310.1919	+08.7210	8.68	3.0	2.265	-3.6	0.09
HD118969	308.5172	-01.3942	0.98	-18	10.02	-3.0	0.72
HD119159	309.9771	+05.3977	1.07	-23	5.997	-3.3	0.24
HD119646	309.2276	-00.2523	-0.10	-15	6.620	-5.5	1.05
HD122450	312.0233	+02.1242	1.20	-26	9.25	-3.6	1.95
HD122451	311.7670	+01.2511	6.21	5.9	0.60	-4.4	0.09
HD122691	311.3309	-00.9293		-9	9.33	-4.0	1.23
HD122879	312.2630	+01.7905	-0.05	2	6.429	-6.3	0.87
HD123056	312.1659	+01.0316		-39	8.22	-4.6	1.38
HD124367	314.1251	+03.9596	6.71	7	5.044	-2.5	0.30
HD124471	311.2647	-05.1046	1.42	-9	5.749	-2.5	0.54
HD127381	318.9302	+09.2450	5.68	-1.5	4.416	-3.3	0.12
HD127489	313.8565	-03.5382	1.87	-33	9.03	-3.6	1.14
HD128293	312.7269	-07.4117	1.09	-10	6.911	-2.5	0.57
HD128345	320.1331	+09.8576	10.51	8	4.034	-1.7	0.12
HD129092	315.2706	-02.8104	2.68	-5	6.387	-1.7	0.36
HD129557	318.5724	+03.7776	1.89	-6.4	6.090	-3.3	0.48
HD129740	314.2880	-05.8998	3.92	8	7.347	-2.2	0.27
HD129954	314.2210	-06.3281	2.85	19	5.880	-2.5	0.51
HD130021	313.2538	-08.4670	3.83	1	6.486	-2.9	0.30
HD131058	315.0320	-06.0587	2.66	-18	6.09	-1.3	0.36
HD131492	316.7113	-03.3107	3.91	3	5.11	-2.5	0.27
HD133242	325.3258	+09.9251		4.5	3.896	-1.7	0.18
HD133518	323.0822	+05.4606	3.21	-2	6.396	-2.9	0.30
HD133738	318.3978	-03.2208	0.85	-8	6.96	-1.8	0.45
HD134657	319.1811	-03.0526	3.93	-12	6.408	-1.0	0.33
HD135160	319.6816	-02.8444	1.70	6	5.73	-3.6	0.51
HD135240	319.6882	-02.9112	0.51	9.2	5.07	-4.8	0.75

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD135591	320.1274	-02.6423	0.02	-3	5.433	-6.2	0.20
HD136239	321.2281	-01.7448	0.65	-61	7.87	-6.3	3.21
HD136504	329.2279	+10.3228	6.47	7.9	3.367	-1.7	0.03
HD140605	328.0997	+01.9425	3.29	-13	7.07	-1.0	0.36
HD141318	326.7903	-00.7335	0.89	-0.7	5.767	-3.6	0.78
HD142468	327.9524	-00.7556	1.43	-40	7.962	-6.3	2.22
HD143699	339.1196	+10.4267	6.19	-1.6	4.880	-1.7	0.18
HD144320	328.5745	-02.3635	-0.44	8	9.248	-3.6	1.35
HD145846	331.2891	-01.1222	-0.95	-38	8.870	-3.6	1.77
HD147971	335.9999	+00.9801	8.16	-9	4.525	-1.0	0.24
HD148259	338.1775	+02.6724	2.19	5	7.42	-3.6	1.14
HD148379	337.2456	+01.5757	2.73	-11.7	5.357	-7.1	2.52
HD148703	345.9415	+09.2184	4.37	1.0	4.224	-2.5	0.09
HD149038	339.3797	+02.5126	0.70	8.6	4.914	-6.3	0.78
HD149711	340.3884	+02.3651	4.75	1.2	5.83	-2.5	0.54
HD149729	333.6768	-03.8418	1.12	0	9.10	-2.5	0.69
HD150041	336.6517	-01.4959	1.88	-18	7.07	-6.3	0.90
HD150475	345.0986	+05.3996		-22	8.73	-2.5	1.35
HD150958	338.5588	-01.1518		-92	7.29	-5.5	2.01
HD151300	338.7414	-01.4876		-47	9.33	-6.0	3.35
HD151890	346.1152	+03.9140	3.97	-25	2.98	-3.0	0.00
HD151985	346.1965	+03.8620	6.31	1.4	3.544	-3.3	0.06
HD152236	343.0275	+00.8700	-1.13	-26.0	4.775	-6.3	2.79
HD152478	336.7830	-04.6360	4.34	19	6.33	-2.5	0.54
HD152723	344.8110	+01.6052	1.20	-4	7.31	-5.5	1.38
HD153716	331.8885	-09.8721	4.51	2.6	5.727	-1.0	0.24
HD154040	346.6866	+01.1463		-18	10.07	-3.6	1.89
HD154043	340.5654	-03.6172	-0.99	-12	7.11	-6.3	2.40

