Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas Departamento de Astronomia

Luciene da Silva Coelho

CAMINHOS PARA A FORMAÇÃO DE MOLÉCULAS ORGÂNICAS PREBIÓTICAS NO MEIO INTERESTELAR

São Paulo

Luciene da Silva Coelho

CAMINHOS PARA A FORMAÇÃO DE MOLÉCULAS ORGÂNICAS PREBIÓTICAS NO MEIO INTERESTELAR

Tese apresentada ao Departamento de Astronomia do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo como requisito parcial para a obtenção do título de Doutora em Ciências.

Versão Corrigida.

A versão original encontra-se na unidade.

Área de Concentração: Astronomia Orientador: Prof. Dr. Amâncio César Santos Friaça

São Paulo 2018

À minha mãe, que sempre lutou as lutas ao meu lado e aos meus irmãos que fizeram de tudo para que eu as vencesse. O amor tudo vence!

Agradecimentos

À minha mãe por tudo;

Ao Professor Amâncio, por tudo que aprendi e por galgar comigo todos os degraus da academia;

Ao Dr. Edgar Mendoza que me ajudou quando eu pensei em desistir e que inspira por seu amor e dedicação à ciência;

Aos meus irmãos por acreditarem em mim, me incentivarem e ajudarem a chegar até aqui;

Ao Rafael e a Ana pela amizade e companheirismo;

Ao Dr. Douglas Alexandre França Bezerra por ser um gênio da neurocirurgia, sem você esta tese não teria tido um fim;

À Isabel e ao Pedro pela ajuda necessária já perto do fim;

À Carla Canelo por infinitos favores e por me fornecer a parte dos dados em que ela trabalhou;

Ao Dr. Douglas Galante e ao Professor Dr. Fábio Rodrigues por toda a ajuda;

À Professora Vera por me dar oportunidade de entender como funciona a sala de aula;

Aos colegas do IAG que tiveram sua contribuição na realização desse trabalho, seja com contribuições (acadêmicas ou não), café ou por aquele momento de descontração que me permitiu rir das desventuras da vida;

Ao Observatório Abrahão de Moraes que me forneceu conhecimento, desenvoltura, alegria e motivação;

Ao Professor Rama por me permitir usufruir das alegrias da divulgação científica e pelos momentos de amizade, conselhos e compreensão.

À Professora Sílvia por me ajudar mais do que posso agradecer;

Ao Marco e ao Luis que me deram toda a assistência que precisei, além de serem pessoas incríveis;

À todos os funcionários do IAG, sem vocês nada disso aconteceria;

À CAPES, pelo apoio financeiro;

Aos antigos iageanos que desenvolveram o iagtese;

A todos os amigos que estiveram comigo durante esta jornada ou compreenderam porque eu não estava presente, vocês são demais!

Esta tese/dissertação foi escrita em LATEX com a classe IAGTESE, para teses e dissertações do IAG.

"Diante da vastidão do tempo e da imensidão do universo, é um imenso prazer para mim dividir um planeta e uma época com você."

Carl Sagan

"Tudo na vida tem um lado bom e um lado ruim, com exceção dos LPs do Pink Floyd que tinham dois lados bons"

Humberto Gessinger

Resumo

Este trabalho apresenta uma investigação sobre as abundâncias de algumas moléculas de relevância prebiótica, além de fatores que possam facilitar a formação ou a destruição delas em ambientes distintos no meio interestelar, e ao mesmo tempo contribuir para examinar as bases químicas de cenários das origens da vida na Terra e em outros lugares do Universo. Para isto, este estudo consiste de três etapas, a primeira realizada com simulações numéricas dos principais parâmetros para a formação ou a destruição de moléculas complexas, usando PAHs e PANHs, na Nebulosa Cabeça de Cavalo; a segunda parte foi o estudo da formação das bases nitrogenadas em fase gasosa, também na Nebulosa Cabeça de Cavalo. Por último, foi feita uma análise de dados espectroscópicos da região de formação estelar G331.512.

Na etapa numérica deste trabalho, usou-se a Nebulosa Cabeça de Cavalo, que é considerada um arquétipo de regiões de fotodissociação (PDRs - do inglês photon-dominated region). A modelização desse objeto teste foi realizada com o código PDR *Meudon - The Meudon PDR Code*. Considerou-se no modelo apenas reações químicas na fase gasosa, exceto para a formação do H_2 , que necessita de grãos para a sua formação. A rede química deste trabalho tem 5403 reações para 362 espécies, das quais aproximadamente 3500 reações de 249 espécies foram inseridas uma a uma, enquanto as demais já faziam parte do banco de dados do código. Avaliou-se em especial a relevância dos PAHs e dos raios cósmicos como fatores fundamentais para a diversidade da química interestelar. No caso dos PAHs, utilizando-se como PAH representativo o circuncoroneno ($C_{54}H_{18}$) devido ao fato de que um PAH com mais de 50 átomos de carbono pode sobreviver 1,1 Ganos no campo de radiação Galático e este tempo é muito mais longo que o tempo de vida de uma nebulosa típica, verificou-se que suas taxas de reação, quando obtidas a partir da seção de choque é, praticamente, sua taxa ótima de reação, ou seja, o valor de taxa que permite a maior produção destes PAHs. Além disso, encontrou-se que os raios cósmicos favorecem a síntese de moléculas mais complexas, já que enriquecem o meio interestelar com íons a partir da degradação de moléculas menores e, desta forma, facilitando a produção de compostos mais complexos.

A seguir, foi feita uma modelagem para obter as abundâncias das bases nitrogenadas formadas a partir da formamida, que é um composto precursor identificado em diversos ambientes interestelares, além de uma averiguação das energias necessárias para todas as etapas da produção da guanina, adenina, citosina e uracila. Por fim, explorou-se os canais de formação da fosfina, que contém o importante elemento prebiótico fósforo e que já foi observada em cometas e nas atmosferas dos planetas gasosos.

Na última etapa, foram analisados os dados obtidos no Atacama Pathfinder Experiment telescope (APEX). As observações a partir do objeto G331.512-0.103, uma região de formação estelar pouco estudada e, por isso mesmo, um excelente alvo para novas buscas de moléculas complexas, uma vez que dados observacionais da Nebulosa Cabeça de Cavalo estavam indisponíveis. Os espectros analisados estão numa faixa entre 290 e 333 GHz. A redução de dados foi realizada com o software *GILDAS*. A ferramenta *Weeds* foi utilizada para auxiliar na identificação das linhas do espectro. As principais linhas identificadas no espectro da região foram o CH_3CN , CH_3CHO , CH_3OH e CH_3OCH_3 . Tais identificações indicam uma rica química na região. Futuras observações podem mapear melhor a região e obter as suas condições físicas e características químicas.

Abstract

This work presents an investigation of the abundances of some molecules of prebiotic relevance, as well as factors that may facilitate their formation or destruction in different environments in the interstellar medium, and at the same time contributes to examine the chemical foundations of the origins of life on Earth and elsewhere in the Universe. This study consists of three stages, the first one performed with simulations numerical values of the main parameters for the formation or destruction of complex molecules, using PAHs and PANHs, in the Horsehead Nebula; the second part is the study of the formation of nitrogenous bases in the gas phase, also in the Horsehead Nebula. Finally, it was made an analysis of spectroscopic data of the star formation region G331.512.

The numerical stage of this work was performed with the Horsehead Nebula, which is considered an archetype of photon-dominated region (PDRs). The modeling of this test object was performed with the PDR "Meudon" code. The model includes only gasphase chemical reactions, except for the formation of H_2 , which requires grains for its formation. The chemical network of this work has 5403 reactions for 362 species of which approximately 3500 reactions of 249 species were inserted one by one, while the others were already part of the code database. The relevance of PAHs and cosmic rays as key factors for the diversity of interstellar chemistry was evaluated. In the case of PAHs, circumcoronene (C54H18) was used as a reference due to the fact that a PAH with more than 50 carbon atoms can survive 1.1 Gyears in the galactic radiation field time much longer than the lifetime of a typical nebula, and it was found that reactions rates for PAHs from its cross section were, practically their great rate, that is the rate value that allows the highest production of these PAHs. In addition, it has been found that cosmic rays favor the synthesis of more complex molecules since they enrich the interstellar medium with the ions from the degradation of smaller molecules and, thus, facilitating the production of more complex compounds.

Next, a modeling was carried out to obtain the abundances of the nitrogenous bases formed from the formamide, which is a precursor compound identified in various interstellar environments, and it was made an investigation of the energies required for all stages of the production of guanine, adenine, cytosine and uracil. Finally, the channels of phosphine formation were explored, which contains the important prebiotic element phosphorus that has already been observed in comets and in the atmospheres of the gaseous planets.

In the last part of this work, the data obtained with the Atacama Pathfinder Experiment telescope (APEX) was analyzed. The observations from G331.512-0.103, a poorly studied star formation region and an excellent target for further surveys of complex molecules, since observational data from the Horsehead Nebula were unavailable. The analyzed spectra are in a range between 290 and 333 GHz. Data reduction was performed with GILDAS software. The Weeds tool was used to help identify the spectrum lines. The main lines identified in the spectrum of the region were CH_3CN , CH_3CHO , CH_3OH , and $CH3OCH_3$. Such identifications indicate a rich chemistry in the region. Future observations can better map the region and obtain its physical conditions and chemical characteristics.

Lista de Abreviações e Glossário

- ΔH Variação da entalpia.
- $\Delta_{f}H^{0}$ Variação da entalpia de formação.
- AGN Da sigla em inglês para active galactic nucleus núcleo ativo galáctico é uma região compacta no centro de uma galáxia que tem uma luminosidade muito maior que o normal em pelo menos parte do espectro eletromagnético, com características que indicam que o excesso de luminosidade não é produzido por estrelas.
- AIBs Bandas Aromáticas no Infravermelho
- Akari Satélite astronômico no infravermelho desenvolvido pela Agência de Exploração Espacial Japonesa.
- ALMA Da sigla em inglês para The Atacama Large Millimeter/submillimeter Array -Radiotelescópio desenvolvido em parceria entre Europa, América do Norte, leste da Ásia e Chile.
- $\mathbf{A}_{\mathbf{V}}$ Extinção na faixa espectral do visível.
- CHO Elementos carbono, hidrogênio e oxigênio.
- CHON Elementos carbono, hidrogênio, oxigênio e nitrogênio.
- **CHONPS** Elementos essenciais para a vida, ou seja, carbono, hidrogênio, oxigênio, nitrogênio, fósforo e enxofre.
 - **Coma Cometária** Fluxo de poeira e gás sublimado do gelo do núcleo do cometa que forma uma atmosfera enorme e extremamente fina ao redor do cometa.

- **CoRoT** Da sigla para *Convection Rotation et Transits Planétaires* Missão espacial liderada pela Agência Espacial Francesa em conjunto com com a Agência Espacial Européia com objetivo de buscar exoplanetas e realizar astrosismologia.
- DFT Teoria da densidade funcional.
- DIBs Da sigla em inglês para Diffuse Interstellar band bandas interestelares difusas.
- **DNA** Da sigla em inglês para *deoxyribonucleic acid* ácido desoxirribonucleico.
- **ESO** Da sigla em inglês para *European Southern Observatory* Observatório Europeu do Sul.
 - **Extinção** Termo usado para descrever a absorção e espalhamento da radiação eletromagnética pela matéria (poeira e gás) entre o objeto que emite a radiação e o observador.
- FIR Da sigla em inglês para far infrared infravermelho distante.
- FUV Da sigla em inglês para far ultraviolet ultravioleta distante.

Galáxia "Starburst" Galáxia com índice excepcionalmente alto de formação estelar.

- HARPS Da sigla em inglês para High Accuracy Radial velocity Planetary Search project
 espectrometro dedicado a busca por exoplanetas, instalado no telescópio de 3.6 metros em La Silla.
- Herschel Observatório espacial desenvolvido pela Agência Espacial Européia.
- HHN Da sigla em inglês para Horsehead Nebula Nebulosa Cabeça de Cavalo.
- ISM Da sigla em inglês para Interstellar Medium Meio Interestelar. IR Da sigla em inglês para Infrared Infravermelho.
- Kepler Telescópio espacial da NASA que visa a busca por planetas habitáveis.
- **LLAMA** Da sigla em inglês para *Long Latin American Millimeter Array* Radiotelescópios para comprimentos de onda milimétricos e submilimétricos.

 M_{\odot} Massa solar.

Mag Magnitude.

- NASA Da sigla em inglês para National Aeronautics and Space Administration Administração Nacional de Aeronáutica e Espacial dos Estados Unidos da América.
- $\mathbf{n}_{\mathbf{H}}$ Densidade total de núcleos de hidrogênio.
- **Odin** Mini-satélite desenvolvido pela Suécia em cooperação com França, Canadá e Finlândia com proposta de estudar a atmosfera terrestre além de objetos astronômicos.

"Outflow" Fluxo de material gasoso que flui para fora da região.

- **PACS** Da sigla em inglês para *Photo-conductor Array Camera and Spectrometer* Espectrômetro e câmera fotocondutora instalados no observatório espacial Herschel.
- **PAHs** Da sigla em inglês para *policiclic aromatic hidrocarbon* hidrocarbonetos aromáticos policíclicos.
- **PANHs** Da sigla em inglês para *policiclic aromatic nitrogen-hidrocarbon* hidrocarbonetos nitrogenados aromáticos policíclicos.
- Parsec Unidade de comprimento usada para medir grandes distâncias para objetos astronômicos fora do Sistema Solar. Um parsec é igual a 3,26 anos-luz (~ 31 trilhões de km) de comprimento.
- **PDR** Da sigla em inglês para *photon-dominated region* região fotodominada ou de fotodissociação.
- **Regiões HII** Nuvem de gás no ISM na qual o átomo de hidrogênio encontra-se ionizado em que, normalmente, ocorreu formação estelar recente.
- **RNA** Da sigla em inglês para *ribonucleic acid* ácido ribonucleico.
- **Sophie** Da sigla em francês para Spectrographe pour l'Observation des Phénomènes des Intériuers stellaires et des Exoplanètes - espetrógrafo instalado no telescópio de 1.93 metros do Haute-Provence Observatory no sudoeste da França.
- SPICA Da sigla em inglês para Space Infrared Telescope for Cosmology and Astrophysics - observatório espacial proposto pela Agência de Exploração Espacial Japonesa para ser lançado em 2018.

- **Spitzer** Telescópio espacial da NASA que opera na região do infravermelho do espectro eletromagnético.
- **SWAS** Da sigla em inglês para *Submillimeter Wave Astronomy Satellite* telescópio espacial da NASA designado a estudar a composição química de nuvens de gás interestelares.
- $\mathbf{T_c}$ Temperatura cinética.
- $\mathbf{T_e}$ Temperatura eletrônica.
- $\mathbf{T}_{\mathbf{ef}}$ Temperatura efetiva.
 - Titã Maior lua de Saturno.
- UV Ultravioleta.
- **VISIR** Da sigla em inglês para *The VLT spectrometer and imager for the mid-infrared* espectrometro para o infravermelho médio usado pelo ESO.
- VLT Da sigla em inglês para Very Large Telescope Constituido por quatro telescópios principais de 8.2 metros de diâmetro e outros quatro telescópios auxiliares de 1.8 metros que juntos operam como um "interferômetro gigante".

Lista de Figuras

1.1	Ciclo Cósmico do material interestelar.	29
1.2	Estrutura química de uma PDR típica.	33
1.3	Estrutura PAHs.	42
1.4	Diferentes complexidades dos PAHs para diversos ambientes astrofísicos.	44
1.5	Diagrama da química estelar do carbono	44
1.6	Purinas e Piridinas.	46
1.7	Ligações entre bases nitrogenadas no DNA	46
1.8	Janelas espectrais de observação com seus respectivos observatórios	50
1.9	Modelo de rotor rígido para uma molécula diatômica	51
1.10	Modelo representando os coeficientes de Einstein	52
2.1	Nebulosa Cabeça de Cavalo	56
2.2	Região G331.512	58
2.3	Características geométricas do código em uma nuvem. (Le Petit, 2012) $$	60
3.1	Variação das taxas de reação para o $C_{54}H_{18}$	68
3.2	Variação das taxas de reação para o $C_{57}H_{19}N$	69
3.3	Abundância do pirrol para diversas taxas de ionização por Raios Cósmicos.	70
3.4	Abundância do pirrol para diversas taxas de ionização por Raios Cósmicos.	71
3.5	Abundâncias da formamida com, apenas 1 e com 2 reações de formação, em	
	função da profundidade da nuvem.	72
3.6	Reações de formação das bases nitrogenadas a partir da formamida	74
3.7	Abundância das bases nitrogenadas	74
3.8	Variação das entalpias de reação à 298 K	76

Variação das entalpias de reação à 0 K	76
Abundância da fosfina neutro e cátion	78
Faixa espectral de G331.512-0.103.	79
Quantidade de linhas das moléculas identificadas no espectro do objeto	
G331.512-0.103	80
Linhas do CH_3CN_5	82
Fluxo integrado do CH_3CN	83
Fórmula estrutural dos alfa-aminoácidos.	109
Exemplo de reação homolítica	112
Fórmula estrutural do composto imina	113
Formação de uma ligação peptídica	114
Ligações $\pi \in \sigma$	115
Horsehead Nebula PDR model abundance relative to CN (dashed red line)	
results for CN^- , CN^+ , HCN and HNC as a function of optical depth in V	
band, AV.	123
Horsehead Nebula PDR model abundance relative to H2 results for HNCO,	
CH3CN, CH3NO as a function of optical depth in V band, AV. $\ \ldots$.	124
Horsehead Nebula PDR model abundance relative to H2 results for pyrrole	
production from 2-butenal - blue line - and from s-triazine plus the 2-butenal	
- green line - paths of production a function of optical depth in V band, AV.	125
Horsehead Nebula PDR model abundance results relative to H2 for pyrrole	
and pyridine production as a function of optical depth in V band, AV	125
Horsehead Nebula PDR model abuance results relative to H2 for circum-	
coronene, its dehydrogenated forms as well as the PANHs formed from cir-	
cumcoronene as a function of optical depth in V band and Av	127
Horsehead Nebula PDR model abundance results relative to H2 estimated	
for two different channels of pyridine production: both from the network of	
reactions of PAHs and directly from pyrrole as a function of optical depth	
in V band, AV.	127
	Variação das entalpias de reação à 0 K

B.7	Horsehead Nebula PDR model abundance results relative to H2 are esti-			
	mated for three different channels of pyridine production - considering one			
	(only circumcoronene), two (circumcoronene and coronene) and three (cir-			
	cumcoronene, coronene and ovalene) PAHs insert on formation and destruc-			
	tion net reactions as a function of optical depth in V band, AV. \ldots .	128		
B.8	Diference between the pyridine abundances produced from reactions include			
	$2~\mathrm{PAHs}$ and $1~\mathrm{PAHs}$ (green line), $3~\mathrm{PAHs}$ and $1~\mathrm{PAHs}$ (red line) and $3~\mathrm{PAHs}$			
	and 1 PAHs (blue line) as a function of optical depth in V band, AV	129		
B.9	Variation of rates for formation and destruction reaction for C54H18 as a			
	function of optical depth in V band, AV.	129		
B.10	Horsehead Nebula PDR model abundance results for pyrrole, with standard			
	rate of 5.0×10^{-17} , 2.5×10^{-17} , 1.0×10^{-17} and 5.0×10^{-18} cosmic rays			
	ionization rate as a function of optical depth in V band, AV	130		
B.11	Horsehead Nebula PDR model abundance results for pyridine, with standard			
	rate of 5.0×10^{-17} , 2.5×10^{-17} , 1.0×10^{-17} and 5.0×10^{-18} cosmic rays			
	ionization rate as a function of optical depth in V band, AV	131		
B.12	Horsehead Nebula PDR model abundance results relative to H2 comparing			
	production of pyrrole and pyridine as a function of optical depth in V band,			

Lista de Tabelas

1.1	Propriedades do gás em diferentes fases do meio interestelar	28
1.2	Balanço de energia para nuvens difusas	29
1.3	Reações químicas e as taxas de formação em ordem de grandeza	35
1.4	Pequenas moléculas nitrogenadas comumente encontradas	37
2.1	Características físicas da Nebulosa Cabeça de Cavalo	57
2.2	Características físicas da G331.512	57
3.1	Tabela com energia de ligação de algumas principais moléculas	75
3.2	Transições identificadas no espectro de G331.512-0.103	79
3.3	Transições identificadas para o CH_3CN	82
B.1	Chemical reactions and parameters for circumcoronene, its dehydrogenated	
	compounds and minor hidrocarbons.	126
B.3	Column density (cm^{-2}) from pyrrole and pyridine, for different production	
	channels at several depth of Horsehead Nebulae. Pyrrole and Pyridine	
	refers to its production whithout PAH. $Pirrol^{\dagger}$ and $Piridina^{\dagger}$ are datas	
	from their formation with circumcoronene include. $Pirrol^{\S}$ and $Piridina^{\S}$	
	formation are for circumcoronene, coronene and ovalene includes. \ldots	133
D.1	Moléculas observadas em ambientes interestelares	143
E.1	Elementos usados nos estudos teóricos.	145
E.2	Reações químicas, parâmetros e tipos de reação usados no código	153

Sumário

1.	Intro	$odução \ldots 27$			
	1.1	1.1 Meio Interestelar			
		1.1.1	Raios Cósmicos	28	
		1.1.2	Objetos Interestelares	30	
		1.1.3	Nuvens Escuras	31	
		1.1.4	Regiões de Fotodissociação	32	
		1.1.5	Química do Meio Interestelar	33	
	1.2	Interse	ecção entre a Astrobiologia e a Astroquímica	35	
	1.3	Nitrog	ênio	36	
		1.3.1	Nitrilas	39	
			1.3.1.1 Formamida	40	
	1.4	Univer	rso Aromático	41	
		1.4.1	PAH e PANH	41	
		1.4.2	Bases Nitrogenadas	45	
		1.4.3	Fósforo	47	
1.5 Astroquímica no Milimétrico		química no Milimétrico	49		
		1.5.1	Equilíbrio Termodinâmico Local	49	
		1.5.2	Linhas Espectrais	50	
		1.5.3	Coeficientes de Einstein	51	
	1.6	Organ	ização da Tese	53	
0	01.	, .			
2. Objetos e Ferramentas			erramentas	55	
2.1 Nebulosa Cabeça do Cavalo				55	

	2.2	G331-50.1	57
	2.3	Bases de dados moleculares	59
	2.4	O código Meudon	59
		2.4.1 Características do Código	59
		2.4.1.1 Reações Químicas	61
	2.5	GILDAS/CLASS	65
3.	Aná	llise	67
	3.1	Análise de Parâmetros Relevantes na Formação de Moléculas Complexas no	
		ISM	67
		3.1.1 O Papel das Taxas de Reação	68
		3.1.2 O Papel dos Raios Cósmicos	69
	3.2	Bases Nitrogenadas	71
		3.2.1 Formamida	71
		3.2.2 Abundancia das Nucleobases	73
	3.3	Fosfina	77
	3.4	Análise Espectral da Região G331.512-0.103	78
		3.4.1 Metanol: CH_3OH	80
		3.4.2 Ácido isociânico: HNCO	80
		3.4.3 Acetaldeído: CH_3CHO	81
		3.4.4 Dimetil Éter: CH_3OCH_3	81
		3.4.5 CH_3CN	81
4.	Con	$clus \tilde{o}es \ldots \ldots$	85
Re	eferên		89
		1	07
A	Con	ceitos Gerais	09
	A 1	Carbono alfa e alfa-aminoácidos	00
	A 2	Ciclo Biológico do Nitrogênio	10
	A.3	Deslocalização Eletrônica	11
		······································	

	A.4 Explosão Combinatória	1
	A.5 Homólise	12
	A.6 Iminas	12
	A.7 Ligações Peptídicas	13
	A.8 Ligações $\pi \in \sigma$	13
	A.9 Oligômeros	4
	A.10 Síntese de aminoácido de Strecker	15
В	. Coelho et al., 2018	17
C	. Variação de Entalpias	39
D	. Moléculas Encontradas em Ambientes Interestelares e Circunestelares 14	13
E_{i}	Moléculas e reações químicas usadas no programa "The PDR Meudon Code" 14	15

Capítulo

Introdução

Nos últimos vinte anos, nós descobrimos que vivemos em um universo molecular onde as moléculas são abundantes e onipresentes. Há uma riqueza de moléculas orgânicas, dentre as quais encontram-se as prebióticas. O estudo do universo orgânico é uma das chaves para compreender, entre outras coisas, o fenômeno da vida. Com o passar dos anos cada vez mais tem aumentado o número de trabalhos publicados em astrofísica molecular, desde processos fundamentais da química do espaço até as mais complexas moléculas já encontradas em diversas regiões do espaço.

O estudo desse universo, em especial o orgânico é uma das chaves para que possamos tentar responder a algumas das mais complexas e antigas questões. O surgimento e fortalecimento da Astrobiologia (ver seção 1.2), vem nos capacitando na tentativa de entender um pouco mais sobre a origem, evolução e distribuição da vida no Universo.

Para entendermos essa onipresença molecular no Universo, precisamos entender as condições físicas e químicas presentes nos diversos locais do Universo que favorecem a formação e existência desses compostos, em especial no meio interestelar (ISM, da sigla em inglês) que é a matéria e a radiação que há no espaço entre os sistemas estelares em uma galáxia e onde já foram identificados diversos elementos e compostos moleculares.

1.1 Meio Interestelar

O ISM é preenchido por 99% de gás composto por 91% de átomos de hidrogênio, 9% átomos de hélio e por 0.1% de átomos mais pesados do que estes (Ferrière, 2001) e 1% de poeira. Estes elementos podem estar neutros, ionizados ou em forma molecular e podem estar em fase gasosa ou em fase sólida, constituindo um meio multifásico onde as pressões térmicas estão em equilíbrio entre si. Campos magnéticos e movimentos turbulentos também fornecem pressão ao ISM e, geralmente, são mais importantes dinamicamente do que a pressão térmica.

Em todas as fases, o ISM é extremamente tênue pelos padrões terrestres. Em regiões com menor temperatura e maior densidade (~ 10^6 moléculas por cm^3) a matéria está, principalmente, na forma molecular. Em regiões quentes e difusas (podendo chegar a 10^{-3} íons por cm^3), a matéria é encontrada, principalmente, ionizada. O gás pode, então, ser organizado de acordo com suas propriedades (Tabela 1.1).

Tabela 1.1 - Propriedades do gás em diferentes fases do meio interestelar. Densidade refere-se a densidade de partículas. Baseado em Ferrière (2001) e Lequeux (2005).

Fase	Temperatura (K)	Densidade (cm^{-3})	Estado do Hidrogênio
Meio Ionizado Quente	10^{6}	6×10^{-3}	ionizado
Regiões HII	10^{4}	$1 - 10^4$	ionizado
Meio Ionizado Morno	8×10^3	0.03	neutro e ionizado
Meio Neutro Morno	$6-8 imes10^3$	0.25	neutro
Meio Neutro Frio	10^{2}	25	neutro
Meio Molecular	10 - 20	$10^3 - 10^6$	molecular

O gás e poeira do ISM são aquecidos por fótons estelares, originados de muitas estrelas (chamado, então, de campo de radiação interestelar médio), raios cósmicos (prótons energéticos [$\sim GeV$]) e raios-X (emitidos localmente, por galáxias e por gás quente extragaláctico). Este gás e poeira também podem se resfriar através de vários processos.

O meio interestelar desempenha um papel central na evolução da Galáxia. Todo o material interestelar é reciclado durante várias fases da vida estelar (Fig. 1.1): do meio difuso, à formação de uma estrela e sistema planetário, à morte estelar. A complexidade molecular que surge durante cada fase pode ser atribuída aos processos físicos e químicos que dominam os vários ambientes. Em geral, a química encontrada em todo o ISM envolve baixas densidades e temperaturas extremas em relação à Terra, e varia em função de uma gama de condições físicas encontradas em ambientes específicos.

1.1.1 Raios Cósmicos

Um componente importante do ISM a ser considerado é a incidência de raios cósmicos (CR, da sigla em inglês). Estas partículas de alta energia ($\geq 100 \ MeV/nucleon$) con-

Figura 1.1: Ciclo Cósmico do material interestelar (Crédito de imagem: Bill Saxton, NRAO/AUI/NSF).

tribuem consideravelmente para a densidade de energia do ISM ($\simeq 2 \ eV/cm^3$; Tabela 1.2) (Tielens, 2005).

Fonte	Pressão $(10^{-12} dina \ cm^{-2})$	Densidade de energia $(eV \ cm^{-3})$	Taxa de aquecimento ($erg \ s^{-1} \ (\acute{a}tomo - H)^{-1}$)
Térmica	0.5	6.0	$-5(-26)^a$
Ultravioleta	-	0.5	5(-26)
Raio Cósmico	1.0	2.0	3(-27)
Campo magnético	1.0	0.6	2(-27)
Turbulência	0.8	1.5	1(-27)
2.7K de fundo	-	0.25	-

Tabela 1.2 - Balanço de energia para nuvens difusas (Tielens, 2005).

 a Taxa de perda de energia.

A composição dos raios cósmicos consiste em cerca de 87% de prótons relativísticos, com energia entre 1 e 10 GeV, 12% de partículas alfa (núcleos de hélio), e cerca de 1% de elementos mais pesados e elétrons (Strong et al., 2007). As grandes incertezas são as energias extremamente altas e os elementos mais pesados que o ferro. Existem várias diferenças importantes em relação aos raios cósmicos que devemos considerar: a metalicidade dos CR é 10 vezes a solar com elementos refratários (picos de núcleos de Fe) relativamente maiores do que os voláteis; os frágeis Li, Be e B são 10⁶ vezes mais abundantes nos raios cósmicos do que no Sol. Estas características sugerem que CR são acelerados a partir de uma mistura de gás interestelar e grãos de poeira (onde os elementos refratários são superabundantes) e durante a sua propagação na Galáxia eles espalam no C, N e O para produzir Li, Be e B (Strong et al., 2007).

A taxa de ionização por raios cósmicos é a taxa na qual moléculas de H_2 , assim como os átomos de H e He, são ionizados pelo fluxo de raios cósmicos. Este processo é fundamental para a química em nuvens moleculares densas. Estimativas atuais assumem o valor desta taxa entre $\zeta_{RC} \simeq 1 - 40 \times 10^{-17} \ s^{-1}$, onde os valores mais altos são mais apropriados para nuvens interestelares difusas com densidades mais baixas (Gargaud et al., 2011).

Além disso, os RCs representam importante papel nas reações radicalares que formam radicais livres. Os radicais são espécies neutras com deficiência de elétrons. Esses radicais são de grande relevância nas reações químicas que ocorrem no ISM (ver seção 1.1.5). A formação de radicais pode envolver a quebra de ligações covalentes, por homólise (ver seção A.2), um processo que requer quantidades de energia significantes para ocorrer (Hayyan et al., 2016). Tais energias necessitam de uma fonte externa para serem alcançadas, tais como calor, fótons ou raios cósmicos. Radicais livres são importantes também em vários processos biológicos, muitos deles necessários para a vida, como a morte intracelular de bactérias por células fagocíticas (Pacher et al., 2007).

Do ponto de vista da astrobiologia (ver seção 1.2), a taxa de ionização por CR pode desempenhar um papel crucial, quer como fontes de energia eficazes para sintetizar os precursores de compostos orgânicos terrestres em meios interestelares ou como agentes indutores de mutações em organismos vivos e, assim, promover a evolução biológica. Podem mesmo ser letais no caso de uma explosão de supernova próxima (Galante e Horvath, 2007).

1.1.2 Objetos Interestelares

Acredita-se que todas as principais regiões do meio interestelar, com suas diferentes fases gasosas e propriedades físicas, já foram identificadas. A imagem que se faz do meio interestelar é de um ambiente multifásico no qual as "nuvens" mais densas e mais frias (nuvens moleculares, por exemplo) estão embutidas em um meio "internuvens" muito mais quente e menos denso. É um meio muito dinâmico, com explosões de supernovas o enriquecendo quimicamente, com gás atômico, com movimentos ordenados e de turbulência, e que pode formar novas estrelas. Neste contexto, no meio interestelar encontram-se diversos objetos diferentes, caracterizados por seus parâmetros físicos e químicos, dentre eles podemos destacar as regiões HII, nebulosas de reflexão, nebulosas escuras, regiões de fotodissociação, remanescentes de supernovas e nuvens moleculares com formação estelar. Neste trabalho, os destaques são as nuvens moleculares e regiões de fotodissociação.

1.1.3 Nuvens Escuras

Nuvens escuras frias são membros próximos da fase mais densa e mais fria do meio interestelar galáctico, e representam os locais mais acessíveis onde estrelas estão atualmente nascendo. Em grandes escalas, as nuvens escuras apresentam distribuições de massa filamentar com movimentos dominados por turbulência supersônica. Em escalas pequenas, subparsecs, uma região central sem estrelas fornece um vislumbre exclusivo das condições antes do nascimento estelar. Estudos recentes desse tipo de região revelam uma combinação de propriedades físicas simples com uma estrutura química complexa dominada pelo congelamento de moléculas em grãos de poeira frios (Bergin e Tafalla, 2007). Nuvens escuras também representam uma nova população de regiões moleculares densas, as quais se acredita, sejam percursores de aglomerados estelares e estrelas massivas. Dentro das nuvens moleculares estão as regiões mais densas, chamadas núcleos de nuvens moleculares, com densidades de ordem $10^4 - 10^6 \text{ cm}^{-3}$, e é nesses núcleos que o gás entra em colapso gravitacional para formar novas estrelas. A teoria da formação estrelar é complexa e foi revista por McKee e Ostriker (2007).

O meio molecular, por ser a fase mais fria e mais densa do meio interestelar, representa regiões onde o hidrogênio está quase inteiramente em forma molecular. Este meio é suficientemente denso para que as moléculas que se formam estejam protegidas contra a fotodissociação pelo campo de radiação ultravioleta (UV) interestelar. Este gás pode ser sondado pela emissão produzida a partir da excitação rotacional das moléculas, provocadas por colisões. Como o hidrogênio molecular é uma molécula simétrica, ele não tem um momento dipolar elétrico permanente e, portanto, tem apenas fracas transições quadripolares elétricas. Além disso, o hidrogênio molecular é uma molécula leve (pequeno momento de inércia) e, portanto, os níveis de rotação tem energia muito espaçadas, de modo que mesmo os níveis rotacionais excitados mais baixos de hidrogênio molecular raramente são excitados por colisões nestas nuvens frias. Por isso, as transições rotacionais de comprimento de onda milimétrico e submilimétrico de moléculas mais pesadas com momentos dipolares permanentes, como CO (a molécula mais abundante seguinte após o hidrogênio molecular), são comumente usadas para medir a distribuição de gás molecular em galáxias. Numerosos levantamentos de emissão de CO foram obtidos e mapearam a distribuição molecular, como na Via Láctea (Combes, 1991).

As nuvens moleculares são também de grande interesse por causa de sua química rica. Mais de 100 moléculas foram identificadas em nuvens moleculares, muitas delas contendo 5 ou mais átomos. Estas espécies moleculares orgânicas complexas são de particular relevância para a astrobiologia, uma vez que podem sobreviver à formação de um Sistema Estelar e, posteriormente, ser entregues à um planeta por impactos cometários e de asteroides (Gargaud et al., 2011).

1.1.4 Regiões de Fotodissociação

As regiões de fotodissociação ou regiões foto-dominadas (PDRs, da sigla em inglês) são regiões nas quais a radiação ultravioleta distante (FUV, da sigla em inglês; 6 eV < energia do fóton < 13, 6 eV) desempenha um papel no aquecimento e/ou na química, dissociando e ionizando as espécies moleculares (Tielens e Hollenbach, 1985). A energia FUV é responsável pela dissociação de moléculas e domina o processo de aquecimento. O limite superior é o limite de ionização para o hidrogênio e, portanto, PDRs são regiões de hidrogênio neutro. O campo FUV é frequentemente medido em unidades do campo de radiação interestelar Draine (Draine, 1978), igual a 1,7 vezes o Habing (Habing, 1968), campo FUV interestelar local $(1, 6 \times 10^{-3} erg cm^{-2} s^{-1} ou 10^8 fótons cm^{-2} s^{-1})$. Uma notação comum é que o G_0 é o campo de radiação em unidades do campo Habing e as forças de campo tipicamente encontradas variam entre G_0 de 1,7 para o campo interestelar e G_0 igual a 10^5 para a PDR nebular de Órion.

PDRs são encontrados onde a radiação FUV das estrelas OB ou o campo geral da radiação interestelar está presente em nuvens moleculares. A radiação de FUV pode afetar a química para extinções visuais (ver) de até $A_V \sim 8$ mantendo o oxigênio, que não está preso em CO, na forma atômica. A relação entre extinção e densidade de coluna de núcleos de hidrogênio é $N = 1,9 \times 10^{21} A_V/Z' \ cm^{-2}$, onde Z' é a abundância da poeira relativa a abundância local na Galáxia. Isto significa que a extinção em nuvens moleculares gigantes é também de $A_V \sim 8$ (Solomon et al., 1987). As PDRs também são encontradas no meio difuso em nuvens frias $(T \sim 100 \ K)$ e mornas $(T \sim 8000 \ K)$ de hidrogênio neutro. A mesma física que se aplica nas superfícies das nuvens moleculares (Abel et al. (2005), Kaufman et al. (2006), Le Petit et al. (2006)), também se aplica no meio interestelar atômico difuso (Wolfire et al. (2003), Shaw et al. (2006), Wolfire et al. (2008)), porém com um campo FUV mais fraco $(G_0 \sim 1 - 10)$ e menor densidade de coluna de núcleos de hidrogênio $(N \sim 10^{19} - 10^{21} \ cm^{-2})$. As PDRs também incluem o meio interestelar neutro em galáxias "starburst" (Kaufman et al., 1999), em galáxias com AGN (Meijerink et al., 2007) e em regiões de "outflow" com uma protoestrela embutida (Lefloch et al. (2005), Lee et al. (2014), González-García et al. (2016)).

Uma PDR pode ser dividida em vários regimes químicos em função da profundidade óptica a partir da superfície da nuvem (Sternberg e Dalgarno, 1995). Nas porções exteriores, o gás é principalmente composto por H^0 , He^0 , $O^0 \in C^+$ (Fig. 1.2). A maior parte da radiação FUV incidente é absorvida pela poeira e grandes moléculas de carbono - hidrocarbonetos aromáticos policíclicos (Ver seção 1.4.1) - e, principalmente, resulta na excitação destes e no aquecimento de grãos.

Figura 1.2: Estrutura de uma PDR, zonas químicas em função da extinção A_V dentro de uma nuvem iluminada por um campo de radiação FUV. Esta é a estrutura típica para uma PDR (Le Petit, 2012).

Regiões de fotodissociação são brilhantes no contínuo de poeira do infravermelho (IR) e em linhas atômicas de estrutura fina, assim como em linhas moleculares.

1.1.5 Química do Meio Interestelar

Os processos químicos interestelares transformam a matéria formando ou destruindo material molecular. Estes processos, atuando sobre gás e poeira, incluem aquecimento, irradiação, choques e bombardeamento de raios cósmicos, bem como reações químicas gasosas e em superfícies. A maioria das espécies tendem a não sobreviver às condições do ISM e são fotodissociadas ou fragmentadas em moléculas menores. Algumas espécies permanecerão em forma molecular e tornar-se-ão parte da matéria prima para novas estrelas em nuvens difusas e moleculares. Em nuvens moleculares, a parte mais diversificada da química ocorrerá devido às densidades mais altas e à proteção a fótons UV.