Tabela C.2 - Continuação

					-		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD154090	350.8287	+04.2850	1.22	4	4.866	-4.9	1.56
HD154368	349.9702	+03.2151	2.73	1.5	6.175	-6.1	2.28
HD154911	347.8578	+00.7376		-3	9.10	-3.6	1.86
HD155134	345.4921	-01.3617		-18	8.83	-2.5	1.68
HD155336	352.5813	+03.6409		1	9.45	-2.5	1.44
HD155450	353.2021	+03.9150	0.87	17	6.001	-4.4	0.60
HD155775	348.7967	+00.1456	0.08	-3	6.72	-4.6	0.87
HD155985	343.6290	-03.9221	-0.69	-17	6.489	-6.3	1.32
HD156779	005.4256	+10.3249	2.06	-15.4	9.29	-1.0	0.87
HD157042	342.0137	-06.3284	4.52	-19	5.245	-2.5	0.20
HD157056	000.4644	+06.5524	5.79	-2	3.248	-3.3	0.06
HD157698	342.6497	-06.6804	1.31	-15	7.145	-1.8	0.33
HD158408	351.2739	-01.8446	6.29	8.0	2.70	-5.9	0.00
HD158427	340.7552	-08.8272	13.46	0	2.836	-2.5	0.06
HD158926	351.7444	-02.2144	4.64	-3	1.62	-3.3	0.00
HD159176	355.6666	+00.0493	0.96	-4.0	5.68	-5.5	1.23
HD159864	008.5231	+07.3825	0.47	6.9	8.59	-5.5	1.50
HD160186	008.2282	+06.7426	-2.76	5.8	9.07	-4.0	1.41
HD160578	351.0437	-04.7192	7.03	-14.0	2.375	-3.3	0.03
HD160730	003.5965	+03.0231	1.99	-72	9.89	-5.2	2.91
HD160886	008.8051	+06.0120		-20	9.69	-1.0	0.96
HD161306	016.4229	+09.9317	2.82	-19	8.30	-3.6	2.43
HD161807	351.7785	-05.8490	2.61	-26	7.007	-1.7	0.36
HD162978	004.5367	+00.3012	-0.40	-11	6.198	-5.2	1.05
HD163254	349.8940	-08.6149	0.99	-51	6.740	-1.0	0.15
HD163800	007.0520	+00.6878	-0.18	5	7.01	-5.2	1.83
HD163892	007.1516	+00.6161	0.38	-9	7.48	-5.8	1.59
HD164002	007.1470	+00.4603	3.04	-17	7.41	-4.0	0.93

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD164032	000.8767	-03.2370		17	7.44	-6.1	0.96
HD164103	013.9104	+04.2735	2.88	-31	8.13	-1.8	0.78
HD164188	013.0852	+03.6734	0.51	12	8.69	-4.5	1.41
HD164359	007.6967	+00.3380	1.15	-14	7.53	-5.4	1.17
HD164402	007.1620	-00.0339	-0.14	-13	5.749	-6.2	0.69
HD164438	010.3529	+01.7886	-0.30	-27	7.51	-5.8	1.95
HD164492	006.9995	-00.2550	-3.59	1	7.53	-5.5	0.96
HD164536	005.9627	-00.9092		-10.6	7.11	-1.7	0.51
HD164581	009.0205	+00.8302	0.14	-5.0	6.793	-3.6	1.05
HD164637	007.3435	-00.2284	-0.80	-7	6.723	-4.9	0.57
HD164700	011.9706	+02.3679	2.19	2	7.58	-1.0	0.96
HD164703	007.7429	-00.1026		-10	9.44	-1.0	1.02
HD164704	007.2315	-00.3674		-5	8.12	-1.0	0.57
HD164717	007.4756	-00.2560		-19.4	8.6	-1.7	0.63
HD164738	011.8303	+02.2169	1.10	6	7.22	-1.0	1.14
HD164741	005.1640	-01.6449	1.59	-17	9.01	-4.4	1.68
HD164794	006.0089	-01.2050	0.66	9	5.931	-5.5	0.93
HD164833	007.3423	-00.4681		-14	7.14	-5.4	0.93
HD164844	007.5921	-00.3583	0.65	-9	8.29	-3.6	0.69
HD164883	007.6818	-00.3718		-9.6	8.80	-4.4	0.93
HD164992	007.7749	-00.4450		-25	9.90	-1.0	0.87
HD165016	005.8521	-01.5791	1.54	3	7.35	-5.4	0.63
HD165049	013.9510	+03.0351	2.86	-18.2	8.17	-3.6	1.83
HD165052	006.1212	-01.4819	2.27	3	6.84	-5.5	1.29
HD165285	010.0898	+00.5289		-11	8.42	-4.0	1.77
HD165287	008.2157	-00.5504		5	8.88	-1.0	1.08
HD165288	007.9263	-00.7365		-7	9.25	-1.0	0.87
HD165319	015.1187	+03.3349	1.40	30	7.93	-6.6	2.43

Tabela C.2 - Continuação

-					-		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD165516	008.9268	-00.4446	0.77	-8.5	6.264	-6.1	0.96
HD165612	007.7446	-01.2734		-16	7.82	-1.7	0.87
HD165689	008.3102	-01.0444		-12	8.08	-1.0	0.63
HD165765	007.9787	-01.3366		-20	9.53	-1.0	0.57
HD165808	013.4695	+01.7315	2.49	-16	7.67	-1.0	1.20
HD165812	008.4760	-01.1091	0.41	-24	7.94	-1.0	0.63
HD165857	008.4840	-01.1554		-34	8.86	-1.0	0.75
HD166125	015.5683	+02.5311		-19	9.10	-3.7	2.13
HD166188	012.1238	+00.4899		-23	8.97	-3.6	2.19
HD166197	358.4549	-07.0999	-0.31	-25	6.125	-3.6	0.24
HD166287	013.3616	+01.0830	1.42	-17	7.90	-4.9	1.56
HD166291	011.3104	-00.0482	3.25	-22.8	9.06	-3.0	1.35
HD166304	013.4686	+01.1190		-23	9.34	-3.6	1.35
HD166418	013.5353	+01.0175	0.54	6.4	8.34	-5.7	2.19
HD166443	010.0429	-00.9511	-0.40	-3	8.71	-3.6	1.35
HD166540	013.4347	+00.8059	2.51	-1.6	8.14	-4.5	1.50
HD166546	010.3580	-00.9242	0.05	2.5	7.22	-5.7	1.05
HD166566	014.5058	+01.3779	0.81	-7.3	7.99	-5.3	1.50
HD166568	011.8591	-00.1323		-19	9.19	-3.6	1.35
HD166596	351.8873	-10.9658	1.97	-15.3	5.456	-1.7	0.06
HD166628	011.2599	-00.5086	1.60	6.0	7.19	-7.1	2.13
HD166666	014.6575	+01.3349		-4	9.14	-3.6	1.50
HD166689	013.9616	+00.9125	1.12	-7.4	7.51	-5.7	0.96
HD166716	014.8474	+01.3927	3.11	-5	8.13	-5.6	1.29
HD166734	018.9198	+03.6280	-0.25	-11	8.49	-7.0	4.20
HD166787	011.0639	-00.8013	0.48	-8	8.27	-5.8	2.22
HD166803	015.0594	+01.3819	3.37	-3.2	8.21	-4.9	1.56
HD166852	008.5074	-02.3235		-17	8.58	-2.5	1.44

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD166920	013.2932	+00.2504		-22	10.4	-1.0	1.20
HD166963	013.9363	+00.5596		-20	9.93	-1.0	1.14
HD166964	013.4420	+00.2767		-26	9.00	-1.0	1.08
HD166965	011.8314	-00.6299		-13	8.77	-4.4	1.62
HD166999	011.7283	-00.7055		-6	9.62	-1.0	0.87
HD167000	010.3958	-01.4705		-20	9.28	-1.0	1.20
HD167088	011.8535	-00.8106		-10	8.54	-1.7	0.75
HD167090	010.6023	-01.4739		-10	9.54	-1.0	0.96
HD167224	012.0013	-00.8463		-12.4	8.05	-4.4	0.81
HD167263	010.7552	-01.5789	-0.22	-4	5.971	-6.1	1.05
HD167264	010.4557	-01.7408	-0.33	-6.3	5.347	-6.6	0.87
HD167287	011.9892	-00.9270		0	7.09	-6.1	0.87
HD167311	017.6875	+02.1846	-0.14	-4	8.66	-6.2	2.85
HD167330	017.6588	+02.1628	-1.69	-36	8.24	-6.2	2.82
HD167336	012.5683	-00.6613		1	8.78	-5.7	2.46
HD167397	013.8197	-00.0616		4	8.47	-4.4	1.44
HD167412	012.5526	-00.7930		-18	8.49	-1.0	0.63
HD167436	011.1666	-01.5557		-28	9.55	-1.0	0.69
HD167451	016.8261	+01.5206	1.55	-15	8.30	-6.1	2.97
HD167478	012.5867	-00.8690		-26	9.17	-1.0	1.08
HD167479	012.2634	-01.0262		-10.6	8.16	-1.7	0.87
HD167497	016.1967	+01.1462	4.93	-22.4	9.31	-4.9	2.28
HD167771	012.7022	-01.1329	0.49	1	6.54	-5.2	1.29
HD167815	011.6588	-01.7453	2.32	-7.5	7.61	-2.5	1.26
HD167838	015.3894	+00.2736	1.63	-5.0	6.743	-7.0	1.62
HD167902	013.2155	-01.0190		-19	9.7	-1.0	0.75
HD167971	018.2514	+01.6839	1.30	1	7.45	-6.4	3.18
HD167999	014.3913	-00.4673		-7.3	9.43	-1.0	1.14

Tabela C.2 - Continuação

nome	l^0	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD168021	012.7043	-01.4668		3.5	6.81	-6.2	1.38
HD168075	016.9428	+00.8422		27	8.73	-5.5	2.28
HD168076	016.9373	+00.8375		25	8.18	-5.5	2.37
HD168078	014.0762	-00.7227		-36	10.7	-1.0	1.14
HD168112	018.4388	+01.6228	-0.60	-8	8.55	-5.5	3.03
HD168137	016.9680	+00.7632	5.02	19	8.90	-5.2	2.13
HD168138	011.9985	-01.9219		-7.9	9.31	-1.7	1.08
HD168162	015.5100	-00.0414		-33.1	9.37	-1.0	2.49
HD168163	014.7861	-00.4436		-15	8.72	-1.5	0.96
HD168183	016.8119	+00.6680	0.34	-4	8.18	-5.4	1.80
HD168207	016.6769	+00.5481		-5	9.41	-1.0	1.68
HD168230	012.5852	-01.7346		-2	9.54	-1.7	2.61
HD168302	015.0993	-00.4363	-0.36	-41.1	9.38	-1.0	1.08
HD168352	014.2002	-00.9827	2.01	-23	8.64	-2.5	1.74
HD168368	014.2297	-01.0085	-0.71	-4	9.33	-1.7	1.74
HD168418	014.3024	-01.0283		-20	9.50	-3.6	1.71
HD168444	016.2036	-00.0086	1.89	-16	8.81	-5.2	2.58
HD168489	013.6887	-01.4596		-8.0	8.58	-5.4	1.86
HD168552	014.2555	-01.2536	1.26	-7.4	8.13	-5.9	1.50
HD168571	014.0690	-01.3925	0.64	-4.8	7.78	-5.7	2.22
HD168675	013.6769	-01.7544	1.32	-6	8.91	-1.0	1.50
HD168748	014.4118	-01.4501		-32	10.6	-1.0	1.68
HD168765	014.1408	-01.6248		-17.7	9.39	-1.0	1.68
HD168797	034.3902	+09.1317	0.97	-17.9	6.147	-3.6	0.57
HD168917	016.9136	-00.3128	4.14	-16	8.46	-4.8	2.22
HD169034	017.6553	-00.0693	1.45	-7	8.22	-7.0	3.99
HD169271	013.6706	-02.5616		-11	9.09	-1.7	1.68
HD169419	014.4065	-02.3223		2.6	9.41	-5.6	2.49