O ISM tem características que podem facilitar a formação de moléculas (Gargaud et al., 2011):

- meio muito difuso em relação às densidades terrestres. Mesmo os núcleos protoestelares "densos" são rarefeitos em comparação com a atmosfera da Terra;
- colisões envolvendo apenas dois corpos devido às baixas densidades;
- as temperaturas variam de dezenas a milhares de Kelvin;
- a incidência de radiação UV e FUV das estrelas próximas também desempenha um papel fundamental na química (regiões como as PDRs, por exemplo, tem sua química fortemente influenciada pela fotoionização e fotodissociação).

A abundância de uma dada espécie molecular depende das taxas de formação, de destruição (dissociação) e também das de dessorção do manto de gelo. A formação de moléculas orgânicas ocorre tanto na fase gasosa quanto na fase sólida (no gelo). A complexidade da química em objetos do ISM depende, então, da densidade e da pressão do gás, da intensidade do campo de radiação incidente, da dispersão da poeira e das abundâncias elementares (Sternberg e Dalgarno, 1995).

A química interestelar é altamente influenciada pelas temperaturas de cada região. As regiões de temperaturas baixas requerem reações exotérmicas. As reações que envolvem íons geralmente satisfazem esta exigência e, assim, tendem a dominar a química interestelar de fase gasosa (Herbst e Klemperer, 1973). A ionização do H_2 por raios cósmicos, que produz H_3^+ , por exemplo, é grande responsável pela ionização dos compostos neutros em regiões densas, tornando este tipo de região rica em íons complexos (Bergin, 2009). A associação radiativa com o H_2 ocorre, embora essas reações tendam a ser muito mais lentas, também colaboram na produção de íons (Herbst e van Dishoeck, 2009).

A interação entre duas espécies não carregadas, ou reações neutro-neutro, também acontecem na química interestelar. Estas reações são tipicamente endotérmicas com altas barreiras de ativação para a interação entre dois não-radicais (espécies que não possuem elétrons desemparelhados). Essas reações são insignificantes na química interestelar difusa
e fria. No entanto, a presença de um radical ou átomo pode reduzir significativamente a barreira e tais reações tornam-se, então, importantes para a formação e destruição de moléculas (Smith et al., 2004). As reações envolvendo radicais ainda têm um número limitado de estudos experimentais, embora alguns tenham sido testados em baixas temperaturas e tenham provado as teorias atuais (Smith et al., 2006).

Um sumário dos tipos de reação possíveis nos diversos ambientes do meio interestelar, com exemplos e as taxas de reação típicas estão mostradas na tabela 1.3

Tabela 1.3 - Reações químicas e as taxas de formação em ordem de grandeza. Baseados em Bergin (2009) e Galante et al. (2016).

Reação	Exemplo	Taxas de reação típica $(cm^3 \ s^{-1})$
Íon-neutro	$H_3^+ + O \to H_2O^+ + H$	$\sim 10^{-9}$
Neutro-neutro	$OH + H_2 \rightarrow H_2O + H$	$\sim 10^{-12} - 10^{-10}$
Fotoionização	$H_2O + h\nu \rightarrow H_2O^+ + e^-$	$\sim 10^{-10}$
Fotodissociação	$H_2O + h\nu \rightarrow OH + H$	$\sim 10^{-10} - 10^{-9}$
Fotosseparação	$C_6H^- + h\nu \to C_6H + e^-$	$\sim 10^{-9}$
Associação radiativa	$H_2 + S^+ \rightarrow H_2 S^+ + h\nu$	$\sim 10^{-16} - 10^{-9}$
Recombinação dissociativa	$H_3O^+ + e^- \rightarrow H_2O + H$	$\sim 10^{-6}$
Separação associativa	$C_6H^- + H \to C_6H_2 + e^-$	$\sim 10^{-10}$
Transferência de carga	$Na+Mg^+ \rightarrow Mg+Na^+$	$\sim 10^{-9}$

1.2 Intersecção entre a Astrobiologia e a Astroquímica

A Astrobiologia é um campo científico interdisciplinar com foco não somente na busca por vida extraterrestre, mas de acordo com a definição atual, é um campo de pesquisa dedicado a entender a origem, a evolução, a distribuição e o futuro da vida, na Terra ou fora (Blumberg, 2003). Esse ramo da ciência se propõe estudar a vida de uma forma mais geral, observando que a própria vida muda o ambiente em que se desenvolve, e que este está inserido em um "ecossistema" astrofísico dinâmico maior. Além disso, todas essas interações alteram a evolução do planeta e do Universo (Galante et al., 2016).

Classicamente, foram traçados três possíveis caminhos para os estudos em astrobiologia (Chela – Flores, 2001):

 aquele cujo foco são os organismos que vivem em ambientes inóspitos na Terra, os extremófilos, tão resistentes que podem indicar como a vida surgiu no nosso planeta ou mesmo onde poderia existir em outros lugares;

- aquele em que se procura através, principalmente, de radiotelescópios detectar anomalias que poderiam ser indícios de vida inteligente fora da Terra;
- aquele que busca por formas simples de matéria orgânica, como aminoácidos, proteínas e outros, que podem encontrar-se incrustadas em rochas antigas de planetas, cometas ou meteoritos, ou, ainda, em nuvens interestelares.

A ideia desta última estratégia é o foco desse trabalho: averiguar a existência das possíveis moléculas que são blocos construtores de vida, como conhecemos, em outras regiões do Universo que não a Terra. Se a abundância delas for pouca, então é improvável que exista vida baseada na mesma química daqui em outros lugares, se for muito abundante, então não haveria impedimento para que este tipo de vida tivesse se formado em outros locais.

Para isso, a astroquímica, que é uma ciência experimental, teórica e observacional com propósito de investigar a formação, a destruição e a busca de moléculas em diversos ambientes astronômicos, é fundamental, pois nos oferece os caminhos para a compreensão dos processos que levam à origem, evolução e distribuição da vida na Galáxia. Assim, essa intersecção entre astroquímica e astrobiologia pode ser a chave para tentar solucionar uma das questões mais intrigantes: a conexão entre a química interestelar e circunestelar, desde a formação de moléculas simples a partir de átomos até a complexidade extrema das moléculas biológicas (Galante et al., 2016).

A vida moderna é, surpreendentemente, baseada em poucas e pequenas moléculas se considerarmos o número de compostos com pesos moleculares semelhantes que podem ser criados utilizando os elementos carbono, hidrogênio, nitrogênio, oxigênio, fósforo e enxofre, os chamados *CHNOPS* (NASA, 2015). Os "blocos de construção" moleculares que inicialmente começaram a vida foram, indubitavelmente, influenciados pela disponibilidade, uma vez que moléculas que não estavam presentes no inventário químico prebiótico não poderiam ter desempenhado nenhum papel nos estágios iniciais da vida. A funcionalidade das moléculas disponíveis também foi importante, pois as moléculas que não possuíam propriedades propícias ao surgimento da vida não estariam diretamente envolvidas na origem da vida, mesmo que estivessem presentes. Nesse sentido, o foco desse trabalho é o estudo dos compostos que contêm o nitrogênio, essenciais para a vida.

Um sumário das moléculas já detectadas no meio interestelar e regiões circunstelares

pode ser encontrado na Tabela D.1 no Apêndice D.

1.3 Nitrogênio

O nitrogênio (N) é o sétimo elemento mais abundante no Universo, mas o quarto elemento mais importante em bioquímica. É o componente mais abundante (na forma de N_2) da atmosfera da Terra (78,08% por volume) e de Titã [98,4% por volume, na estratosfera e 95% por volume, na troposfera (Coustenis e Taylor, 2008)], além de ser um componente significante das atmosferas de Marte (1,89% por volume (Barlow, 2008)) e Vênus (3,5% por volume (Taylor, 2014)). Ainda é bastante comum na forma de amônia (NH_3) em cometas (em torno de 0.01% a 0.4% (Tegler et al., 1989)) e em planetas gigantes gasosos do Sistema Solar, tanto em forma de gás como em gelo (Gargaud et al., 2011).

O átomo de nitrogênio tem a configuração eletrônica $1s^22s^22p^3$, ou seja, ele precisaria adicionar três elétrons para alcançar a configuração estável. Isto pode ser conseguido, por exemplo, pela adição de três átomos de hidrogênio para se obter o NH_3 . Porém, o nitrogênio também é encontrado em diversos estados de oxidação - de -3 a +5 - como componente de compostos moleculares simples (Tabela 1.4). A reatividade química peculiar da maioria dos compostos contendo nitrogênio está muito frequentemente ligada à presença de um único par de elétrons não ligados nos átomos de nitrogênio. Outrossim, a valência ímpar do nitrogênio permite a formação de geometrias assimétricas e heterocíclicos, que são uma condição necessária para o armazenamento da informação (Nelson e Cox, 2012).

Composto	Fórmula	Estado de Oxidação
Amônia/nitreto/cianeto	$NH_{3}/N^{3-}/CN^{-}$	-3
Hidrazina	$H_2N - NH_2$	-2
Hidroxilamina	$HONH_2$	-1
Nitrogênio Molecular	N_2	0
Óxido Nitroso	N_2O	+1
Óxido Nítrico	NO	+2
Ácido Nitroso	HNO_2	+3
Dióxido de Nitrogênio	NO_2	+4
Ácido Nítrico	HNO_3	+5

Tabela 1.4 - Algumas pequenas moléculas nitrogenadas comumente encontradas nos estados de oxidação de -3 à +5 (Gargaud et al., 2011).

O nitrogênio é extremamente importante em sistemas biológicos, sendo o principal componente de compostos bioquímicos comuns, incluindo aminoácidos e proteínas, bases nitrogenadas presentes em ácidos nucleicos, e vários outros compostos que incluem alcaloides e biopolímeros como a quitina. De fato, tecidos biológicos geralmente contêm aproximadamente 14 % de nitrogênio, fazendo dele o quarto elemento, biologicamente importante, mais abundante.

Um dos argumentos para sua importância e reatividade prebiótica, é que o nitrogênio em sua forma reduzida pode formar ligações C - N - C, que oferecem novos arranjos geométricos para as moléculas; permite a montagem de uma série de heterocíclicos complexos e de compostos assimétricos. Por exemplo, compostos orgânicos contendo N reduzido formam grupos amina nucleofílicos, que oferecem a possibilidade de química com reação em água, devido à basicidade relativamente elevada de aminas comparadas aos correspondentes análogos contendo oxigênio. Por estas e outras razões, tem sido argumentado que as buscas de vida extraterrestre devem "seguir o nitrogênio" (Capone et al., 2006), isto é, que o nitrogênio reduzido pode oferecer uma assinatura de atividade biológica - embora a rica química baseada em H, C e N de Titã ofereça um contra-exemplo provavelmente abiótico.

A grande maioria das moléculas nitrogenadas, que são biologicamente importantes contém o nitrogênio no estado de oxidação -3, enquanto que a sua forma mais abundante, encontrado na Terra, está no estado de oxidação 0 (acredita-se que o maior reservatório de N da Terra esteja a atmosfera, na forma de N_2), destacando a importância da redução do nitrogênio e do ciclo biológico do nitrogênio (ver definição em A.2). Apesar da variedade de compostos moleculares contendo nitrogênio e da variedade de estados de oxidação do nitrogênio, parece provável, como proposto inicialmente por *Mendeleev*, que parte do nitrogênio da Terra tenha sido introduzido em seu estado de oxidação -3, principalmente sob a forma de nitretos e amoníaco (Hutsemékers et al., 2009). No entanto, também parece provável que este nitrogênio tenha sido bastante rapidamente removido dos reservatórios minerais: enquanto os nitretos são formas estáveis sob as condições de baixa temperatura e de baixa pressão dos primeiros sistemas estelares, eles são muito menos estáveis nas condições de altas temperaturas e pressão dos mantos e núcleos dos planetas rochosos. O nitrogênio foi, ainda, provavelmente, desgastado do manto inicial e o NH_3 também removido dos reservatórios atmosféricos via fotólise. Estudos da solubilidade do nitrogênio em derramamentos magmáticos (Miyazaki et al., 2004) e estudos da estabilidade fotoquímica da amônia (Ferris e Nicodem, 1972) também apoiam essa noção, assim a estabilidade química geral do N_2 torna-se provável onde os efeitos cinéticos dominam o ciclo ambiental do nitrogênio.

Além disso, diferentemente do carbono, o nitrogênio não é um componente muito abundante em rochas e minerais. Isto significa que nitrogênio orgânico encontrado no solo de outros planetas, asteroides ou outros corpos, poderiam ser resultado de atividade biológicas. Ademais, consideremos ainda que o abundante nitrogênio na atmosfera terrestre é constantemente reposto através de atividade biológica, pois sem a contribuição dos sistemas vivos, a atmosfera lentamente perderia este elemento (USC, 2006).

1.3.1 Nitrilas

De acordo com recomendações da União Internacional de Química Pura e Aplicada (IUPAC, da sigla em inglês), nitrilas são compostos orgânicos que contêm o grupo $-C \equiv N$. Alternativamente, os mesmos compostos são chamados de cianetos quando exercem função de radicais. O termo foi usado pela primeira vez por Fehling em 1844, em seu trabalho sobre a benzonitrila (Gargaud et al., 2011).

As nitrilas são astrobiologicamente interessantes porque são consideradas importantes na química prebiótica da Terra. Há dois principais motivos para esta hipótese. Primeiro, há reações que começam com nitrilas simples, como o HCN que levam à síntese de aminoácidos e bases nitrogenadas, as quais estão entre os blocos construtores mais importantes para as células vivas(Ferris et al. (1978), Yuasa et al. (1984), Glaser et al. (2007), Menor-Salván e Marín-Yaseli (2013), Jeilani et al. (2016)). Segundo, nitrilas como CH_3CN e C_2H_5CN , e alguns mais exóticos como cianopolienos ($HC_3N, HC_5N, HC_7N, ...$) foram observados em diferentes ambientes fora da Terra (Ehrenfreund et al., 2002), isto sugere que essas nitrilas são formadas facilmente por reações de fase de gás por todo o Universo (Balucani, 2009).

O cianeto de hidrogênio, HCN, pode ser considerado como um membro das nitrilas, embora não seja, normalmente, considerado orgânico e foi identificado em várias regiões do Universo, desde nuvens interestelares até atmosferas planetárias e cometas (Snyder e Buhl (1971), Ziurys e Turner (1986), Groesbeck et al. (1994), Avery et al. (1994), Cernicharo et al. (2011)). Já o radical CN, extremamente difundido pelo espaço e está entre as primeiras espécies observadas no meio interestelar, também já teve seu caráter prebiótico bem estudado (Ehrenfreund et al. (2002), Delaye e Lazcano (2005), Eschenmoser (2007)), em solução aquosa contendo iminas (ver A.6) leva à síntese de alfa-aminoácidos (ver A.1) através da Síntese de aminoácido de Strecker (ver A.10). Além disso, Coelho (2012) sugere que a maior parte do nitrogênio presente em outras moléculas no meio interestelar tem sua origem no CN. Ainda temos a formação de adenina e guanina, bases nitrogenadas do RNA e DNA, através de soluções de gelo de cianeto de amônio (NH_4CN) e na hidrólise do HCN e formamida (Miyakawa et al. (2002) e Miyakawa et al. (2002)); o cianoacetileno (HCCCN), já identificado em nuvens interestelares e na atmosfera de Titã, que pode estar envolvido em reações de produção da citosina e da uracila em fase aquosa (Ehrenfreund et al., 2002). Soluções aquosas, que podem ser relevantes em superfícies de planetas, de acetonitrila (CH_3CN) e de propanonitrila (CH_3CH_2CN) sob ação de radiação ionizante, leva à formação de oligômeros (ver A.9), os quais resultam em aminoácido após a hidrólise (Draganić et al., 1977). Temos ainda evidências de que a radiação ionizando gelos contendo CH_3CN produz precursores de aminoácidos (Hudson et al., 2008). Outros compostos contendo a função nitrila, tais como cianometileno (HCCN), HCN e o OCN^{-} , foram detectados recentemente na atmosfera de Titã, em comas cometárias (ver glossário) e no meio interestelar (Hudson e Moore, 2004).

No do Sistema Solar, a química das nitrilas é particularmente relevante em Titã, já que sua atmosfera oferece condições de temperatura e pressão para a formação de tais compostos, além de permitir reações estimuladas por raios cósmicos, fótons UV solares e por elétrons aprisionados magnetosfera de Saturno. As nitrilas também são importantes no estudo de cometas. Os cometas são essenciais para estudar as nebulosas solares e sua evolução, já que as moléculas são mais facilmente detectáveis nestes objetos devido à sua trajetória, quando cruza a órbita terrestre e servem, assim, de comparação ao que se pode encontrar nas regiões de formação estelar e, ainda, ajudar nas pesquisas sobre os processos químicos que acontecem no meio interestelar.

Nesse contexto, cabe salientar a teoria da Panspermia, que sugere que a vida não necessariamente tenha se originado na Terra, mas ter surgido ou sido transportada em cometas (Napier et al., 2007); mais especificamente, Wickramasinghe et al. (2012) refere-se aos planetas primordiais, nos quais teria havido o início da vida, ou pelo menos a formação dos primeiros blocos construtores, alguns milhões de anos após o Big Bang, desde a primeira condensação do H_2 , seria possível mapear essa história evolucionária pelo processo de colisão de cometas e outros astros que expeliram gás e poeira na nuvem zodiacal, quando da passagem dos primeiros corpos planetários pelo Sistema Solar (Wickramasinghe et al., 2012). Outra teoria, mais aceita, é de que os cometas possam ter fornecido compostos orgânicos chaves para o inicio da vida na Terra. Dentre estes, a formamida e os compostos heterocíclicos nitrogenados tem especial importância.

1.3.1.1 Formamida

A formamida (NH_2CHO) é a amida com a estrutura mais simples (outras amidas podem ter um, dois ou três átomos de hidrogênio substituídos por radicais) e é a menor molécula capaz de fazer ligação peptídica (ver A.7). Ela se mantém líquida entre 3°C e 120°C, o que é uma faixa bastante grande, e esta é uma das razões pelas quais a formamida já foi sugerida como uma alternativa para a água como solvente ideal para a vida. O formiato de amônio (NH_4HCO_2) , ele próprio um produto da reação de duas espécies simples, ácido fórmico (CH_2O_2) e amônia (NH_3) , produz a formamida quando aquecido (Gargaud et al., 2011). É considerada como um possível ponto de partida para a produção das bases de RNA (Barks et al., 2010).

A formamida foi detectada, pela primeira vez em 1971, no meio interestelar por Rubin et al. (1971) e, em 1997, no brilhante cometa C/1995 O1 (*Hale-Bopp*) por Mehringer et al. (1997). Além disso, a formamida também já foi observada em núcleos moleculares quentes (Bisschop et al. (2007), Adande et al. (2013)), em objetos proto-estelares de baixa massa (Kahane et al., 2013) e em regiões de choque de *outflow* (Mendoza et al., 2014), mostrando que deve ser um composto facilmente sintetizado, em condição astrofísicas.

A formamida é, atualmente, considerada como tendo um importante potencial prebiótico, pois alguns trabalhos têm mostrado que a formamida leva à formação de nucleobases (Schoffstall (1976), Saladino et al. (2007), Saladino et al. (2012), Saladino et al. (2012), Saladino et al. (2014) Ferus et al. (2015), Rotelli et al. (2016)). Estes resultados são passos importantes para se entender a química prebiótica.

1.4 Universo Aromático

A complexidade das moléculas carbonáceas, sua abundância e escala de tempo de formação em nosso Universo em evolução são questões cruciais dentro da química cósmica. Observações astronômicas confirmam que a química orgânica no espaço parece seguir caminhos comuns ao longo do espaço. As três isoformas de carbono: diamante, grafite e hidrocarbonetos, foram identificadas no ambiente espacial. O material aromático, na forma de hidrocarbonetos aromáticos policíclicos (PAHs, da sigla em inglês) gasosos, bem como estruturas aromáticas sólidas, compreende a maior parte do carbono no meio interestelar, cometas e meteoritos e também foi, provavelmente, o material mais abundante entregue aos jovens planetas (Ehrenfreund et al., 2006). Os PAHs são moléculas orgânicas encontradas em todo espaço e podem ter desempenhado um papel fundamental na origem da vida. De fato, estas moléculas podem ter sido as primeiras grandes moléculas produzidas logo após a primeira geração de estrelas massivas do Universo jovem (Chela – Flores, 2001).

1.4.1 PAH e PANH

Os PAHs são moléculas orgânicas contento apenas carbono e hidrogênio. Na Terra são encontrados em materiais como carvão e óleo natural. São formados em processos de combustão de muitas substâncias carbonáceas e, portanto, são encontradas em fuligens, fumaças e outros. São substâncias cancerígenas (Shrivastava et al., 2017).

No espaço, os PAHs são encontrados em grandes abundâncias, na Via Láctea, onde a radiação UV está presente, já que são moléculas extremamente resistentes a este tipo de radiação, pois absorve este tipo de energia e reemite no IR (Tielens, 2005), e permeiam o Universo, até em galáxias com *redshifts* elevados. Os PAHs são observados por sua característica de forte emissão em comprimentos de onda no infravermelho (IR) (Joblin et al., 1992) conhecida como AIBs (sigla em inglês para Bandas Aromáticas no Infravermelho). Entre 20-30% da emissão galáctica no IR são emissão de PAHs e, é estimado que, ao menos, 10-15% do carbono cósmico está preso nessas moléculas. Dada a sua grande abundância, a sua estabilidade e a sua presença nestes ambientes diversos, parece evidente que desempenham um papel crucial em muitos processos físicos e químicos no meio circunstelar e interestelar (Allamandola et al. (1989), Puget e Leger (1989), Tielens (2005), Tielens (2008), Tielens (2013).

A capacidade dos átomos de carbono de ter até quatro ligações químicas permitelhes formar estruturas complexas. Os átomos de carbono podem ser configurados em anéis hexagonais planos - anéis de benzeno - onde cada átomo de carbono é ligado a três átomos vizinhos (C ou H) por ligações- σ (ver A.8) covalentes (Fig. 1.3). Estas ligações resultam da sobreposição de orbitais hibridizados sp^2 no mesmo plano e, assim, resulta uma estrutura molecular planar. Os seis elétrons restantes (um pertencente a cada átomo de carbono) num anel benzeno correspondem a orbitais p que têm lóbulos perpendiculares a este plano. A sobreposição destes orbitais resulta então em uma ligação- π (ver A.8) deslocalizada (ver A.3) com orbitais moleculares acima e abaixo do plano da molécula. Tal configuração é chamada de aromática. As moléculas de hidrocarbonetos que não contêm ligações aromáticas são chamadas de compostos alifáticos.

Figura 1.3: Estrutura química de alguns PAHs catacondensados e pericondensados (Adaptado de (Boersma, 2009)).

Os anéis de benzeno são, então, a base para moléculas muito maiores que são compostas de vários anéis fundidos e, portanto, chamados policíclicos aromáticos. Se essas moléculas policíclicas contêm apenas carbono e hidrogênio, são chamados PAHs. Algumas modificações químicas podem ser comuns em ambientes astrofísicos, e alterar as propriedades moleculares e espectrais. Quando um átomo de hidrogênio é substituído por deutério, os PAHs deuterados são às vezes chamados de PADs (da sigla em inglês), por exemplo. O espectro infravermelho de quase todos os objetos interestelares, incluindo regiões de formação estelar como as regiões HII e nebulosas de reflexão, estrelas ricas em carbono nas fases finais de evolução como estrelas que sairam do ramo assintótico das gigantes e nebulosas planetárias, nuvens escuras, discos de formação planetária de objetos estelares jovens, o meio Interestelar em geral, núcleos galácticos, e galáxias (ultra)luminosas no IR, são dominadas por fortes e largas linhas de emissão em 3,3, 6,2, 7,7, 8,6, 11,2 e 12,7 μm (Mattila et al. (1996), Hony et al. (2001), Peeters et al. (2002), Armus et al. (2007), Lutz et al. (2007), Sellgren et al. (2007), Galliano et al. (2008)). Essa característica de emissão forte acompanhada por uma infinidade de bandas mais fracas em 3,4, 5,2, 5,7, 6,0, 7,4, 12,0, 13,5, 14,2, 15,8, 16,4, 17,0 e 17,4 μm é, praticamente, onipresente no meio interestelar e indica a presença de PAHs. Particularmente, PAHs dominam o aquecimento de gás neutro e o balanço de ionização em nuvens moleculares e são importantes traçadores de regiões de formação estelar.

Normalmente essas emissões são atribuídas à fluorescência de PAHs de cerca de 50 átomos de carbono, bombeados por fótons UV distante. Isto porque as espécies menores de PAHs ao absorverem um único fóton, ficam muito quentes, vibram e emitem no infravermelho médio. O perfil de muitas destas bandas é típico da inarmonicidade associada a emissões moleculares (Tielens, 2008). Estas emissões não dependem da intensidade do campo de radiação, mas somente da energia dos fótons e das propriedades das partículas (Guimarães, 2006).

PAHs e macromoléculas carbonáceas parecem exercer um papel fundamental na física e química do ISM (Berné et al., 2015) e, acredita-se, que estes compostos apresentem-se com complexidades diferentes em diversos ambientes astrofísicos (Fig. 1.4, Andrews et al. (2015)).

Apesar da robustez dos PAHs, a interação destes com os fótons UV pode causar fragmentação, desidrogenação e isomerização, causando uma evolução química (Fig. 1.5, Tielens (2013)). Além disso, Coelho (2012) mostra que os PAHs funcionam como catalisadores na formação de moléculas orgânicas complexas, isso porque funcionam como grãos e podem proteger as moléculas maiores da destruição por radiação.

Uma molécula de PAH em que um ou mais átomos de carbono é substituído por nitrogênio é um Heterociclo Aromático Nitrogenado Policíclico (PANH, da sigla em inglês). Segundo Ehrenfreund et al. (2006), os PANHs poderiam constituir uma etapa na produção

Figura 1.4: Diferentes complexidades dos PAHs para diversos ambientes astrofísicos. No limite entre a nuvem molecular e a PDR, PAHs formam estruturas mais estáveis (pericondensados). Conforme a maior proximidade da estrela, mais os PAHs so ionizados e destruídos, gerando outras moléculas (por exemplo, o fulereno). Figura adaptada de Andrews et al. (2015).

Figura 1.5: Diagrama da química estelar do carbono. Figura adaptada de Tielens (2013).

do RNA, servindo como um precursor desta substância, o chamado Mundo RNA ou "RNA World".

Da mesma maneira que os PAHs, PANHs podem ser sintetizados pela adição de acetileno, em temperaturas de alguns milhares de Kelvin (Parker et al., 2015) e, para temperaturas mais baixas - até 1500K - Parker et al. (2015) mostra que também o acetileno pode ser o responsável pela produção de PAHs, principalmente reagindo com radicais piridil C_5H_4N . Outrossim, Ricca et al. (2001) sugere que a substituição intermediária do acetileno pelo HCN pode fazer o nitrogênio incorporar diretamente no PAH.

Para temperaturas baixas, como 10K de nuvens moleculares frias e até menores, os PANHs podem ser formados através da colisão do N com fótons altamente energéticos (Ota, 2016). Outra rota possível seria a irradiação UV de benzeno e naftaleno em grãos de gelo contendo amônia (Materese et al., 2015).

Canelo (2016) mostra que os PANHs parecem dominar o espectro IR em 6.22 μm , o que poderia indicar um reservatório de nitrogênio no Universo, sendo possível que grande parte dos PAHs do meio interestelar já tenham incorporado o N em seu anel aromático, o que representaria quantidades significativas de PANHs no ISM.

1.4.2 Bases Nitrogenadas

O livro "O que é vida" de Erwin Schrödinger, pulicado em 1944, pode ser considerado um marco para uma das primeiras tentativas modernas de definição de vida. Schrödinger tentou relacionar a origem da vida com as condições químicas e físicas do planeta (Galante et al., 2016). O livro ainda insinua a existência da macromolécula biológica do ácido desoxirribonucleico (DNA, da sigla em inglês), que seria de um cristal que armazenaria informação genética (Galante et al., 2016).

Base nitrogenada é um composto heterociclo nitrogenado que serve como monômero informacional do ácido ribonucleico (RNA, da sigla em inglês) e do DNA, onde assume a forma de purinas e pirimidinas e representam uma das três partes do nucleotídio (os outros dois componentes são uma pentose (açúcar com cinco carbonos) e um grupo fosfato). No DNA, a informação genética é codificada em uma sequencia linear de nucleotídios. Uma única cadeia de DNA pode ter milhões de nucleotídios.

As bases nitrogenadas são compostos fracamente básicos. Elas são estáveis devido à ressonância entre os átomos no anel, isto resulta que a maioria das ligações tem caráter

de ligações duplas parciais. As que são derivadas de pirimidinas são moléculas planares, enquanto as derivadas de purinas são quase planares, porém com uma ligeira deformação não planar no anel. Como elas tem caráter aromático, as bases nitrogenadas são caracterizadas por forte absorção no UV ($\sim 260 \ nm$). Em ambientes com pH neutro, as bases nitrogenadas são, geralmente, neutras, hidrofóbicas e relativamente insolúveis. (Nelson e Cox, 2012).

As bases nitrogenadas primárias são adenina, citosina, guanina, timina e uracila (Fig. 1.6). Duas importantes propriedades para a manutenção da estrutura das bases nitrogenadas e a estabilidade do DNA (e RNA) são as ligações de hidrogênio e o empilhamento de bases. Um par de bases, geralmente, envolve ligações de hidrogênio entre uma purina e uma piridina. No DNA, a base guanina faz par com a citosina, enquanto a base adenina faz par com a timina (Fig. 1.7). No RNA, a uracila substitui a timina e faz par com a adenina. Normalmente, pares purina-purina e pirimidina-pirimidina são energeticamente desfavoráveis (Neidle, 2008). Quando as bases nitrogenadas estão alinhadas com as faces dos anéis aromáticos paralelas, suas ligações π interagem umas com as outras para formar ligações não-covalentes. A soma de todas as interações de empilhamento dentro do ácido nucleico cria grande quantidade de energia com efeito estabilizador, que ajuda a manter a estrutura do ácido nucleico.

Figura 1.6: Purinas e Piridinas - figura de Mundo Genética (2017).

Figura 1.7: Ligações entre bases nitrogenadas no DNA - figura de Valparaíso (2017).

Diversos materiais iniciais, catalisadores e condições de reações já foram utilizados para sintetizar bases nitrogenadas sob condições prebióticas plausíveis, demonstrando que sua síntese é favorável em diferentes cenários. Dois compostos são bastante estudados para a síntese destas bases, o HCN (ver 1.3.1) e a formamida (ver 3.5). Bases nitrogenadas em sua forma livre e na fase gasosa são improváveis de sobreviverem em ambientes interestelares e circunstelares, já que elas, eventualmente, se decompõe na presença de intensa radiação UV. No entanto, estes compostos poderiam ser capazes de sobreviver em densas nuvens interestelares, apesar de nenhuma detecção positiva ter sido feita ainda. Além disso, elas poderiam sobreviver se tiverem alguma proteção contra a radiação, por exemplo, protegidas por gelos e grãos, ou ainda, elas poderiam sobreviver em alguma forma precursora, como em meteoritos ou ligadas em compostos macromoleculares (Stoks e Schwartz (1981), Peeters et al. (2005), Martins et al. (2008)). Ao contrário, irradiação de UV pode também desempenhar um papel importante na formação das nucleobases; segundo Nuevo et al. (2009), a fotólise por UV de pirimidina em água pura, na faixa de temperatura entre 20-120K produz uracila.

Poucos trabalhos, como o de Plützer et al. (2001) que mostra um espectro da adenina produzido em jatos supersônicos com linhas de absorção na faixa entre 36050 e 36700 cm^{-1} , apresentam espectros no infravermelho para as bases nitrogenadas em fase gasosa e isso dificulta a detecção delas no meio interestelar.

Vale ainda considerar a observação de moléculas orgânicas alifáticas no planeta anão Ceres (De Sanctis et al., 2017). Este tipo de molécula não foi abordada por este trabalho, mas é uma informação que pode render mais estudos nessa linha.

1.4.3 Fósforo

Apesar de sua importância biológica, o fósforo é relativamente inacessível como elemento. Dos elementos mais comuns, típicos de uma célula, o fósforo é o único que não está entre os dez mais abundantes no Sistema Solar (é o número 17), mesmo assim, ele aparece em uma gama surpreendentemente ampla de moléculas biológicas.

Para começar, o fósforo é um elemento estrutural importante no DNA e RNA. Ambas as moléculas genéticas têm uma espinha dorsal de açúcar-fosfato. O fosfato (PO_4^{-3}) funciona como um "aglutinador", uma vez que possui três átomos de oxigênio que carregam cargas em solução. Dois destes átomos de oxigênio formam ligações iônicas com dois açúcares vizinhos, enquanto o terceiro oxigênio é deixado com uma carga negativa que faz com que toda a molécula de DNA ou RNA fique carregada negativamente. Poucos elementos poderiam funcionar dessa forma, com três cargas. Uma possibilidade seria o arsênio.

O fosfato desempenha outros papéis na célula, além de no DNA. Ele aparece três vezes

na adenosina trifosfato, ou ATP, que é uma forma vital de armazenamento de energia em células.

Além disso, Powner et al. (2009) mostram que poderia haver um caminho mais curto para a própria formação dos ácidos nucleicos, com ajuda do fosfato. Eles mostram que o fosfato domina a explosão combinatória (ver seção A.4), permitindo que os reagentes oxigenados e nitrogenados interajam. O caminho dos autores para o RNA começa com os mesmos materiais de partida usados em muitos estudos recentes de química prebiótica, mas difere na ordem em que eles são combinados. Quando o açúcar estruturalmente mais simples, glicol-aldeído, reage com o derivado mais simples de cianeto e amoníaco, cianamida, é formada uma mistura complexa de compostos indesejáveis. Porém, o fosfato atua tanto como um *buffer* do pH como, também, como um catalisador, encurtando assim a rede de possíveis reações não desejadas e conduzindo em vez disso à síntese rápida e eficiente de um intermediário chave conhecido como 2-amino-oxazol. O fosfato continuaria sendo essencial nos passos seguintes que gerariam as ácidos nucleicos; a penúltima reação seria o fosfato sendo anexado ao nucleotídio.

E, ainda, podemos citar a fosfina, PH_3 , que é um gás tóxico de fósforo à temperatura e pressão padrão. A fosfina é a espécie de fósforo volátil mais abundante e de ocorrência natural e foi detectada nas atmosferas dos gigantes gasosos Júpiter e Saturno e no contínuo de Netuno (Haas et al. (1983), Lellouch et al. (1984), Burgdorf et al. (2004)), nos envelopes atmosféricos de estrelas gigantes (Agúndez et al., 2014) e como um vestígio na atmosfera da Terra. A sua origem terrestre pode estar ligada à atividade microbiana ou a fontes antropogênicas.

O fósforo é visto como tendo um papel fundamental na origem da vida, como um componente biológico fundamental, porém devido a sua baixa abundância no Universo, considera-se que esse fósforo tenha sido retirado de minerais e meteoritos (Gull e Pasek (2013), Pasek et al. (2015)). A recente detecção do fósforo pela Rosetta parece dar mais sustentação a esses argumentos (Altwegg et al., 2016), fósforo esse que poderia ter como origem a própria fosfina (Boice e de Almeida, 2016). Além disso, ocorreram as primeiras detecções do PO e PN em regiões de formação estelar (Rivilla et al. (2016), Lefloch et al. (2016)) e em núcleos massivos densos (Fontani et al., 2016), mostrando que apesar de pouco abundante, pode ser encontrado em diversos ambientes no espaço.

1.5 Astroquímica no Milimétrico

A observação do espaço, através da faixa espectral do rádio, começou a ganhar aceitação na comunidade astronômica desde meados do século XX. Não obstante, o início da radioastronomia data dos anos trinta, quando o pesquisador *Karl Guthe Jansky* detectou uma emissão *extraterrestre*, e não solar, em uma frequência de ~ 20 GHz (Mehler, 2005). Desde então, o avanço tecnológico dos radiotelescópios tem permitido fazer grandes descobertas, tais como a radiação cósmica de fundo e a detecção de dezenas de moléculas associadas com a química prebiótica.

As ondas de rádio, desde a fonte emissora até a antena, são relativamente transparentes ao meio que atravessam. A figura 1.8 mostra as diferentes janelas espectrais de observação, onde a correspondente ao rádio extende-se desde $\lambda \sim 50$ m até 0,1 mm. A opacidade atmosférica começa a ser importante na região milimétrica e submilimétrica, pois nesse intervalo espectral apresentam-se absorções por moléculas presentes nas troposfera. Especificamente o vapor de H_2O produz duas bandas em $\sim 1, 3$ cm e $\sim 1, 6$ mm, e o gás O_2 gera uma banda em ~ 5 mm e outra em $\sim 2, 5$ mm. No outro extremo, para $\lambda \geq 15 m$, a atmosfera começa a tornar-se opaca à radiação, porém, não é pela presença da moléculas, mas pela elevada quantidade de elétrons na ionosfera.

1.5.1 Equilíbrio Termodinâmico Local

Alguns conceitos sobre transferência radiativa são fundamentais para entender-se como funciona a observação e identificação de moléculas no espaço.

A intensidade específica (I_{ν}) de uma fonte pode variar de acordo com os processos de absorção e de emissão que possa sofrer ao longo da linha de visada (Mehler, 2005). A equação 1.1 permite calcular a variação dI_v em função de um diferencial de distância ds.

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu}I_{\nu} + j_{\nu},\tag{1.1}$$

onde κ_{ν} e j_{ν} são coeficientes de absorção e emissão, respectivamente. Existem três aproximações possíveis para a equação 1.1:

- 1. se a absorção for nula, então $DI_{\nu}/ds = j_{\nu}$;
- 2. se a emissão for nula, então $dI_{\nu}/ds = -\kappa_{\nu}I_{\nu}$;

Figura 1.8: Janelas espectrais de observação com seus respectivos observatórios. Particularmente, a região espectral compreendida entre os comprimentos de onda de ~ 1 cm até ~ 50 m é relativamente transparente à absorção atmosférica. Figura adaptada de Hubble European Space Agency Information Centre.

3. se houver equilíbrio radiativo, então $I_{\nu}/ds = 0$ o que equivale que $I_{\nu} = j_{\nu}/\kappa_{\nu}$.

A hipótese de equilíbrio radiativo será descrito abaixo, pois a análise feita na seção 3.4 parte desse pressuposto.

Se a radiação está em equilíbrio com o meio que atravessa, I_{ν} pode ser descrita pela distribuição de Planck, $B_{\nu}(T)$, com mostra a equação 1.2

$$\frac{j_{\nu}}{\kappa_{\nu}} = I_{\nu} = B_{\nu}(T) = \frac{2h\nu^3}{c^2} [\frac{1}{exp(h\nu/kT) - 1}],$$
(1.2)

onde h e k são as constantes de Planck e de Boltzmann, respectivamente. Convencionalmente, a equação 1.2 expressa o formalismo conhecido como Equilíbrio Termodinâmico Local (LTE, da sigla em inglês), que, basicamente, tira a dependência do quociente j_{ν}/κ_{ν} com a natureza do meio, deixando-o só em função da temperatura T.