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD169454	017.5385	-00.6697	0.00	-25.2	6.65	-6.0	3.36
HD169673	016.2057	-01.6840	1.52	-16.8	7.35	-5.3	0.87
HD169704	011.0266	-04.5074		-16	9.45	-1.0	1.14
HD169727	017.9884	-00.8228		-13	9.34	-5.5	3.36
HD169753	021.9131	+01.2759	1.25	-28.3	7.58	-5.9	2.49
HD169754	020.0232	+00.2388	1.68	32	8.48	-6.8	3.78
HD169755	017.2532	-01.2469		6	9.30	-5.2	2.52
HD170061	017.2050	-01.6003		9	9.38	-4.0	2.28
HD170097	015.4821	-02.6116		14	8.65	-4.4	1.38
HD170159	018.7869	-00.9354	1.75	6	8.36	-6.1	2.37
HD170452	018.9894	-01.2170		-14	8.75	-4.8	2.52
HD170453	017.8720	-01.8004		5	9.18	-4.9	1.83
HD170580	034.1306	+06.5988	1.17	-22.0	6.685	-2.5	1.20
HD170581	018.4700	-01.7057		19	9.43	-4.4	2.10
HD170604	015.8792	-03.0970	3.36	-3.3	8.51	-5.5	1.26
HD170714	025.4644	+01.8513	2.57	-13	7.38	-2.4	1.62
HD170740	021.0574	-00.5259	4.70	-15.4	5.762	-1.7	1.38
HD170783	034.7471	+06.6325	1.06	-4	7.73	-1.0	1.20
HD170938	016.8369	-03.0478	0.11	27	7.92	-6.9	3.09
HD171012	014.5202	-04.3835	1.63	-12.6	6.85	-6.8	1.86
HD171054	018.4851	-02.3355		2	9.14	-3.6	1.38
HD171198	020.0333	-01.7367	2.33	54	9.61	-5.5	2.67
HD171348	011.4178	-06.5237	2.10	-9	7.95	-3.6	1.26
HD171392	018.3302	-02.9477		-3	9.22	-2.5	1.56
HD171469	017.1571	-03.7147		3	9.51	-2.5	1.86
HD171611	013.1534	-05.9989	3.08	-22.8	7.50	-1.0	1.20
HD172252	021.0230	-02.8165		-11	9.57	-3.6	2.67
HD172256	011.4033	-07.7810	0.57	3	8.73	-1.0	0.51

Tabela C.2 - Continuação

nome	l^0	\mathbf{b}^{0}	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD172275	025.0483	-00.7466	1.72	24	9.46	-5.5	3.27
HD172367	025.1974	-00.8095		-11	9.54	-4.4	2.25
HD172427	022.1540	-02.4774		-14	9.46	-4.1	2.22
HD172488	023.9639	-01.6220	3.61	24	7.70	-4.0	2.46
HD172510	018.6178	-04.4452	1.00	-6.0	8.80	-3.6	1.56
HD172694	017.7574	-05.1847	1.65	1	8.23	-4.4	1.50
HD173219	025.8200	-01.7150	-1.41	25	7.88	-3.6	1.44
HD173251	019.3883	-05.0691	-0.44	-46	9.10	-5.3	2.73
HD173375	016.5986	-06.6560	2.84	-11	7.16	-0.7	0.78
HD173438	028.1595	-00.7733	0.00	31	8.26	-6.8	3.00
HD173637	025.3230	-02.5477	-0.76	-46	9.29	-4.1	1.74
HD173991	021.4356	-05.1245	2.04	-16	9.02	-2.5	1.56
HD174261	051.6952	+09.9977	1.26	-15.2	7.13	-1.0	0.51
HD174391	047.0040	+07.5647	2.31	-6.7	6.671	-1.8	0.42
HD174513	025.9512	-03.4866	1.12	-7	8.70	-3.6	0.87
HD174571	040.6168	+04.0999	0.47	12	8.89	-2.5	2.28
HD174886	024.0164	-05.0369	1.57	7.6	7.77	-2.5	1.11
HD175514	041.7070	+03.3784	2.02	-41	8.64	-5.2	2.70
HD175544	033.6627	-00.8447	3.06	-6	7.35	-1.7	0.90
HD175803	051.2476	+07.8754	1.47	-19	8.03	-1.7	1.14
HD175876	015.2845	-10.5825	0.27	14	6.924	-5.5	0.63
HD176254	052.1983	+07.7155	1.91	-6.9	6.741	-1.7	0.81
HD176304	042.8531	+02.8820	0.84	-14.8	6.75	-2.3	1.47
HD176630	028.5450	-05.0398	2.60	-7	7.7	-2.1	0.75
HD176818	053.2754	+07.5631	2.19	-9	7.061	-1.7	1.14
HD176819	052.6680	+07.2448	2.15	-10.3	6.777	-2.5	1.26
HD176871	057.6207	+09.6532	4.68	-14	5.683	-1.0	0.57
HD176914	059.5673	+10.5613	1.67	-5.5	7.032	-1.0	0.51

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD177284	032.5749	-03.7579		-9	8.64	-4.0	2.31
HD177624	043.0678	+01.3717	3.49	-10	6.88	-1.0	1.32
HD177648	055.2631	+07.6730	3.59	-14	7.234	-3.6	0.99
HD177752	033.8531	-03.6349		7	8.36	-1.7	1.20
HD177812	037.5109	-01.7642	3.94	31.7	8.64	-6.1	2.43
HD178129	037.8068	-01.9520	0.12	33.2	7.45	-7.1	1.86
HD178487	025.7844	-08.5621	-0.14	-49.8	8.69	-4.4	1.50
HD178540	056.8727	+07.5993	4.16	-19	6.594	-1.0	0.51
HD179406	028.2285	-08.3118	2.68	-15.3	5.362	-2.5	1.26
HD180126	044.3388	-00.7117	0.74	-3	7.99	-1.7	1.26
HD180398	047.3677	+00.6199	2.83	-33	7.93	-0.7	0.60
HD180554	054.7409	+04.4095	3.58	-17	4.758	-2.5	0.63
HD180587	045.5765	-00.5467	3.62	-5	8.25	-1.0	0.45
HD180844	065.3416	+09.6209	2.25	-30.2	7.22	-1.0	0.21
HD180968	056.3582	+04.8532	1.70	1	5.477	-4.5	0.99
HD181164	059.1408	+06.0971	1.00	-7.6	7.536	-1.7	0.51
HD181360	056.7704	+04.6677	2.60	-14.2	7.62	-1.7	0.99
HD181409	065.7987	+09.2988	1.76	10	6.573	-1.7	0.27
HD181492	064.5489	+08.5872	0.98	-18.6	6.821	-1.3	0.45
HD181858	029.0664	-10.5729	3.88	-10.4	6.67	-1.2	0.57
HD181963	059.0487	+05.2902	1.77	-7	7.434	-2.5	0.99
HD181987	059.0425	+05.2393	2.86	-21	7.33	-1.0	1.02
HD182032	056.3509	+03.7492	2.58	-6	7.50	-1.7	0.81
HD183013	056.1206	+02.3684	2.50	-6.1	7.36	-1.7	0.75
HD183144	049.7305	-01.3123	3.91	4	6.307	-1.0	0.33
HD183261	055.0120	+01.4621	3.62	3	6.875	-1.7	0.63
HD183362	070.7134	+09.7910	1.58	-27.7	6.294	-3.6	0.24
HD183537	055.2026	+01.1794	4.29	-42.7	6.327	-1.0	0.39

TabelaC.2 - Continuação

	.0	. 0		~ / / / ·	, .		
nome	lo	bu	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD184171	067.9725	+07.4392	5.20	-21.8	4.72	-2.5	0.39
HD184279	041.1481	-07.6199	1.64	-6.4	6.98	-4.5	0.57
HD184502	052.2517	-01.7871	1.99	-22.5	7.019	-1.8	0.45
HD184942	060.7694	+02.5476	0.43	-17.1	7.611	-1.7	0.87
HD185268	063.9985	+03.9922	3.73	-20.1	6.447	-1.0	0.33
HD185418	053.6025	-02.1709	1.45	-2	7.519	-4.0	1.50
HD185507	043.2673	-08.0711	4.78	-4.8	5.178	-1.6	0.87
HD185780	074.1711	+09.0540	0.35	-5	7.72	-2.5	0.57
HD185859	056.6419	-01.0031	1.15	5.2	6.540	-6.8	1.77
HD185936	050.9085	-04.4101	1.98	-14.2	5.988	-1.0	0.57
HD186412	058.7343	-00.5981	2.65	-30	6.815	-1.0	0.39
HD186456	045.8188	-08.1251	0.99	-10.5	8.12	-3.6	0.81
HD186587	048.7088	-06.7203		1	7.50	-1.6	1.14
HD186980	067.3909	+03.6582	-0.01	4	7.48	-5.3	1.20
HD187459	068.8088	+03.8515	1.47	-10	6.468	-6.1	1.20
HD187567	046.8312	-09.2768	2.10	-30.1	6.484	-3.6	0.42
HD187811	059.7235	-02.0663	5.27	-30.6	4.893	-3.6	0.09
HD187879	075.2156	+07.1328	1.27	-3.9	5.680	-4.1	0.81
HD187961	049.2308	-08.4932	3.28	-12.6	6.503	-1.0	0.57
HD188001	056.4825	-04.3314	0.23	9	6.243	-7.0	0.96
HD188209	080.9929	+10.0916	0.22	-6.2	5.633	-5.7	0.75
HD188252	081.8068	+10.5126	1.32	-18.3	5.893	-3.6	0.51
HD188439	081.7717	+10.3201	1.08	-65	6.288	-4.9	0.57
HD188461	076.1626	+07.0182	1.68	-12.6	6.976	-1.7	0.39
HD188891	075.5290	+06.1866	-0.18	-24	7.30	-1.7	0.45
HD189066	072.0618	+03.8932	2.93	-23.0	6.010	-1.7	0.39
HD189178	075.6539	+05.9314	2.13	-26.2	5.453	-1.2	0.51
HD189550	058.4517	-05.2369	0.68	-7	7.67	-2.5	0.63