1.5.2 Linhas Espectrais

A energia associada a uma transição molecular (**W**) está definida pelas contribuições de excitações eletrônicas (\mathbf{W}^{ele}), vibracionais (\mathbf{W}^{vib}) e rotacionais (\mathbf{W}^{rot}). Logo, W =

Figura 1.9: Modelo de rotor rígido para uma molécula diatômica de momento angula L, cujos átomos a e b possuem massa M_a e M_b , respectivamente, e estão conectados por uma ligação de comprimento R_e .

 $W^{ele} + W^{vib} + W^{rot}$, onde $W^{ele} > W^{vib} > W^{rot}$. A energia das transições rotacionais é a mais fraca; os fótons que as caracterizam possuem comprimentos de onda que caem na região do rádio do espectro eletromagnético (Mehler, 2005).

O modelo de rotor rígido, ou seja, átomos ligados entre si que giram juntos com um certo momento angular como mostra a figura 1.9, explica a origem das transições rotacionais. Devido às propriedades quânticas das transições rotacionais, a energia do rotor é dada pela expressão 1.3

$$W^{rot} = \frac{J(J+1)^2}{2I},$$
(1.3)

onde J é o número quântico principal e I é o momento de inércia do rotor rígido dado por $I = M_a R_a^2 + M_b R_b^2$ (ver figura 1.9).

A análise das linhas de emissão de uma dada espécie permite conhecer propriedades como a temperatura de excitação (ou temperatura rotacional, T_{rot}) e a densidade de coluna do gás emissor.

1.5.3 Coeficientes de Einstein

Os processos de absorção e emissão de fótons por uma molécula são quantificadas através dos coeficientes de Einstein. A figura 3.3 apresenta os três tipos de transições que podem que podem ocorrer em uma dada espécie: (i) emissão espontânea desde o nível superior $\mathbf{E}_{\mathbf{u}}$ ao inferior $\mathbf{E}_{\mathbf{l}}$, segundo uma probabilidade $\mathbf{A}_{\mathbf{ul}}$. A probabilidade de transição

Figura 1.10: Processos de emissão espontânea, emissão estimulada e absorção, entre os níveis superior (E_u) e inferior (E_l) , cujos coeficientes de Einstein são A_{ul} , B_{ul} e B_{lu} , respectivamente.

é dada pelo produto $N_u A_{ul}$, onde N_u é a densidade de estados do nível E_u . (ii) emissão estimulada desde o nível $\mathbf{E}_{\mathbf{u}}$ ao $\mathbf{E}_{\mathbf{l}}$, cuja probabilidade está associada ao produto $N_u B_{ul} \overline{U}$, onde \overline{U} é a densidade de energia média do campo de radiação. (iii) excitação, pela absorção de um fóton, do nível inferior $\mathbf{E}_{\mathbf{l}}$ ao superior $\mathbf{E}_{\mathbf{u}}$. A probabilidade é dada pelo produto $N_l B_{lu} \overline{U}$, onde N_l é a densidade de estados do nível E_l . Logo, os fatores A_{ul} , B_{ul} e B_{lu} são os coeficientes de Einstein para os processos de emissão espontânea, emissão estimulada e absorção, respectivamente (Mehler, 2005).

Sob a condição de LTE, equação 1.2, o número de eventos de absorção e emissão são iguais, matematicamente: $N_u A_{ul} + N_u B_{ul} \overline{U} = N_l B_{lu} \overline{U}$. Daí tem-se a equação 1.4,

$$\overline{U} = \frac{A_{ul}}{(N_l/N_u)B_{lu} - B_{ul}} \tag{1.4}$$

Por outro lado, considerando que a densidade de estados está definida pela distribuição de Boltzmann, tem-se a equação 1.5

$$\frac{N_u}{N_l} = \frac{g_u}{g_l} exp(-\frac{h\nu}{kT}),\tag{1.5}$$

onde g_u e g_l são os pesos estatísticos dos níveis E_u e E_l , respectivamente. Substituindo a equação 1.5 na equação 1.4 para obter a equação 1.6

$$\overline{U} = \frac{A_{ul}}{\frac{g_l}{g_u} exp(\frac{h\nu}{kT})B_{lu} - B_{ul}}$$
(1.6)

Em condições de LTE, \overline{U} pode ser representado em função da distribuição de Planck, de modo que $\overline{U} = (4\pi/c)B_{\nu}(T)$. Logo, para que essa condição seja idêntica à equação 1.6, os coeficientes de Einstein devem estar relacionados pelas equações 1.7 e 1.8

$$g_l B_{lu} = g_u B_{ul} \ e \tag{1.7}$$

$$A_{ul} = \frac{8\pi h\nu^3}{c^3} B_{ul} \tag{1.8}$$

A profundidade óptica (τ) é uma medida da transparência radiativa de um determinado meio e é dada por $\tau = \sigma N$, onde σ e N são a seção de choque de absorção e a densidade de coluna do meio, respectivamente. A intensidade de emissões opticamente finas, ou seja, em regiões com $\tau \ll 1$, se traduz em uma temperatura de antena T_a que é proporcional à população de estados (N_u) no nível superior E_u . Se todas as transições de uma molécula estão termalizadas, ou seja, ocorrem a uma temperatura cinética conhecida, é possível estimar a densidade de coluna da espécie que está emitindo.

1.6 Organização da Tese

Esta tese está organizada como segue: no segundo capítulo 2, encontra-se uma breve descrição dos objetos de estudo, a Nebulosa da Cabeça de Cavalo, arquétipo de região de fotodissociação e a G331.512, região de formação estelar com *outflow* molecular, além dos instrumentos usados nos estudos realizados, o código de *Meudon* para regiões de fotodissociação e o Guildas e seus pacotes para redução de dados espectrais. No capítulo três 3 apresenta-se os resultados obtidos e a análise destes. As conclusões e perspectivas encontram-se, então, no capítulo cinco 4. No primeiro apêndice A está descrito, sucintamente, alguns conceitos que podem não ser triviais aos astrônomos. Já no apêndice três D, encontra-se uma tabela atualizada das moléculas já identificadas no meio interestelar, enquanto no apêndice três E tem-se todas as reações e taxas de reações das moléculas que foram incluídas no programa *"The Meudon PDR Code"*. Capítulo

2

Objetos e Ferramentas

Neste trabalho foram estudas duas diferentes nuvens moleculares, a Nebulosa Cabeça de Cavalo e a região G331.5-0.1. Na primeira foi realizado um estudo teórico sobre as possíveis abundâncias de importantes moléculas prebióticas, cuja existência poderia ajudar a responder questões sobre o quão comum seria a vida no Universo. Já a região G33.5-0.1 é uma região pouco explorada e foi estudada observacionalmente na tentativa de conhecê-la melhor e avaliar as abundâncias de outras importantes espécies prebióticas, além de servir como uma avaliação do modelo. Para esses estudos foram usados códigos para simular as regiões, assim como para a redução de espectros obtidos no radiotelescópio APEX e diversos bancos de dados que contêm reações químicas, taxas de formação e destruição no ISM e espectros sintéticos com as frequências de vários átomos e moléculas na região do (sub)milimétrico.

2.1 Nebulosa Cabeça do Cavalo

A nebulosa de Cabeça do Cavalo ou "Horsehead Nebula", em inglês, também conhecida como Barnard 33, é uma nebulosa escura na constelação Orion que se projeta na nebulosa brilhante *IC 434* ao sul da estrela *Alnitak* (ζ *Orionis*) no cinturão de Orion. Ela só pode ser vista bem em fotografias de longa exposição e é frequentemente usada por astrônomos amadores como um teste de sua habilidade de observação. Sua forma incomum foi observada pela primeira vez em uma placa fotográfica no final de 1800 (Darling, 2017). A figura 2.1 mostra uma foto da região publicada em 2010 pelo site "Astronomy Picture of the Day".

A estrela iluminadora da região é σ Orionis, que é na verdade um sistema quíntuplo

Figura 2.1: Nebulosa Cabeça de Cavalo, sua estrela iluminadora σ Orionis e sua vizinhança. Figura de APOD (2010) modificada.

(Kaler, 2012), na borda de um pequeno aglomerado estelar, a 1150 anos-luz da Terra. O sistema de cinco estrelas é dominado por um par de estrelas: a mais luminosa do par tem tipo espectral O9.5V e, a menos luminosa do par tem tipo espectral B0.5V. Nesse trabalho foi usado a estrela tipo O9.5V como campo de radiação adicional, embora Coelho (2012) mostre que a radiação FUV da região é tão intensa que a radiação de estrelas de diferentes tipos espectrais não são muito significantes na formação e destruição das moléculas no interior da nuvem.

Este é um importante objeto, comumente usado como objeto-modelo, e foi escolhido para isto neste trabalho por ser exemplo representativo de PDR e de nuvem molecular, tendo sido extensivamente observada e parametrizada devido à sua distância moderada $(d \simeq 400 \ pc)$, geometria simples e um campo de radiação FUV bem conhecido, onde a estrela σ Orionis ioniza a região, conforme Gerin et al. (2009). Além disso, a modelagem clássica de Cordiner et al. (2007) para este objeto e o seu espectro rico em linhas moleculares, como as de C_4H e de C_6H , fazem dessa nebulosa um alvo ideal para testar qualquer modelo para a formação de linhas moleculares. Outrossim, é possível ampliar os estudos sobre a região, tendo como base os resultados obtidos por Goicoechea et al. (2009) e Gerin et al. (2009), considerando essa região como arquétipo de nuvens moleculares. As características físicas mais importantes da nebulosa Cabeça do Cavalo estão sintetizadas na tabela 2.2.

-		
Nome	Barnard 33 (Nebulosa Cabeça de Cavalo)	
Localização	AR: $50h40m54.27s$; DEC: $-02^{\circ}28'00''$ (2000)	
Distância da Terra	$\sim 400 pc$	
Estrela iluminadora	σ Orionis (O9.5V)	
Campo de radiação FUV	60 (unidades de Draine)	
Profundidade ao longo da linha de visada	$\sim 0.1 pc$	
Inclinação da linha de visada	$\leq 6^{\circ}$	
	Gradiente em forma de degrau:	
Perfil de densidade	$n \sim r^{-3} de \sim 10^5 - 10^3 cm^{-3}$ no núcleo frio	
	$n\sim 5-10\times 10^3 cm^{-3}$ na borda da (PDR)	
Temperatura cinética	$T_K \sim 15 K$ no núcleo frio; $T_K \sim 100 K$ na borda (PDR)	
Pressão térmica	$\sim 4 \times 10^6 K cm^{-3}$	

|--|

2.2 G331-50.1

A região G331-50.1 (Figura 2.2) é uma região pouco estudada e, sendo assim, ótima alvo para novos desafios e descobertas em detecção de moléculas. É uma das regiões mais luminosas de formação de estrelas maciças na Via Láctea, localizada na região tangente do braço espiral Norma, a uma distância de 7,5 kpc (Bronfman et al. (1985), Bronfman et al. (1989)). Merello et al. (2013) caracterizou essa região como tendo seis polos compactos e luminosos, tornando esta fonte uma das regiões centrais mais densamente povoadas de um aglomerado globular massivo na Galáxia. Os agregados de poeira estão associados com o gás molecular e têm as seguintes propriedades médias: tamanho de 1,6 pc, massa de $3, 2 \times 10^3 M_{\odot}$, densidade de hidrogênio molecular de $3, 7 \times 10^4 cm^{-3}$, temperatura da poeira de 32 K e luminosidade integrada de $5, 7 \times 10^5 L_{\odot}$, consistente com os valores encontrados em direção a outros grandes formadores de poeira formadores de estrelas. As características físicas mais importantes da G331-50.1 estão sintetizadas na tabela ??.

Tabela 2.2 - Características físicas da G331.512 (Merello et al., 2013).

Nome	G331-50.1
Componentes	6 polos compactos e luminosos
Distância da Terra	$\sim 7,5 kpc$
Tamanho	$1,6 \mathrm{pc}$
Massa	$3,2 \times 10^3 \ M_{\odot}$
Luminosidade integrada	$5,7 imes 10^5 \ L_{\odot}$
Densidade de hidrogênio molecular	$3,7 \times 10^4 \ cm^{-3}$
Temperatura da poeira	32 K

Figura 2.2: Região G331-50.1. Em destaque a região G331.512.

Além disso, Merello et al. (2013) mostra a presença de duas componentes de velocidade: uma componente de velocidade a $-89 \ km.s^{-1}$, vista em direção a quatro dos agregados, e uma componente de velocidade em $\sim -101 \ km.s^{-1}$ vista para os outros dois aglomerados. Um fluxo (*outflow*) molecular de alta velocidade é encontrado no centro do maciço mais brilhante e a estimativa da temperatura de rotação do gás em direção a esse fluxo > 120 K e > 75 K, respectivamente.

Já a G331.512-0.103 é uma das regiões mais energéticas e luminosas regiões de *out-flow* molecular conhecidas na Galáxia. Merello et al. (2013) revelou um *outflow* bipolar compacto e extremamente jovem, além de um envelope envolvendo uma região muito pequena de gás ionizado. O *outflow* possui uma velocidade de aproximadamente $70km.s^{-1}$ em ambos os lados. A velocidade de expansão do envelope é de ~ 24 $km.s^{-1}$. É um dos mais jovens exemplares de *outflow* molecular massivo, associado à uma estrela massiva, encontrado.

O envelope que envolve o *outflow* molecular da região G331.512-0.103 pode ser aproximado à uma região PDR.

2.3 Bases de dados moleculares

Numerosos modelos químicos foram desenvolvidos para simular a química que ocorre ao longo da evolução estelar no meio interestelar (Millar (2006) e outras referências nele). A maioria desses modelos empregam grandes redes químicas envolvendo mais de 5.000 reações e centenas de átomos e moléculas. A maioria destas reações encontra-se no banco de dados de astroquímica UMIST (Woodall et al. (2007); http://www.udfa.net/), no banco de dados de dados cinéticos de interesse para estudos astroquímicos, o KIDA (Wakelam et al. (2015); http://integration-kida.obs.u-bordeaux1.fr/) ou no National Institute of Standards and Technology, NIST (http://webbook.nist.gov/chemistry/form-ser.html). Estes foram os principais bancos de dados usados para abastecer a rede de química das modelagens deste trabalho, além de trabalhos publicados atualizados ou para moléculas mais complexas.

2.4 O código Meudon

Modelos teóricos sobre a estrutura das PDRs vêm sendo feitos há cerca de 30 anos, evoluindo para complexos códigos computacionais e passando a considerar um número crescente de efeitos físicos, provendo resultados cada vez mais acurados (Röllig et al., 2007). O código *The PDR Meudon* é um desses modelos computacionais, podendo ser usado no estudo físico e químico de nuvens difusas, PDRs, nuvens moleculares densas e regiões circunstelares.

Há uma variedade de códigos para o cálculo de condições químicas e físicas em PDRs, sendo o código *PDR Meudon* um código amplamente utilizado, pelo fato de estar disponível publicamente (http://pdr.obspm.fr/PDRcode.html) e de ser um dos programas usados como recurso dos trabalhos a serem conduzidos com o observatório *Herschel*. Ele é descrito em Le Petit et al. (2006) e Le Petit (2012). Deve ser mencionado também um importante trabalho (Röllig et al., 2007) que compara os resultados de diversos códigos PDR, entre eles o código *PDR Meudon*.

2.4.1 Características do Código

O modelo considera uma nuvem unidimensional, com bordas paralelas e bem definidas (Figura 2.3), podendo ter extensão finita ou semi-finita. O observador sempre se encontra no lado negativo. O modelo considera, ainda, uma geometria plano-paralela estacionária para o gás e poeira, iluminado por um campo de radiação UV ajustado por um fator χ , que representa a intensidade do campo de radiação FUV incidente em unidades do campo de radiação interestelar médio definido em unidades de Habing ou Draine (ver 1.1.4), proveniente de um ou de ambos os lados da nuvem (as duas intensidades podem ser diferentes - χ^+ para o lado positivo e χ^- para o lado negativo).

Figura 2.3: Ilustração de algumas características geométricas do código Meudon PDR em uma nuvem. O A_V^{tot} é o tamanho da nuvem, no caso χ^+ de uma nuvem finita. (Le Petit, 2012)

Uma estrela de dado tipo espectral também pode ser introduzida a uma distância d (em parsecs) para criar um campo de radiação adicional. O código resolve a equação de transferência radiativa (no UV) de uma forma iterativa, em cada ponto da nuvem, considerando também as absorções causadas por transições de H e H_2 , além do contínuo devido à poeira. O modelo também calcula o equilíbrio térmico, tendo em vista processos de aquecimento, a química, raios cósmicos e outros parâmetros, além do resfriamento resultante da emissão no infravermelho e milimétrico, abundante em íons, átomos e/ou moléculas. A abundância de cada espécie é calculada em cada ponto. O estado de excitação de algumas espécies importantes é então calculado e, assim, o programa é capaz de calcular a densidade de coluna e emissividade/intensidade.

O campo de radiação adicional devido à estrela é oriundo da criação de um espectro de corpo negro a partir da temperatura efetiva T_{ef} e do raio r^* do tipo espectral da estrela.

As distâncias na nuvem são medidas em extinção A_V , dada pela equação 2.1

$$A_V = 2.5 \log_{10}(e)\tau \tag{2.1}$$

com A_V dado em magnitudes e τ sendo a profundidade óptica em determinado ponto da nuvem (Rybicki e Lightman, 1979).

A relação entre a profundidade óptica e uma distância real l é dada pela equação 2.2 (Karplus e Porter, 1970).

$$l = 2.5 \log_{10}(e) \frac{C_D}{R_V} \int_0^{\tau_{max}} \frac{dt\tau}{n_H(\tau_V)}$$
(2.2)

onde, $C_D = \frac{N_H}{E_{B-V}}$, sendo $N_H[cm^{-2}] = N(H) + 2N(H_2)$ a densidade de coluna total do hidrogênio não ionizado, E_{B-V} o excesso de cor, $R_V = \frac{A_V}{E_{B-V}}$, e $n_H(\tau_V)[cm^{-3}] = n(H^+) + n(H) + 2n(H_2)$ a densidade total de núcleos de hidrogênio a uma profundidade óptica visível τ_V . O limite superior de integração τ_{max} é a profundidade óptica máxima da nuvem. Valores galácticos típicos para estes parâmetros são de estados estacionários $C_D = 5.8 \times 10^{21}$ $cm^{-2}mag^{-1}$ e $R_V = 3.1$.

Uma das grandes restrições do modelo é a aproximação de estado estacionário, de modo que os resultados não podem ser comparados diretamente às observações de regiões com evolução rápida. No entanto, o tempo em escalas de fotoprocessos é modesto comparado ao de extinção e/ou alta radiação de campos. O período de tempo dado pela fotodissociação do H_2 é tipicamente 1000/ χ anos na beira de uma nuvem (com radiação UV). O estado estacionário é então uma aproximação satisfatória (Le Petit et al., 2006).

Podem-se definir os parâmetros que descrevem o sistema e que podem ser ajustado como melhor convém. A primeira hipótese é de que cada célula de gás é pequena o suficiente para que todas as quantidades físicas possam ser constantes, mas suficientemente grande para a média estatística ser significante. Podemos, assim, falar da quantidade "temperatura cinética" (T_K) como uma função da posição. Esta única hipótese exclui alguns problemas interessantes, como a presença de choques. As duas quantidades físicas mais importantes consideradas são densidade e temperatura. Para a temperatura variável, as equações são resolvidas para equilíbrio térmico, e a densidade em si torna-se uma variável se algum tipo de equação de estado for utilizada. Os casos mais usuais a serem resolvidos são aqueles de equilíbrio térmico com densidade ou, no caso desse trabalho, pressão constantes.

Outra restrição é o grupo de propriedades ou constantes que têm valores bem definidos, mas incertezas a cerca desses valores podem existir, em alguns casos por serem determinadas experimentalmente, além de poderem variar conforme a fonte na literatura.

2.4.1.1 Reações Químicas

Os resultados do modelo são altamente dependentes da química e da micro-física (as constantes ou propriedades) existentes nas PDRs. Neste caso, o modelo só tem uso se a descrição da micro-física em que ele se sustenta for acurada. Assim, os processos físicos e químicos medidos em laboratório e observações precisas são requisitos fundamentais na construção dos modelos.

No caso das reações químicas, são diversos os parâmetros necessários para que estas tenham precisão suficiente para estimar a realidade nas PDRs. Estes parâmetros são estabelecidos através, principalmente, de modelos quânticos que calculam as taxas das reações baseados na densidade dos reagentes e produtos formados na região.

Para inserir uma nova molécula no arquivo de entrada de química do código é necessário inicialmente adicionar alguns parâmetros básicos dessa nova espécie na lista de moléculas propriamente dita, como a abundância inicial (dada normalmente como nula) e sua entalpia de formação, usada para o balanço térmico.

Após o término da lista de espécies, o código lê as reações listadas, sendo possível acrescentar reações com até dois reagentes e cinco produtos. Todas as espécies da reação devem estar declaradas na listagem inicial. Para as reações ocorrerem é preciso, ainda, declarar o tipo de reação e as três variáveis reais, obtidas a partir de cálculos quânticos fundamentais ou experimentos de laboratório, descrevendo a magnitude e a dependência com a temperatura da constante de reação, dadas como α , $\beta \in \gamma$ (ver as tabelas E.1 e E.2).

As constantes de reação são calculadas de diferentes modos, dependendo do tipo de ocorrência. Os tipos de 1 a 10 correspondem a reações de fase gasosa; os tipos de 11 a 18 são reações que envolvem grãos. Os tipos acima de 100 são referentes a casos especiais. Os principais tipos encontram-se mais detalhados abaixo.

As reações de *tipo 1* referem-se a destruição da espécie por raios cósmicos. Sua taxa de reação é dada pela equação 2.3. Neste tipo de reações alpha e beta não são usados.

$$\kappa_1 = \gamma \zeta \, \mathrm{s}^{-1} \tag{2.3}$$

Reações do *tipo 2* são de destruição por fótons secundários e sua taxa de reação é dada pela equação 2.4.

$$\kappa_2 = \gamma \zeta \left(\frac{T_{\rm K}}{300}\right)^{\alpha} \frac{n({\rm H}_2)}{n({\rm H}) + n({\rm H}_2)} \,\mathrm{s}^{-1} \tag{2.4}$$

Na equação 2.4, além da fração de hidrogênio em H_2 , aparece ζ , a fração de H ionizado por raios cósmicos. Neste cálculo, β não é usado.

As de *tipo 3* referem-se à associação radiativa e a constante de reação é calculada pela equação 2.5:

$$\kappa_3 = \gamma \left(\frac{T}{300}\right)^{\alpha} \exp(-\beta/T) \,\mathrm{cm}^3 \,\mathrm{s}^{-1}.$$
(2.5)

As reações do *tipo* 4 são reações "ordinárias" de fase gasosa. Suas constantes de reação também são dadas pela equação 2.5. As reações de *tipo* 6 são reações endotérmicas de fase gasosa com H_2 , com suas constantes de reação dadas pela equação 2.6, onde E_i é a energia interna de cada nível do H_2 usada para diminuir a barreira exponencial, somando todos os níveis.

$$\kappa_6 = \gamma (\frac{T}{300.0})^{\alpha} \exp(\frac{-\beta - E_i}{T}) \,\mathrm{cm}^3 \,\mathrm{s}^{-1}.$$
(2.6)

As reações do *tipo 5* são fotoreações, cujas constantes de reação são dadas por 2.7, que só é usada quando a taxa de fotodestruição não for computada explicitamente no código por integração direta da seção de choque do campo de radiação.

$$\kappa_5 = 0.5 \,\gamma \chi \exp(-\beta A_V) \,\mathrm{s}^{-1},\tag{2.7}$$

onde χ é o fator de escala do campo de radiação incidente em relação ao campo de Draine.

A primeira exceção, representada pelo tipo 101, é a reação 2.8, que usa a energia interna do H_2 antes das reações do tipo 6 serem introduzidas.

$$N^+ + H_2$$
 (2.8)

A segunda exceção é dada pela reação 2.9 que é do *tipo 102*:

$$H_3^+ + HD \tag{2.9}$$

Outras exceções são as reações 2.10 e 2.11, dos tipos 103 e 104, respectivamente.

$$O^+ + H \tag{2.10}$$

$$H^+ + O \tag{2.11}$$

As reações do *tipo 11* são reações que ocorrem na superfície dos grãos e sua constante de reação é dada pela equação 2.12, onde X: e Y: são as espécies adsorvidas na superfícies do grão e xkhydr depende das características dos grãos.

 $X :+ Y : \rightarrow$ produtos

$$\kappa_{11} = \frac{\gamma}{xkhydr} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}.\tag{2.12}$$

As reações do *tipo 12* são fotorreações nas superfícies dos grãos e sua constante de reação é calculada pela equação 2.7. Já as de *tipo 13* são de adsorção nos grãos, com taxas de reação dadas pela equação 2.13, onde *coef* é calculado internamente:

$$\kappa_{13} = \gamma \operatorname{coef} \, \mathrm{s}^{-1}. \tag{2.13}$$

Os demais tipos de reação têm cálculos das constantes de reação muito mais complexos e possuem rotinas para realizá-los. Essas reações referem-se às de neutralização por colisão de íons nos grãos (*tipo 14*), as de *tipo 15* à desorção explosiva, as de *tipo 16* à desorção induzida por raios cósmicos, as de *tipo 17* são de fotodissociação, enquanto as de *tipo 18* são de evaporação térmica.

As reações de tipo 113, 123, 118 e 128 são parcialmente artificiais, construídas especificamente para considerar a adsorção e desorção do H_2 nos grãos. De fato é possível ter uma diminuição na temperatura do grão de acordo com o tamanho deste. O processo pode afetar fortemente o gás na razão de H_2 .

O grau de complexidade da química dos grãos cresce proporcionalmente ao conhecimento que se acumula sobre eles, no entanto, esse conhecimento é muito pequeno quando comparado àquele já acumulado para a química da fase gasosa. Tais implementações vem sendo realizadas nos códigos, porém este tipo de química não é frequentemente utilizada.

As tabelas apresentadas no apêndice, ou seja, as E.1 e E.2 foram usadas como arquivo de química inicial no programa Meudon para regiões PDR. Estas tabelas foram construídas tendo por base o banco de dados do próprio código, usando três versões diferentes (2006, 2008 e 2012) combinadas, já que o arquivo mais atual não apresentava moléculas e suas respectivas reações de formação e de destruição que estavam inclusas no anterior. Estas moléculas listadas no próprio código equivalem às espécies numeradas até 131 na tabela E.1.

Todas as demais moléculas (numeradas entre 150 - 255 e entre 300 - 427 na tabela E.1), totalizando 232 espécies, foram inseridas uma a uma, assim como qualquer reação de

formação e destruição na qual elas estivessem presentes (~ 3500 reações). A rede química completa dos compostos inseridos no código para este trabalho conta com 5403 reações para 362 espécies.

A inclusão de moléculas no arquivo de química é feito a partir dos dados explicitados na seção 2.3. Para algumas espécies que não são cadastradas em tais bancos de dados ou nunca tiveram publicações com tais dados, estes foram então estimados a partir de uma reação encontrada em laboratórios terrestres, preferencialmente reações que não envolvessem água ou algum diluente líquido como catalisador. Para isso foi usado o banco de dados Reaxys - https://www.reaxys.com/reaxys/session.do. Assumindo que estas reações apliquem-se ao meio interestelar, pode-se estimar as taxas de reação destas moléculas, assim como algumas reações de destruição.

2.5 GILDAS/CLASS

O GILDAS, Grenoble Image e Line Data Analysis Software, é uma coleção de softwares orientados para aplicações radioastronômicas (sub-) milimétricas (single-dish ou interferômetro). É usado comumente para reduzir todos os dados adquiridos com o telescópio IRAM 30M, o NOrthern Extended Millimeter Array - NOEMA (exceto observações VLBI) e o Atacama Pathfinder Experiment (APEX) (Gildas Team, 2013) - http://www.iram.fr//-IRAMFR/GILDAS/. Os principais pacotes do GILDAS são: CLASS, GreG, ASTRO, GRAPHIC, CLIC, todos funcionam através de linhas de comando. Os arquivos no formato FITS podem ser lidos por todos esses pacotes e serão transformados em um formato adequado.

O pacote *Class* (Continuum and Line Analysis Single-Dish Software) é um pacote para a redução de dados espectroscópicos, e também drifts contínuos obtidos em um telescópio "single-dish". Ele também pode processar dados ópticos e IR. O ajuste de linha de base e gaussiano (até 5 componentes) pode ser feito interativamente.

As linhas foram identificadas através da ferramenta *Weeds*, que funciona como um auxiliar do *Class*, possibilitando o carregamento dos catálogos CDMS ((Müller et al., 2001), (Müller et al., 2005)) e JPL (Molecular Spectroscopy Jet Propulsion Laboratory - https://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html), identificando assim as linhas de emissão através de um intervalo de frequências.

Capítulo

3

Análise

As análises aqui apresentadas estão divididas em três partes. Na primeira é apresentado um estudo sobre alguns dos mais importantes parâmetros para as reações de formação e destruição de moléculas complexas, principalmente os PAHs e PANHs. Na segunda etapa, temos um estudo sobre a possibilidade da formação, em fase gasosa de algumas bases nitrogenadas e, por último, foi feito um trabalho de análise de dados espectrais da região G331.512. Para as duas primeiras partes foi o usado o PDR Meudon Code simulando numericamente a região da Nebulosa Cabeça de Cavalo. Já para a parte observacional, foi usado o programa Gildas para reduzir o espectro do objeto G331.512-0.103.

3.1 Análise de Parâmetros Relevantes na Formação de Moléculas Complexas no ISM

Coelho (2012) mostra que os PAHs funcionam como catalisadores na formação de moléculas complexas, como pode ser visto em maiores detalhes no artigo submetido ao *International Journal of Astrobiology* (ver seção B). Porém, há grandes incertezas envolvendo reações de PAHs em fase de gás, no ISM, já que diversos parâmetros destas reações não são conhecidos e podem apenas ser estimados. Devido à estas incertezas, este trabalho apresenta um estudo sobre o papel das incertezas nas taxas de reação envolvendo PAHs e PANHs.

Outro parâmetro que pode influenciar fortemente a química do ISM é a taxa de ionização por raios cósmicos, que ionizam as regiões blindadas contra a radiação UV. Mostra-se aqui, então, uma avaliação da importância desse tipo de energia na formação de moléculas orgânicas complexas.

3.1.1 O Papel das Taxas de Reação

Em uma tentativa de realizar uma análise da aproximação utilizada para as taxas de reação de formação e destruição dos PAHs e PANHs em fase de gás, calculada a partir da seção de choque, já que para o meio interestelar, atualmente, estas taxas não são conhecidas, foram realizadas simulações variando este valor. Para realizar este estudo, foi usado o circuncoroneno ($C_{54}H_{18}$) como PAH representativo, já que PAHs com mais de 50 átomos de carbono podem sobreviver 1,1 Ganos no campo de radiação Galáctico (Allain et al., 1996), que é um tempo muito mais longo que o tempo de vida de uma nebulosa típica, como é o caso da Nebulosa Cabeça de Cavalo, que foi simulada utilizando o *PDR Meudon Code*.

As variações das taxas de reação foram realizadas tendo como base valores bem estabelecidos de alguns hidrocarbonetos como o benzeno $(2,01 \times 10^{-9} \ cm^3 s^{-1}$ de Allain et al. (1996) e $3.00 \times 10^{-10} \ cm^3 s^{-1}$ de Jones et al. (2011)), o antraceno ($4.63 \times 10^{-9} \ cm^3 s^{-1}$ de Allain et al. (1996)) e o pireno ($9,79 \times 10^{-9} \ cm^3 s^{-1}$ de Allain et al. (1996)) e o naftaleno ($5.00 \times 10^{-12} \ cm^3 s^{-1}$ de Parker et al. (2012)), assim como algumas taxas de fotodissociação para o coroneno ($7.53 \times 10^{-9} \ cm^3 s^{-1}$ de Allain et al. (1996)) e o ovaleno ($1.50 \times 10^{-11} \ cm^3 s^{-1}$ de Allain et al. (1996)). A taxa padrão usada neste trabalho foi de 1.00×10^{-10} , calculada a partir da seção de choque do circuncoroneno.

Figura 3.1: Variação das abundâncias do $C_{54}H_{18}$ para diferentes taxas de reação em função da profundidade da nuvem.

Como pode ser visto na figura 3.1, as taxas de formação e destruição padrão usadas no trabalho, são praticamente as taxas ótimas de reação para a formação destes PAHs quando comparadas com as demais taxas usadas, isto é, os valores que permitem a maior produção deste composto, exceto para o caso das taxas mais altas da rede de reações do naftaleno, mas a diferença na abundância produzida usando-se as taxas padrão e as que produzem maior abundância não são muito significativas. Mesmo se observarmos as menores abundâncias produzidas, para as maiores taxas de reação, as diferenças nas abundâncias são menores que duas ordens de grandeza. Este comportamento se mantém também para, por exemplo, o PANH ($C_{57}H_{19}N$), mostrado na figura 3.2.

Figura 3.2: Variação das abundâncias do $C_{57}H_{19}N$ para diferentes taxas de reação em função da profundidade da nuvem.

3.1.2 O Papel dos Raios Cósmicos

Outro parâmetro fundamental para se entender a formação de moléculas complexas em ambientes interestelares é a taxa de ionização por raios cósmicos. Este fato deve-se à ionização que estes raios cósmicos provocam, e tornam-se importantes principalmente no centro da nuvem, que é uma região mais blindada à radiação UV. da Silveira (2013) no 2 Brazilian Workshop on Astrobiology e Padovani et al. (2014) sugerem que o aumento da taxa de ionização por raios cósmicos favorece a formação de moléculas mais complexas, já que os raios cósmicos atuariam ionizando moléculas que estimulariam a formação de moléculas maiores. Assim, implementamos a variação da taxa de ionização por raios cósmicos no modelo. A taxa de ionização por raios cósmicos era, até então, usada como padrão a uma taxa de 5.00×10^{-17} moléculas de H_2 ionizadas por segundo, valor tido como típico para regiões do meio interestelar. Para acompanhar a evolução das abundâncias com a variação desta taxa de ionização, realizamos simulações para duas vezes, dez vezes e metade do valor padrão; os resultados obtidos foram bastante significativos, como mostram as figuras 3.3 e 3.4. O pirrol (C_4H_5N) e a piridina (C_5H_5N) foram usado por serem moléculas com nível de complexidade próxima (a piridina possui um átomo de carbono a mais) facilitando a comparação.

Figura 3.3: Resultados das abundâncias do pirrol obtidas para diferentes taxas de ionização por raios cósmicos. Usando o valor padrão, metade, o dobro e dez vezes maior que o valor padrão em função da profundidade da nuvem.

As simulações mostram que as abundâncias de moléculas mais complexas aumentam diretamente conforme o aumento na taxa de ionização por raios cósmicos. Mesmo para o maior aumento, taxa de 50×10^{-17} moléculas de H_2 , a produção das moléculas mais complexas é privilegiada, ainda que ocorra um decréscimo nas abundâncias do pirrol esta é em benefício de um crescimento ainda mais acentuado da piridina. Portanto, o aumento da taxa de ionização por raios cósmicos favorece o aumento da complexidade química da região.

Figura 3.4: Resultados das abundâncias do pirrol obtidas para diferentes taxas de ionização por raios cósmicos. Usando o valor padrão, metade, o dobro e dez vezes maior que o valor padrão em função da profundidade da nuvem.

3.2 Bases Nitrogenadas

Uma rota para a formação das nucleobases é a partir da formamida, conforme mostrado por Ferus et al. (2015), um caminho completo com as reações definidas, resultando na produção adenina, citosina, uracila e guanina.

3.2.1 Formamida

A formamida (NH_2CHO) é a ser um alvo Astrobiológico imediato (ver seção 3.5). Mas, além disso, há outra motivação para o estudo da formamida, que é o fato de haver uma discrepância entre os dados observacionais e teóricos com relação a ela. Os modelos apontam uma abundância da ordem de 10⁵ menor do que as observadas em algumas regiões, como por exemplo nas regiões proto-estelares L1157-B1 e L1157-B2 (Mendoza et al., 2014).

De fato, há uma única reação de formação da formamida em fase gasosa conhecida, dada por 3.1.

$$NH_2 + H_2CO \to NH_2CHO + H \tag{3.1}$$

É bastante provável que essa diferença encontrada entre dados observacionais e os obtidos por modelos seja explicados pelo fato de não conhecermos bem a rede química de

formação e destruição da formamida. Muito tem-se trabalhado nesse aspecto.

Barone et al. (2015) tentou resolver este problema estabelecendo, através de cálculos quânticos, novas e mais acuradas taxas de reação para a equação 3.1. Porém, mesmo com essas novas taxas de reação aprimoradas, os resultados das abundâncias da formamida não melhoraram muito. Além disso, Mendoza et al. (2014) sugerem uma outra reação de formação para a formamida em fase de grãos, mostrada na reação 3.2.

$$NH_2CO + H \to NH_2CHO$$
 (3.2)

Foram, então, incluídas as reações 3.1 e 3.2, no *Meudon PDR code* afim de observar as diferenças ocorridas com a inclusão de mais uma reação de formação. Os resultados foram obtidos para duas situações diferentes. A primeira simulação foi considerando apenas a reação tradicional (3.1), já com os novos parâmetros de reação estabelecidos por Barone et al. (2015) e a segunda situação foram consideradas tanto as reações tradicionais como àquela sugerida por Mendoza et al. (2014), a reação 3.2, extrapolando os parâmetros para que esta reação ser inserida como na fase de gás, apenas para se observar a influência, na abundância desse composto, com da inclusão de mais uma reação de formação da formamida. Os resultados obtidos estão mostrados na figura 3.5.

Figura 3.5: Abundâncias da formamida com, apenas a reação 3.1 e com 2 reações (3.1 e 3.2) de formação, em função da profundidade da nuvem.

A figura 3.5 mostra que mesmo com a inserção de uma nova reação de formação para

a formamida, os valores das abundâncias obtidas ainda não se aproximam dos valores observacionais, mas podemos ver um grande aumento nas regiões mais próximas das bordas da nuvem, fato que poderia indicar uma relevância desta reação se calculada nos grãos. É claro que, já é esperado uma discrepância das abundâncias obtidas por este trabalho com os dados observacionais obtidos para regiões proto-estelares, dado às grandes diferenças nos parâmetros físicos do objeto de estudo deste trabalho (PDRs) com as regiões citadas. Porém, o comportamento obtido para a curva de abundâncias é de se esperar que se mantenha parecido, portanto o não aumento nas abundâncias da formamida para a Nebulosa Cabeça de Cavalo deveria refletir-se para as demais regiões e, mesmo quando se adiciona mais uma reação de formação para esta molécula, ainda não há uma aumento significativo - menor do que uma ordem de grandeza - para o núcleo da nuvem, onde espera-se uma abundância maior.

Obviamente temos aqui uma subestimativa das abundâncias da formamida quando consideramos a equação 3.2, já que supõe-se que essa reação ocorra em grãos, e deve haver um fator catalisador não considerado neste trabalho.