TabelaC.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD189687	073.0729	+03.7595	2.07	-4	5.139	-3.6	0.18
HD189779	067.0598	-00.1263	2.77	-2	8.23	-3.6	1.02
HD190025	078.3463	+06.6750	1.83	-14	7.53	-1.7	0.51
HD190066	060.6853	-04.5385	0.89	15.8	6.515	-6.3	1.08
HD190429	072.5852	+02.6136	0.03	-16	6.63	-7.6	2.00
HD190467	072.9467	+02.7917	1.30	1	8.18	-4.0	0.93
HD190603	069.4863	+00.3895	0.24	21.1	5.659	-6.8	2.10
HD190864	072.4673	+02.0183	0.67	-2	7.79	-5.5	1.56
HD190919	072.5513	+02.0060	-0.02	-15	7.29	-6.1	1.44
HD190993	062.4837	-04.6453	6.68	-5.4	5.064	-1.0	0.39
HD191201	072.7497	+01.7812	1.33	-5.4	7.34	-5.4	1.38
HD191495	072.7417	+01.4141		8	8.42	-4.4	1.11
HD191566	072.7556	+01.3392	1.50	-10.0	7.72	-4.5	1.44
HD191610	073.9148	+02.0441	3.79	-13.6	4.929	-3.6	0.12
HD191612	072.9917	+01.4344	0.11	-27.6	7.84	-5.2	1.71
HD191746	066.9914	-02.7307	1.35	-4.4	7.191	-2.5	0.87
HD191877	061.5650	-06.4473	0.11	-18	6.269	-6.1	0.69
HD191917	073.3386	+01.3038	0.86	-18	7.79	-4.4	0.99
HD192281	077.1247	+03.4038	1.85	-60	7.55	-7.0	2.10
HD192422	075.9550	+02.4452	1.17	-3.8	7.09	-6.1	2.10
HD192445	073.9406	+01.0716	0.56	-4.5	7.23	-3.6	0.45
HD192517	068.9025	-02.4626	2.42	-10.8	7.104	-2.3	0.63
HD192539	070.4149	-01.4478	0.22	-23	7.283	-3.6	1.11
HD192639	074.9011	+01.4794	1.22	-6	7.11	-7.6	2.60
HD192685	065.1876	-05.1705	2.72	-2	4.759	-1.7	0.39
HD192987	074.8712	+00.9892	2.86	-7.5	6.459	-1.6	0.21
HD193007	075.3631	+01.3074		10	7.95	-5.5	1.90
HD193009	071.0309	-01.6810	0.62	-5	7.16	-3.6	1.32

Tabela C.2 - Continuação

					-		
nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD193183	075.9498	+01.4994	0.61	-3	7.019	-6.0	1.92
HD193220	065.6132	-05.7062	2.97	-5	6.974	-1.7	0.51
HD193322	078.0986	+02.7807	2.10	-7	5.82	-5.2	1.41
HD193536	082.8187	+05.8001	1.23	-8.9	6.448	-1.8	0.57
HD193611	076.2830	+01.1881	0.00	-11.1	8.73	-4.4	2.55
HD193683	071.1777	-02.5304	1.56	14.2	7.516	-1.7	0.33
HD193793	080.9303	+04.1771	0.62	21	6.887	-5.5	2.28
HD194279	078.6779	+01.9865	0.08	-31.3	7.09	-7.0	3.60
HD194335	076.0365	+00.0349	3.65	-29.7	5.859	-3.6	0.09
HD194839	079.5172	+01.8727	-0.36	-14	7.53	-6.8	3.60
HD194883	090.4150	+09.5959	1.30	-27.6	7.36	-2.5	0.48
HD195089	080.1876	+02.0631	0.43	-6.6	7.334	-1.7	0.75
HD195556	086.0735	+05.7434	3.75	-22	4.938	-2.5	0.57
HD195592	082.3557	+02.9571	0.92	-28	7.149	-6.4	3.36
HD195965	085.7055	+04.9955	1.91	10	6.980	-4.4	0.75
HD195985	083.1235	+03.0329	2.52	-7	7.67	-1.0	0.57
HD196006	073.4902	-04.2520	2.60	-27	7.309	-1.7	0.39
HD196243	071.5489	-06.1039	1.96	-22	7.589	-1.0	0.51
HD197036	084.3718	+02.5177	1.67	-15.1	6.614	-1.7	0.63
HD197419	076.6371	-04.1780	2.78	-7.1	6.671	-3.6	0.45
HD197511	088.3715	+04.9944	3.53	-3.3	5.404	-2.3	0.63
HD197770	093.8784	+09.0002	0.52	-15	6.341	-2.5	1.80
HD198478	085.7535	+01.4900	1.45	-7.2	4.858	-7.1	1.56
HD198625	086.2838	+01.7059	3.55	-15	6.330	-1.3	0.81
HD198784	079.7677	-04.0284	2.01	-4.0	7.27	-1.2	1.26
HD198820	075.8319	-07.3604	1.67	-18	6.406	-2.9	0.57
HD198846	077.2507	-06.2260	1.04	-56.8	7.32	-5.0	0.99
HD199081	084.9035	-00.1935	6.51	-19.5	4.778	-1.0	0.39

Tabela C.2 - Continuação

nome	10	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD199140	072.7534	-10.4803	1.84	-6.1	6.54	-3.6	0.51
HD199216	088.9208	+03.0268	0.32	-9.3	7.03	-5.3	2.16
HD199218	082.2118	-02.7189	4.82	-22.2	6.696	-0.7	0.24
HD199356	082.0275	-03.1259	1.55	-13	7.157	-3.3	1.17
HD199579	085.6967	-00.2996	0.83	-5.8	5.966	-5.5	1.11
HD199661	094.8188	+07.4691	4.10	-19	6.209	-1.7	0.27
HD200120	088.0296	+00.9707	2.90	1.4	4.74	-3.6	0.69
HD200310	087.1548	-00.1028	2.39	-11.6	5.417	-3.6	0.12
HD200857	094.2496	+05.5848	1.69	-14	7.159	-2.9	2.28
HD201733	087.6975	-01.6774	2.98	9.0	6.61	-2.5	0.21
HD201819	081.0530	-08.0769	1.11	-6.0	6.511	-3.6	0.57
HD201836	089.3633	-00.2529	2.17	-8.8	6.492	-1.0	0.69
HD201910	084.7040	-04.8036	1.80	-12.2	7.389	-1.0	0.39
HD202214	098.5202	+07.9852	0.36	-16.2	5.72	-4.4	1.23
HD202347	088.2232	-02.0773	1.64	-9.0	7.50	-3.6	0.69
HD202654	090.1572	-00.6802	2.10	-26	6.433	-1.0	0.39
HD202904	080.9767	-10.0526	3.62	4	4.43	-3.6	0.33
HD203025	097.9973	+06.5305	1.29	-17.2	6.432	-3.6	1.41
HD203064	087.6101	-03.8411	-0.05	1	5.043	-5.2	0.84
HD203245	091.7007	-00.0615	6.08	-23	5.74	-1.0	0.51
HD203374	100.5129	+08.6223	-0.70	-7	6.692	-5.0	1.86
HD203467	102.7379	+10.6889	3.02	-18	5.185	-3.6	0.63
HD203731	085.8645	-06.7036	3.24	5.1	7.52	-3.6	1.17
HD204116	096.3763	+03.5507	1.21	-23	7.55	-3.6	2.25
HD204150	100.1838	+07.4409		-37	7.72	-4.4	0.87
HD204172	083.3947	-09.9588	1.18	2.8	5.94	-6.2	0.39
HD204403	083.9425	-09.8612	1.84	-20	5.289	-1.9	0.33
HD204536	090.6375	-03.1515	0.78	-15.0	6.849	-1.4	0.69