Outrossim, Skouteris et al. (2017) propõe, através de cálculos quânticos computacionais, que a resposta para a formação da formamida encontra-se na formação desta a partir de sua forma deuterada, em fase de gás.

3.2.2 Abundancia das Nucleobases

A partir das reações de formação das bases nitrogenadas obtidas do trabalho de Ferus et al. (2015) mostradas na figura 3.6, que foram inseridas no banco de dados de química do *Meudon PDR code*, foi simulado a formação dessas moléculas na Nebulosa Cabeça de Cavalo, e as abundâncias obtidas podemos observar na figura 3.7.

As abundâncias traçadas aqui podem ser consideradas baixas para a guanina e adenina, que não estariam nos limites tecnológicos de observação, porém temos que lembrar que todas as reações usadas aqui são do tipo neutro-neutro, que são reações desfavorecidas em regiões de fotodissociação. Ainda assim, podemos ver que mesmo com essa restrição temos abundâncias muito altas para a uracila e a citosina, que estão dentro da faixa de possível detecção > 10^{13} dos equipamentos atuais.

Ferus et al. (2015) argumenta que essas reações poderiam ter acontecido nos primórdios da Terra e que a energia necessária para que elas ocorressem teria sido fornecida pelo

Figura 3.6: Rede de reações para a formação de bases nitrogenadas a partir da formamida.

Figura 3.7: Abundância da guanina, citosina, adenina e uracila em função da profundidade da nuvem.

bombardeamento tardio do planeta. No caso do meio interestelar essa energia pode ser fornecida pela radiação UV e pela incidência de raios cósmicos. Uma breve análise da energia necessária para cada uma dessas equação foi então realizada de duas formas, a primeira considerando as condições normais de temperatura e pressão e outra para zero Kelvin.

Para estimar as entalpias de reações à 298 K, foi usado a variação da entalpia verificada na quebra de 1 mol de determinada ligação química para substâncias no estado gasoso. Para estes cálculos foram usadas as energias de ligação tabeladas de moléculas monoatômicas e poliatômicas mostradas na tabela 3.1, retirdas de Dean (1999). As variações de energia para cada reação estão mostradas na figura 3.8.

Ligação	Energia de Ligação (kJ/mol)	Ligação	Energia de Ligação (kJ/mol)
H-H	436	C-S	255
H-N	393	C=S	477
H-O	460	N-N	193
H-S	368	N=N	418
H-P	326	$\mathbf{N}{\equiv}N$	941.4
H-F	568	N-O	176
H-Cl	431.9	N-P	209
H-Br	366.1	O-O	142
H-I	298.3	O=O	498.7
C-H	414	O-P	502
C-C	347	O=S	469
C=C	620	P-P	197
$\mathbf{C}{\equiv C}$	812	P=P	489
C-N	276	S-S	268
C=N	615	S=S	352
$\mathbf{C}{\equiv N}$	891	F-F	156.9
C-O	351	Cl-Cl	242.7
C=O	745	Br-Br	192.5
C-P	263	I-I	151

Tabela 3.1 - Tabela mostrando a energia de ligação de algumas moléculas diatômicas e energias médias de ligação em moléculas poliatômicas retirada de Dean (1999).

Já para fazer a estimativa das variações das entalpias para zero K foi usado o programa livre "Avogadro" (Hanwell et al., 2012) para todos os cálculos, desde a geometria da molécula, que foi então otimizadas até as energias internas dos compostos calculados para o mesmo nível da energia eletrônica total obtida para as geometrias otimizadas (E_{tot}) e dos termos de correção térmica e entropica.

Todos os cálculos foram realizados para a fase gasosa e, assim, as variações de energia para cada reação estão mostradas na Fig. 3.9

Figura 3.8: Variação das entalpias de reação para as reações da figura 3.6 para uma temperatura de 298 K.

Figura 3.9: Variação das entalpias de reação para as reações da figura 3.6 para uma temperatura de zero K.

Tanto as reações utilizadas, como os valores calculados para zero e 298 Kelvins estão mostrados no apêndice C.

A temperatura da região de trabalho, a Nebulosa Cabeça de Cavalo, na verdade é de 15 K, então, a energia para as reações não acontecem nem a zero e nem a 298 K, porém é possível estimar um limite inferior e superior de energia necessária para que

não haja impedimento energético na ocorrência dessas reações. É difícil conseguir uma análise precisa, mas pode-se ter algumas suspeitas sobre a possibilidade de ocorrência dessas reações no meio interestelar.

Podemos observar que praticamente todas as reações são espontâneas para a temperatura de 298 K (Fig. 3.8), pois há apenas duas reações (as de número de sequência 12 e 15) que apresentam $\Delta H > 0$ (271 e 276 kJ/mol respectivamente) para acontecer, mas se consideramos a alta incidência de radiação UV, além da ionização por raios cósmicos que afetam a região, essa energia pode ser facilmente obtida e a reação não apresentaria nenhuma barreira energética intransponível para acontecer. Já para que as mesmas reações aconteçam a 0 K (Fig. 3.9), temperatura mais próxima daquela da região modelada, apresenta três reações (reações de número sequencial 10, 14 e 18) que possuem $\Delta H > 0$ (~ 572, ~ 537 e ~ 452 kJ/mol, respectivamente), sendo que duas delas (número 10 e 14) requerem energia maior do que 500 kJ/mol . Ainda assim, nenhuma reação precisaria de mais de 600 kJ/mol de energia para que fossem viáveis.

Dessa forma, o limite superior de energia seria de aproximadamente 600 kJ/mol, ou seja $\sim 3.6 \times 10^{22}$ eV/mol, porém, a Nebulosa Cabeça de Cavalo possui um campo de radiação interestelar de 60 na unidade de Draine, o que representa $\sim 1, 15 \times 10^{16}$ eV e, considerado que os raios cósmicos incidentes possuem energia ≥ 100 MeV/nucleon, esse valor de limite superior não representa impedimento à ocorrência dessas reações. Portanto, não há motivos para que essas reações não ocorram no meio interestelar, ou melhor, nenhuma barreira energética intransponível para impedir a formação das bases nitrogenadas por essas vias.

3.3 Fosfina

A fosfina (PH_3) completa as simulações realizadas para a Nebulosa Cabeça de Cavalo, já que o fósforo apesar de pouco abundante em comparação com os outros átomos que formam as moléculas prebióticas mais importantes, é de fundamental para o DNA e RNA. Os resultados para as abundâncias do PH_3 e do PH_3^+ são mostradas na Figura 3.10.

Interessante notar que a fosfina neutra apresenta maior abundância do que sua forma ionizada. O PH_3^+ possui uma rede de reações de formação e destruição bem como suas taxas estabelecidas nos bancos de dados, mas sua forma neutra não. As reação para esta última foram obtidas e cedidas gentilmente, pelo grupo de Astroquímica do Professor

Figura 3.10: Abundâncias obtidas para a fosfina neutra e o cátion fosfina, para a Nebulosa Cabeça do Cavalo, em função da profundidade da nuvem A_V .

Daniel Boice, da Universidade do Texas, a partir de uma extrapolação de reações obtidas em bancos de dados, sem as taxas de reação, ou a partir de uma simetria entre reações com moléculas semelhantes. Dessa forma, as abundâncias calculadas para a forma neutra da fosfina podem estar superestimadas.

De qualquer maneira, os resultados mostram uma abundância alta o suficiente para que, tanto a espécie neutra como a ionizada, sejam de possível observação, fato que por si só, já credenciaria esta importante molécula a uma tentativa de identificação no meio interestelar.

3.4 Análise Espectral da Região G331.512-0.103.

Foram analisados alguns dados obtidos no Atacama Pathfinder Experiment telescope (APEX) que, por aqui, é conhecido como "irmão gêmeo do LLAMA", por suas características semelhantes de equipamento. Os dados são do objeto pouco explorado G331.512-0.103.

Os espectros analisados estão numa faixa entre 290 e 333 GHz conforme visto na figura 3.11. A redução foi realizada usando o pacote Gildas com auxílio dos pacotes Greg e Class, construídos para reduzir dados do Instituto de Radioastronomia Milimétrica (IRAM). Foram encontradas 33 linhas na região espectral em que a temperatura de antena $T_a < 1 K$, que é uma região marcante por ser rica em moléculas orgânicas complexas, e apenas quatro linhas para as regiões com $T_a \ge 1 K$.

Figura 3.11: Faixa espectral do objeto G331.512-0.103, obtido com o telescópio APEX.

Foi feita então uma análise para a identificação das linhas detectadas, usando os bancos de dados https://www.astro.uni-koeln.de/cdms e https://spec.jpl.nasa.gov/ e, desse modo, conseguiu-se identificar aproximadamente 60% das linhas. Para isso, usou-se como critério identificar uma molécula candidata e três contaminantes. Algumas linhas identificadas estão na tabela 3.2.

Espécie	Transição	Frequência	A_{ij}	Eup	Fluxo integrado	FWHM
	$J' \to J$	(MHz)	(s^{-1})	Κ	$(K \ km \ s^{-1})$	(km s)
CH ₃ OH	$12_2 - 11_2$	329634.60	0.0000604	218.8	0.56307	3.953
	$9_3 - 8_3$	330795.88	0.0000539	146.3	1.2639	4.412
	$11_1 - 11_0$	331502.32	0.000393	169.0	5.8875	5.972
HNCO	$15_{(15,15)} - 14_{(14,15)}$	329665.26	0.000504	126.6	6.1660	5.119
	$15_{(11,4)} - 14_{(11,3)}$	330850.01	0.000501	170.3	4.1058	7.477
CH ₃ OCH ₃	$17_{11} - 16_{21}$	295801.25	0.0000939	142.7	0.28752	3.721
	$16_{21} - 15_{11}$	330407.96	0.000165	128.5	0.69061	4.969
	$30_{12} - 29_{12}$	332574.79	0.000553	257.0	1.8317	8.264
	$18_4 - 17_4$	330971.52	0.00300	00300 265.2 2.001	2.0016	8.094
CH_3CN	$18_3 - 17_3$	331014.29	0.00307	215.2	3.9618	7.563
	$18_2 - 17_2$	331047.25	0.00312	179.5	1.7185	4.904
	$18_1 - 17_1$	331071.54	0.00316	150.9	6.9932	10.993
	$18_0 - 17_0$	331072.94	0.00316	151.0	7.0759	11.006

Tabela 3.2 - Transições e frequências das linhas identificadas no espectro do objeto G331.512-0.103.

As principais linhas identificadas, assim como a quantidade de vezes em que elas aparecem estão mostradas na figura 3.12. Quanto maior o número de linhas encontrado para uma mesma molécula, maior a certeza da identificação deste composto, pois como existem várias moléculas que emitem em frequências próximas, então encontrar um composto uma única vez, pode revelar que na realidade outra molécula emitiu aquela linha.

Figura 3.12: Quantidade de linhas das moléculas identificadas no espectro do objeto G331.512-0.103.

As principais moléculas identificadas serão sumarizadas nas subseções 3.4.1, 3.4.2, 3.4.3, 3.4.4 e 3.4.5 abaixo.

3.4.1 Metanol: CH_3OH

O metanol, CH_3OH , é a molécula de álcool mais simples. Os seus níveis de energia são classificados como um rotor simétrico com número quântico J_K e uma barreira tripla que causa dois estados na molécula, A e E; o último sendo duplamente degenerado ((Lees e Baker, 1968); (Lees et al., 1973); (Xu et al., 2008); (Cuadrado et al., 2017)). Foram identificadas três linhas de metanol no espectro analisado do objeto G331.512-0.103.

3.4.2 Ácido isociânico: HNCO

O ácido isociânico, H-N=C=O, é a molécula mais simples que contém carbono, hidrogênio, oxigênio e nitrogênio. Os seus níveis de rotação são designados como J_{K_a,K_c} ((Kukolich

et al., 1971); (Hocking et al., 1975); (Lapinov et al., 2007); (Cuadrado et al., 2017)). Foram encontradas duas linhas de HNCO no espectro do objeto G331.512-0.103, porém uma delas, por causa dos contaminantes possíveis terem frequência muito próxima na linha identificada, foi considerada duvidosa e apenas uma linha foi considerada como identificada para o HNCO.

3.4.3 Acetaldeído: CH₃CHO

O etanal ou acetaldeído, CH_3CHO , é uma molécula de topo assimétrica com estados de simetria A e E e transições de tipo a e b (por exemplo, Kleiner et al. (1996), e referências nele contidas). Foram identificadas três linhas de etanal no espectro analisado do objeto G331.512-0.103.

3.4.4 Dimetil Éter: CH_3OCH_3

O dimetil éter, CH_3OCH_3 , é o éter mais simples. É um gás incolor que é um precursor útil para outros compostos orgânicos e um propulsor de aerossol que atualmente está sendo demonstrado para uso em uma variedade de aplicações de combustível. É um isômero do etanol. É uma molécula de topo assimétrica com estados de simetria A e E e transições de tipo a e b (por exemplo, Bacmann et al. (2012), e referências nele contidas). Foram identificadas três linhas de dimetil éter no espectro do objeto G331.512-0.103.

$3.4.5 CH_3CN$

A acetonitrila, o CH_3CN , é um rotor cujas transições radiativas permitidas são todas $\Delta K = 0$. A rotação interna deste grupo origina dois sub-estados não interativos, denotados A e E. Os níveis do estado A são descritos por K = 3n, e aqueles do estado E por $K = 3n \pm 1$, com $n \ge 0$ ((Kukolich et al., 1973); (Kukolich, 1982); (Boucher et al., 1977); (Anttila et al., 1993); (Šimečková et al., 2004); (Cazzoli e Puzzarini, 2006); (Müller et al., 2009); (Cuadrado et al., 2017)). Transições com diferentes K, mas o mesmo J ocorrem em regiões de frequência estreita, mas eles têm energias bastante diferentes.

A acetonitrila é a observação mais relevante, pela quantidade de linhas e da formamida, pela relevância Astrobiológica, porém, uma única linha da formamida não permite considerar com certeza que esta molécula foi realmente identificada na região. As transições e frequências das linhas de CH_3CN identificadas em todo o espectro, bem como os coeficientes de Einstein e as energias de nível superior, podem ser vistas na tabela 3.3.

Transição	Frequência (MHz)	$A_{ij} \ (s^{-1})$	Eup (K)
$16_7 - 15_7$	294025.49	0.00178	469.79
$16_6 - 15_6$	294098.86	0.00189	377.07
$16_5 - 15_5$	294161.00	0.00199	298.58
$16_4 - 15_4$	294211.87	0.00207	234.34
$16_3 - 15_3$	294251.46	0.00213	184.35
$16_1 - 15_1$	294296.73	0.00220	127.21
$18_7 - 17_7$	330760.28	0.00267	500.66
$18_5 - 17_5$	330912.61	0.00291	329.46
$18_4 - 17_4$	330969.79	0.00300	265.22
$18_3 - 17_3$	331014.29	0.00307	215.24
$18_1 - 17_1$	331071.54	0.00316	150.96

Tabela 3.3 - Transições e frequências das identificadas para o CH_3CN no espectro do objeto G331.512-0.103.

Com as transições identificadas, comparou-se as linhas observadas ao espectro sintético, obtido com o software GILDAs considerando o regime em LTE, com uma temperatura rotacional $T_{rot} = 200 \ K$ e uma densidade de coluna $N = 5 \times 10^{14} \ cm^{-2}$ e cuja largura das linhas foi obtida pela média das larguras das linhas observadas, e o resultado pode ser visto na figura 3.13, tanto para a transição J = 16 - 15, como para a J = 18 - 17. Podemos ver que ambos os espectros sintéticos e os dados observados são compatíveis, mesmo para uma aproximação simples, e isto indica que as linhas observadas realmente são transições da acetonitrila (CH_3CN).

Ainda para confirmar a detecção do CH_3CN , fez-se a comparação do fluxo integrado do espéctro sintético com os mesmos parâmetros usados para a figura 3.13, com os valores dos picos das linhas observados, para a transição J = 16-15 está mostrado na figura 3.14 e mostra como os valores são compatíveis, mostrando, novamente, que as linhas identificadas são mesmo deste composto.

O CH_3CN precisa de cuidados especiais, pois há uma estrutura diferente de linhas que se repete em sua detecção e que podem causar um erro no diagrama rotacional dessa espécie e, consequentemente, na temperatura rotacional e na densidade de coluna da espécie.

Figura 3.13: Linhas do CH_3CN identificadas (linha preta) no espectro do objeto G331.512-0.103 comparado a um espectro sintético (linha vermelha) em LTE, com uma temperatura rotacional $T_{rot} = 200 K$ e uma densidade de coluna $N = 5 \times 10^{14} cm^{-2}$.

Figura 3.14: Fluxo integrado do CH_3CN para a transição J = 16 - 15 no espectro do objeto G331.512-0.103.

Capítulo 3. Análise

Capítulo

4

Conclusões

O objetivo deste estudo foi investigar a abundância de algumas moléculas de relevância prebiótica, além de alguns fatores que possam facilitar a formação ou a destruição delas, a possibilidade de sua formação no meio interestelar, e contribuir para elucidar os cenários de origem da vida na Terra e outros lugares do Universo.

Para tanto, optou-se por realizar o trabalho em três partes, uma com os estudos de dois dos principais parâmetros de formação e destruição de moléculas complexas, principalmente PAHs e PANHs, no meio interestelar; outra parte deste trabalho envolve a formação das nucleobases, em fase gasosa, em regiões de fotodissociação (PDRs) nas quais ocorre a formação molecular. Por último foi feita uma análise de dados espectroscópicos da região de formação estelar G331.512.

Para as duas primeiras partes, a escolha foi o estudo de uma região fotodominada (PDR - do inglês photon-dominated region) pois estas são conhecidas por serem de grande formação molecular. Simulações para PDRs foram produzidas para computar os parâmetros físicos e químicos para nuvens interestelares geometricamente simples, expostas à radiação ultravioleta distante (FUV). Um bom modelo deste tipo de região é a Nebulosa da Cabeça do Cavalo que é considerada um arquétipo de PDRs devido à sua geometria simples e campo de radiação FUV serem bem conhecidos, e por isso esta foi escolhida a região de estudo neste trabalho.

Para a citada modelização foi usado o código PDR "*Meudon*", que é um código disponível publicamente e é um dos recursos dos programas a serem conduzidos com o observatório Herschel (Le Petit et al., 2006). Além disso, é amplamente usado porque permite definir e ajustar os parâmetros que descrevem o sistema como melhor convir. Porém, como todo modelo numérico, este apresenta uma série de aproximações que restringem o programa. Com isso em mente, neste trabalho, considerou-se no modelo apenas reações químicas na fase gasosa, exceto para a formação do H_2 .

Devido ao incomensurável papel que os PAHs desempenham na química interestelar, porém tendo suas taxas e rede de reações de formação e destruição desconhecidos, efetuouse uma tentativa de análise estatística para as taxas de reação deles, a partir de uma série de simulações com modificações nas taxas de reações, a partir de valores conhecidos de alguns hidrocarbonetos como o benzeno, o antraceno, o pireno e o naftaleno. A comparação das abundâncias obtidas do circuncoroneno, com as diversas taxas de reação verificou-se que as taxas obtidas a partir da seção de choque, 1×10^{-10} , deste é praticamente sua taxa ótima de formação, exceto apenas quando se comparado às mais altas taxas da rede de reações do naftaleno, mas mesmo assim, as diferenças obtidas são praticamente insignificantes, sendo menores que uma ordem de grandeza.

Outro fator a ser considerado quando se estuda formação de moléculas no meio interestelar é a taxa de incidência de raios cósmicos na região, pois eles influenciam de modo drástico na formação e destruição das moléculas no meio interestelar. Fez-se, para tanto, uma série de modificações nos valores das taxas de incidência de raios cósmicos para a região da Nebulosa Cabeça de Cavalo, variando a taxa padrão usada neste tipo de região, 5×10^{-17} moléculas de H_2 ionizadas por segundo, para duas vezes, dez vezes e na metade desse valor e verificou-se que o aumento desta taxa de ionização facilita a formação de moléculas mais complexas. Isto deve-se ao fato de que os raios cósmicos ionizam a região e, assim, auxiliam na formação de compostos mais complexos.

Para calcular as abundâncias das nucleobases recorreu-se ao artigo de Ferus et al. (2015) que expõe todos os passos as reações em fase de gás, que as produzem partindo da formamida. Podemos notar que, apesar das baixas abundâncias obtidas para a formamida, as quais demandam um estudo mais detalhado, aferiram-se abundâncias significativas para as nucleobases, em especial para a citosina e para a uracila, as quais resultaram em uma abundância que encontra-se nas faixas dos equipamentos usado para observação. As reações descritas por Ferus et al. (2015) foram ainda avaliadas quanto as condições energéticas necessárias para a sua ocorrência a partir de cálculos da entropia para 298 K e 0 K e conseguiu-se mostrar que, dado a alta incidência de radiação UV e a taxa de incidência de raios cósmicos na região, as reação não são impedidas de ocorrer por energia, já que nenhuma das reações necessita de mais de 600kJ/mol para acontecer.

Na conclusão da parte numérica do trabalho e, também, com as moléculas relacionadas ao DNA/RNA, foi feita uma simulação para a fosfina, que pode ser uma importante produtora de fósforo. Os resultados mostraram uma grande quantidade desta molécula no meio interestelar, que já a qualifica para uma tentativa de identificação. Outros fatores que devem ser mencionados para este composto é que os dados numéricos obtidos mostram que a fosfina neutra existe em maior abundância do que seu cátion e, além disso, dados observacionais já o identificaram nas atmosferas de Júpiter e Saturno.

Na parte observacional, podemos observar que a região possui uma química rica e que futuras observações podem mapear melhor a região, ajudar a esclarecer os aspectos físicos e identificar a presença de moléculas orgânicas complexas. Capítulo 4. Conclusões

Referências Bibliográficas

- Abel N. P., Ferland G. J., Shaw G., van Hoof P. A. M., The H II Region/PDR Connection: Self-consistent Calculations of Physical Conditions in Star-forming Regions, ApJS, 2005, vol. 161, p. 65 à 95
- Adande G. R., Woolf N. J., Ziurys L. M. a., Observations of interstellar formamide: Availability of a prebiotic precursor in the galactic habitable zone., Astrobiology, 2013, vol. 13, p. 439 à 453
- Agúndez M., Cernicharo J., Decin L., Encrenaz P., Teyssier D., Confirmation of Circumstellar Phosphine, ApJ, 2014, vol. 790, p. L27
- Allain T., Leach S., Sedlmayr E., Photodestruction of PAHs in the interstellar medium.II. Influence of the states of ionization and hydrogenation., A&A, 1996, vol. 305, p. 616
- Allamandola L. J., Tielens A. G. G. M., Barker J. R., Interstellar polycyclic aromatic hydrocarbons - The infrared emission bands, the excitation/emission mechanism, and the astrophysical implications, ApJS, 1989, vol. 71, p. 733 à 775
- Altwegg K., Balsiger H., Bar-Nun A., Berthelier J.-J., Bieler A., Bochsler P., Briois C., Calmonte U., et al. Prebiotic chemicals–amino acid and phosphorus–in the coma of comet 67P/Churyumov-Gerasimenko, Science Advances, 2016, vol. 2, p. e1600285 à 1600285
- Andrews H., Boersma C., Werner M. W., Livingston J., Allamandola L. J., Tielens A. G. G. M., PAH Emission at the Bright Locations of PDRs: the grandPAH Hypothesis, ApJ, 2015, vol. 807, p. 99

Anttila R., Horneman V. M., Koivusaari M., Paso R., Ground State Constants A_0 , $D_0^{K_0}$ and $H_0^{K_0}$ of CH ₃CN, Journal of Molecular Spectroscopy, 1993, vol. 157, p. 198

APOD APOD - NASA. http://apod.nasa.gov/apod/ap050321.html, 2010

- Armus L., Charmandaris V., Bernard-Salas J., Spoon H. W. W., Marshall J. A., Higdon S. J. U., Desai V., Teplitz H. I., Hao L., Devost D., Brandl B. R., Wu Y., Sloan G. C., Soifer B. T., Houck J. R., Herter T. L., Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. II. The IRAS Bright Galaxy Sample, ApJ, 2007, vol. 656, p. 148 à 167
- Avery L. W., Bell M. B., Cunningham C. T., Feldman P. A., Hayward R. H., McLeod J. M., Matthews H. E., Wade J. D., Submillimeter molecular line observations of IRC +10216: Searches for MgH, SiH2, and HCO(+), and detection of hot HCN, ApJ, 1994, vol. 426, p. 737 à 741
- Bacmann A., Taquet V., Faure A., Kahane C., Ceccarelli C., Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models, A&A, 2012, vol. 541, p. L12
- Balucani N., Elementary Reactions and Their Role in Gas-Phase Prebiotic Chemistry, International Journal of Molecular Sciences, 2009, vol. 65, p. 2304 à 2335
- Barks H. L., Buckley R., Grieves G. A., Di Mauro E., Hud N. V., Orlando T. M., Guanine, Adenine, and Hypoxanthine Production in UV-Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation, ChemBioChem, 2010, vol. 11, p. 1240 à 1243
- Barlow N., Mars: An Introduction to its Interior, Surface and Atmosphere, 2008
- Barone V., Latouche C., Skouteris D., Vazart F., Balucani N., Ceccarelli C., Lefloch B., Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations, MNRAS, 2015, vol. 453, p. L31
- Bergin E. A., The Chemical Evolution of Protoplanetary Disks, ArXiv e-prints, 2009
- Bergin E. A., Tafalla M., Cold Dark Clouds: The Initial Conditions for Star Formation, ARA&A, 2007, vol. 45, p. 339 à 396

- Berné O., Montillaud J., Joblin C., Top-down formation of fullerenes in the interstellar medium, A&A, 2015, vol. 577, p. A133
- Bisschop S. E., Jørgensen J. K., van Dishoeck E. F., de Wachter E. B. M., Testing grainsurface chemistry in massive hot-core regions, A&A, 2007, vol. 465, p. 913 à 929
- Blumberg B. S., The NASA Astrobiology Institute: Early History and Organization, Astrobiology, 2003, vol. 3, p. 463 à 470
- Boersma C., Infrared emission features: probing the interstellar PAH population and circumstellar environment of Herbig Ae/Be stars, University of Groningen, 2009, Tese de Doutorado
- Boice D. C., de Almeida A. A., Understanding Phosphorous Chemistry in Comets in Light of Rosetta Results. In AAS/Division for Planetary Sciences Meeting Abstracts , vol. 48 of AAS/Division for Planetary Sciences Meeting Abstracts, 2016, p. 116.18
- Bothe H., Ferguson S. J., Newton W. E., Biology of the Nitrogen Cycle. Elsevier, 2007
- Boucher D., Burie J., Demaison J., Dubrulle A., Legrand J., Segard B., High-resolution rotational spectrum of methyl cyanide, Journal of Molecular Spectroscopy, 1977, vol. 64, p. 290
- Bronfman L., Alvarez H., Cohen R. S., Thaddeus P., A deep CO survey of molecular clouds in the southern Milky Way, ApJS, 1989, vol. 71, p. 481
- Bronfman L., Cohen R. S., Thaddeus P., Alvarez H., Three Large Molecular Complexes in Norma. In The Milky Way Galaxy , vol. 106 of IAU Symposium, 1985, p. 331
- Burgdorf M. J., Orton G. S., Encrenaz T., Davis G. R., Lellouch E., Sidher S. D., Swinyard B. M., Far-infrared spectroscopy of the giant planets: measurements of ammonia and phosphine at Jupiter and Saturn and the continuum of Neptune, Advances in Space Research, 2004, vol. 34, p. 2247 à 2250
- Canelo C. M., O Mundo Aromático dos PAHs no meio interestelar às condições bióticas, São Paulo: Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo, 2016, Dissertação de Mestrado, 162p.

- Capone D. G., Popa R., Flood B., Nealson K. H., Follow the Nitrogen, Science, 2006, vol. 312, p. 708 à 709
- Cazzoli G., Puzzarini C., The Lamb-dip spectrum of methylcyanide: Precise rotational transition frequencies and improved ground-state rotational parameters, Journal of Molecular Spectroscopy, 2006, vol. 240, p. 153
- Cernicharo J., Agúndez M., Kahane C., Guélin M., Goicoechea J. R., Marcelino N., De Beck E., Decin L., Probing the dust formation region in IRC +10216 with the high vibrational states of hydrogen cyanide, A&A, 2011, vol. 529, p. L3
- Chela Flores J., The New Science of Astrobiology From Genesis of the Living Cell to Evolution of Intelligent Behavior in the Universe. Kluwer Academic Publishers, 2001, 251 p.
- Clayden J., Greeves N., Warren S., Organic Chemistry. OUP Oxford, 2012, 1392p
- Coelho L. S., Formação de Moléculas Orgânicas em Ambientes Interestelares, São Paulo: Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo, 2012, Dissertação de Mestrado, 201 p.
- Combes F., Distribution of CO in the Milky Way, ARA&A, 1991, vol. 29, p. 195 à 237
- Cordiner M. A., Millar T. J., Herbst E., Chuimin R. N., Walsh C., Molecular anion chemistry in interstellar and circumstellar environments. In Molecules in Space and Laboratory , 2007, p. 98
- Costa P. R. R., Pilli R. A., Pinheiro S., Vasconcellos M. L. A. A., DERIVADOS CAR-BONILADOS, IMINAS E NITRILAS. Editora Bookman - Publicação com a chancela da Sociedade Brasileira de Química (SBQ), 2003
- Coustenis A., Taylor F. W., Titan Exploring an Earthlike World, Titan Exploring an Earthlike World. Series: Series on Atmospheric Oceanic and Planetary Physics, ISBN: ¡ISBN¿9789812811615;/ISBN¿. World Scientific Publishing Co. Pte. Ltd., Edited by Athena Coustenis and Fredric W. Taylor, vol. 4, 2008, vol. 4
- Cuadrado S., Goicoechea J. R., Cernicharo J., Fuente A., Pety J., Tercero B., Complex organic molecules in strongly UV-irradiated gas, A&A, 2017, vol. 603, p. A124

- da Silveira E. F., Synthesis of organic molecules by Cosmic Rays , 2nd Brazilian Workshop on Astrobiology, 2013
- Darling D., Encyclopedia of Science. http://www.daviddarling.info/encyclopedia/H/ Horsehead_Nebula.html, 2017
- De Sanctis M. C., Ammannito E., McSween H. Y., Raponi A., Marchi S., Capaccioni F. e. a., Localized aliphatic organic material on the surface of Ceres, Science, 2017, vol. 355, p. 719
- Dean J. A., LANGE'S HANDBOOK OF CHEMISTRY, 1999
- Delaye L., Lazcano A., Prebiological evolution and the physics of the origin of life, Physics of Life Reviews, 2005, vol. 2, p. 47 à 64
- Draganić I., Draganić Z., Shimoyama A., Ponnamperuma C., Evidence of amino acids in hydrolysates of compounds formed by ionizing radiations, Origins of Life, 1977, vol. 8, p. 377 à 382
- Draine B. T., Photoelectric heating of interstellar gas, ApJS, 1978, vol. 36, p. 595 à 619
- Ehrenfreund P., Irvine W., Becker L., Blank J., Brucato J. R., Colangeli L., Derenne S., Despois D., Dutrey A., Fraaije H., Lazcano A., Owen T., Robert F., International Space Science Institute ISSI-Team Astrophysical and astrochemical insights into the origin of life, Reports on Progress in Physics, 2002, vol. 65, p. 1427 à 1487
- Ehrenfreund P., Rasmussen S., Cleaves J., Chen L., Experimentally Tracing the Key Steps in the Origin of Life: The Aromatic World, Astrobiology, 2006, vol. 6, p. 490 à 520
- Elsila J. E., Glavin D. P., Dworkin J. P., Cometary glycine detected in samples returned by Stardust, Meteoritics and Planetary Science, 2009, vol. 44, p. 1323 à 1330
- Eschenmoser A., The search for the chemistry of lifeâs origin., Tetrahedron, 2007, vol. 63, p. 12821 à 12844
- Ferrière K. M., The interstellar environment of our galaxy, Reviews of Modern Physics, 2001, vol. 73, p. 1031 à 1066

- Ferris J. P., Joshi P. C., Edelson E. H., Lawless J. G., HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth., Journal of molecular evolution, 1978, vol. 11, p. 293
- Ferris J. P., Nicodem D. E., Ammonia Photolysis and the Role of Ammonia in Chemical Revolution, Nature, 1972, vol. 238, p. 268 à 269
- Ferus M., Nesvorny D., Sponer J., Kubelik P., Michalcikova R., Shestivska V., Sponer J. E., Civis S., High-energy chemistry of formamide: A unified mechanism of nucleobase formation, Proceedings of the National Academy of Science, 2015, vol. 112, p. 657 à 662
- Fontani F., Rivilla V. M., Caselli P., Vasyunin A., Palau A., Phosphorus-bearing Molecules in Massive Dense Cores, ApJ, 2016, vol. 822, p. L30
- Galante D., Horvath J. E., Biological effects of gamma-ray bursts: distances for severe damage on the biota, International Journal of Astrobiology, 2007, vol. 6
- Galante D., Silva E. P., Rodrigues F., Horvarth J. E., Avellar M. B., et al. Astrobiologia: uma ciência emergente. Núcleo de Pesquisa em Astrobiologia. – São Paulo : Tikinet Edição : IAG/USP; ePUB e PDF, 2016, 390 p.
- Galliano F., Madden S. C., Tielens A. G. G. M., Peeters E., Jones A. P., Variations of the Mid-IR Aromatic Features inside and among Galaxies, ApJ, 2008, vol. 679, p. 310 à 345
- Gargaud M., Amils R., Cernicharo J. Cleaves H. J., Irvine W. M., Pinti D. L., Viso M., Encyclopedia of Astrobiology. vol. 3, Springer, 2011
- Gerin M., Pety J., Goicoechea J. R., The Horsehead Nebula, a Template Source for Interstellar Physics and Chemistry. In Submillimeter Astrophysics and Technology: a Symposium Honoring Thomas G. Phillips , vol. 417 of Astronomical Society of the Pacific Conference Series, 2009, p. 165
- Gildas Team, 2013 GILDAS: Grenoble Image and Line Data Analysis Software Astrophysics Source Code Library

- Glaser R., Hodgen B., Farrelly D., McKee E., Adenine synthesis in interstellar space: mechanisms of prebiotic pyrimidine-ring formation of monocyclic HCN-pentamers., Astrobiology, 2007, vol. 7, p. 455
- Goicoechea J. R., Pety J., Gerin M., Hily-Blant P., Teyssier D., Roueff E., Simple Organic Chemistry in the Horsehead Nebula. In Bioastronomy 2007: Molecules, Microbes and Extraterrestrial Life, vol. 420 of Astronomical Society of the Pacific Conference Series, 2009, p. 43
- González-García B., Manoj P., Watson D. M., Vavrek R., Megeath S. T., Stutz A. M., Osorio M., Wyrowski F., Fischer W., Tobin J. J., Sánchez-Portal M., Diaz Rodriguez A. K., Wilson T. L., Herschel/PACS far-IR spectral imaging of a jet from an intermediate mass protostar in the OMC-2 region, A&A, 2016, vol. 596, p. A26
- Groesbeck T. D., Phillips T. G., Blake G. A., The molecular emission-line spectrum of IRC +10216 between 330 and 358 GHz, ApJS, 1994, vol. 94, p. 147
- Guimarães M. C., Efeitos da Presença de Poeira na Emissão de Galáxias a Altos e Baixos Redshifts, São Paulo: Universidade, 2006, Tese de Doutorado, 203 p.
- Gull M., Pasek M. A., Role of Phosphorus Minerals in the Origin of Life on Earth, AGU Fall Meeting Abstracts, 2013
- Haas M. R., Erickson E. F., Goorvitch D., McKibben D. D., Detection of the J = 10 Rotation-Inversion Band of Phosphine on Saturn. In Bulletin of the American Astronomical Society, vol. 15 of BAAS, 1983, p. 998
- Habing H. J., The interstellar radiation density between 912 A and 2400 A, Bull. Astron. Inst. Netherlands, 1968, vol. 19, p. 421
- Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchison G. R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Cheminform, 2012
- Hayyan M., Hashim M. A., AlNashef I. M., Superoxide Ion: Generation and Chemical Implications, Chemical Reviews, 2016

- Herbst E., Klemperer W., The Formation and Depletion of Molecules in Dense Interstellar Clouds, ApJ, 1973, vol. 185, p. 505 à 534
- Herbst E., van Dishoeck E. F., Complex Organic Interstellar Molecules, ARA&A, 2009, vol. 47, p. 427 à 480
- Hocking W. H., Gerry M. C. L., Winnewisser G., The microwave and millmetre wave spectrum, molecular constants, dipole moment, and structure of isocyanic acid, HNCO, Canadian Journal of Physics, 1975, vol. 53, p. 1869
- Hony S., Van Kerckhoven C., Peeters E., Tielens A. G. G. M., Hudgins D. M., Allamandola L. J., The CH out-of-plane bending modes of PAH molecules in astrophysical environments, A&A, 2001, vol. 370, p. 1030 à 1043
- Hudson R. L., Moore M. H., Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles, Icarus, 2004, vol. 172, p. 466 à 478
- Hudson R. L., Moore M. H., Dworkin J. P., Martin M. P., Martin Z. D., Amino acids from ion-irradiated nitrile-containing ices, Astrobiology, 2008, vol. 8, p. 771 à 779
- Hutsemékers D., Manfroid J., Jehin E., Arpigny C., New constraints on the delivery of cometary water and nitrogen to Earth from the ¹⁵N/ ¹⁴N isotopic ratio, Icarus, 2009, vol. 204, p. 346 à 348
- Iglesias-Groth S., Manchado A., García-Hernández D. A., González Hernández J. I., Lambert D. L., Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission, ApJ, 2008, vol. 685, p. L55
- IUPAC Gold Book Compendium of Chemical Terminology.. International Union of Pure and Applied Chemistry, 2014, 1670p.
- Jeilani Y. A., Williams P. N., Walton S., Nguyen M. T., Unified reaction pathways for the prebiotic formation of RNA and DNA nucleobases., Physical Chemistry Chemical Physics, 2016, vol. 18, p. 20177
- Joblin C., Leger A., Martin P., Contribution of polycyclic aromatic hydrocarbon molecules to the interstellar extinction curve, ApJ, 1992, vol. 393, p. L79 à L82

- Jones B. M., Zhang F., Kaiser R. I., Jamal A., Mebel A. M., Cordiner M. A., Charnley S. B., Formation of benzene in the interstellar medium, Proceedings of the National Academy of Science, 2011, vol. 108, p. 452 à 457
- Kahane C., Ceccarelli C., Faure A., Caux E., Detection of Formamide, the Simplest but Crucial Amide, in a Solar-type Protostar, ApJ, 2013, vol. 763, p. L38
- Kaler University of Illinois. http://stars.astro.illinois.edu/sow/sigmaori.html, 2012
- Karplus M., Porter R. N., Atoms and molecules; an introduction for students of physical chemistry, 1970
- Kaufman M. J., Wolfire M. G., Hollenbach D. J., [Si II], [Fe II], [C II], and H₂ Emission from Massive Star-forming Regions, ApJ, 2006, vol. 644, p. 283 à 299
- Kaufman M. J., Wolfire M. G., Hollenbach D. J., Luhman M. L., Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions, ApJ, 1999, vol. 527, p. 795 à 813
- Kleiner I., Lovas F. J., Godefroid M., Microwave Spectra of Molecules of Astrophysical Interest. XXIII. Acetaldehyde, The Journal of Chemical Physics, 1996, vol. 25
- Kukolich S. G., Beam maser spectroscopy on J= 1â 2, K= 1, and K= 0 transitions in CH3CN and CH3 13CN, The Journal of Chemical Physics, 1982, vol. 76
- Kukolich S. G., Nelson A. C., Yamanashi B. S., Molecular-beam microwave spectra of isocyanic acid and isocyanic acid-d, Journal of the American Chemical Society, 1971, vol. 93, p. 6769â6771
- Kukolich S. G., Ruben D. J., Wang J. H. S., Williams J. R., High resolution measurements of 14N, D quadrupole coupling in CH3CN and CD3CN, The Journal of Chemical Physics, 1973, vol. 58
- Lapinov A. V., Golubiatnikov G. Y., Markov V. N., Guarnieri A., Laboratory studies of the HNCO molecular spectrum for precise spectroscopy of dark clouds, Astronomy Letters, 2007, vol. 33, p. 121
- Le Petit F., The Meudon PDR Code. http://pdr.obspm.fr/PDRcode.html, 2012

- Le Petit F., Nehmé C., Le Bourlot J., Roueff E., A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code, ApJS, 2006, vol. 164, p. 506 à 529
- Lee S., Lee J.-E., Bergin E. A., Park Y.-S., A Photon-dominated Region Model for the FIR Mid-J CO Ladder with Universal Rotational Temperature in Star Forming Regions, ApJS, 2014, vol. 213, p. 33
- Lees R. M., Baker J. G., Torsionâvibrationârotation interactions in methanol. I. Millimeter wave spectrum, The Journal of Chemical Physics, 1968, vol. 48, p. 5299
- Lees R. M., Lovas F. J., Kirchhoff W. H., Johnson D. R., Microwave Spectra of Molecules of Astrophysical Interest: III. Methanol, The Journal of Chemical Physics, 1973, vol. 205
- Lefloch B., Cernicharo J., Cabrit S., Cesarsky D., Shock-induced PDR in the Herbig-Haro object HH 2, A&A, 2005, vol. 433, p. 217 à 227
- Lefloch B., Vastel C., Viti S., Jimenez-Serra I., Codella C., Podio L., Ceccarelli C., Mendoza E., Lepine J. R. D., Bachiller R., Phosphorus-bearing molecules in solar-type starforming regions: first PO detection, MNRAS, 2016, vol. 462, p. 3937 à 3944
- Lellouch E., Encrenaz T., Combes M., The detectability of minor atmospheric species in the far infrared spectra of Jupiter and Saturn, A&A, 1984, vol. 140, p. 405 à 413
- Lequeux J., The Interstellar Medium, 2005
- Lutz D., Sturm E., Tacconi L. J., Valiante E., Schweitzer M., Netzer H., Maiolino R., Andreani P., Shemmer O., Veilleux S., PAH Emission and Star Formation in the Host of the z ~ 2.56 Cloverleaf QSO, ApJ, 2007, vol. 661, p. L25 à L28
- Martins Z., Botta O., Fogel M. L., Sephton M. A., Glavin D. P., Watson J. S., Dworkin J. P., Schwartz A. W., Ehrenfreund P., Extraterrestrial nucleobases in the Murchison meteorite, Earth and Planetary Science Letters, 2008, vol. 270, p. 130 à 136
- Materese C. K., Nuevo M., Sandford S. A., N- and O-heterocycles Produced from the Irradiation of Benzene and Naphthalene in H₂O/NH₃-containing Ices, ApJ, 2015, vol. 800, p. 116

- Mattila K., Lemke D., Haikala L. K., Laureijs R. J., Leger A., Lehtinen K., Leinert C., Mezger P. G., Spectrophotometry of UIR bands in the diffuse emission of the galactic disk., A&A, 1996, vol. 315, p. L353 à L356
- McKee C. F., Ostriker E. C., Theory of Star Formation, ARA&A, 2007, vol. 45, p. 565 à 687
- Mehler M., Book Review: Tools of radio astronomy / Springer-Verlag, Heidelberg, 2004 XVI+462 pp., ISBN 3-540-40387-6., Sterne und Weltraum, 2005, vol. 44, p. 96
- Mehringer D., Gardner M., Benford D., Bockelee-Morvan et al. Comet C/1995 O1 (Hale-Bopp), IAU Circ., 1997, vol. 6625
- Meijerink R., Spaans M., Israel F. P., Diagnostics of irradiated dense gas in galaxy nuclei.II. A grid of XDR and PDR models, A&A, 2007, vol. 461, p. 793 à 811
- Mendoza E., Lefloch B., López-Sepulcre A., Ceccarelli C., Codella C., Boechat-Roberty H. M., Bachiller R., Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157, MNRAS, 2014, vol. 445, p. 151 à 161
- Menor-Salván C., Marín-Yaseli M. R., A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene., Chemistry, 2013, vol. 10, p. 6488
- Merello M., Bronfman L., Garay G., Lo N., Evans II N. J., Nyman L.-Å., Cortés J. R., Cunningham M. R., ALMA Observations of the Massive Molecular Outflow G331.512-0.103, ApJ, 2013, vol. 774, p. L7
- Merello M., Bronfman L., Garay G., Nyman L.-Å., Evans II N. J., Walmsley C. M., Physical Characteristics of G331.5-0.1: The Luminous Central Region of a Giant Molecular Cloud, ApJ, 2013, vol. 774, p. 38
- Millar T. J., What do we know and what do we need to know?, IAU Symp.Cambridge University Press, 2006, vol. 231, p. 77
- Miyakawa S., Cleaves H. J., Miller S. L., The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced From Frozen Ammonium Cyanide Solutions, Origins of Life and Evolution of the Biosphere, 2002, vol. 32, p. 209 à 218

- Miyakawa S., James Cleaves H., Miller S. L., The Cold Origin of Life: A. Implications Based On The Hydrolytic Stabilities Of Hydrogen Cyanide And Formamide, Origins of Life and Evolution of the Biosphere, 2002, vol. 32, p. 195 à 208
- Miyazaki A., Hiyagon H., Sugiura N., Hirose K., E. T., Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: implications for the origin and degassing history of nitrogen and noble gases in the earth, Geochimica et Cosmochimica Acta, 2004, vol. 68, p. 708 à 709
- Müller H. S. P., Drouin B. J., Pearson J. C., Rotational spectra of isotopic species of methyl cyanide, CH3CN, in their ground vibrational states up to terahertz frequencies, A&A, 2009, vol. 506, p. 1487
- Müller H. S. P., Schlöder F., Stutzki J., Winnewisser G., The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists, Journal of Molecular Structure, 2005, vol. 742, p. 215
- Müller H. S. P., Thorwirth S., Roth D. A., Winnewisser G., The Cologne Database for Molecular Spectroscopy, CDMS, A&A, 2001, vol. 370, p. L49
- Mundo Genética Bases moleculares de la herencia. Estructura de ácidos nucleicos. https://www.mundogenetica.com.mx/2015/06/14/bases-moleculares-de-la-herenciaestructura-de-2017
- Napier W. M., Wickramasinghe J. T., Wickramasinghe N. C., The origin of life in comets, International Journal of Astrobiology, 2007, vol. 6, p. 321 à 323
- NASA NASA ASTROBIOLOGY STRATEGY 2015 . 4th edition. Astrobiology at NASA, 2015, 257 p.
- Neidle S., Principles of Nucleic Acid Structure online version.. Elsevier, 2008, 289
- Nelson D. L., Cox M. M., Lehninger Principles of Biochemistry. 6th edition. Publisher:W. H. Freeman, 2012, 1340 p.
- NR Strecker amino acid synthesis. name-reaction.com, 2017

- Nuevo M., Milam S. N., Sandford S. A., Elsila J. E., Dworkin J. P., Formation of Uracil from the Ultraviolet Photo-Irradiation of Pyrimidine in Pure H₂O Ices, Astrobiology, 2009, vol. 9, p. 683 à 695
- Ota N., Nitrogen Substituted Polycyclic Aromatic Hydrocarbon As Capable Interstellar Infrared Spectrum Source Considering Astronomical Chemical Evolution Step To Biological Organic Purine And Adenine, ArXiv e-prints, 2016
- Pacher P., Beckman J. S., Liaudet L., Nitric Oxide and Peroxynitrite in Health and Disease, Physiological Reviews, 2007
- Padovani M., Hennebelle P., Galli D., Cosmic rays as regulators of molecular cloud properties, ASTRA Proceedings, 2014, vol. 1, p. 23 à 27
- Parker D. S. N., Kaiser R. I., Kostko O., Troy T. P., Ahmed M., Mebel A. M., Tielens A. G. G. M., Gas Phase Synthesis of (Iso)Quinoline and Its Role in the Formation of Nucleobases in the Interstellar Medium, ApJ, 2015, vol. 803, p. 53
- Parker D. S. N., Yang T., Dangi B. B., Kaiser R. I., Bera P. P., Lee T. J., Low Temperature Formation of Nitrogen-substituted Polycyclic Aromatic Hydrocarbons (PANHs)-Barrierless Routes to Dihydro(iso)quinolines, ApJ, 2015, vol. 815, p. 115
- Parker D. S. N., Zhang F., Kim Y. S., Kaiser R. I., Landera A., Kislov V. V., Mebel A. M., Tielens A. G. G. M., Low temperature formation of naphthalene and its role in the synthesis of PAHs (Polycyclic Aromatic Hydrocarbons) in the interstellar medium, Proceedings of the National Academy of Science, 2012, vol. 109, p. 53 à 58
- Pasek M., Herschy B., Kee T. P., Phosphorus: a Case for Mineral-Organic Reactions in Prebiotic Chemistry, Origins of Life and Evolution of the Biosphere, 2015, vol. 45, p. 207 à 218
- Peeters E., Hony S., Van Kerckhoven C., Tielens A. G. G. M., Allamandola L. J., Hudgins D. M., Bauschlicher C. W., The rich 6 to 9 vec mu m spectrum of interstellar PAHs, A&A, 2002, vol. 390, p. 1089 à 1113
- Peeters Z., Botta O., Charnley S. B., Kisiel Z., Kuan Y.-J., Ehrenfreund P., Formation and photostability of N-heterocycles in space. I. The effect of nitrogen on the photostability of small aromatic molecules, A&A, 2005, vol. 433, p. 583 à 590

- Plützer C., Nir E., de Vries M. S., Kleinermanns K., IR UV double-resonance spectroscopy of the nucleobase adenine, Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 2001, vol. 3, p. 5466 à 5469
- Powner M. W., Gerland B., Sutherland J. D., Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature International weekly journal of science, 2009, vol. 1, p. 239 à 242
- Puget J. L., Leger A., A new component of the interstellar matter Small grains and large aromatic molecules, ARA&A, 1989, vol. 27, p. 161 à 198
- Röllig M., Abel N. P., Bell T., et al. B., A photon dominated region code comparison study, A&A, 2007, vol. 467, p. 187 à 206
- Remijan A. J., Snyder L. E., McGuire B. A., Kuo H.-L., Looney L. W., Friedel D. N.,
 Golubiatnikov G. Y., Lovas F. J., Ilyushin V. V., Alekseev E. A., Dyubko S. F., McCall
 B. J., Hollis J. M., Observational Results of a Multi-telescope Campaign in Search of
 Interstellar Urea [(NH₂)₂CO], ApJ, 2014, vol. 783, p. 77
- Ricca A., Bauschlicher C. W., Bakes E. L. O., A Computational Study of the Mechanisms for the Incorporation of a Nitrogen Atom into Polycyclic Aromatic Hydrocarbons in the Titan Haze, Icarus, 2001, vol. 154, p. 516 à 521
- Rivilla V. M., Fontani F., Beltrán M. T., Vasyunin A., Caselli P., Martín-Pintado J., Cesaroni R., The First Detections of the Key Prebiotic Molecule PO in Star-forming Regions, ApJ, 2016, vol. 826, p. 161
- Rotelli L., Trigo-Rodríguez J. M., Moyano-Cambero C. E., Carota E., Botta L., di Mauro E., Saladino R., The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment, Scientific Reports, 2016, vol. 6, p. 38888
- Rubin R. H., Swenson Jr. G. W., Benson R. C., Tigelaar H. L., Flygare W. H., Microwave Detection of Interstellar Formamide, ApJ, 1971, vol. 169, p. L39
- Rybicki G. B., Lightman A. P., Radiative process in Astrophysics. IAG-USP, 1979, 382 p.

- Saladino R., Botta G., Pino S., Costanzo G., Di Mauro E., From the one-carbon amide formamide to RNA all the steps are prebiotically possible., Biochimie, 2012, vol. 94, p. 1451 à 1456
- Saladino R., Carota E., Botta G., Kapralov M., Timoshenko G. N., Rozanov A. Y., Krasavin E., Mauro E., Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation, PNAS, 2014
- Saladino R., Crestini C., Ciciriello F., Costanzo G., Di Mauro E., Formamide chemistry and the origin of informational polymers., Chemistry & Biodiversity, 2007, vol. 4, p. 694 à 720
- Saladino R., Crestini C., Pino S., Costanzo G., Di Mauro E., Formamide and the origin of life, Physics of Life Reviews, 2012, vol. 9, p. 84 à 104
- Schoffstall A. M., Prebiotic phosphorylation of nucleosides in formamide., Origins of Life, 1976, vol. 7, p. 399 à 412
- Sellgren K., Uchida K. I., Werner M. W., The 15-20 μm Spitzer Spectra of Interstellar Emission Features in NGC 7023, ApJ, 2007, vol. 659, p. 1338 à 1351
- Shaw G., Ferland G. J., Srianand R., Abel N. P., Physical Conditions in the Interstellar Medium toward HD 185418, ApJ, 2006, vol. 639, p. 941 à 950
- Shrivastava M., Lou S., Zelenyuk A., Easter R. C., Corley R. A., Thrall B. D., Rasch P. J., Fast J. D., Simonich S. L. M., Shen H., Tao S., Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol., 2017, vol. 114, p. 1246 à 1251
- Skouteris D., Vazart F., Ceccarelli C., Balucani N., Puzzarini C., Barone V., New quantum chemical computations of formamide deuteration support a gas-phase formation of this prebiotic molecule, ArXiv e-prints, 2017
- Smith I. W. M., Herbst E., Chang Q., Rapid neutral-neutral reactions at low temperatures: a new network and first results for TMC-1, MNRAS, 2004, vol. 350, p. 323 à 330

- Smith I. W. M., Sage A. M., Donahue N. M., Herbst E., Quan D., The temperaturedependence of rapid low temperature reactions: experiment, understanding and prediction, Faraday Discuss, 2006, pp 133–137
- Snyder L. E., Buhl D., Observations of Radio Emission from Interstellar Hydrogen Cyanide, ApJ, 1971, vol. 163, p. L47
- Solomon P. M., Rivolo A. R., Barrett J., Yahil A., Mass, luminosity, and line width relations of Galactic molecular clouds, ApJ, 1987, vol. 319, p. 730 à 741
- Sternberg A., Dalgarno A., Chemistry in Dense Photon-dominated Regions, ApJS, 1995, vol. 99, p. 565
- Stoks P. G., Schwartz A. W., Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation, Geochimica et Cosmochimica Acta, 1981, vol. 45, p. 563 à 569
- Strecker A., Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper;, Annalen der Chemie und Pharmacie, 1850
- Strong A. W., Moskalenko I. V., Ptuskin V. S., Cosmic-Ray Propagation and Interactions in the Galaxy, Annual Review of Nuclear and Particle Science, 2007, vol. 57, p. 285 à 327
- Taylor F. W., The Scientific Exploration of Venus, 2014
- Tegler S., Wyckoff S., Engel L., Wehinger P., On the Ammonia Abundance in Comets, PASP, 1989, vol. 101, p. 880
- Tielens A. G. G. M., The physics and chemistry of the interstellar medium. Cambridge University Press, 2005
- Tielens A. G. G. M., Interstellar Polycyclic Aromatic Hydrocarbon Molecules, ARA&A, 2008, vol. 46, p. 289 à 337
- Tielens A. G. G. M., The molecular universe, Reviews of Modern Physics, 2013, vol. 85, p. 1021 à 1081
- Tielens A. G. G. M., Hollenbach D., Photodissociation regions. I Basic model. II A model for the Orion photodissociation region, ApJ, 1985, vol. 291, p. 722 à 754

USC Follow the nitrogen to extraterrestrial life, Phys & Org, 2006

- Šimečková M., Urban Š., Fuchs U., Lewen F., Winnewisser G., Morino I., Yamada K. M. T., Ground state spectrum of methylcyanide, Journal of Molecular Spectroscopy, 2004, vol. 226, p. 123
- Valparaíso P., Aula virtual de biologia humana.. http://www.anatomiahumana.ucv.cl/ biologia/top6.html, 2017
- Wakelam V., Loison J.-C., Herbst E., Pavone B., Bergeat A. e. a., The 2014 KIDA Network for Interstellar Chemistry, ApJS, 2015, vol. 217, p. 20
- Walker CBE FRSE P. M. B., Cambridge Dictionary of Science and Technology.. Edinburgh:Press Syndicate of the University of Cambridge (reprint ed.), 1990, 658 p.
- Wickramasinghe N. C., Wallis J., Wallis D. H., Schild R. E., Gibson C. H., Life-bearing primordial planets in the solar vicinity, Ap&SS, 2012, vol. 341, p. 295 à 299
- Wolfire M. G., McKee C. F., Hollenbach D., Tielens A. G. G. M., Neutral Atomic Phases of the Interstellar Medium in the Galaxy, ApJ, 2003, vol. 587, p. 278 à 311
- Wolfire M. G., Tielens A. G. G. M., Hollenbach D., Kaufman M. J., Chemical Rates on Small Grains and PAHs: C⁺ Recombination and H₂ Formation, ApJ, 2008, vol. 680, p. 384 à 397
- Woodall J., Agúndez M., Markwick-Kemper A. J., Millar T. J., The UMIST database for astrochemistry 2006, A&A, 2007, vol. 466, p. 1197 à 1204
- Xu L.-H., Fisher J., Lees R. M., Shi H. Y., Hougen J. T., Pearson J. C., Drouin B. J., Blake G. A., Braakman R., Torsion rotation global analysis of the first three torsional states $(\nu_t = 0, 1, 2)$ and terahertz database for methanol, Journal of Molecular Spectroscopy, 2008, vol. 251, p. 305
- Yuasa S., Flory D., Basile B., OrÃ³J., Ontheabiotic formation of aminoacids. I. HCN as a precursor of a
- Ziurys L. M., Turner B. E., Detection of interstellar vibrationally excited HCN, ApJ, 1986, vol. 300, p. L19 à L23
Apêndice

Conceitos Gerais

Como já explicitado anteriormente, a astrobiologia por si só já é uma ciência multidisciplinar, além disso, este trabalho une astrobiologia e astroquímica. Dessa forma, para facilitar a interação entre as diversas áreas das ciências, esta seção reuni alguns conceitos que, provavelmente não são tão óbvios para a Astronomia.

A.1 Carbono alfa e alfa-aminoácidos

Os aminoácidos são as unidades estruturais básicas das proteínas. Um alfa-aminoácido é constituído de um grupamento amina (função orgânica derivada da amônia), uma carboxila (grupo funcional (-COOH) característico dos ácidos orgânicos), um átomo de hidrogênio e um radical R diferenciado (Fig. A.1), ligados a um átomo de carbono, que é chamado de carbono alfa por ser o adjacente ao grupamento carboxila (ácido carboxílico) (Nelson e Cox, 2012).

Figura A.1: Fórmula estrutural dos alfa-aminoácidos.

A.2 Ciclo Biológico do Nitrogênio

As plantas requerem certo número de elementos além daqueles que obtêm diretamente da atmosfera (carbono e oxigênio sob a forma de dióxido de carbono) e da água do solo (hidrogênio e oxigênio). No caso do nitrogênio, rochas da superfície terrestre constituem a fonte primária, ele penetra no solo, indiretamente por meio da atmosfera, e, através do solo, penetra nas plantas que crescem sobre ele. A maioria dos seres vivos é incapaz de utilizar o nitrogênio atmosférico para sintetizar proteínas e outras substâncias orgânicas e apenas certas bactérias e algas azuis possuem a capacidade altamente especializada de assimilar o nitrogênio da atmosfera e convertê-lo numa forma que pode ser usada pelas células. A deficiência de nitrogênio utilizável constitui, muitas vezes, o principal fator limitante do crescimento vegetal. O processo pelo qual o nitrogênio circula através das plantas e do solo pela ação de organismos vivos é conhecido como ciclo do nitrogênio.

Grande parte do nitrogênio encontrado no solo provém de materiais orgânicos mortos, que existem sob a forma de compostos orgânicos complexos, tais como proteínas, aminoácidos, ácidos nucleicos e nucleotídios. Entretanto, estes compostos nitrogenados são, em geral, rapidamente decompostos em substâncias mais simples por organismos que vivem nos solos. Algumas bactérias e espécies de fungos são os principais responsáveis pela decomposição de materiais orgânicos mortos. Estes microrganismos utilizam as proteínas e os aminoácidos como fonte para suas próprias proteínas e liberam o excesso de nitrogênio sob a forma de amônio (NH_4^+) . Este processo é denominado amonificação. O nitrogênio pode tornar-se gás amoníaco (NH_3) , mas este processo ocorre geralmente apenas durante a decomposição de grandes quantidades de materiais ricos em nitrogênio, como numa grande porção de adubo ou fertilizante. Em geral, a amônia produzida por amonificação é dissolvida na água do solo, onde se combina a prótons para formar o íon amônio (Bothe et al., 2007).

Várias espécies de bactérias comumente encontradas nos solos são capazes de oxidar a amônia ou amônio. A oxidação do amoníaco, conhecida como nitrificação, é um processo que produz energia que liberada é utilizada por estas bactérias para reduzir o dióxido de carbono, da mesma forma que as plantas autotróficas utilizam a energia luminosa para a redução do dióxido de carbono. Tais organismos são conhecidos como autotróficos quimiossintéticos. As bactérias nitrificantes quimiossintéticas *Nitrosomonas* e *Nitrosoco*- ccus oxidam o amoníaco formando nitrito (NO_2^-) ; a Nitrobacter, outro gênero de bactéria, oxida o nitrito, formando nitrato (NO_3^-) , novamente com liberação de energia; O nitrato é a forma sob a qual quase todo o nitrogênio se move do solo para o interior das raízes.

Parte do nitrato produzido, no entanto, é reduzido ao nitrogênio molecular em quatro estágios (NO_2^-, NO, N_2O) através da respiração de microrganismos, tanto anaeróbicos como aeróbicos, que se desenvolvem na ausência de oxigênio. Esse processo é conhecido como perda de nitrogênio (Bothe et al., 2007). Dessa forma, todo o nitrogênio poderia ser removido do solo se não fosse constantemente reposto. O nitrogênio é reabastecido no solo pela fixação do nitrogênio, que é o processo pelo qual o nitrogênio gasoso do ar é incorporado em compostos orgânicos nitrogenados e, assim, fecha o ciclo do nitrogênio.

A.3 Deslocalização Eletrônica

Em química, deslocalização eletrônica ou elétrons deslocalizados são elétrons em uma molécula que não estão associados a um único átomo ou a uma ligação covalente. Elétrons deslocalizados são contidos dentro de um orbital que se estende ao longo de vários átomos adjacentes. Classicamente, os elétrons deslocalizados podem ser encontrados em sistemas conjugados de ligações duplas e sistemas aromáticos. É cada vez mais aceito que os elétrons em níveis de ligação- σ também estão deslocalizados. Por exemplo, no metano, os elétrons de ligação são compartilhados por todos os cinco átomos igualmente (IUPAC, 2014).

O fenômeno da deslocalização eletrônica pode ser explicado através da teoria dos orbitais moleculares, onde os elétrons pertencem à molécula e não aos átomos ou ligações.

A.4 Explosão Combinatória

Em ciência da computação, busca por força bruta ou busca exaustiva, também conhecido como gerar e testar, é uma técnica de solução de problemas que consiste em enumerar todos os possíveis candidatos da solução e checar cada candidato para saber se ele satisfaz o enunciado do problema. Busca por força bruta é de simples implementação, e sempre vai achar a solução se esta existir. Entretanto, ele custará proporcionalmente ao número de candidatos à solução, o que, em muitos problemas práticos, tende a crescer muito rápido à medida que o tamanho do problema aumenta. Um exorbitante crescimento do número de candidatos pode ocorrer em todos os tipos de problemas. Em alguns casos, conforme adicina-se um único parâmetro, multiplica-se o número de candidatos e muito maior é o tempo para encontrar a solução. Este fenômeno é comumente chamado de explosão combinatória

A.5 Homólise

Homólise é a dissociação de ligação química de uma molécula por um processo em que cada um dos fragmentos retém um dos elétrons originalmente ligados. Durante a fissão homolítica de uma molécula neutra com um número par de elétrons, dois radicais livres serão gerados. Ou seja, os dois elétrons envolvidos na ligação original são distribuídos entre as duas espécies de fragmentos, como pode ser visto na figura A.2. A energia envolvida neste processo é chamada de energia de dissociação de ligação.

Figura A.2: Exemplo de reação homolítica.

Devido a alta quantidade de energia necessária para a quebra de ligações, a homólise ocorre apenas sob circunstâncias específicas como, por exemplo, incidência de radiação UV ou de raios cósmicos.

A.6 Iminas

Uma imina é um grupo funcional ou composto orgânico com estrutura geral RR'C = NR'' (Fig. A.3), onde R" pode ser um H ou um grupo orgânico, sendo neste último caso, conhecida também como base de Schiff (Costa et al., 2003).

As iminas são análogos nitrogenados das cetonas (composto orgânico que possui o grupo funcional C = O) e aldeídos (R - C = O), com uma ligação dupla carbono-nitrogênio. A formação de uma imina é um exemplo de um tipo muito amplo de reações, conhecidas como condensações, nas quais dois compostos orgânicos se combinam, com perda de água ou de outra molécula pequena.

Figura A.3: Fórmula estrutural do composto imina.

A.7 Ligações Peptídicas

Uma ligação peptídica é uma ligação covalente que junta dois monômeros de aminoácidos consecutivos ao londo de uma cadeia de peptídios ou proteínas (Walker, 1990).

Dois aminoácidos se ligam através desse tipo de ligação, por condensação; a porção ácida de um aminoácido se aproxima da parte amino do outro, um deles perde um H e um O de seu grupo carboxilo (COOH) e o outro perde um H do seu grupo amino (NH). Essa reação produz uma molécula de água e dois aminoácidos unidos por uma ligação peptídica (-CO - NH-). Os aminoácidos unidos são chamados dipeptídio (Fig. A.4).

Uma ligação peptídica pode ser quebrada por hidrólise. Na presença de água, a ligação se quebra liberando 8-16 kJ/mol de energia, porém é um processo extremamente lento. Em organismos vivos, este processo é catalisado por enzimas, chamadas de proteases, proteínases, peptidases ou enzimas proteolíticas.

A.8 Ligações $\pi e \sigma$

Em química orgânica, ligações π (ou ligações pi) são ligações químicas covalentes, nas quais dois lóbulos de um orbital eletrônico interseccionam dois lóbulos de outros orbitais eletrônicos. Apenas um dos planos nodais daquele orbital passa pelos núcleos envolvidos na ligação. É a ligação característica de compostos com duplas ou triplas ligações como o propeno e o etino.

A letra grega π em seu nome refere-se a orbitais p, uma vez que a simetria orbital da ligação pi é a mesma que a do orbital p quando visto abaixo do eixo de ligação. Os orbitais

Figura A.4: Formação de uma ligação peptídica (Walker, 1990).

de P frequentemente se envolvem nesse tipo de ligação. Orbitais d também envolvem a ligação pi, e fazem parte da base para a ligação múltipla metal-metal.

Já as ligações σ (ligações sigma) são o tipo mais forte de ligação covalente. É mais simplesmente definida para moléculas diatômicas usando a linguagem e ferramentas de grupos de simetria. Nesta abordagem formal, uma ligação σ é simétrica em relação à rotação em torno do eixo de ligação. Por esta definição, as formas comuns de ligações σ são s + s, $p_z + p_z$, $s + p_z$ e $d_z^2 + d_z^2$ (Fig. A.5) (onde z é definido como o eixo da ligação) (Clayden et al., 2012).

A.9 Oligômeros

Em química, um oligômero é um polímero curto, constituído por aproximadamente cinco unidades de monômeros, embora o acordo quanto ao comprimento estrito é debatido e varia entre quatro e cem (Gargaud et al., 2011). Ao contrário de um polímero, se uma das unidades repetitivas de oligômero é removida, as suas propriedades químicas podem ser significativamente alteradas.

Figura A.5: Ligações $\pi \in \sigma$ (Clayden et al., 2012).

Em bioquímica, o termo oligômero é vulgarmente utilizado para fragmentos de DNA curtos, de cadeia simples. Também pode indicar uma proteína feita de duas ou mais subunidades.

A.10 Síntese de aminoácido de Strecker

A síntese de Strecker é uma reação química descoberta acidentalmente, em 1850, por Adolph Strecker (Strecker (1850), NR (2017)), durante a tentativa de sintetizar ácido láctico a partir de uma mistura de acetaldeído (C_2H_4O), HCN e amônia (Gargaud et al., 2011). Porém, ao invés de ácido láctico Strecker sintetizou o aminoácido alanina. Esta foi a primeira vez que que foi sintetizado um aminoácido em laboratório com sucesso.

A reação A.1 é agora conhecida como síntese se Strecker.

$$R_1C(O)R_2 + NH_3 + HCNR_1CR_2(NH_2)COOH$$
(A.1)

onde em $R_1C(O)R_2$, R_1 e R_2 pode ser um próton (H) ou cadeias de alquila (também chamado alcoila ou alquil, radical de fórmula geral (C_nH_{2n+1})). Portanto, tanto aldeídos (função orgânica que apresenta o grupo formila (H - C = O)) como cetonas (função orgânica que possui o grupo carbonila (C = O) entre dois carbonos) podem ser materiais para o início da síntese de Strecker e, dependendo da natureza do aldeído ou cetona, podem ser produzidos diferentes aminoácidos, com diferentes R_1 e R_2 .

Hoje, este é um dos mecanismos mais aceitos pelos quais os aminoácidos são sintetizados

na simulação prebiótica.

В_

Coelho et al., 2018

NOVEL PATHS FOR FORMATION OF PREBIOTIC MOLECULES IN THE INTERSTELLAR MEDIUM

Journal: International Journal of Astrobiology			
Manuscript ID	IJA-AR-17-0800		
Manuscript Type:	Research Article		
Date Submitted by the Author:	09-Sep-2017		
Complete List of Authors:	Coelho, Luciene; Universidade de Sao Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas Friaça, Amâncio ; Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas Mendoza, Edgar; Universidade de Sao Paulo, Astronomy - IAG		
Keyword:	Astrochemistry, Cosmic prebiotic chemistry, Organic molecules, Interstellar Medium, Photon-dominated regions, Simulations		

NOVEL PATHS FOR FORMATION OF PREBIOTIC MOLECULES IN THE IN-TERSTELLAR MEDIUM

Luciene da Silva Coelho¹, Amâncio C. S. Friaça¹ and Edgar Mendoza¹ ¹Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo - SP, Brazil e-mail: luciene.coelho@usp.br

Abstract: This work presents results of a study of interstellar molecules which are useful for the bookkeeping of the organic content of the universe and for providing a glimpse of prebiotic conditions on Earth and in other environments in the universe. We derived the abundances of several nitrogen-containing molecules, including some of potential prebiotic importance. In particular, we explored production channels for astrobiologically relevant nitrogen-bearing cyclic molecules (N-heterocycles), e. g. pyrrole and pyridine. The present simulations demonstrate how the exploration of a few number of possible paths of production of N-heterocycles resulted in significant abundances for these species. One particularly efficient class of channels for the production of N-heterocycles incorporates polycyclic aromatic hydrocarbons (PAHs) as catalysts. Furthermore, ionization by cosmic rays rate could be an important process to increase the abundance of complex molecules. Thereby, a scan through productions paths should reveal more species to be target of astrophysical observations.

Key words: Astrochemistry: cosmic prebiotic chemistry, organic molecules - ISM: PDRs - methods: simulations

1. INTRODUCTION

One of the minimal traits of any living system is the presence of some mechanism for information storage, reading and self-replication. In terrestrial life, nucleic acids (DNA and RNA) are part of the machinery responsible for the informational function mentioned above (Seckbach et al. 2000). It is not surprising that the nitrogen atom participates in the composition of molecules which storage information. Since nitrogen, in contrast to carbon and oxygen, has an odd number of valence electrons, and introduces asymmetries in the molecular structure of any carbon compound. The existence of asymmetries is a necessary condition for information storage, since a structure formed by the repetition of identical subunits would not allow the writing of instructional sequences (Nelson and Cox, 2012).

In this work our attention has been focused on the well known Complex Organic Molecules (COMs). The spectral signatures of interstellar COMs, from infrared to submm wavelenghts, reveal important properties about molecular complexity and molecular evolution in prestellar objects, particularly those sources associated with the formation of solar system analogs (Nomura et al. 2004, Jorgensen et al. 2012, Caselli Ceccarelli 2012). From a theoretical approach, in this work we present results about the chemical mechanisms which drive the formation of prebiotic and COMs in environments such as the Horsehead Nebula.

The cosmic abundance of the N atom is high enough to find it in a huge variety of molecular forms, from the simplest CN (Adams 1941) to most complex structures, such as the PANHs (polycyclic aromatic nitrogen heterocycles). PANHs are compounds derived from the polycyclic aromatic hydrocarbons (PAHs) when N atoms are part of the aromatic rings. PAHs are widely spread in the ISM, from stellar atmospheres up to galaxies at high red-shifts (Shivaei et al. 2017). They constitute an efficient form to accumulate carbon in solid-phase across the Universe, their abundance and ubiquity is partially due to the high stability against the dissociative effects of ionizing agents (Allamandola et al. 1999; Salama et al. 1999; Tielens, 2008, Tielens, 2013). PAHs are so pervasive that most of the mid-infrared emission in galaxies with star formation is dominated by strong emission features generally attributed to PAH bands (Spoon et al. 2002; Tielens et al. 2004; Peeters et al. 2004).

PANHs are especially relevant for astrobiology and they are closely related to the purine and pyrimidine nucleobase building blocks of DNA and RNA. These species are probably formed from the polymerization of small molecules such as acetylene (C2H2), nitrogen atoms being incorporated via the substitution of acetylene by cyanic acid (HCN) (Prassad Huntress 1980; Frenklach Feigelson 1989; Hudgin, Bauschlicher Allamandola 2005; Chen et al. 2008). Ricca et al. (2001) in a theoretical study found that minor units of PANHs could be synthesized via successive reactions of C2H2 and HCN under the stimulus of UV photons or cosmic rays. Laboratory experiments have also demonstrated that UV photoirradiation of icy samples; containing H2O, NH3 and benzene (C6H6) or naphtalene (C10H8); drive to the formation of N and O-heterocycles, such as pyridine (C5H5N) and

phtalide (C8H6O2), see Materese et al. 2015. Besides, PAHs also has a synthetic potential to produce amino acids, Chen et al. 2008 identified 13 different amino acids produced from the irradiation of ices containing C10H8, H2O and NH3.

The spectroscopy of PANHs requires high sensitivity to differenciate their spectral signatures from those corresponding to PAHs. Hudgins et al. (2005) reported a shift in the peak position of PAHs at $6.2 \ \mu m$, mainly due to typical signatures of PANHs, when a C atom is replaced by N. Laboratory measures have elucidate the different virbrational modes and spectroscopy of PANHs, whose peak positions are ranged between 6.7 - 10 microm (Mattioda et al. 2005,2017). The identifiaction of peaks in that band, towards sources as the Horsehead Nebula, might confirm and acomplish the presence of interstellar PANHs, since they have only been evidenced in meteorites (Stoks Schwartz 1981). In this case, PANHs may constitute a precursor to biological information carriers. If the substituted N is located on the periphery of the PAH, the resulting PANH is quite reactive, which may lead to the production of other N-heterocyclics, as pyrroles, pyridines, pyrimidines or purines (e. g. Materese et al. 2015). Going back further than the RNA world, there could be a PANH world, or aromatic world (Ehrenfreund et al. 2006). In this pre/protobiotic scenario, assembling of PAH/PANH rich-material could perform the transition from nonliving to living matter.

So far, no individual N-heterocycles have been convincingly detected in the gas phase of the interstellar medium (ISM), in despite of the multiple surveys performed in the sub-mm domain of the electromagnetic spectrum (Simon Simon 1973). Kuan et al. 2003 searched for pyrimidine (C4H4N2) in three massive star-forming regions: Sgr B2(N), Orion KL and W51 e1/e2, however from the weak emission detected by those authors, only upper limits were derived for pyrimidine. Charnley et al. 2005 carried out a survey for pyridine (C5H5N), quinoline and isoquiline (C9H7N) towards circunstellar envelopes of carbon-rich stars; however, as in the survey performed by Kuan et al. 2003, only upper limits were obtained for those species. Experiments of UV irradiation reveal an important property on the lifetime of N-heterocycles. Peeters et al. 2005 found that gas samples of these molecules are rapidly destroyed with an increasing number of N atoms in the ring (Peeters et al. 2005). Similar conclusions were obtained for environments such as protoplanetary disks. Models based on experimental photodissociation rates show that pyrimidine has a short life-time, of up to 30 yr, in regions at distances of 50 AU from the protostar (Mendoza et al. 2013).

Thus, carbon-rich meteorites and carbonaceous chondrites continue to be the unique bodies where N-heterocycles, purines and pyrimidines have been detected. However, the abiotic formation of those compounds is an open question. As we commented above, the low stability of N-heterocyles and their low formation rates make their interstellar detection in gas phase extremely difficult. Other pathways are also discussed in Martins et al. 2008 and references therein, for instance, through (i) the polymerization of HCN, (ii) synthesis at high temperatures starting with CO-N2-H2O, and (iii) reactions including cyanoacetylene (Majumdar et al. 2015).

Some compounds containing the nitrile function (CN), such as CH3CN - acetonitrile, CH3CH2CN - propanonitrile, CH2CHCN - acrylonitrile, HCCCN - cyanoacetylene, HCCN - cyanomethylene, HCN, OCN^- and others, were detected in the Titan's atmosphere, in comet commas and in the interstellar medium (Hudson and Moore 2004; Gautier et al. 2011, Cordiner et al. 2015, Moreno et al. 2015). Within the Solar System, the chemistry of the molecules containing the CN group is particularly relevant in Titan, since its atmosphere provides conditions of temperature and pressure for the formation of such compounds, in addition to reactions stimulated by cosmic radiation, UV photons and charged particles accelerated by the Saturn magnetosphere (Molter et al. 2016, Morisson et al. 2016).

Due the importance of nitrogen in terrestrial biochemistry, we performed an inventory of the astronomical content of nitrogen in several forms in astronomical regions, ranging from the simplest forms, as hydrogen cyanide (HCN) or the cyanide radical (CN), to more complex species. The present work considers in greater detail the production of N-heterocycles of astrobiological interest in the ISM.