Tabela C.2 - Continuação

					-		
nome	1^{0}	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD204860	090.1660	-04.1771	2.07	-1	6.944	-1.0	0.51
HD205060	088.4504	-06.4060	2.17	-7	7.219	-0.7	0.45
HD205139	100.5454	+06.6218	1.36	-14.5	5.536	-5.3	1.11
HD205196	098.5710	+04.4109	2.63	-14	7.439	-6.2	2.37
HD206165	102.2713	+07.2469	0.72	-13.2	4.788	-6.0	1.50
HD206267	099.2904	+03.7383	2.78	-7.8	5.62	-5.5	1.59
HD206327	102.0139	+06.7694	0.94	-30	9.19	-2.5	1.05
HD206672	095.4810	-01.3010	1.94	-8.2	4.66	-1.7	0.51
HD206773	099.8009	+03.6199	2.01	-22	6.927	-4.4	1.53
HD207198	103.1363	+06.9949	1.62	-18.4	5.959	-6.1	1.86
HD207308	103.1090	+06.8176	0.68	-23	7.49	-4.0	1.68
HD207329	096.6160	-01.0403	-0.62	-25	7.60	-6.0	1.38
HD207330	094.8324	-03.2189	2.82	-12.3	4.18	-2.9	0.51
HD207538	101.5990	+04.6727	0.30	-14.6	7.30	-4.4	1.89
HD207793	097.3891	-00.9363	2.00	-8.6	6.576	-4.9	1.98
HD208218	103.9834	+06.6198	1.31	-21.8	6.710	-4.4	1.74
HD208392	104.0309	+06.4561	1.39	-25.7	7.03	-4.1	1.68
HD208682	105.8868	+08.4494	2.71	-14.5	5.939	-3.6	0.51
HD208905	103.5307	+05.1673	1.26	-22	7.005	-3.6	1.05
HD208947	106.5489	+08.9962	2.02	2.4	6.400	-1.5	0.69
HD209296	101.0774	+01.2673	1.43	-32	8.29	-0.7	1.20
HD209339	104.5775	+05.8693	0.14	-20.2	6.692	-5.0	1.05
HD209454	104.0837	+05.0727	1.11	-17	7.77	-1.7	1.14
HD209481	102.0052	+02.1835	0.70	-11	5.548	-5.4	1.08
HD209961	096.6421	-06.0059	1.66	-17.8	6.257	-1.7	0.51
HD209975	104.8706	+05.3906	0.60	-12.8	5.11	-6.2	1.02
HD210072	100.8377	-00.3770	1.18	-29	7.64	-2.5	1.65
HD210628	101.7692	-00.0139	2.38	-20.9	6.928	-0.7	0.72

Tabela C.2 - Continuação
nome	1 ⁰	b^0	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
			、 /	~ / /			、 0/
HD210839	103.8279	+02.6108	1.98	-74	5.090	-6.5	1.71
HD212044	100.6411	-04.3508	1.10	-13.6	6.98	-3.6	0.90
HD212120	097.7930	-08.8630	6.40	-9.5	4.551	-0.7	0.39
HD212791	101.6422	-04.3033	0.32	-13.0	8.02	-3.6	0.57
HD213087	108.4991	+06.3878	1.29	-14.7	5.528	-6.1	1.71
HD213322	103.0595	-03.0513	0.45	-10.1	6.781	-1.0	0.75
HD213571	111.4151	+10.5295	2.95	-17.9	7.148	-0.7	0.60
HD214240	101.7905	-07.1539	1.97	-15.3	6.281	-1.9	0.81
HD215371	110.0581	+05.7246	2.92	-23	6.765	-1.7	0.81
HD215835	107.0665	-00.8988	-0.79	-35.4	8.61	-5.5	1.95
HD216014	110.3775	+05.2467	1.54	-20.6	6.88	-4.0	1.77
HD216411	108.0269	-00.3497	-0.27	-44	7.20	-6.9	2.34
HD217050	104.2202	-09.9885	2.97	-11.3	5.42	-2.5	0.39
HD217297	110.8176	+03.5222	0.98	-10.1	7.41	-3.0	1.71
HD217817	109.6353	-00.1745	2.53	-33.3	6.989	-1.7	0.87
HD217943	109.9868	+00.3179	1.69	-17	6.739	-1.7	0.87
HD218066	111.2469	+02.9883	1.38	-9.9	7.67	-3.6	1.98
HD218342	111.3912	+02.7249	0.97	-13	7.46	-5.0	2.13
HD218344	106.6312	-08.4441	2.41	-12.7	7.419	-1.7	0.39
HD218376	109.9477	-00.7834	2.95	-8.5	4.840	-4.5	0.72
HD218440	110.1336	-00.5282	2.44	-4.6	6.418	-2.5	0.87
HD218537	111.7260	+03.0396	2.67	-35.9	6.249	-1.7	0.51
HD218674	106.4698	-09.9277	1.54	-4	6.758	-1.6	0.84
HD218723	112.4855	+04.4328	2.09	-12.3	6.671	-0.7	0.87
HD219063	112.5682	+03.8668	1.22	14.2	7.319	-1.0	0.63
HD219523	112.7468	+03.3093	2.07	-14	7.170	-0.6	0.75
HD220057	112.1293	+00.2104	2.29	-41	6.945	-0.8	0.87
HD220562	111.3998	-03.3683	1.92	-3.7	6.806	-1.8	1.41

Continua na próxima página...