This work aims to conduct a study about the possibility of the formation of prebiotic and COMS in the Interstellar Medium, specifically, in the Horsehead Nebula. The paper has been organized as follows: Section 2 describes the code that we have used to make the simulations, the databases and the object that were chosen to accomplish this study. Section 3 summarizes our analysis and demonstrates the obtained abundances of cyanide and its ions, hydrocyanide and hydrogen isocyanide besides pyrrole and pyridine. Moreover we demonstrated the role of PAHs and cosmic rays in the production of these last two molecules. Section 4 compares observations and others models with the our results. A brief discussion and conclusions are provided in Section 5.

2. METHOD

The goal of this work is to study the formation of COMs considering the physical conditions of molecular clouds and photodissociation regions (PDRs). We used the PDR Meudon code to calculate the UV-driven chemistry of interstellar clouds considering the physical and chemical conditions of environments such as PDRs. The code allows to simulate regions as stationary plane-parallel slabs of gas and dust illuminated by radiation fields, which can be the Interstellar Standard Radiation Field. Heating (Photoelectric effect on grains, cosmic rays) and cooling (infrared and milimeter emission) processes contribute to the thermal balance. The output of the code includes gas properties like temperature, ionized fraction, chemical abundances and column densities (e.g. Le Bourlot et al. 1993; Le Petit et al. 2006; Gonzalez Garcia et al. 2008).

The Horsehead Nebula was chosen as the benchmark for this study because of its relatively simple physics and geometry. It is a PDR, with some regions having a nearly plane-parallel geometry. We have assumed a fixed temperature of 15 K and parameters representative of the Horsehead Nebula, i.e., G = 60 G0, where G0 is the interstellar UV radiation field, AV = 10 mag to the cloud center, and a total hydrogen density of $10^4 cm^{-3}$. In addition, the classic modeling Cordiner et al. (2007) for this object and its molecular lines rich spectrum as C4H e de C6H, make this nebula an ideal target to test any model for the molecular lines formation. Likewise, you can extend the studies on the region, based on the results obtained by Goicoechea et al. (2009) and Gerin et al. (2009) considering this region as an archetype of molecular clouds.

In this work we used all reactions of formation and destruction available in several databases (UMIST, KIDA, OSU2009, literatures, beside the PDR Meudon code database) for each species as well their parent molecules. The entire chemical network used here has 5238 reactions, 318 species and 14 elements.

3. RESULTS

Some crucial characteristics make the ISM very promising for the rise of complex chemistry. First of all, there is plenty of ultraviolet (UV) radiation, cosmic rays and shocks to provide the energy necessary for endothermic reactions. As a consequence, the interstellar chemistry is rich in species that requires high energies for their formation, not only ions but also radicals, e.g. methylidyne (CH), methylene (CH2), hydroxyl (OH) and cyanogen (CN).

3.1. Nitriles

The cyanogen radical has a great prebiotic importance because CN and the simple molecules derived from it represent a first step in the chemistry leading to N-heterocycles. Hudson et al. 2008 identified amino acids such as glycine (C2H5NO2) in irradiated samples of condensed samples of CH3CN and H2O. Therefore, the initial stage of this study considers these simple species. Figure B1 shows the results of our calculations for CN, CN^- , CN^+ , HCN and HNC abundances. HCN has been suggested as one possible precursor of nucleobases (Oró, 1961; Saladino et al. 2004) and even detailed mechanisms for formation of adenine, the formal pentamer of HCN, in the interstellar medium have been devised Glaser et al. (2007). The relative high abundances found for HCN and HNC justify alternative biochemistries based on them.

Figura B.1: Horsehead Nebula PDR model abundance relative to CN (dashed red line) results for CN^- , CN^+ , HCN and HNC as a function of optical depth in V band, AV.

In Figure B2, we also displayed a result for HNCO, CH3CN and CH3NO. Although those molecules are not strictly considered as COMs, they participate in the formation routes of species such as molecules with peptide bonds as formamide (NH2CHO) (Lattelais et al. 2010, Mendoza et al. 2014, López-Sepulcre et al. 2015). The case of the CH3NO isomers has an important relevance for astrochemistry, Lattelais et al. 2010 performed calculations and found that NH2CHO is the most stable one followed by NHCHOH. In this work, we carried out models of the CH3NO abundance profile, as a function of the interstellar visual extinction, in comparison with the well identified molecules HNCO and CH3CN. The resulting profile exhibited a lower abundance than that obtained for CH3CN. One of the explanations is that the NO bond requires a high energy for its formation, as has been demostrated by Lattelais et al. 2010. This characteristic could explain the absence for evidences of CH3NO when compared with NH2CHO, its more stable isomer, which has been clearly detected in interstellar conditions.

Figura B.2: Horsehead Nebula PDR model abundance relative to H2 results for HNCO, CH3CN, CH3NO as a function of optical depth in V band, AV.

In our catalogue of chemical reactions envolving precursors and N-bearing species, we also calculated abundances of nitriles and their ions, and nitrogen hydrides, for instance CN, CN⁻, CN⁺, HCN and HNC. Finally, as we were interested in the synthesis of N-heterocycles, we explored production channels for pyrrole (C4H5N) and pyridine (C5N5N), the simplest N-heterocycles with 4 and 5 Carbon atoms, respectively. In particular, we consider the formation of pyridine from pyrrole via the reaction $CH+C4H5N \rightarrow C5H5N+H$ as suggested by Soorkia et al. (2010). We also studied the formation of pyrrole. One of the routes to produce it involves 2-butenal (CH3CHCHCHO) as precursor, which is a plausible route since aldehydes molecules have been already identified in the ISM. For instance, in the star-forming region Sagittarius B2(N), Hollis et al. 2004 reported the detection of propenal (CH2CHCHO) and propanal (CH3CH2CHO), with similar strucutres and functional groups to the 2-butenal molecule. However, the production of pyrrole from 2-butenal resulted in very low abundances.

Another precursor to produce pyrrole is s-triazine (C3H3N3), the production process begins much more efficient when presents both reaction from butenal and from s-triazine than the production only from butenal, as we can see in Figure B3. However, the resulting abundance of pyrrole is too low. As was mentioned above, we also studied the pyridine formation from its smaller precursor pyrrole, considering this route which includes s-triazine as precursor; however, the resulting abundances of pyridine are too low, as we displayed in Figure B4.

Figura B.3: Horsehead Nebula PDR model abundance relative to H2 results for pyrrole production from 2-butenal - blue line - and from s-triazine plus the 2-butenal - green line - paths of production a function of optical depth in V band, AV.

Figura B.4: Horsehead Nebula PDR model abundance results relative to H2 for pyrrole and pyridine production as a function of optical depth in V band, AV.

3.2. The role of PAHs

The fact that PAHs are abundant molecules allowing the substitution of the C and H atoms by other radicals and atoms make them important precursors of PANHs and N-heterocycles.

The emission from 6.2 μm PAHs is probably dominated by species with molecular sizes, given by number of C atoms, between 60 and 90 carbon atoms (Hudgins et al.

2005). Therefore, and following the methodology proposed by Flower et al. 2003, we adopted circumcoronene, C54H18, as a representative molecule of interstellar PAHs. We consider the initial PAH abundance as 10^{-6} C54H18 particules relative hydrogen, which corresponds to a PAHs carbon fraction of 15% in the interstellar medium. PAHs are extremely resistants to interstellar radiation due to the bond energy of carbon atoms (8 eV) and the molecular skeleton produced by them. In the case of absortion of UV photons, PAHs can rearrange their structures to form more stable structures. The aromatic skeleton plays a role redistributing the incident energy of photons through different vibrational modes offering photostability against ionizing radiation (Leger et al. 1989); for instance, a PAH with 50 carbon atoms could survive 1.1 Gyears in the Galactic radiation field (Allain et al. 1996). This is much longer than the lifetime for a typical nebula like the Horsehead Nebula. Therefore, the carbon skeleton of the PAH can be considered fixed. However, PAHs could suffer dehydrogenation, since the bond energy of hydrogen atoms is much lower, 4.5 eV (Leger et al. 1989, Mattioda et al. 2005).

Following mechanisms of dehydrogenation, it is possible to add a nitrogen atom in the PAH (Ricca et al. 2001, Materese et al. 2015), therefore generating a PANH. The addition of other radicals is also possible in a dehydrogenated PAH. As a result of these mechanisms, we devised a chemical network involving PAHs (as listed in table B1), which lead to pyridine production. The results are shown in Figure B5. We can see that PAHs are dehydrogenated throughout all the cloud and, also, PANHs have low abundances at the cloud edge and increase towards the center.

Tabela B.1 - Chemical reactions and parameters for circumcoronene, its dehydrogenated compounds and minor hidrocarbons.

Reagents	Products	Reaction Rate (cm^3s^{-1})
C54H18 + H	C54H17 + H2	$5.00x10^{-8}$
C54H18 + C2H	C54H17 + C2H2	$5.00x10^{-8}$
C54H17 + HCN	C55H18N + photon	$5.00x10^{-7}$
C55H18N + C2H2	C57H19N + H	$5.00x10^{-7}$
C57H19N + C2H4	C54H18 + C5H5N	$5.00x10^{-7}$

The PANH molecule with formula C57H19N is not much abundant, nevertheless it is more abundant than the hydronated form of the PAH (C54H18). Since, in this work, C57H19N is a precursor of pyridine, the introduction of a PAH represents a very effective

Figura B.5: Horsehead Nebula PDR model abuance results relative to H2 for circumcoronene, its dehydrogenated forms as well as the PANHs formed from circumcoronene as a function of optical depth in V band and Av.

pyridine channel production, at least in the cloud core. In the end reaction, when the pyridine is released from the PAH, C54H18 is recovered. The PAH has played the role of a catalyst, promoting the meeting of common species such as HCN and hydrocarbons to generate N-heterocyclics. Figure B6 compares the production of pyridine through two channels: from PAHs and from previously synthesized pyrrole (C4H5N). As we can see, the pyridine production through PAHs is much more efficient and in the innermost parts of the cloud (AV > 5) it is about ten orders higher of magnitude.

Figura B.6: Horsehead Nebula PDR model abundance results relative to H2 estimated for two different channels of pyridine production: both from the network of reactions of PAHs and directly from pyrrole as a function of optical depth in V band, AV.

After this first step, we include coronene (C24H12) as well ovalene (C32H14) as representative PAHs, both with initial abundance of 10^{-6} particules relative to hydrogen.

We use a network of chemical reactions like circumcoronene (see table B1), with only one dehydrogenated molecule and one relative PANH for each PAH. Figure B7 show us the pyridine formation for one (only circumcoronene), two (circumcoronene and coronene) and three (circumcoronene, coronene and ovalene) PAH insert on formation and destruction net reactions, comparing the results.

Figura B.7: Horsehead Nebula PDR model abundance results relative to H2 are estimated for three different channels of pyridine production - considering one (only circumcoronene), two (circumcoronene and coronene) and three (circumcoronene, coronene and ovalene) PAHs insert on formation and destruction net reactions as a function of optical depth in V band, AV.

It is possible notice that in Figure B7 more PAHs we consider into the formation and destruction network of reactions, there is an increasement on the pyridine abundance. To see better this difference between the production of pyridine when the others PAHs are include, a residual plot is presented at Figure B8.

Even with these few examples it is easy to see that PAHs could exhibit a big impact on the formation of complex organic molecules in the ISM.

3.2.1. PAHs Rates

In an attempt to make a statistical analysis for the rates of formation and destruction reactions of PAHs, since they are currently unknown for reactions in gaseous phase, we performed simulations including kinetic rates of well known hydrocarbon rates. For instance, for benzene, anthracene, naphthalene, coronene, ovalene and pyrine, the rates were collect from Allain et al. 1996b, Jones et al. 2011 and (Parker et al. 2012).

The standard rate used for this work was $1.00 \times 10^{-10} \ cm^3 s^{-1}$, estimated from circumcoronene cross section. The others values were $2.01 \times 10^{-9} \ cm^3 s^{-1}$, $4.63 \times 10^{-9} \ cm^3 s^{-1}$,

Figura B.8: Difference between the pyridine abundances produced from reactions include 2 PAHs and 1 PAHs (green line), 3 PAHs and 1 PAHs (red line) and 3 PAHs and 1 PAHs (blue line) as a function of optical depth in V band, AV.

 $7.53 \times 10^{-9} \ cm^3 s^{-1}, \ 9.79 \times 10^{-9} \ cm^3 s^{-1}, \ 3.00 \times 10^{-10} \ cm^3 s^{-1} \ e \ 5.00 \times 10^{-12} \ cm^3 s^{-1}.$

Figura B.9: Variation of rates for formation and destruction reaction for C54H18 as a function of optical depth in V band, AV.

The standard rates used are practically the great ones for those PAHs formation when compared the other rates used, except for the case of the higher rates from the chemical network for naphthalene, as showed in Figure B9. Even though considering the fact that some lower rates used have produced a greater abundance, we can consider the standard rate used as good ones, because the difference produced by the standard rates and the ones that show bigger abundance it is not pretty significant.

3.3. The role of cosmic rays

Padovani et al. (2014) have suggested that increasing the cosmic-ray ionization rate pro-

motes the formation of more complex molecules because cosmic rays could destroy smaller molecules, providing an increase of ions and radicals, which could suport the formation of larger molecules. Furthermore, using astrochemical codes such as Nahoon, Nautilus and Astrochem, we have realised that the cosmic ray ionization rate affects considerably the abundances of COMs and pre-biotic molecules considering the physical conditions of protostellar objects, including visual extinction values $Av \leq 20$ mag. Preliminary results indicated that the chemistry of O- and N-bearing ions is activated, favouring dissociative electron recombination reactions. In this way, we have explored in the model the effect of varying the cosmic ray ionization rate. A ionization rate of 5.00×10^{-17} ionized molecules of H2 per second was used as a standard model.

To follow the abundance evolution, due to cosmic rays ionization rate variation, we performed some simulations for standard, twice, tenfold and a half the amount the standard rate; the results are very significant as we show in the Figure B10 and Figure B11.

Figura B.10: Horsehead Nebula PDR model abundance results for pyrrole, with standard rate of 5.0×10^{-17} , 2.5×10^{-17} , 1.0×10^{-17} and 5.0×10^{-18} cosmic rays ionization rate as a function of optical depth in V band, AV.

This results show that complex molecules abundance rises directly as the cosmic rays ionization rate increase. The only exception is for a rate of 5.0×10^{-18} ionized molecules of H2 by seconds, which a decrease occurs in pyrrole abundances with marked favoritism to pyridine formation, that anyway means more chemistry complexity in the ISM. This results are important specially within the cloud core, since in this region the energy from cosmic rays dominates over the FUV radiation and specially for regions having higher cosmic rays intensity, like Orion Bar.

Figura B.11: Horsehead Nebula PDR model abundance results for pyridine, with standard rate of 5.0×10^{-17} , 2.5×10^{-17} , 1.0×10^{-17} and 5.0×10^{-18} cosmic rays ionization rate as a function of optical depth in V band, AV.

4. COMPARISON WITH OBSERVATIONS

To compare the results obtained in this study with both observations on Horsehead Nebula and other models already made for the same region, we used the papers of Goicoechea et al. (2009) and Teyssier et al. (2003) that worked with some smaller and easier to observe hydrocarbons. Comparisons were summarized in the table B2.

Tabela B.2 - Column densities (cm^{-2}) , and abundances [n(X)/n(H)] of some chemical species mesured in PDR of the Horsehead Nebula and inferred from models, comparing observations from Goicoechea et al. (2009) and Teyssier et al. (2003) and our models for column densities and abundances and Teyssier et al. (2003) models for column densities.

		CCH	c-C3H2
Goicoechea, 2009	Column Density	$1.1\pm0.3\times10^{14}$	$9.5 \pm 5.0 \times 10^{12}$
	Abundance	1.5×10^{-8}	1.3×10^{-9}
Teyssier, 2003	Mesured	$1.8\pm0.2\times10^{14}$	$1-2\times 10^{13}$
	Model	$1-2.5\times10^{14}$	$0.5 - 1.5 \times 10^{12}$
Coelho, 2017	Column Density	$8.3 imes 10^{13}$	8.4×10^{11}
	Abundance	2.6×10^{-8}	2.5×10^{-8}
		CS	HCS ⁺
Goicoechea, 2009	Column Density	$1.12 \pm 1.0 \times 10^{14}$	$6.8\pm0.5\times10^{11}$
	Abundance	$3.9 imes 10^{-9}$	2.3×10^{-11}
Coelho, 2017	Column Density	$6.9 imes 10^{14}$	1.5×10^{11}
	Abundance	6.1×10^{-8}	1.8×10^{-11}

When we searched for the abundances obtained by Goicoechea et al. (2009) by observations and those obtained in this work, we have a good agreement between the data. There is mainly a concordance between CCH molecules and HCS⁺ whose abundances agree in units. In other abundances there are a minor difference, about ten times, calculated by the model.

Likewise, there is a discrepancy relation with column densities, but it is only one order of magnitude. If we compare the column densities obtained in this study and those obtained by the model of Teyssier et al. (2003) the data agreement are even better, smaller than ten magnitudes.

In both cases, the differences between the presented models, observations and this work are within the acceptable and we can say that the model built here is quite reliable.

5. CONCLUSIONS

The results of our calculations indicate that PAHs can be an important intermediate species in producing nitrogen heterocycles, as illustrated by the high abundances obtained for pyridine in modeling the Horsehead Nebula. In the specific model we considered, pyrrole dominates over pyridine in the outskirts of the cloud, but pyridine becomes more abundant in the inner regions, as seen from Figure B12. It is interesting that a similar behavior for the two species also appears in the photochemistry model for Titan atmosphere by Krasnopolsky (2009) and Krasnopolsky (2014).

Figura B.12: Horsehead Nebula PDR model abundance results relative to H2 comparing production of pyrrole and pyridine as a function of optical depth in V band, AV.

Table B3 lists the column density (cm^{-2}) of pyrrole and pyridine for different production channels at several optical depth of Horsehead Nebulae; *Pyrrole* and *Pyridine* refers to its production whithout PAH. *Pirrol*[†] and *Piridina*[†] are datas from their formation with circumcoronene include. *Pirrol*[§] and *Piridina*[§] are column densities for their formation including circumcoronene, coronene and ovalene.

Tabela B.3 - Column density (cm^{-2}) from pyrrole and pyridine, for different production channels at several depth of Horsehead Nebulae. *Pyrrole* and *Pyridine* refers to its production whithout PAH. *Pirrol*[†] and *Piridina*[†] are datas from their formation with circumcoronene include. *Pirrol*[§] and *Piridina*[§] formation are for circumcoronene, coronene and ovalene includes.

Molecule	$A_V = 1 \text{ mag}$	$A_V=3~{\rm mag}$	$A_V = 10 \text{ mag}$
Pirrol	3.71×10^{-4}	6.17×10^{-2}	9.88×10^7
$Pirrol^{\dagger}$	$2.71 imes 10^{-3}$	1.58×10^4	8.52×10^9
$Pirrol^{\S}$	2.85×10^{-2}	2.53×10^5	1.37×10^{12}
Pridina	2.14×10^{-10}	2.51×10^{-9}	3.29×10^{-5}
$Piridina^{\dagger}$	1.15×10^{-4}	2.01×10^3	1.14×10^{12}
Piridina§	1.19×10^{-3}	1.20×10^4	1.50×10^{13}

As shown in Table B3, the column density of pyridine is about $10^{13} cm^{-2}$ for the route of production with the PAHs pathway. The high abundance obtained for this molecule makes it a target for future observations. This value is close to the upper limits obtained for other type of objects - the ABG star IRC+10216 ($< 7.3 - 8.6 \times 10^{12} cm^{-2}$) and the planetary nebula CRL 618 ($2.3 - 2.7 \times 10^{13} cm^{-2}$) - (Charnley et al. 2005). In view of the ubiquitous presence of PAHs and PANHs in interstellar and circumstellar environments, these species can catalyze the formation of heterocyclics with an incorporated nitrogen atom, but with two atoms, such as Pyrimidine, pyrimidone and uracil. In this case, however, the expected abundance should be lower.

Moreover, the model show us that the increase or decrease of the cosmic rays ionization rate could be responsible for a higher or smaller complex molecules abundances mostly inner of the cloud where cosmic rays dominates over the far ultraviolet radiation. This fact becames clear when this rate is magnify to tenfold the standard rate, even pyrrole, which is a pretty complex molecule has down their abundances supporting more abundances for pyridine (even more complex one).

In general, several molecules that are the basic units of life are most easily synthesized in ISM than on Earth. Observational work should be allied with laboratory experiments and theoretical calculations in order to derive the spectrum in the infrared, millimeter and radio wavelengths, and to estimate the formation and survival of prebiotic molecules in the ISM, which eventually could be released in planet-like environments, providing the building blocks of life.

6. REFERENCES

Adams, W. S., ApJ 93, 11 (1941).

Allain, T., Leach, S. and Sedlmayr, E., AA 305, 616 (1996).

Allamandola, L. J., Hudgins, D. M. and Sandford, S. A., ApJ 511, L115 (1999).

Caselli, P. and Ceccarelli, C., The Astronomy and Astrophysics Review, Volume 20, article id.56 (2012)

Charnley, S. B., Kuan, Y.-J., Huang, H.-C., Botta, O., Butner, H. M., Cox, N., Despois, D., Ehrenfreund, P., Kisiel, Z., Lee, Y.-Y. et al., Advances in Space Research 36, 137 (2005).

Cordiner, M. A., Millar, T. J., Herbst, E., Chuimin, R. N. and Walsh, C., in Molecules in Space and Laboratory (2007).

Chen, Y.-J.; Nuevo, M.; Yih, T.-S.; Ip, W.-H.; Fung, H.-S.; Cheng, C.-Y.; Tsai, H.-R.; Wu, C.-Y., MNRAS 384, 605 (2008)

Cordiner, M., Palmer, M. Y., Nixon, C. A., Charnley, S. B., Mumma, M. J., Irwin, P. G. J., Teanby, N. A., Kisiel, Z. And Serigano, J., in AAS/Division for Planetary Sciences Meeting Abstracts (2015), vol. 47 of AAS/Division for Planetary Sciences Meeting Abstracts, p. 205.03.

Ehrenfreund, P., Rasmussen, S., Cleaves, J. and Chen, L., Astrobiology 6, 490 (2006).

Flower D. R. and Pineau des Forêts, G., MNRAS 343, 390 (2003).

Frenklach, M. and Feigelson, E. D., ApJ 341, 372 (1989).

Gautier, T., Carrasco, N., Buch, A., Szopa, C., Sciamma-O'Brien, E., Parker, D. S. N., Zhang, F., Kim, Y. S., Kaiser, R. I., Landera, A. and G. Cernogora, Icarus 213, 625 (2011).

Gerin, M., Pety, J., and Goicoechea, J. R., in Submillimeter Astrophysics and Technology:

a Symposium Honoring Thomas G. Phillips, edited by D. C. Lis, J. E. Vaillancourt, P. F. Goldsmith, T. A. Bell, N. Z. Scoville, J. Zmuidzinas (2009), vol. 417 of Astronomical Society of the Pacific Conference Series, pp. 165+, 0905.3625.

Glaser, R., Hodgen, B., Farrelly, D. and McKee, E., Astrobiology 7, 455 (2007).

Goicoechea, J. R., Pety, J., and Gerin, E. A., AA 498, 771 (2009), 0902.2748.

Gonzalez Garcia, M., Le Bourlot, J., Le Petit, F. and Roueff, E., AA 485, 127 (2008).

Hollis, J. M., Jewell, P. R., Lovas, F. J. and Remijan, A., ApJ 613, L45 (2004).

Hudgins, D. M., Bauschlicher, C. W. Jr., and Allamandola, L. J., ApJ 632, 316 (2005).

Jones, B. M., Zhang, F., Kaiser, R. I., Jamal, A., Mebel, A. M., Cordiner, M. A. and Charnley, S. B., Proceedings of the National Academy of Science 108, 452 (2011).

Hudson R. L., Moore M. H., Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles, Icarus, 2004, vol. 172, p. 466

Hudson, Reggie L.; Moore, Marla H.; Dworkin, Jason P.; Martin, Mildred P.; Pozun, Zachary D., Astrobiology 8, 771 (2008)

Jørgensen, J. K., Favre, C., Bisschop, S. E., Bourke, T. L., van Dishoeck, E. F. and Schmalzl, M., The Astrophysical Journal Letters, Volume 757, Issue 1, article id. L4, 6 pp. (2012).

Krasnopolsky, V. A., Icarus 201, 226 (2009).

Krasnopolsky, V. A., Icarus 236, 83 (2014).

Kuan, Y.-J., Yan, C.-H., Charnley, S. B., Kisiel, Z., Ehrenfreund, P. and Huang, H.-C.,

MNRAS 345, 650 (2003), astro-ph/0308116.

Lattelais, M., Pauzat, F., Ellinger, Y. and Ceccarelli, C., AA 519, A30 (2010).

Le Bourlot, J., Pineau Des Forets, G., Roueff, E. and Flower, D. R. AA 267, 233 (1993).

Leger, A., D'Hendecourt, L., Boissel, P. and Desert, F. X., AA 213, 351 (1989).

Le Petit, F., Nehmé, C., Le Bourlot, J., and Roueff, E., ApJS 164, 506 (2006), arXiv:astroph/0602150.

López-Sepulcre, A., Jaber, A. A., Mendoza, E., Lefloch, B., Ceccarelli, C., Vastel, C.,

Bachiller, R., Cernicharo, J., Codella, C., Kahane, C., et al., MNRAS 449, 2438 (2015), 1502.05762.

Majumdar L., et al. 2015, arXiv:1511.04343v1

Martins, Z., Botta, O., Fogel, M. L., Sephton, M. A., Glavin, D. P., Watson, J. S., Dworkin,

J. P., Schwartz, A. W. and Ehrenfreund, P., Earth and Planetary Science Letters 270, 130 (2008), 0806.2286.

Materese, Christopher K.; Nuevo, Michel; Sandford, Scott A., ApJ 800, 116 (2015)

Mattioda, A. L.; Bauschlicher, C. W.; Ricca, A.; Bregman, J.; Hudgins, D. M.; Allaman-

- dola, L. J., Spectrochimica Acta Part A 181, 286 (2017)
- Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J., Advances in Space Research 36, 156 (2005)
- Mendoza, E., Almeida, G. C., Andrade, D. P. P., Luna, H., Wolff, W., Rocco, M. L. M. and Boechat-Roberty, H. M., MNRAS 433, 3440 (2013), 1308.5245.
- Mendoza, E., Lefloch, B., López-Sepulcre, A., Ceccarelli, C., Codella, C., Boechat-Roberty,
- H. M., and Bachiller, R., MNRAS 445, 151 (2014), 1408.4857.
- Molter, E. M., Nixon, C. A., Cordiner, M. A., Serigano, J., Irwin, P. G. J., Teanby, N. A., Charnley, S. B. and Lindberg, J. E., AJ152, 42 (2016), 1606.00348.
- Moreno, R., Lellouch, E., Vinatier, S., Gurwell, M., Moullet, A., Lara, L. M. and Hidayat,
- T., ALMA observations of Titan : Vertical and spatial distribution of nitriles", European Planetary Science Congress 2015, held 27 September - 2 October, 2015 in Nantes, France, (2015)
- Morrison M., et al. 2016, Icarus, 277, 442
- Nelson, D. L. and Cox, M. M., Lehninger Principles of Biochemistry (6th edition. Publisher: W. H. Freeman, 2012).
- Nomura, H.; Millar, T. J., Astronomy and Astrophysics, v.414, p.409-423 (2004)
- Oró, J., Nature 191, 1193 (1961).
- Padovani, M., Hennebelle, P. and Galli, D., ASTRA Proceedings 1, 23 (2014), 1406.2455.
 Parker, D. S. N., Zhang, F., Kim, Y. S., Kaiser, R. I., Landera, A., Kislov, V. V., Mebel,
 A. M. and Tielens, A. G. G. M., Proceedings of the National Academy of Science 109, 53 (2012).
- Peeters, E., Spoon, H. W. W. and Tielens, A. G. G. M., ApJ 613, 986 (2004), astroph/0406183.
- Ricca, A., Bauschlicher, C. W., and Bakes, E. L. O., Icarus 154, 516 (2001).
- Rubin, R. H., Swenson, G. W. Jr., Benson, R. C., Tigelaar, H. L. and Flygare, W. H., ApJ 169, L39 (1971).
- Saladino, R., Crestini, C., Ciambecchini, U., Ciciriello, F., Costanzo, G. and Di Mauro, E., Chembiochem 11, 1558 (2004).
- Salama, F., Galazutdinov, G. A., Krelowski, J., Allamandola, L. J. and F. A. Musaev, ApJ 526, 265 (1999).
- Seckbach, J., Westall, F. and Chela-Flores, J., Introduction to Astrobiology: Origin, Evo-

lution, Distribution and Destiny of Life in the Universe; Kluwer Academic Publishers, Dordrecht, The Netherlands, (2000)

Shivaei, I., Reddy, N. A., Shapley, A. E., Siana, B., Kriek, M., Mobasher, B., Coil, A. L.,

Freeman, W. R., Sanders, R. L., Price, S. H. et al., ApJ 837, 157 (2017), 1609.04814.

Simon, M. N. and Simon, M., ApJ 184, 757 (1973).

Soorkia, S., Taatjes, C. A., Osborn, D.-L., Selby, T. M., Trevitt, A. J., Wilson, K.-R. and Leone, S.-R., Physical Chemistry Chemical Physics 12, 8649 (2010).

Spoon, H. W. W., Keane, J. V., Tielens, A. G. G. M., Lutz, D., Moorwood, A. F. M., and Laurent, O., AA 385, 1022 (2002), astro-ph/0202163.

Stoks, P. G., Schwartz, A. W., 1981, Geochim. Cosmochim. Acta, 45, 563

Teyssier, D., Fossé, D., Gerin, M., Pety, J., Abergel, A. and Habart, E., in SFChem 2002: Chemistry as a Diagnostic of Star Formation, edited by C. L. Curry and M. Fich (2003), p. 422, astro-ph/0212064.

Tielens, A. G. G. M., Peeters, E., Bakes, E. L. O., Spoon, H. W. W. and Hony, S., in Star Formation in the Interstellar Medium: In Honor of David Hollenbach, edited by D. Johnstone, F. C. Adams, D. N. C. Lin, D. A. Neufeeld, and E. C. Ostriker (2004), vol. 323 of Astronomical Society of the Pacific Conference Series, p. 135.

Tielens, A. G. G. M., Annual Review of Astronomy and Astrophysics 46, 289 (2008).

Tielens, A. G. G. M., Interstellar PAHs and Dust (2013).

С

Variação de Entalpias

Os gráfico das figuras 3.8 e 3.9, da seção 3.2.2, que demonstram as energias necessárias para que as reações mostradas na figura 3.6, do trabalho de Ferus et al. (2015), foram baseados nos cálculos mostrados abaixo, nesta seção.

Reag	entes	Proc	lutos	Energia – 0 K (kJ/mol)	Energia - 298K (kJ/mol)
-129.403	••	-12.0631		-117,3399	+43
3-8-5-6 6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	٩	+53.209	00	-65,2721	-416
۶ گر	••	241,312		-188,103	+47
	•	+162.22		+79,092	-460
. A so	••	39.9819		+122,2381	-72
Set and	0	315.18		-275,1981	-393
Jet a	٩	325.707	•	-10,527	-109
in the second	٩	335.427		-9,72	-398

ڹڡؙۜۑڎ ڹڿڰڝ	PHOTON	356.513		-21,086	
×	PHOTON	-215.483		+571,996	+50
-\$\$		96.3412		-311,8242	-276
-	PHOTON	181,424		-85,0828	+271
-\$\$\$	•	ADENINA -18,3183		+199,7423	-414
-\$r\$	~ ~	-355,138		+536,562	-552
-\$034	** *	GUANINA -302.133	27.8038	-80,8088	+4
356.513	••	34.0594		+322,4536	-276
in the second	PHOTON	1 66.564		-132,5046	+276

نې کې	••••	-285.69		+452,254	-276
jan tak	00	-560.68	27.8038	247,1862	-95
"žyžy.	00	-600.265		+67,3888	-45
x,	••••	CITOSINA -367.585	27.8038	-260,4838	+4
ъ р	•	URACILA -404.058	27.8038	+36,473	-272
D

Moléculas Encontradas em Ambientes Interestelares e Circunestelares

2 atoms	Ho	AIF	AICI	C_{2}	СН	CH^+
2 atoms	m_2	CO	CO^+	C_2	SiC	HCI
	KCI	NH	NO	NS	NaCl	OH
	PN	SO	so+	SIN	SiO	Sig
	CS	HE	HD	FoO ?	0	CF^+
	C:U 2	PO		OH^+	CN^{-}	CT^+
		FU	AIO N_a	$C \pm b$	V_{N}^{+}	CN++b
		SH	$N_2 \sim$	$S_2 \uparrow \circ$	N_2 \uparrow \circ	$CN + \uparrow$
2	HCl+	110	ArH+	NO+ :		
3 atoms	C_3	C_2H	C_2O	C_2S	CH_2	HCN
	HCO	HCO^+	HCS^+	HOC^+	H_2O	H_2S
	HNC	HNO	MgCN	MgNC	N_2H^+	N_2O
	NaCN	OCS	SO_2	$c - SiC_2$	CO_2^*	NH_2
	H_3^+	SiCN	AINC	SiNC	HCP	CCP
	AlOH	H_2O^+	H_2Cl^+	KCN	FeCN	$OCN^{-\ a}$
	CO_2^+ † ^b	H_2S^+ † ^b	NCN † b	$HDO \ ^{a}$	CS_2 † ^b	HO_2
	TiO_2	C_2N	$CCN^{\ a}$	Si2C		
4 atoms	$c - C_3 H$	$l - C_3 H$	C_3N	C_3O	C_3S	C_2H_2
	NH_3	HCCN	$HCNH^+$	HNCO	HNCS	$HOCO^+$
	H_2CO	H_2CN	H_2CS	H_3O^+	$c - SiC_3$	CH_3
	$C_3 N^-$	PH_3	HCNO	HOCN	HSCN	H_2O_2
	NCCP	C_3H^+	H_3S^+ † ^b	HMgNC	MgCCH	
5 atoms	C_5	C_4H	C_4Si	$l - C_3 H_2$	$c - C_3 H_2$	H_2CCN
	CH_4	HC_3N	HC_2NC	HCOOH	H_2CNH	H_2C_2O
	H_2NCN	HNC_3	SiH_4	H_2COH^+	C_4H^-	HC(O)CN
	HNCNH	CH_3O	NH_4^+	H_2NCO^+ ?	CNCHO ^a	$NH_3D^+ a$
	$NCCNH^+$		-			

Tabela D.1 - Moléculas observadas em ambientes interestelares e circunestelares.

	CH_3SH	HC_3NH^+	HC_2CHO	NH_2CHO	C_5N	$l - HC_4H$
	$l - HC_4N$	$c - H_2 C_3 O$	H_2CCNH ?	$C_5 N^-$	HNCHCN	$c - C_3 H_3^+ \dagger^b$
	$C_5S^{\ a}$	SiH_3CN ^a				
7 atoms	C_6H	CH_2CHCN	CH_3C_2H	HC_5N	CH_3CHO	CH_3NH_2
	$c - C_2 H_4 O$	H_2CCHOH	C_6H^-	CH_3NCO		
8 atoms	CH_3C_3N	$HC(O)OCH_3$	CH_3COOH	$C_7 H$	C_6H_2	CH_2OHCHO
	$l - HC_6H$	$CH_2CHCHO(?)$	CH_2CCHCN	H_2NCH_2CN	H_2C_6 ^a	$(NH_2)_2CO^{d}$
	CH_3CHNH					
9 atoms	CH_3C_4H	CH_3CH_2CN	$(CH_3)_2O$	CH_3CH_2OH	HC_7N	C_8H
	$CH_3C(O)NH_2$	C_8H^-	C_3H_6	CH_3CH_2SH ?	CH_2CHCH_3 ^a	
10 atoms	CH_3C_5N	$(CH_3)_2CO$	$(CH_2OH)_2$	CH_3CH_2CHO	$NH_2CH_2COOH(??)$ † ^{b,e}	
	CH_3CHCH_2O					
11 atoms	HC_9N	CH_3C_6H	C_2H_5OCHO	$CH3OC(O)CH_3$		
12 atoms	$c - C_6 H_6$	$C_2H_5OCH_3$?	$n - C_3 H_7 C N$	$l - C_3 H_7 C N$	$CO(CH_2OH)_2(??)$ ^a	
> 12 atoms	$HC_{11}N$	$C_{10}H_8^+ c$	$C_{14}H_{10}^+ a$	$C_{14}H_{10}^+$ a	C_{60}	C_{70}
	C_{60}^{+}	$C_{14}H_{10}$	$C_{16}H_{10}$ † ^b			

Tabela D.1 - Continuação

? Tentativa, mas provável detecção.

?? Detecção não-confirmada.

† Detecção em cometas.

Os dados são do banco de dados da Universität zu Köln (http://www.astro.uni-koeln.de/cdms/molecules)

 a Astrochymist in the Interstellar Medium (www.astrochymist_ism.html)

^b Astrochymist in Comets (www.astrochymist_comet.html)

 c Iglesias-Groth et al. (2008)

- ^d Remijan et al. (2014)
- ^e Elsila et al. (2009)

Moléculas e reações químicas usadas no programa *"The PDR Meudon Code"*

 $Tabela \ E.1$ - Elementos químicos seus parâmetros exatamente como são inseridos no código "PDR Meudon".

Número	Espécie	C	Codificaç	ão da C	omposiç	ão Atômi	ca	Abundância Inicial	Entalpia de Formação - kJ/mol
1	h	1	0000	0000	00000	000000	0	$.800E{+}00$	51634
2	h2	1	0000	0000	00000	000000	0	.100E+00	.000
3	he	0	0001	0000	00000	000000	0	.100E+00	.000
4	с	0	1000	0000	00000	000000	0	.000E + 00	169978
5	$^{\mathrm{ch}}$	1	1000	0000	00000	000000	0	.000E + 00	141177
6	ch2	2	1000	0000	00000	000000	0	.000E + 00	92237
7	ch3	3	1000	0000	00000	000000	0	.000E + 00	35619
8	ch4	4	1000	0000	00000	000000	0	.000E + 00	-15992
9	c2	0	2000	0000	00000	000000	0	.000E + 00	198207
10	c2h	1	2000	0000	00000	000000	0	.000E + 00	113265
11	c2h2	2	2000	0000	00000	000000	0	.000E + 00	56347
12	c2h3	3	2000	0000	00000	000000	0	.000E + 00	71909
13	c2h4	4	2000	0000	00000	000000	0	.000E + 00	14576
14	c3	0	3000	0000	00000	000000	0	.000E + 00	193834
15	c-c3h	1	3000	0000	00000	000000	0	.000E + 00	170669
16	c3h	1	3000	0000	00000	000000	0	.000E + 00	171668
17	c-c3h2	2	3000	0000	00000	000000	0	.000E + 00	114235
18	h2c3	2	3000	0000	00000	000000	0	.000E + 00	128736
19	c3h3	3	3000	0000	00000	000000	0	.000E + 00	79302
20	p-c3h4	4	3000	0000	00000	000000	0	.000E + 00	45881
21	a-c3h4	4	3000	0000	00000	000000	0	.000E + 00	47422
22	c4	0	4000	0000	00000	000000	0	.000E + 00	230402
23	c4h	1	4000	0000	00000	000000	0	.000E + 00	186424
24	c4h2	2	4000	0000	00000	000000	0	.000E + 00	109541
25	О	0	0010	0000	00000	000000	0	.319E-03	58984
26	oh	1	0010	0000	00000	000000	0	.000E + 00	9175
0	/	•							

Número	Espécie	C	Codificaç	ão da C	omposiç	ão Atômi	ca	Abundância Inicial	Entalpia de Formação - kJ/mol
27	h2o	2	0010	0000	00000	000000	0	.000E+00	-57103
28	02	0	0020	0000	00000	000000	0	.000E + 00	.000
29	со	0	1010	0000	00000	000000	0	.000E + 00	-27201
30	hco	1	1010	0000	00000	000000	0	.000E + 00	10325
31	h2co	2	1010	0000	00000	000000	0	.000E + 00	-26782
32	h3co	3	1010	0000	00000	000000	0	.000E + 00	-2557
33	ch3oh	3	1010	0000	00000	000000	0	.000E + 00	-48040
34	co2	0	1020	0000	00000	000000	0	.000E + 00	-93965
35	n	0	0100	0000	00000	000000	0	.750E-04	112529
36	$\mathbf{n}\mathbf{h}$	1	0100	0000	00000	000000	0	.000E + 00	89988
37	nh2	2	0100	0000	00000	000000	0	.000E + 00	46187
38	nh3	3	0100	0000	00000	000000	0	.000E + 00	-9299
39	n2	0	0200	0000	00000	000000	0	.000E + 00	.000
40	cn	0	1100	0000	00000	000000	0	.000E + 00	104398
41	hcn	1	1100	0000	00000	000000	0	.000E + 00	32392
42	hnc	1	1100	0000	00000	000000	0	.000E + 00	46367
43	no	0	0110	0000	00000	000000	0	.000E + 00	21457
44	hno	1	0110	0000	00000	000000	0	.000E + 00	24498
45	s	0	0000	0000	00000	001000	0	.000E + 00	65662
46	$^{\rm sh}$	1	0000	0000	00000	001000	0	.000E + 00	32622
47	h2s	2	0000	0000	00000	001000	0	.000E + 00	-4203
48	CS	0	1000	0000	00000	001000	0	.000E + 00	66228
49	h2cs	2	1000	0000	00000	001000	0	.000E + 00	28298
50	c2s	0	2000	0000	00000	001000	0	.000E + 00	140057
51	so	0	0010	0000	00000	001000	0	.000E + 00	1202
52	so2	0	0020	0000	00000	001000	0	.000E + 00	-70339
53	ocs	0	1010	0000	00000	001000	0	.000E + 00	-33110
39	si	0	0000	0000	00000	100000	0	.000E + 00	106700
54	fe	0	0000	0000	00000	000001	0	.000E + 00	98733
150	hc3	1	3000	0000	00000	000000	0	.000E + 00	172300
151	c5h2	2	5000	0000	00000	000000	0	.000E + 00	690360
152	c4h3	3	4000	0000	00000	000000	0	.000E + 00	501829
153	c6h2	2	6000	0000	00000	000000	0	.000E + 00	696000
154	c5h	1	5000	0000	00000	000000	0	.000E + 00	853430
155	c5	0	5000	0000	00000	000000	0	.000E + 00	161180
156	c6h	1	6000	0000	00000	000000	0	.000E + 00	991800
157	c5h4	4	5000	0000	00000	000000	0	.000E + 00	557214
158	c6	0	6000	0000	00000	000000	0	.000E + 00	216080
159	c7	0	7000	0000	00000	000000	0	.000E + 00	309340
160	m c7h	1	7000	0000	00000	000000	0	.000E + 00	80100
161	c8h2	2	8000	0000	00000	000000	0	.000E + 00	891800
162	c8	0	8000	0000	00000	000000	0	.000E + 00	487000
163	c8h	1	8000	0000	00000	000000	0	.000E + 00	218500
164	c9	0	9000	0000	00000	000000	0	.000E + 00	554000

Tabela E.1 - Continuação

Número	Espécie	С	odificaç	ção da C	omposiç	ão Atômi	ca	Abundância Inicial	Entalpia de Formação - kJ/mol
165	c6h6	6	6000	0000	00000	000000	0	.000E + 00	100410
166	c2h5	5	2000	0000	00000	000000	0	.000E + 00	130773
167	c2n	0	2100	0000	00000	000000	0	.000E + 00	674474
168	h2cn	2	1100	0000	00000	000000	0	.000E + 00	242229
169	c3n	0	3100	0000	00000	000000	0	.000E + 00	629000
170	hc3n	1	3100	0000	00000	000000	0	.000E + 00	351000
171	h3c2n	3	2100	0000	00000	000000	0	.000E + 00	169982
172	c4n	0	4100	0000	00000	000000	0	.000E + 00	754800
173	c2h4o	4	2010	0000	00000	000000	0	.000E + 00	155700
174	ch4o	4	1010	0000	00000	000000	0	.000E + 00	190110
175	c2h4o2	4	2020	0000	00000	000000	0	.000E + 00	344396
176	c4h6o2	6	4020	0000	00000	000000	0	.000E + 00	308273
177	c4h5n	5	4100	0000	00000	000000	0	.000E + 00	124857
178	c7n	0	7100	0000	00000	000000	0	.000E + 00	0
179	c5n	0	5100	0000	00000	000000	0	.000E-00	850000
180	c2n2	0	2200	0000	00000	000000	0	.000E + 00	307342
181	c2h2n	2	2100	0000	00000	000000	0	.000E + 00	260540
182	hc5n	1	5100	0000	00000	000000	0	.000E + 00	600000
183	hc7n	1	7100	0000	00000	000000	0	.000E + 00	0
184	ch2o2	2	1020	0000	00000	000000	0	.000E + 00	378600
185	ch3no	3	1110	0000	00000	000000	0	.000E + 00	178241
186	ch3ns	3	1100	0000	00000	000100	0	.000E + 00	100000
187	ch3n	3	1100	0000	00000	000000	0	.000E + 00	96616
188	c3h3n3	3	3300	0000	00000	000000	0	.000E + 00	100000
189	c4h4n	4	4100	0000	00000	000000	0	.000E + 00	195000
190	c5h5n	4	5100	0000	00000	000000	0	.000E + 00	156922
191	c2h6	6	2000	0000	00000	000000	0	.000E + 00	-68232
192	c3h3n	3	3100	0000	00000	000000	0	.000E + 00	190874
193	c2h3n	3	2100	0000	00000	000000	0	.000E + 00	81090
194	c4h3n	3	4100	0000	00000	000000	0	.000E + 00	0
195	ocn	0	1110	0000	00000	000000	0	.000E + 00	389161
196	no2	0	0120	0000	00000	000000	0	.000E + 00	37000
197	n2o	0	0210	0000	00000	000000	0	.000E + 00	85029
198	hnco	1	1110	0000	00000	000000	0	.000E + 00	115600
199	hocn	1	1110	0000	00000	000000	0	.000E + 00	-12760
200	x	0	0000	0100	00000	000000	0	.000E-00	0
201	hx	1	0000	0100	00000	000000	0	.100E-05	0
202	hcnx	1	1100	0010	00000	000000	0	.000E-00	0
203	h2c3nx	2	3100	0010	00000	000000	0	.000E-00	0
204	У	0	0000	0010	00000	000000	0	.000E-00	0
205	hy	1	0000	0010	00000	000000	0	.100E-05	0
206	hcny	1	1100	0010	00000	000000	0	.000E-00	0
207	h2c3ny	2	3100	0010	00000	000000	0	.000E-00	0
208	w	0	0000	0001	00000	000000	0	.000E-00	0
Continua	a na próx	ima	página	a					

Tabela E.1 - Continuação

Número	Espécie	Codificação da Composição Atômica						Abundância Inicial	Entalpia de Formação - kJ/mol
209	hw	1	0000	0001	00000	000000	0	.100E-05	0
210	hcnw	1	1100	0001	00000	000000	0	.000E-00	0
211	h2c3nw	2	3100	0001	00000	000000	0	.000E-00	0
212	ch5n	5	1100	0000	00000	000000	0	.000E-00	-4378
213	hnc3	1	3100	0000	00000	000000	0	.000E-00	354000
214	c10	0	10000	0000	00000	000000	0	.000E-00	443500
215	c10h	1	10000	0000	00000	000000	0	.000E-00	435200
216	c4s	0	4000	0000	00000	001000	0	.000E-00	620259
217	mg	0	0000	0000	00010	000000	0	.100E-04	154900
218	na	0	0000	0000	00100	000000	0	.100E-04	107763
219	sio	0	0010	0000	00000	100000	0	.000E + 00	100420
220	sis	0	0000	0000	00000	101000	0	.000E + 00	105960
221	c11	0	11000	0000	00000	000000	0	.000E + 00	775137
222	c9h	1	9000	0000	00000	000000	0	.000E + 00	296800
223	c10h2	2	10000	0000	00000	000000	0	.000E + 00	108500
224	c9h2	2	9000	0000	00000	000000	0	.000E + 00	245166
225	c9n	0	9100	0000	00000	000000	0	.000E + 00	591398
226	c7h2	2	7000	0000	00000	000000	0	.000E + 00	131735
227	hc9n	1	9100	0000	00000	000000	0	.000E + 00	322898
228	c3s	0	3000	0000	00000	001000	0	.000E + 00	30474
229	hs	1	0000	0000	00000	001000	0	.000E + 00	139330
230	sio2	0	0020	0000	00000	100000	0	.000E + 00	905718
231	hcsi	2	1000	0000	00000	100000	0	.000E + 00	-88543
232	nh2co	6	1110	0000	00000	000000	0	.000E + 00	-63966
233	c3h6	6	3000	0000	00000	000000	0	.000E + 00	35014
234	c4h6	6	4000	0000	00000	000000	0	.000E + 00	125118
235	р	0	0000	0000	00000	010000	0	.100E-07	315663
236	$^{\rm cp}$	0	1000	0000	00000	010000	0	.000E + 00	449890
237	$_{\rm ph}$	1	0000	0000	00000	010000	0	.000E + 00	231698
238	ph2	2	0000	0000	00000	010000	0	.000E + 00	139333
239	ph3	3	0000	0000	00000	010000	0	.000E + 00	19712
240	c2h3n2o	3	2210	0000	00000	000000	0	.000E + 00	300000
241	c2h2n2o	2	2210	0000	00000	000000	0	.000E + 00	370000
242	c3h2n3o	2	3310	0000	00000	000000	0	.000E + 00	400000
243	c3h3n3o	3	3310	0000	00000	000000	0	.000E + 00	561000
244	c4h3n4o	3	4410	0000	00000	000000	0	.000E + 00	555000
245	c4h4n4o	4	4410	0000	00000	000000	0	.000E + 00	464000
246	c4h3n4	3	4400	0000	00000	000000	0	.000E + 00	400000
247	c4h4n4	4	4400	0000	00000	000000	0	.000E + 00	740000
248	c5h4n5	4	5500	0000	00000	000000	0	.000E + 00	750000
249	c5h6n6	6	5600	0000	00000	000000	0	.000E + 00	473000
250	c5h5n5o	5	5510	0000	00000	000000	0	.000E + 00	168300
251	c5h5n5	5	5500	0000	00000	000000	0	.000E + 00	96900
252	c4h6n4	6	4400	0000	00000	000000	0	.000E + 00	354000

Tabela E.1 - Continuação

Número Espécie		C	Codificaç	ão da C	Composiç	ão Atômie	ca	Abundância Inicial	Entalpia de Formação - kJ/mo
253	c4h5n3o	5	4310	0000	00000	000000	0	.000E+00	-59000
254	c4h4n2o2	4	4220	0000	00000	000000	0	.000E + 00	303100
255	c2h6o	6	2010	0000	00000	000000	0	.000E + 00	166438
55	h+	1	0000	0000	00000	000000	1	.000E + 00	365221
56	h2+	2	0000	0000	00000	000000	1	.000E + 00	355726
57	h3+	3	0000	0000	00000	000000	1	.000E + 00	264579
58	he+	0	0001	0000	00000	000000	1	.000E + 00	566999
59	c+	0	1000	0000	00000	000000	1	.132E-03	429646
60	ch+	1	1000	0000	00000	000000	1	.000E + 00	386520
61	ch2+	2	1000	0000	00000	000000	1	.000E + 00	331262
62	ch3+	3	1000	0000	00000	000000	1	.000E + 00	262756
63	ch4+	4	1000	0000	00000	000000	1	.000E + 00	272467
64	ch5+	5	1000	0000	00000	000000	1	.000E + 00	216300
65	c2+	0	2000	0000	00000	000000	1	.000E + 00	476099
66	c2h+	1	2000	0000	00000	000000	1	.000E + 00	403681
67	c2h2+	2	2000	0000	00000	000000	1	.000E + 00	317519
68	c2h3+	3	2000	0000	00000	000000	1	.000E + 00	267902
69	c2h4+	4	2000	0000	00000	000000	1	.000E + 00	256692
70	c2h5+	5	2000	0000	00000	000000	1	.000E + 00	218451
71	c3+	0	3000	0000	00000	000000	1	.000E + 00	478967
72	c3h+	1	3000	0000	00000	000000	1	.000E + 00	380736
73	c-c3h2+	2	3000	0000	00000	000000	1	.000E + 00	321941
74	c3h2+	2	3000	0000	00000	000000	1	.000E+00	333891
75	c-c3h3+	3	3000	0000	00000	000000	1	.000E+00	256931
76	c3h3+	3	3000	0000	00000	000000	1	.000E+00	281788
77	p-c3h4+	4	3000	0000	00000	000000	1	.000E+00	285492
78	a-c3h4+	4	3000	0000	00000	000000	1	000E+00	271033
79	c^{3h5+}	5	3000	0000	00000	000000	1	000E+00	278896
80	c010	0	4000	0000	00000	000000	1	000E+00	522706
81	c4h	1	4000	0000	00000	000000	1	000E + 00	431405
80	04h2	1 0	4000	0000	00000	000000	1	.000E+00	220866
02	c4112+	2	4000	0000	00000	000000	1	.000E+00	200870
00 04	c4n5+	3	4000	0000	00000	000000	1	.000E+00	290870
84	0+	1	0010	0000	00000	000000	1	.000E+00	373024
80	on+	1	0010	0000	00000	000000	1	.000E+00	313308
86	h2o+	2	0010	0000	00000	000000	1	.000E+00	233724
87	h3o+	3	0010	0000	00000	000000	1	.000E+00	139099
88	o2+	0	0020	0000	00000	000000	1	.000E+00	278370
89	co+	0	1010	0000	00000	000000	1	.000E+00	295966
90	hco+	1	1010	0000	00000	000000	1	.000E+00	197706
91	hoc+	1	1010	0000	00000	000000	1	.000E+00	230163
92	h2co+	2	1010	0000	00000	000000	1	.000E+00	225741
93	h3co+	3	1010	0000	00000	000000	1	.000E+00	168021
94	ch3oh+	3	1010	0000	00000	000000	1	.000E + 00	204637
95	ch5o+	5	1010	0000	00000	000000	1	.000E + 00	135516

Tabela E.1 - Continuação

96 $c2ho+$ 12010000000000000001.000E+0026195097 $c2h3o+$ 3201000000000000000E1.000E+0015607198 $co2+$ 0102000000000000000E+0022363899 $hco2+$ 110200000000000000E+00140774100 $n+$ 001000000000001.000E+00447694101 $nh+$ 101000000000001.000E+00302677103 $nh3+$ 301000000000001.000E+00224904104 $nh4+$ 401000000000001.000E+0035928106 $n2+$ 002000000000001.000E+00359298106 $n2+$ 102000000000001.000E+00359298106 $n2+$ 102000000000001.000E+00346080107 $cn+$ 011000000000001.000E+00336281110 $hcn+$ 11100000000001.000E+00336281111 $h2nc+$ 211000000000001.000E+00336281111 $h2nc+$ 111000000000001.000E+00336281111 $h2nc+$ 110000000000000	Número	Espécie	С	odificaç	ção da C	Composiç	ão Atômi	ca	Abundância Inicial	Entalpia de Formação - kJ/mol
97 $c2h3o+$ 32010000000000000001.000E+0015607198 $co2+$ 110200000000001.000E+0022363899 $hco2+$ 110200000000001.000E+00140774100 $n+$ 001000000000001.000E+00447694101 $nh+$ 101000000000001.000E+00401076102 $nh2+$ 201000000000001.000E+0032677103 $nh3+$ 301000000000001.000E+00224904104 $nh4+$ 401000000000001.000E+00359298106 $n2h+$ 102000000000001.000E+00359298106 $n2h+$ 111000000000001.000E+00346080107 $cn+$ 011000000000001.000E+00336281110 $hcn+$ 111000000000001.000E+00336281111 $h2nc+$ 211000000000001.000E+00387189113 $c2n+$ 021000000000001.000E+00387189113 $c2n+$ 00100000001.000E+00387189113 $c2n+$ 00100000001.000E+00235180<	96	c2ho+	1	2010	0000	00000	000000	1	.000E + 00	261950
98 $co2+$ 01020000000000000001.000E+00140774100 $n+$ 001000000000001.000E+00447694101 $nh+$ 101000000000001.000E+00401076102 $nh2+$ 201000000000001.000E+00302677103 $nh3+$ 301000000000001.000E+00224904104 $nh4+$ 401000000000001.000E+00359298105 $n2+$ 002000000000001.000E+00247490106 $n2h+$ 102000000000001.000E+00359298106 $n2h+$ 101000000000001.000E+00346080107 $cn+$ 011000000000001.000E+0036281110hcn+111000000000001.000E+0036281111hcn++111000000000001.000E+0036283111hcn++111000000000001.000E+0036257112cnc+021000000000001.000E+0036583111hcn+111000000000001.000E+00357189113c2n+021000000000001.000E+00256788<	97	c2h3o+	3	2010	0000	00000	000000	1	.000E + 00	156071
99 $hco2+$ 11020000000000000001.000E+00140774100 $n+$ 001000000000001.000E+00447694101 $nh+$ 101000000000001.000E+00302677103 $nh2+$ 201000000000001.000E+00224904104 $nh4+$ 401000000000001.000E+00224904105 $n2+$ 002000000000001.000E+00359298106 $n2h+$ 102000000000001.000E+00247490107 $cn+$ 011000000000001.000E+00336281108 $hcn+$ 111000000000001.000E+00336281110 $hcn+$ 111000000000001.000E+00226338111 $h2nc+$ 211000000000001.000E+00226338111 $h2nc+$ 021000000000001.000E+00337189113 $c2n+$ 021000000000001.000E+00235180114 $no+$ 001100000000001.000E+00256788115 $hno+$ 101100000000001.000E+00256788115 $hno+$ 101000000000001.000E+00 <td>98</td> <td>co2+</td> <td>0</td> <td>1020</td> <td>0000</td> <td>00000</td> <td>000000</td> <td>1</td> <td>.000E + 00</td> <td>223638</td>	98	co2+	0	1020	0000	00000	000000	1	.000E + 00	223638
100 $n+$ 0 0100 0000 00000 00000 1 $.000E+00$ 447694 101 $nh+$ 1 0100 0000 00000 1 $.000E+00$ 302677 103 $nh2+$ 2 0100 0000 00000 1 $.000E+00$ 224904 104 $nh3+$ 3 0100 0000 00000 1 $.000E+00$ 224904 104 $nh4+$ 4 0100 0000 00000 1 $.000E+00$ 359298 105 $n2+$ 0 0200 0000 00000 1 $.000E+00$ 247490 106 $n2h+$ 1 0200 0000 00000 1 $.000E+00$ 247490 107 $cn+$ 0 1100 0000 00000 1 $.000E+00$ 247490 107 $cn+$ 0 1100 0000 00000 1 $.000E+00$ 247490 108 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 336281 110 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 226338 111 $h2nc+$ 2 1100 0000 00000 1 $.000E+00$ 235180 113 $c2n+$ 0 2100 0000 00000 1 $.000E+00$ 235180 114 $no+$ 0 0110 0000 00000 1 $.000E+00$ 235180 11	99	hco2+	1	1020	0000	00000	000000	1	.000E+00	140774
101 $nh+$ 10100000000000000001.000E+00401076102 $nh2+$ 201000000000001.000E+00302677103 $nh3+$ 301000000000001.000E+00224904104 $nh4+$ 401000000000001.000E+00150574105 $n2+$ 002000000000001.000E+00359298106 $n2h+$ 102000000000001.000E+00247490107 $cn+$ 011000000000001.000E+00428599108 $hcn+$ 111000000000001.000E+00336281110 $hcnh+$ 111000000000001.000E+00226338111 $h2nc+$ 211000000000001.000E+00265057112 $cnc+$ 021000000000001.000E+00387189113 $c2n+$ 021000000000001.000E+00235180114 $no+$ 001100000000001.000E+00256788115 $hno+$ 101100000000001.000E+00256788115 $hno+$ 101100000000001.000E+00256788116 $s+$ 0000000000010001.000E+00 <td>100</td> <td>n+</td> <td>0</td> <td>0100</td> <td>0000</td> <td>00000</td> <td>000000</td> <td>1</td> <td>.000E+00</td> <td>447694</td>	100	n+	0	0100	0000	00000	000000	1	.000E+00	447694
102 $nh2+$ 2 0100 0000 00000 00000 1 $.000E+00$ 302677 103 $nh3+$ 3 0100 0000 00000 1 $.000E+00$ 224904 104 $nh4+$ 4 0100 0000 00000 1 $.000E+00$ 150574 105 $n2+$ 0 0200 0000 00000 1 $.000E+00$ 359298 106 $n2h+$ 1 0200 0000 00000 1 $.000E+00$ 247490 107 $cn+$ 0 1100 0000 00000 1 $.000E+00$ 428599 108 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 346080 109 $hnc+$ 1 1100 0000 00000 1 $.000E+00$ 346080 110 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 36281 111 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 265057 112 $cnc+$ 0 2100 0000 00000 1 $.000E+00$ 235180 113 $c2n+$ 0 0100 00000 00000 1 $.000E+00$ 235180 114 $no+$ 0 0110 0000 00000 1 $.000E+00$ 256788 116 $s+$ 0 0000 00000 01000 1 $.000E+00$ 256788	101	nh+	1	0100	0000	00000	000000	1	.000E+00	401076
103 $nh3+$ 3 0100 0000 00000 000000 1 $.000E+00$ 224904 104 $nh4+$ 4 0100 0000 00000 1 $.000E+00$ 150574 105 $n2+$ 0 0200 0000 00000 1 $.000E+00$ 359298 106 $n2h+$ 1 0200 0000 00000 1 $.000E+00$ 247490 107 $cn+$ 0 1100 0000 00000 1 $.000E+00$ 428599 108 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 346080 109 $hnc+$ 1 1100 0000 00000 1 $.000E+00$ 336281 110 $hcnh+$ 1 1100 0000 00000 1 $.000E+00$ 226338 111 $hcnh+$ 1 1100 0000 00000 1 $.000E+00$ 265057 112 $cnc+$ 0 2100 0000 00000 1 $.000E+00$ 387189 113 $c2n+$ 0 2100 0000 00000 1 $.000E+00$ 235180 114 $no+$ 1 0110 0000 00000 1 $.000E+00$ 256788 116 $s+$ 0 0000 00000 01000 1 $.000E+00$ 256788 116 $s+$ 0 0000 00000 001000 1 $.000E+00$ 271750 <t< td=""><td>102</td><td>nh2+</td><td>2</td><td>0100</td><td>0000</td><td>00000</td><td>000000</td><td>1</td><td>.000E+00</td><td>302677</td></t<>	102	nh2+	2	0100	0000	00000	000000	1	.000E+00	302677
104 $nh4+$ 4 0100 0000 00000 00000 1 $.000E+00$ 150574 105 $n2+$ 0 0200 0000 00000 1 $.000E+00$ 359298 106 $n2h+$ 1 0200 0000 00000 1 $.000E+00$ 247490 107 $cn+$ 0 1100 0000 00000 1 $.000E+00$ 428599 108 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 346080 109 $hnc+$ 1 1100 0000 00000 1 $.000E+00$ 336281 110 $hcnh+$ 1 1100 0000 00000 1 $.000E+00$ 226338 111 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 265057 112 $cnc+$ 0 2100 0000 00000 1 $.000E+00$ 387189 113 $c2n+$ 0 2100 0000 00000 1 $.000E+00$ 235180 114 $no+$ 0 0110 0000 00000 1 $.000E+00$ 236788 116 $s+$ 0 0000 00000 01000 1 $.000E+00$ 271750 118 $h2s+$ 2 0000 00000 001000 1 $.000E+00$ 272855	103	nh3+	3	0100	0000	00000	000000	1	.000E + 00	224904
105 $n2+$ 00200000000000000001.000E+00359298 106 $n2h+$ 102000000000001.000E+00247490 107 $cn+$ 011000000000001.000E+00428599 108 $hcn+$ 111000000000001.000E+00346080 109 $hnc+$ 111000000000001.000E+00336281 110 $hcnh+$ 111000000000001.000E+00226338 111 $hcn+$ 111000000000001.000E+00265057 112 $cnc+$ 021000000000001.000E+00387189 113 $c2n+$ 021000000000001.000E+00235180 114 $no+$ 001100000000001.000E+00256788 116 $s+$ 00000000000010001.000E+00256788 116 $s+$ 00000000000010001.000E+00256788 117 $sh+$ 1000000000010001.000E+00271750 118 $h2s+$ 2000000000010001.000E+00271750	104	nh4+	4	0100	0000	00000	000000	1	.000E+00	150574
106 $n2h+$ 1 0200 0000 00000 00000 1 $.000E+00$ 247490 107 $cn+$ 0 1100 0000 00000 1 $.000E+00$ 428599 108 $hcn+$ 1 1100 0000 00000 1 $.000E+00$ 346080 109 $hnc+$ 1 1100 0000 00000 1 $.000E+00$ 336281 110 $hcnh+$ 1 1100 0000 00000 1 $.000E+00$ 226338 111 $hcnh+$ 1 1100 0000 00000 1 $.000E+00$ 265057 112 $cnc+$ 0 2100 0000 00000 1 $.000E+00$ 387189 113 $c2n+$ 0 2100 0000 00000 1 $.000E+00$ 235180 114 $no+$ 0 0110 0000 00000 1 $.000E+00$ 256788 116 $s+$ 0 0000 00000 01000 1 $.000E+00$ 256788 117 $sh+$ 1 0000 00000 001000 1 $.000E+00$ 271750 118 $h2s+$ 2 0000 00000 001000 1 $.000E+00$ 271750	105	n2+	0	0200	0000	00000	000000	1	.000E+00	359298
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106	n2h+	1	0200	0000	00000	000000	1	.000E+00	247490
108hcn+1 1100 0000 00000 00000 1 $.000E+00$ 346080 109 hnc+1 1100 0000 00000 1 $.000E+00$ 336281 110 hcnh+1 1100 0000 00000 1 $.000E+00$ 226338 111 h2nc+2 1100 0000 00000 1 $.000E+00$ 265057 112 cnc+0 2100 0000 00000 1 $.000E+00$ 387189 113 c2n+0 2100 0000 00000 1 $.000E+00$ 235180 114 no+0 0110 0000 00000 1 $.000E+00$ 235180 115 hno+1 0110 0000 00000 1 $.000E+00$ 256788 116 $s+$ 0 0000 00000 011000 1 $.000E+00$ 271750 118 h2s+2 0000 00000 001000 1 $.000E+00$ 271750	107	cn+	0	1100	0000	00000	000000	1	.000E+00	428599
109hnc+1 1100 0000 00000 00000 1 $.000E+00$ 336281 110 hcnh+1 1100 0000 00000 1 $.000E+00$ 226338 111 h2nc+2 1100 0000 00000 1 $.000E+00$ 265057 112 cnc+0 2100 0000 00000 1 $.000E+00$ 387189 113 c2n+0 2100 0000 00000 1 $.000E+00$ 409895 114 no+0 0110 0000 00000 1 $.000E+00$ 235180 115 hno+1 0110 0000 00000 1 $.000E+00$ 256788 116 $s+$ 0 0000 00000 01100 1 $.186E-04$ 304568 117 $sh+$ 1 0000 00000 001000 1 $.000E+00$ 271750 118 $h2s+$ 2 0000 00000 001000 1 $.000E+00$ 276755	108	hcn+	1	1100	0000	00000	000000	1	.000E + 00	346080
110hcnh+11100000000000000001 $.000E+00$ 226338111h2nc+211000000000001 $.000E+00$ 265057112cnc+021000000000001 $.000E+00$ 387189113c2n+021000000000001 $.000E+00$ 409895114no+001100000000001 $.000E+00$ 235180115hno+101100000000001 $.000E+00$ 256788116s+0000000000011001 $.186E-04$ 304568117sh+10000000000010001 $.000E+00$ 271750118h2s+20000000000010001 $.000E+00$ 226855	109	hnc+	1	1100	0000	00000	000000	1	.000E + 00	336281
111 $h2nc+$ 21100000000000000001.000E+00265057112 $cnc+$ 021000000000001.000E+00387189113 $c2n+$ 021000000000001.000E+00409895114 $no+$ 001100000000001.000E+00235180115 $hno+$ 101100000000001.000E+00256788116 $s+$ 00000000000010001.186E-04304568117 $sh+$ 10000000000010001.000E+00271750118 $h2s+$ 20000000000010001.000E+00226855	110	hcnh+	1	1100	0000	00000	000000	1	.000E + 00	226338
112 $cnc+$ 02100000000000000001.000E+00387189113 $c2n+$ 021000000000001.000E+00409895114 $no+$ 001100000000001.000E+00235180115 $hno+$ 101100000000001.000E+00256788116 $s+$ 00000000000010001.186E-04304568117 $sh+$ 10000000000010001.000E+00271750118 $h2s+$ 20000000000010001.000E+00226255	111	h2nc+	2	1100	0000	00000	000000	1	.000E + 00	265057
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	112	cnc+	0	2100	0000	00000	000000	1	.000E + 00	387189
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	c2n+	0	2100	0000	00000	000000	1	.000E + 00	409895
115 hno+ 1 0110 0000 00000 00000 1 .000E+00 256788 116 s+ 0 0000 0000 001000 1 .186E-04 304568 117 sh+ 1 0000 00000 001000 1 .000E+00 271750 118 h2s+ 2 0000 00000 001000 1 000E+00 226855	114	no+	0	0110	0000	00000	000000	1	.000E + 00	235180
116 $s+$ 0 0000 0000 001000 1 .186E-04 304568 117 $sh+$ 1 0000 00000 001000 1 .000E+00 271750 118 $h2s+$ 2 0000 00000 001000 1 000E+00 226855	115	hno+	1	0110	0000	00000	000000	1	.000E + 00	256788
117 $sh+$ 1 0000 00000 001000 1 .000E+00 271750 118 $h2s+$ 2 0000 00000 001000 1 000E+00 226855	116	s+	0	0000	0000	00000	001000	1	.186E-04	304568
118 h2s+ 2 0000 0000 00000 1 000F+00 226855	117	sh+	1	0000	0000	00000	001000	1	.000E + 00	271750
	118	h2s+	2	0000	0000	00000	001000	1	.000E + 00	236855
119 h $3s+$ 3 0000 0000 00000 001000 1 .000E+00 190488	119	h3s+	3	0000	0000	00000	001000	1	.000E + 00	190488
$120 \qquad cs+ \qquad 0 \qquad 1000 0000 001000 1 \qquad .000E+00 \qquad 324092$	120	cs+	0	1000	0000	00000	001000	1	.000E + 00	324092
121 hcs+ 1 1000 0000 00000 001000 1 $.000E+00$ 243308	121	hcs+	1	1000	0000	00000	001000	1	.000E + 00	243308
122 h2cs+ 2 1000 0000 00000 001000 1 .000E+00 240440	122	h2cs+	2	1000	0000	00000	001000	1	.000E + 00	240440
123 h $3cs+3$ 1000 0000 00000 001000 1 .000E+00 207935	123	h3cs+	3	1000	0000	00000	001000	1	.000E + 00	207935
124 c_{2s+} 0 2000 0000 00000 001000 1 .000E+00 373685	124	c2s+	0	2000	0000	00000	001000	1	.000E + 00	373685
125 so+ 0 0010 0000 00000 001000 1 .000E+00 239173	125	so+	0	0010	0000	00000	001000	1	.000E + 00	239173
126 hso+ 1 0010 0000 00000 001000 1 .000E+00 223590	126	hso+	1	0010	0000	00000	001000	1	.000E + 00	223590
$127 ext{ so2+ } 0 ext{ 0020 } 0000 ext{ 00000 } 001000 ext{ 1 } .000E+00 ext{ 213671}$	127	so2+	0	0020	0000	00000	001000	1	.000E + 00	213671
128 hso2+ 1 0020 0000 00000 001000 1 .000E+00 142686	128	hso2+	1	0020	0000	00000	001000	1	.000E + 00	142686
$129 \text{ocs} + 0 1010 0000 00000 01000 1 .000\text{E} + 00 \qquad 223709$	129	ocs+	0	1010	0000	00000	001000	1	.000E + 00	223709
130 hocs+ 1 1010 0000 00000 001000 1 $.000E+00$ 180927	130	hocs+	1	1010	0000	00000	001000	1	.000E + 00	180927
96 si+ 0 0000 0000 100000 1 8,20E-004 295000	96	si+	0	0000	0000	00000	100000	1	8,20E-004	295000
131 fe+ 0 0000 0000 00000 1 .150E-07 280354	131	fe+	0	0000	0000	00000	000001	1	.150E-07	280354
$300 ext{ o}2h+ ext{ 1 } 0020 ext{ 0}000 ext{ 0}0000 ext{ 1 } .000E+00 ext{ 2}64900 ext{ 2}64900 ext{ 1 } .000E+00 ex$	300	o2h+	1	0020	0000	00000	000000	1	.000E + 00	264900
301 h2c3+ 2 3000 0000 00000 1 .000E-00 330000	301	h2c3+	2	3000	0000	00000	000000	1	.000E-00	330000
302 h3c3+ 3 3000 0000 00000 1 .000E+00 282000	302	h3c3+	3	3000	0000	00000	000000	1	.000E+00	282000
303 c4h5+ 5 4000 0000 00000 00000 1 .000E+00 85300	303	c4h5+	5	4000	0000	00000	000000	1	.000E+00	85300
304 c5h4+ 4 5000 0000 00000 000000 1 .000E+00 332000	304	c5h4+	4	5000	0000	00000	000000	1	.000E+00	332000
305 c5h5+ 5 5000 0000 00000 00000 1 .000E+00 116800	305	c5h5+	5	5000	0000	00000	000000	1	.000E+00	116800
306 c6h3+ 3 6000 0000 00000 000000 1 .000E+00 188000	306	c6h3+	3	6000	0000	00000	000000	1	.000E+00	188000

Tabela E.1 - Continuação

Número	Espécie	C	Codificaç	ão da C	Composiç	ão Atômio	ca	Abundância Inicial	Entalpia de Formação - kJ/mol
307	c6h+	1	6000	0000	00000	000000	1	.000E+00	0
308	c6h2+	2	6000	0000	00000	000000	1	.000E + 00	159000
309	c6h4+	4	6000	0000	00000	000000	1	.000E + 00	271800
310	c6h5+	5	6000	0000	00000	000000	1	.000E + 00	148980
311	c4h4+	4	4000	0000	00000	000000	1	.000E + 00	126000
312	c6h7+	7	6000	0000	00000	000000	1	.000E + 00	892200
313	c8h2+	2	8000	0000	00000	000000	1	.000E + 00	741000
314	c9h+	1	9000	0000	00000	000000	1	.000E + 00	390000
315	c9+	0	9000	0000	00000	000000	1	.000E + 00	451000
316	c4n+	0	4100	0000	00000	000000	1	.000E + 00	878616
317	c2h5o2+	5	2020	0000	00000	000000	1	.000E + 00	190110
318	c2h4o2+	4	2020	0000	00000	000000	1	.000E + 00	895815
319	c7n+	0	7100	0000	00000	000000	1	.000E + 00	20
320	c2nh+	1	2100	0000	00000	000000	1	.000E + 00	526552
321	hc3n+	1	3100	0000	00000	000000	1	.000E + 00	474000
322	c2n2+	0	2200	0000	00000	000000	1	.000E + 00	594800
323	c2h2n+	2	2100	0000	00000	000000	1	.000E + 00	360590
324	c5h+	1	5000	0000	00000	000000	1	.000E + 00	620000
325	c5n+	0	5100	0000	00000	000000	1	.000E + 00	800000
326	hc5n+	1	5100	0000	00000	000000	1	.000E + 00	800000
327	c7h+	1	7000	0000	00000	000000	1	.000E + 00	800000
328	c3n+	0	3100	0000	00000	000000	1	.000E + 00	400000
329	c2h6+	6	2000	0000	00000	000000	1	.000E + 00	36130
330	c3h3n+	3	3100	0000	00000	000000	1	.000E + 00	0
331	c2h3n+	3	2100	0000	00000	000000	1	.000E + 00	0
332	c3h4n+	4	3100	0000	00000	000000	1	.000E + 00	0
333	c2h4n+	4	2100	0000	00000	000000	1	.000E + 00	0
334	c4h4n+	4	4100	0000	00000	000000	1	.000E + 00	0
335	h2c4n+	2	4100	0000	00000	000000	1	.000E + 00	0
336	c4h3n+	3	4100	0000	00000	000000	1	.000E + 00	0
337	hc4n+	1	4100	0000	00000	000000	1	.000E + 00	0
338	hnco+	1	1110	0000	00000	000000	1	.000E + 00	2939
339	hocn+	1	1110	0000	00000	000000	1	.000E + 00	215822
340	ocn+	0	1110	0000	00000	000000	1	.000E + 00	261690
341	no2+	0	0120	0000	00000	000000	1	.000E + 00	960909
342	h2ocn+	2	1110	0000	00000	000000	1	.000E + 00	161568
343	ch4no+	4	1110	0000	00000	000000	1	.000E + 00	100000
344	ch6n+	6	1100	0000	00000	000000	1	.000E + 00	628572
345	ch4n+	4	1100	0000	00000	000000	1	.000E+00	131420
346	ch5n+	5	1100	0000	00000	000000	1	.000E+00	867473
347	h2c3n+	2	3100	0000	00000	000000	1	.000E+00	127500
348	c4s+	0	4000	0000	00000	001000	1	.000E+00	200452
	hala	1	2000	0000	00000	001000	-	000E + 00	221547
349	nc_{2s+}		2000	0000	00000	001000	- 1	.0001 00	001047

Tabela E.1 - Continuação

Número	Espécie	С	odificaç	ão da C	Composiç	ão Atômi	ca	Abundância Inicial	Entalpia de Formação - kJ/mol
351	na+	0	0000	0000	00100	000000	1	.000E + 00	609340
352	sio+	0	0010	0000	00000	100000	1	.000E + 00	213167
353	sioh+	1	0010	0000	00000	100000	1	.000E + 00	211341
354	sis+	0	0000	0000	00000	101000	1	.000E + 00	289091
355	c10h+	1	10000	0000	00000	000000	1	.000E + 00	694868
356	c10+	0	10000	0000	00000	000000	1	.000E + 00	757087
357	c5+	0	5000	0000	00000	000000	1	.000E + 00	374767
358	c6+	0	6000	0000	00000	000000	1	.000E + 00	529667
359	c7+	0	7000	0000	00000	000000	1	.000E + 00	622927
360	c8+	0	8000	0000	00000	000000	1	.000E + 00	800587
361	c11+	0	11000	0000	00000	000000	1	.000E + 00	538146
362	c10h2+	2	10000	0000	00000	000000	1	.000E + 00	486834
363	hc4s+	1	4000	0000	00000	001000	1	.000E + 00	253322
364	c3s+	0	3000	0000	00000	001000	1	.000E + 00	264435
365	hs+	1	0000	0000	00000	001000	1	.000E + 00	117296
366	$\operatorname{sic}+$	0	1000	0000	00000	100000	1	.000E + 00	276678
367	$\sinh +$	1	0000	0000	00000	100000	1	.000E + 00	186790
368	$\sin +$	0	0100	0000	00000	100000	1	.000E + 00	219229
369	$\mathbf{p}+$	0	0000	0000	00000	010000	1	.100E-13	337470
370	cp+	0	1000	0000	00000	010000	1	.000E + 00	0
371	ph2+	2	0000	0000	00000	010000	1	.000E + 00	80621
372	ph+	1	0000	0000	00000	010000	1	.000E + 00	219620
373	ph3+	3	0000	0000	00000	010000	1	.000E + 00	967081
374	c2h7o+	7	2010	0000	00000	000000	1	.000E + 00	570996
375	c2h5o+	5	2010	0000	00000	000000	1	.000E + 00	989100
376	c2h6o+	6	2010	0000	00000	000000	1	.000E + 00	166000
400	C-	0	1000	0000	00000	000000	-1	.000E + 00	589785
401	h-	1	0000	0000	00000	000000	-1	.000E + 00	143200
402	о-	0	0010	0000	00000	000000	-1	.000E + 00	105400
403	oh-	1	0010	0000	00000	000000	-1	.000E + 00	137700
404	cn-	0	1100	0000	00000	000000	-1	.000E + 00	-63965
405	c4h-	1	4000	0000	00000	000000	-1	.000E + 00	206000
406	c5-	0	5000	0000	00000	000000	-1	.000E + 00	821000
407	c6-	0	6000	0000	00000	000000	-1	.000E + 00	776000
408	c7-	0	7000	0000	00000	000000	-1	.000E + 00	15000
409	c6h-	1	6000	0000	00000	000000	-1	.000E + 00	820000
410	c3n-	0	3100	0000	00000	000000	-1	.000E + 00	302366
411	c10-	0	10000	0000	00000	000000	-1	.000E + 00	443500
412	c10h-	1	10000	0000	00000	000000	-1	.000E + 00	435200
413	c7h-	1	7000	0000	00000	000000	-1	.000E + 00	80100
414	c8-	0	8000	0000	00000	000000	-1	.000E + 00	487000
415	c8h-	1	8000	0000	00000	000000	-1	.000E + 00	218500
416	с9-	0	9000	0000	00000	000000	-1	.000E + 00	554000
417	c9h-	1	9000	0000	00000	000000	-1	.000E + 00	296800

Tabela E.1 - Continuação

Número	Espécie	С	odificaç	ão da C	Composiç	ão Atômi	ca	Abundância Inicial	Entalpia de Formação - kJ/mol
418	c	0	2000	0000	00000	000000	1	$000 \mathbf{F} \perp 00$	50/028
410	02-	0	2000	0000	00000	000000	-1	.000±400	004928
419	с3-	0	3000	0000	00000	000000	-1	.000E + 00	662577
420	c4-	0	4000	0000	00000	000000	-1	.000E + 00	691000
421	c5n-	0	5100	0000	00000	000000	-1	.000E + 00	850000
422	c5h-	1	5000	0000	00000	000000	-1	.000E + 00	906185
423	c2h-	1	2000	0000	00000	000000	-1	.000E + 00	4713
424	c3h-	1	3000	0000	00000	000000	-1	.000E + 00	16446
425	ch-	1	1000	0000	00000	000000	-1	.000E + 00	474070
426	o2-	0	0020	0000	00000	000000	-1	.000E + 00	-42500
427	s-	0	0000	0000	00000	001000	-1	.000E + 00	74513
132	h::	1	0000	0000	00000	000000	0	0.0E + 00	51634
133	h:	1	0000	0000	00000	000000	0	0.0E + 00	51634
134	h2:	2	0000	0000	00000	000000	0	0.0E + 00	0

Tabela E.1 - Continuação

- (*) Medida a 298K.
- (**) Isomeros mais estáveis.
- (***) Entalpia incomum.