179

nome	l^0	\mathbf{b}^{0}	Parlaxe (mas)	Vr (km/s)	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD221253	112.4657	-02.6588	5.67	-15.9	4.882	-1.2	0.39
HD221711	112.0725	-05.7451	1.61	-4.8	7.53	-1.7	0.99
HD223128	116.5935	+04.7116	1.88	-14.0	5.938	-1.7	0.63
HD223152	112.7484	-10.3630	2.40	-4	7.494	-1.0	0.63
HD223501	115.8261	+00.1945	0.87	-38	7.74	-3.6	0.81
HD223987	116.1841	-00.5138		-44.8	7.61	-6.0	2.04
HD224055	116.2910	-00.2991	-0.53	-42.3	7.250	-7.1	2.49
HD224151	115.4370	-04.6443	-0.72	-25.5	6.045	-5.5	1.44
HD224424	116.2099	-02.4497	1.26	-71	8.15	-6.3	2.73
HD224572	115.5545	-06.3640	2.14	-7.4	4.997	-3.6	0.63
HD224868	116.8669	-01.4415		-15	7.298	-1.2	1.08
HD224905	116.8260	-01.8302		-16.9	8.47	-3.6	1.23
HD225094	117.6329	+01.2638	0.93	-43	6.269	-7.1	1.35
HD225257	116.8777	-03.7917	2.13	11	6.60	-0.6	0.87
HD226868	071.3350	+03.0668	0.58	-13	8.95	-6.2	3.21
HD227018	071.5826	+02.8695	1.40	41	9.01	-5.5	2.10
HD227245	072.1667	+02.6218		-13	9.72	-5.5	2.82
HD227460	072.8728	+02.6081		-10	9.58	-4.0	3.48
HD227696	072.6797	+01.9321		-15.0	8.40	-4.5	1.50
HD227704	071.9913	+01.4685	-1.70	-4	8.70	-5.4	1.92
HD227836	073.1658	+01.8843		-16	10.6	-3.6	1.74
HD227877	072.6406	+01.4719		-25	9.30	-4.1	1.17
HD228461	075.5990	+02.0379		-2	9.56	-4.9	1.86
HD229049	076.9945	+01.3511		-17	9.67	-3.6	2.16
HD231285	050.0742	+00.0172	-1.28	-14.0	9.56	-5.4	3.15
HD232932	152.4911	+00.3163		-8	9.40	-1.0	1.02
HD232999	155.7301	+03.1450		-13	9.36	-4.1	2.46
HD235350	089.3502	+05.1602	1.03	-18	9.31	-4.5	1.71

Tabela C.2 - Continuação

Continua na próxima página...

nome	l^0	b^0	Parlaxe (mas)	$Vr \ (km/s)$	m_V apa (mag)	M_V abs (mag)	Av (mag)
HD235618	098.7095	+01.3952	0.47	-5	9.77	-4.1	2.82
HD235874	101.9727	-05.9339	1.57	-56	9.58	-2.9	0.60
HD236044	108.1544	-05.1000	0.45	-37	9.59	-3.6	1.38
HD236644	125.6190	-05.1706	3.87	-59	9.83	-1.7	0.27
HD236683	126.2837	-03.8147		-31	9.72	-2.5	0.69
HD236800	128.5951	-02.4286		-25	9.62	-4.4	1.68
HD236827	129.2631	-02.6614		-42	9.51	-1.5	1.53
HD236896	130.4335	-01.5080	-1.16	-48	10.01	-1.0	1.44
HD236917	132.2983	-05.4950		-27	9.97	-1.3	0.87
HD236954	133.3002	-02.0365		-49	9.42	-5.2	2.40
HD236960	134.5924	-01.5201		-45	9.77	-4.9	2.19
HD236971	136.5983	-02.5937		-51	9.58	-4.1	2.28
HD237011	137.1837	+01.0443		-43	10.07	-3.6	2.04
HD237015	137.3793	+00.9675		-15	9.47	-4.4	2.04
HD237153	142.8231	+02.2249	-0.08	-39	9.33	-2.9	5.85
HD237174	144.7332	+02.2474		-13	9.426	-1.7	0.75
HD239626	099.1006	+07.5400	2.06	-19	9.27	-4.7	3.06
HD239989	106.6744	+02.3092	0.67	-37	9.61	-1.5	1.98
HD240171	108.5699	-02.6669		-19	9.92	-3.6	1.32
HD245967	175.0092	+01.7664		8	10.4	-1.7	2.60
HD250289	186.5845	+00.1488	1.83	6.7	8.23	-3.6	2.40
HD252248	195.6441	-02.9392	1.52	32	8.79	9.9	0.54
HD253214	190.6905	+00.8289		-6	9.54	-3.0	1.47
HD254755	189.1006	+03.3426	0.49	9	8.91	-4.8	2.73
HD256413	192.1532	+03.1782	3.37	17	9.00	-2.2	1.53
HD259597	203.4796	-00.1493		38	8.59	-4.0	1.26
HD303067	285.8025	+00.0748		-10	9.55	-3.6	0.90

Tabela C.2 - Continuação