Tabela E.2 - Reações químicas, parâmetros e tipos de reação, exatamente como são inseridos no código "Meudon PDR".

Rea	gentes		Produtos			γ	α	β	Tipo de Reação
h	grain	h				$1.00E \pm 00$		3.00e2	19
h	bu	h.9				1.00E+00	0.00	0.00	20
	11	112				1.00E+00	0.00	0.00	20
h:	h:	h2				1.00E+00	0.00	0.00	111
h	grain	h:				$1.00E{+}00$	0.00	0.00	113
h:	crp	h				$1.00E{+}00$	0.00	0.00	116
h:	photon	h				$1.00E{+}00$	0.00	0.00	117
h:	grain	h				$1.00E{+}00$	0.00	658.00	118
h2	grain	h2:				$1.00E{+}00$	0.00	0.00	113
h2:	crp	h2				$1.00E{+}00$	0.00	0.00	116
h2:	photon	h2				$1.00E{+}00$	0.00	0.00	117
h2:	grain	h2				$1.00E{+}00$	0.00	450.00	118
h2	crp	h	h			1.00E-01	.00	.00	1
h	crp	h+	electr			4.60E-01	.00	.00	1
h2	crp	h+	h	electr		4.00E-02	.00	.00	1
h2	crp	h2+	electr			9.60E-01	.00	.00	1
he	crp	he+	electr			5.00E-01	.00	.00	1
Continu	o no próvi	mo nácin							

Reag	gentes		Produtos	8		γ	α	β	Tipo de Reação
с	crp	c+	electr			1.80E + 00	.00	.00	1
0	crp	o+	electr			2.80E + 00	.00	.00	1
n	crp	n+	electr			2.10E + 00	.00	.00	1
со	crp	co+	electr			3.00E + 00	.00	.00	1
hx	crp	x	h			1.00E-01	.00	.00	1
hy	crp	у	h			1.00E-01	.00	.00	1
hw	crp	w	h			1.00E-01	.00	.00	1
ch5n	crp	hcn	h2	h	h	1.41E+03	.00	.00	1
ch5n	crp	ch5n+	electr			1.12E+03	.00	.00	1
h2	crp	h	h			1.00E-01	.00	.00	1
h	crp	h+	electr			4.60E-01	.00	.00	1
h2	crp	h+	h	electr		4.00E-02	.00	.00	1
$^{\rm ch}$	phosec	с	h			9.16E + 02	.00	.00	2
ch2	phosec	$^{\rm ch}$	h			6.26E + 02	.00	.00	2
ch3	phosec	ch2	h			6.26E + 02	.00	.00	2
ch3	phosec	$^{\rm ch}$	h2			6.26E + 02	.00	.00	2
ch4	phosec	ch2	h2			2.92E+03	.00	.00	2
c2	phosec	с	с			2.99E+02	.00	.00	2
c2h	phosec	c2	h			$6.25E{+}03$.00	.00	2
c2h2	phosec	c2h	h			$6.45E{+}03$.00	.00	2
c2h3	phosec	c2h2	h			3.75E + 03	.00	.00	2
c2h4	phosec	c2h2	h2			3.70E + 03	.00	.00	2
c3	phosec	c2	с			$1.40E{+}03$.00	.00	2
c3h	phosec	c3	h			6.27E + 03	.00	.00	2
c4	phosec	c3	с			$1.25E{+}03$.00	.00	2
c4	phosec	c2	c2			$1.25E{+}03$.00	.00	2
c4h	phosec	c4	h			$6.25E{+}03$.00	.00	2
c4h	phosec	c2h	c2			$6.25E{+}03$.00	.00	2
c4h2	phosec	c4h	h			$1.73E{+}03$.00	.00	2
c4h2	phosec	c2h	c2h			$1.73E{+}03$.00	.00	2
o2	phosec	о	0			$9.39E{+}02$.00	.00	2
oh	phosec	о	h			$6.35E{+}02$.00	.00	2
h2o	phosec	oh	h			1.22E + 03	.00	.00	2
со	phosec	0	с			2.62E + 02	1.17	.00	2
co2	phosec	со	0			2.14E+03	.00	.00	2
hco	phosec	со	h			5.26E + 02	.00	.00	2
h2co	phosec	со	h2			3.32E + 03	.00	.00	2
ch3oh	phosec	oh	ch3			1.88E + 03	.00	.00	2
ch3oh	phosec	h2co	h2			3.96E + 03	.00	.00	2
n2	phosec	n	n			$6.25E{+}01$.00	.00	2
nh	phosec	n	h			6.26E + 02	.00	.00	2
nh2	phosec	$\mathbf{n}\mathbf{h}$	h			$1.00E{+}02$.00	.00	2
nh3	phosec	$^{\rm nh}$	h2			6.76E + 02	.00	.00	2
nh3	phosec	nh2	h			$1.65E{+}03$.00	.00	2

Tabela E.2 - Continuação

Reag	entes		Produtos	l	γ	α	β	Tipo de Reação
cn	phosec	n	с		1.32E + 04	.00	.00	2
hcn	phosec	cn	h		3.88E + 03	.00	.00	2
no	phosec	0	n		5.77E + 02	.00	.00	2
$^{\rm sh}$	phosec	s	h		6.26E + 02	.00	.00	2
h2s	phosec	s	h2		6.45E + 03	.00	.00	2
cs	phosec	s	с		6.27E + 02	.00	.00	2
c2s	phosec	s	c2		1.88E + 03	.00	.00	2
c2s	phosec	cs	с		1.88E + 03	.00	.00	2
SO	phosec	s	0		6.26E + 02	.00	.00	2
so2	phosec	SO	0		2.31E + 03	.00	.00	2
ocs	phosec	s	со		6.69E + 03	.00	.00	2
c3h3	phosec	c-c3h2	h		2.50E + 03	.00	.00	2
c3h3	phosec	h2c3	h		2.50E + 03	.00	.00	2
с	phosec	c+	electr		6.39E + 02	.00	.00	2
ch+	phosec	c+	h		2.20E+02	.00	.00	2
ch2	phosec	ch2+	electr		6.26E + 02	.00	.00	2
ch3	phosec	ch3+	electr		6.26E + 02	.00	.00	2
c2h	phosec	c2h+	electr		6.25E + 03	.00	.00	2
c2h2	phosec	c2h2+	electr		1.64E+03	.00	.00	2
c2h3	phosec	c2h3+	electr		1.88E + 03	.00	.00	2
c2h4	phosec	c2h4+	electr		9.69E+02	.00	.00	2
c4h2	phosec	c4h2+	electr		1.40E+03	.00	.00	2
02	phosec	02+	electr		1.46E+02	.00	.00	2
hco	phosec	hco+	electr		1.46E+03	.00	.00	2
ch3oh	phosec	h3co+	h	electr	$9.93E \pm 01$	00	00	2
ch3oh	phosec	ch3oh+	electr	010001	1.79E+03	.00	.00	2
nh	phosec	nh+	electr		$6.26E \pm 02$	00	00	2
nh9	phosec	nh2+	electr		8.08E+02	.00	.00	2
nh3	phosec	nh2+	electr		$7.19E\pm02$.00	.00	2
no	phosec	no+	electr		$6.18E \pm 02$.00	.00	2
s	phosec	s+	electr		1.20E + 0.02	.00	.00	2
h9s	phosec	h2s+	electr		$2.12E \pm 03$.00	.00	2
68	phosec	1125 ce⊥	electr		6.26E±02	.00	.00	2
005	phosec	ocs+	electr		1.82E+03	.00	.00	2
50	phosec	so+	electr		$6.26E \pm 02$.00	.00	2
hnc	phosec	cn	h		$3.75E \pm 03$.00	.00	2
hno	phosec	no	h		$1.25E \pm 03$.00	.00	2
hno	phosec	hno+	electr		1.20E + 0.05	.00	.00	2
hlee	phosec	1110 ⁺	h2		1.001+0.03	.00	.00	2
fo	phosec	fol	olootr		1.00E+03	.00	.00	2
ie	phosec	10+ c ²	electr b		1.00E+03	.00	.00	
c-con	phosec	co co	n h		$0.27E \pm 0.03$.00	.00	
C-C∂H2	phosec	con coh	11 h		0.27E+03	.00	.00	
112C3	phosec	C91-9	11 L		0.21E+U3	.00	.00	
p-c3n4	pnosec	cono	n		3.28E+03	.00	.00	2

Tabela E.2 - Continuação

Reag	entes		Produtos	3	γ	α	β	Tipo de Reação
p-c3h4	phosec	p-c3h4+	electr		5.30E + 03	.00	.00	2
a-c3h4	phosec	c3h3	h		3.28E + 03	.00	.00	2
a-c3h4	phosec	a-c3h4+	electr		5.30E + 03	.00	.00	2
hc3	phosec	c3	h		8.16E+03	.00	.00	2
h2c3	phosec	hc3	h		8.16E+03	.00	.00	2
c5h	phosec	c3h	c2		1.30E-17	.00	2500.00	2
c5h	phosec	c3	c2h		1.30E-17	.00	2500.00	2
c5h	phosec	c5	h		1.30E-17	.00	2500.00	2
c5	phosec	c3	c2		1.30E-17	.00	500.00	2
c5	phosec	c4	с		1.30E-17	.00	500.00	2
c6h	phosec	c3h	c3		1.30E-17	.00	2500.00	2
c6h	phosec	c4	c2h		1.30E-17	.00	2500.00	2
c5h4	phosec	c4h	ch3		1.30E-17	.00	750.00	2
c6h	phosec	c6	h		1.30E-17	.00	2500.00	2
c6	phosec	c5	с		1.30E-17	.00	500.00	2
c7	phosec	c6	с		1.30E-17	.00	500.00	2
m c7h	phosec	c7	h		1.30E-17	.00	2500.00	2
c8h	phosec	c8	h		1.30E-17	.00	2500.00	2
c8	phosec	c7	с		1.30E-17	.00	500.00	2
c8h2	phosec	c8h	h		1.30E-17	.00	875.00	2
c9	phosec	c8	с		1.30E-17	.00	500.00	2
c2h5	phosec	c2h3	h2		1.30E-17	.00	1881.00	2
c2n	phosec	c2	n		1.30E-17	.00	500.00	2
c2n	phosec	cn	с		1.30E-17	.00	500.00	2
c3n	phosec	cn	c2		1.30E-17	.00	875.00	2
hc3n	phosec	cn	c2h		1.30E-17	.00	863.50	2
h3c2n	phosec	cn	ch3		1.30E-17	.00	2388.00	2
c4n	phosec	c3	cn		1.30E-17	.00	750.00	2
c2h4o	phosec	hco	ch3		1.30E-17	.00	263.50	2
c2h4o	phosec	со	ch4		1.30E-17	.00	263.50	2
ch4o	phosec	oh	ch3		1.30E-17	.00	752.00	2
ch4o	phosec	h2co	h2		1.30E-17	.00	1584.00	2
c2h4o2	phosec	co2	ch4		1.30E-17	.00	1000.00	2
c2h4o2	phosec	c2h4o2+	electr		1.30E-17	.00	500.00	2
c4h6o2	phosec	c4h2	h2o	h2o	3.30E-18	.00	1000.00	2
c4h6o2	phosec	c2h4	hco	hco	3.30E-18	.00	1000.00	2
c4h6o2	phosec	c3h3	ch3	02	3.30E-18	.00	1000.00	2
c4h5n	phosec	c2h5	c2n		2.00E-18	.00	1000.00	2
c4h5n	phosec	h2cn	c3h3		2.00E-18	.00	1000.00	2
c4h5n	phosec	hc3n	ch4		2.00E-18	.00	1000.00	2
c4h5n	phosec	h3c2n	c2h2		2.00E-18	.00	1000.00	2
c4h5n	phosec	p-c3h4	hcn		2.00E-18	.00	1000.00	2
c5n	phosec	c4	cn		1.30E-17	.00	875.00	2
c2n2	phosec	cn	cn		1.30E-17	.00	474.00	2

Tabela E.2 - Continuação

Reage	entes		Produtos		γ	α	β	Tipo de Reação
hc5n	phosec	c5n	h		1.30E-17	.00	875.00	2
hc5n	phosec	c4h	cn		1.30E-17	.00	875.00	2
hc7n	phosec	c6h	cn		1.30E-17	.00	875.00	2
ch2o2	phosec	hco	oh		1.30E-17	.00	.00	2
ch3ns	phosec	ch3	n	s	2.00E-18	.00	1000.00	2
ch3ns	phosec	h2cs	$\mathbf{n}\mathbf{h}$		2.00E-18	.00	1000.00	2
ch3ns	phosec	h2s	hcn		2.00E-18	.00	1000.00	2
ch3ns	phosec	$^{\rm sh}$	h2cn		2.00E-18	.00	1000.00	2
ch3ns	phosec	h2s	hnc		2.00E-18	.00	1000.00	2
ch3n	phosec	nh	ch2		1.30E-17	.00	500.00	2
c3h3n3	phosec	hcn	hcn	hcn	1.00E-17	.00	.00	2
c4h4n	phosec	c2h2	c2h2	n	3.30E-18	.00	1000.00	2
c4h4n	phosec	c3h3	hcn		3.30E-18	.00	1000.00	2
c4h4n	phosec	c3h3	hnc		3.30E-18	.00	1000.00	2
c2h6	phosec	c2h4	h2		1.30E-17	.00	1881.00	2
c2h6	phosec	c2h6+	electr		1.30E-17	.00	389.00	2
c3h3n	phosec	c2h3	cn		1.30E-17	.00	375.00	2
c2h3n	phosec	cn	ch3		1.30E-17	.00	2388.00	2
c2h3n	phosec	c2h3n+	electr		1.30E-17	.00	1122.50	2
c4h3n	phosec	c3n	ch3		1.30E-17	.00	750.00	2
C-	phosec	с	electr		2.40E-07	.00	0.90	2
h2	phosec	h+	h-		3.90E-21	.00	.00	2
h-	phosec	h	electr		2.40E-07	.00	.50	2
0-	phosec	0	electr		2.40E-07	.00	.50	2
oh-	phosec	oh	electr		2.40E-07	.00	.90	2
cn-	phosec	cn	electr		2.40E-07	.00	.90	2
ocn	phosec	cn	0		1.30E-17	.00	750.00	2
no2	phosec	no	0		1.30E-17	.00	750.00	2
n2o	phosec	no	n		1.30E-17	.00	750.00	2
hnco	phosec	nh	co		1.30E-17	.00	1500.00	2
hocn	phosec	oh	cn		1.30E-17	.00	1500.00	2
hx	phosec	x	h		1.00E-11	.00	.00	2
hv	phosec	v	h		1.00E-11	.00	.00	2
hw	phosec	w	h		1.00E-11	.00	.00	2
hnc3	phosec	c2h	cn		1.30E-17	.00	.00	2
c3n-	phosec	c3n	electr		1.30E-17	.00	250.00	2
c10	phosec	c9	с		1.30E-17	.00	500.00	2
c10-	phosec	c10	electr		1.30E-17	.00	250.00	2
c10h	phosec	c10	h		1.30E-17	.00	2500.00	2
c10h-	phosec	c10h	electr		1.30E-17	.00	250.00	2
c7h-	phosec	c7h	electr		1.30E-17	.00	250.00	2
c8-	phosec	c8	electr		1.30E-17	.00	250.00	2
c8h-	phosec	c8h	electr		1.30E-17	.00	250.00	2
c9-	phosec	c9	electr		1.30E-17	.00	250.00	2
	1					1		-

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
c4s	phosec	cs	c3	1.30E-17	.00	750.00	2
mg	phosec	mg+	electr	1.30E-17	.00	66.50	2
na	phosec	na+	electr	1.30E-17	.00	8.50	2
sio	phosec	si	0	1.30E-17	.00	250.00	2
sis	phosec	s	si	1.30E-17	.00	250.00	2
c2-	phosec	c2	electr	1.30E-17	.00	250.00	2
c3-	phosec	c3	electr	1.30E-17	.00	250.00	2
c4-	phosec	c4	electr	1.30E-17	.00	250.00	2
c7-	phosec	c7	electr	1.30E-17	.00	250.00	2
c6h-	phosec	c6h	electr	1.30E-17	.00	250.00	2
c11	phosec	c10	с	1.30E-17	.00	500.00	2
c4h-	phosec	c4h	electr	1.30E-17	.00	250.00	2
c9h-	phosec	c9h	electr	1.30E-17	.00	250.00	2
c9h	phosec	с9	h	1.30E-17	.00	2500.00	2
c10h2	phosec	c10h	h	1.30E-17	.00	875.00	2
c5n-	phosec	c5n	electr	1.30E-17	.00	250.00	2
c9h2	phosec	c9h	h	1.30E-17	.00	875.00	2
c9n	phosec	c8	cn	1.30E-17	.00	875.00	2
c5h-	phosec	c5h	electr	1.30E-17	.00	250.00	2
c7h2	phosec	m c7h	h	1.30E-17	.00	875.00	2
hc9n	phosec	c8h	cn	1.30E-17	.00	875.00	2
c3s	phosec	cs	c2	1.30E-17	.00	750.00	2
c2h-	phosec	c2h	electr	1.30E-17	.00	250.00	2
c3h-	phosec	c3h	electr	1.30E-17	.00	250.00	2
ch-	phosec	ch	electr	1.30E-17	.00	250.00	2
o2-	phosec	o2	electr	1.30E-17	.00	250.00	2
s-	phosec	s	electr	1.30E-17	.00	250.00	2
hs	phosec	s	h	1.30E-17	.00	250.00	2
sio2	phosec	sio	0	1.30E-17	.00	750.00	2
hcsi	phosec	ch	si	1.30E-17	.00	750.00	2
c3h6	phosec	c2h4	ch2	1.30E-17	.00	750.00	2
c4h6	phosec	c3h6	с	1.30E-17	.00	1000.00	2
р	phosec	p+	electr	1.30E-17	.00	750.00	2
$^{\rm cp}$	phosec	с	р	1.30E-17	.00	250.00	2
$_{\rm ph}$	phosec	р	h	1.30E-17	.00	250.00	2
ph2	phosec	$_{\rm ph}$	h	1.30E-17	.00	750.00	2
c2h6o	phosec	c2h6o+	electr	1.30E-17	.00	559.50	2
c2h6o	phosec	h2co	ch4	1.30E-17	.00	857.00	2
h+	electr	h	photon	3.50E-12	75	.00	3
he+	electr	he	photon	2.36E-12	64	.00	3
c+	electr	с	photon	7.23E-12	83	.00	3
n+	electr	n	photon	4.00E-12	58	.00	3
ch3+	electr	ch3	photon	1.10E-10	50	.00	3
o+	electr	о	photon	3.24E-12	66	.00	3

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
h2co+	electr	h2co	photon	1.10E-10	70	.00	3
s+	electr	s	photon	3.90E-12	63	.00	3
h2s+	electr	h2s	photon	1.10E-10	70	.00	3
h2cs+	electr	h2cs	photon	1.10E-10	70	.00	3
fe+	electr	fe	photon	3.70E-12	65	.00	3
h	h	h2	photon	4.00E-27	.00	.00	3
с	h	ch	photon	1.00E-17	.00	.00	3
с	h2	ch2	photon	2.00E-20	-1.00	.00	3
$^{\rm ch}$	h2	ch3	photon	2.90E-17	66	.00	3
с	с	c2	photon	4.36E-18	.35	161.00	3
с	c2	c3	photon	3.00E-16	-1.00	.00	3
с	c3	c4	photon	4.00E-14	-1.00	.00	3
0	0	02	photon	4.90E-20	1.58	.00	3
0	h	oh	photon	9.90E-19	38	.00	3
oh	h	h2o	photon	4 00E-18	-2.00	00	3
n	n	n2	photon	5.00E-16	0	.00	3
n	11 h2	nh2	photon	1.04F 20	.00	.00	3
	112		photon	2.20E 16	1.50	.00	5
0	50	502	photon	1.60E 17	1.50	.00	5
s	co	lou	photon	1.00E-17	1.00	.00	3
n+	n	n2+	photon	5.13E-19	1.85	.00	ئ ب
n	c+	cn+	photon	2.29E-17	42	.00	3
h2	c+	ch2+	photon	8.00E-17	-1.30	23.00	3
h2	ch3+	ch5+	photon	4.00E-16	-2.30	30.00	3
h2	c2h2+	c2h4+	photon	2.34E-14	-1.50	.00	3
c+	с	c2+	photon	4.01E-18	.17	102.00	3
c+	c3	c4+	photon	1.00E-13	-1.00	.00	3
c2h2+	h	c2h3+	photon	7.00E-15	-1.50	.00	3
c4h+	h	c4h2+	photon	6.00E-14	-1.50	.00	3
s+	h	sh+	photon	8.08E-21	17	.00	3
h2	s+	h2s+	photon	1.00E-17	20	.00	3
h2	sh+	h3s+	photon	2.40E-16	80	.00	3
c3h2+	h	c3h3+	photon	4.00E-15	-1.50	.00	3
ch3+	h2o	ch5o+	photon	2.00E-12	.00	.00	3
ch3+	со	c2h3o+	photon	1.20E-13	-1.30	.00	3
c4h2+	h	c4h3+	photon	7.00E-11	10	.00	3
c3+	h	c3h+	photon	7.00E-16	-1.50	.00	3
c3h+	h	c3h2+	photon	1.00E-14	-1.50	.00	3
h2	c3h+	c-c3h3+	photon	1.69E-12	-1.00	.00	3
h2	c3h+	c3h3+	photon	1.69E-12	-1.00	.00	3
c-c3h2+	h	c-c3h3+	photon	4.00E-15	-1.50	.00	3
a-c3h4	he	p-c3h4	he	2.52E-08	.00	24353.00	4
p-c3h4	he	a-c3h4	he	1.17E-08	.10	24957.00	4
a-c3h4	h2	p-c3h4	h2	9.03E-08	.00	24353.00	4
p-c3h4	h2	a-c3h4	h2	4.18E-08	.10	24957.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
hcn	h	hnc	h	2.16E-13	4.61	7123.00	4
h	n2	nh	n	8.63E-11	.50	71457.00	4
h	$\mathbf{n}\mathbf{h}$	n	h2	8.19E-11	.68	950.00	4
h	no	n	oh	3.60E-10	.00	24912.00	4
h	no	nh	0	9.29E-10	10	35223.00	4
h	o2	oh	0	2.61E-10	.00	8158.00	4
h	oh	о	h2	6.99E-14	2.80	1950.00	4
h	hno	h2	no	4.50E-11	.72	329.00	4
h	hno	oh	nh	2.40E-09	50	9011.00	4
h	hno	о	nh2	1.05E-09	30	14731.00	4
h	h2o	h2	oh	3.19E-10	.00	10551.00	4
h	hco	со	h2	3.32E-10	.00	.00	4
со	h2	h	hco	3.76E-10	.70	44246.00	4
h	hco	о	ch2	6.61E-11	.00	51603.00	4
h	co2	со	oh	3.16E-10	.00	13271.00	4
h	nh2	nh	h2	8.55E-11	.00	4056.00	4
h	nh3	nh2	h2	6.84E-14	3.76	4250.00	4
h	h2co	hco	h2	4.27E-12	1.45	1334.00	4
h	h3co	h2	h2co	1.66E-11	.00	.00	4
h2	h2co	h	h3co	3.10E-11	.60	37060.00	4
h	h3co	oh	ch3	1.60E-10	.00	.00	4
h	ch3oh	ch3	h2o	4.56E-16	3.26	1616.00	4
ch3	h2o	h	ch3oh	2.74E-18	4.21	14540.00	4
h	ch3oh	h3co	h2	4.39E-13	3.26	1616.00	4
h	h2s	$^{\rm sh}$	h2	3.70E-12	1.94	455.00	4
$^{\rm sh}$	h2	h	h2s	7.36E-13	2.31	6862.00	4
h	ocs	$^{\rm sh}$	со	9.06E-12	.00	1937.00	4
h	c2h4	c2h3	h2	8.27E-10	.00	7776.00	4
h	c2h3	c2h2	h2	7.55E-11	.00	.00	4
h	c3h3	h2c3	h2	1.36E-12	1.12	2421.00	4
h	c3h3	c-c3h2	h2	5.06E-15	2.23	6744.00	4
c-c3h2	h2	h	c3h3	3.27E-15	3.37	16924.00	4
h	$^{\rm ch}$	с	h2	1.24E-10	.26	.00	4
h	ch2	$^{\rm ch}$	h2	2.20E-10	.00	.00	4
h	ch3	ch2	h2	1.00E-10	.00	7601.00	4
ch2	h2	h	ch3	4.60E-12	.57	4099.00	4
h	ch4	ch3	h2	3.53E-13	3.11	3970.00	4
h2	с	$^{\rm ch}$	h	2.35E-10	.54	11594.00	4
h2	n	nh	h	4.65E-10	.00	16607.00	4
h2	0	oh	h	3.52E-13	2.60	3241.00	4
h2	nh	nh2	h	1.29E-10	.00	9756.00	4
h2	no	hno	h	2.31E-11	.00	28453.00	4
h2	02	oh	oh	7.42E-13	.00	17338.00	4
oh	oh	h2	02	9.66E-15	.35	8208.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
h2	oh	h	h2o	2.22E-12	1.43	1751.00	4
h2	$^{\rm ch}$	ch2	h	2.64E-10	.00	1545.00	4
h2	ch3	ch4	h	1.98E-14	2.84	3865.00	4
h2	c2h2	c2h3	h	4.00E-12	.00	32703.00	4
h2	c2h3	c2h4	h	4.01E-14	2.80	2909.00	4
h2	nh2	nh3	h	1.79E-13	2.23	3608.00	4
h2	co2	со	h2o	3.20E-07	1.53	56906.00	4
со	h2o	h2	co2	6.22E-10	2.59	51606.00	4
h2	hno	$\mathbf{n}\mathbf{h}$	h2o	1.66E-10	.00	8056.00	4
h2	hco	h2co	h	2.70E-13	2.00	8973.00	4
h2	h3co	ch3oh	h	1.01E-13	2.00	6723.00	4
h2	s	h	sh	4.48E-10	.00	10584.00	4
h	sh	h2	s	1.39E-10	18	697.00	4
n C	511 CO	c2	0	1.00E-10	00	52805.00	4
c c	റ	62	0	6.33E-11	.00	-8.00	4
60	02	6	റി	8.60F 11	18	60431.00	4
0	o	C	02 h	1.00E-11	.10	09431.00	4
С	0II	0	11	1.00E-10	.00	.00	4
со	n h.a.	c	on	4.85E-09	21	10779.00	4
c	h2o	ch	on	1.30E-12	.00	19778.00	4
ch	oh	с	h2o	1.14E-13	14	685.00	4
с	hco	ch	со	1.00E-10	.00	.00	4
$^{\rm ch}$	со	с	hco	5.94E-11	.42	32652.00	4
с	cn	c2	n	4.98E-10	.00	18103.00	4
с	$\mathbf{n}\mathbf{h}$	cn	h	1.20E-10	.00	.00	4
cn	h	с	nh	2.23E-09	19	50238.00	4
с	no	со	n	4.97E-11	.12	.00	4
со	n	с	no	3.96E-10	.21	53589.00	4
с	no	cn	0	9.08E-11	28	.00	4
с	n2	cn	n	9.17E-11	.00	22738.00	4
с	nh2	$^{\rm ch}$	nh	9.61E-13	.00	10513.00	4
$^{\rm ch}$	nh	с	nh2	2.00E-13	.01	4746.00	4
с	nh2	hcn	h	3.41E-11	36	.00	4
hcn	h	с	nh2	6.17E-09	-1.08	66729.00	4
с	nh2	hnc	h	3.41E-11	36	.00	4
hnc	h	с	nh2	3.33E-09	-1.13	59536.00	4
с	ocs	cs	со	1.01E-10	.00	.00	4
\mathbf{cs}	со	с	ocs	3.11E-12	1.06	48756.00	4
с	$^{\rm sh}$	cs	h	1.00E-10	.00	.00	4
\mathbf{cs}	h	с	$^{\rm sh}$	4.62E-09	23	43439.00	4
с	so	со	s	3.50E-11	.00	.00	4
со	s	с	SO	1.39E-10	.24	66665.00	4
с	so	cs	0	3.50E-11	.00	.00	4
cs	0	с	SO	8.78E-11	.08	23073.00	4
с	so2	со	so	6.91E-11	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
со	SO	с	so2	6.62E-12	.64	62961.00	4
с	c2h4	c3h3	h	3.00E-10	11	.00	4
c3h3	h	с	c2h4	8.28E-10	-1.27	24764.00	4
с	c3h3	c4h2	h	1.00E-10	.00	.00	4
c4h2	h	с	c3h3	7.68E-08	87	47669.00	4
с	$^{\rm ch}$	c2	h	6.59E-11	.00	.00	4
c2	h	с	$^{\rm ch}$	1.44E-09	40	31710.00	4
с	ch2	c2h	h	1.00E-10	.00	.00	4
c2h	h	с	ch2	5.38E-09	-1.00	38967.00	4
с	ch3	c2h2	h	1.00E-10	.00	.00	4
c2h2	h	с	ch3	2.26E-08	-1.04	50605.00	4
о	$\mathbf{n}\mathbf{h}$	no	h	6.60E-11	.00	.00	4
о	n2	no	n	2.51E-10	.00	38606.00	4
о	no	n	o2	2.74E-11	.00	21297.00	4
о	cn	с	no	5.36E-11	.00	13749.00	4
о	hcn	oh	cn	6.21E-10	.00	12441.00	4
о	hcn	nh	со	7.48E-13	1.14	3744.00	4
nh	со	о	hcn	3.70E-14	1.90	19986.00	4
о	hnc	со	nh	7.64E-12	.00	1102.00	4
со	nh	о	hnc	7.01E-13	.81	24537.00	4
о	h2o	oh	oh	1.31E-10	.00	9250.00	4
о	hno	no	oh	3.80E-11	08	.00	4
no	oh	о	hno	2.67E-12	.53	26426.00	4
о	hco	oh	со	5.00E-11	.00	.00	4
oh	со	о	hco	2.63E-11	.66	43532.00	4
о	hco	h	co2	5.00E-11	.00	.00	4
h	co2	о	hco	8.09E-08	54	56330.00	4
о	nh2	nh	oh	7.00E-12	10	.00	4
о	nh2	hno	h	6.30E-11	10	.00	4
о	nh3	nh2	oh	2.48E-13	1.81	2194.00	4
о	h3co	h2co	oh	1.50E-10	.00	.00	4
h2co	oh	о	h3co	1.38E-10	.57	36346.00	4
о	ch3oh	h3co	oh	3.44E-11	.00	2572.00	4
h3co	oh	0	ch3oh	4.47E-13	.27	5582.00	4
0	h2co	hco	oh	1.78E-11	.57	1390.00	4
hco	oh	о	h2co	2.73E-13	.85	8482.00	4
о	\mathbf{cs}	со	s	2.71E-10	.00	760.00	4
со	s	о	\mathbf{cs}	4.27E-10	.16	44352.00	4
о	$^{\rm sh}$	s	oh	1.74E-11	.67	956.00	4
s	oh	о	$^{\rm sh}$	2.61E-11	.81	10129.00	4
о	h2s	$^{\rm sh}$	oh	2.98E-12	1.62	1462.00	4
$^{\rm sh}$	$^{\rm oh}$	о	h2s	2.91E-13	1.96	7156.00	4
о	so2	so	o2	8.30E-12	.00	9801.00	4
о	ocs	co2	s	8.30E-11	.00	5530.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
co2	s	0	ocs		2.56E-10	.23	32818.00	4
0	ocs	so	со		3.98E-11	.00	2401.00	4
so	со	0	ocs		5.19E-13	.99	28083.00	4
0	c2h4	oh	c2h3		1.35E-12	1.91	1880.00	4
0	c2h4	ch3	hco		2.42E-12	1.35	372.00	4
ch3	hco	0	c2h4		6.13E-15	2.08	13476.00	4
0	c2h4	ch2	h2co		3.66E-12	.66	518.00	4
ch2	h2co	0	c2h4		1.37E-14	1.65	2313.00	4
0	c2h4	ch2	hco	h	1.33E-12	1.44	267.00	4
0	c2h3	oh	c2h2		8 30E-12	00	00	4
oh	c2h2	0	c2h3		1.23E-11	25	33934.00	4
0	c2h3	hco	ch2		8 30F-12	.20	00	4
hco	ch2	0	c2h3		1.08E-13	95	13440.00	4
0	c2h3	ch3	<u></u>		8 30E-12	.00	00	4
ch3	C2110	0	c2h3		2.66E-12	1.08	61188.00	4
0	c3h3	c-c3h2	c2115		2.00E-12 7.60E-11	00	01100.00	4
c-c3h2	oh	0	c3h3		$2.44F_{-11}$	1 11	9466.00	4
0	ch	0	сэнэ ь		2.44E-11 6 50F 11	00	00	4
0	h	0	ch		0.59E-11 2.83E-00	03	.00	4
0	n ch	0	ch		2.65E-09	.05	2281.00	4
0	ch	C	oli		2.52E-11	.00	12262.00	4
C	oli	0	cii h	h	2.25E-11	.24	13202.00	4
0	ch2	0	11 1.0	11	1.21E-10	.00	.00	4
0	CH2	co	112 ah 9		0.50E-11	.00	.00	4
со	n2	0	cn2		1.45E-09	.21	4650.00	4
0 ah	cn2	cn	on		2.01E-10	.00	4050.00	4
cn	on	0	cn2		5.20E-11	.15	5396.00	4
0	cn2	nco h D - r	n L		5.00E-11	.00	.00	4
0	cn3	n2co	n -1-2		1.40E-10	.00	.00	4
h2co	n	0	ch3	1	3.37E-09	22	34645.00	4
0	ch3	co	h2	h	3.60E-11	.00	202.00	4
0	cn4	ch3	on		1.73E-12	2.20	3865.00	4
n	02	no	0		4.50E-12	1.00	3270.00	4
n	oh	0	nh		1.88E-11	.10	10701.00	4
n	nh	n2	h		5.00E-11	.00	.00	4
n	со	cn	0		3.84E-09	.00	35993.00	4
n	hco	hcn	0		1.69E-10	.00	.00	4
hcn	0	n	hco		1.08E-09	18	15750.00	4
n	hco	со	nh		5.72E-12	.50	995.00	4
со	nh	n	hco		1.80E-12	1.08	32987.00	4
n	h2o	nh	oh		6.08E-11	1.20	19305.00	4
n	ch3oh	hno	ch3		3.99E-10	.00	4331.00	4
hno	ch3	n	ch3oh		1.71E-11	.15	6885.00	4
n	hno	no	nh		2.88E-12	.50	1007.00	4
no	$\mathbf{n}\mathbf{h}$	n	hno		1.21E-13	1.03	15892.00	4

Tabela E.2 - Continuação

Rea	gentes		Produtos		γ	α	β	Tipo de Reação
n	co2	no	со		3.20E-13	.00	1710.00	4
no	со	n	co2		6.35E-16	.90	13180.00	4
n	nh2	n2	h	h	1.15E-10	.00	.00	4
n	cs	s	cn		3.80E-11	.50	1160.00	4
s	cn	n	cs		1.37E-11	.60	5592.00	4
n	$^{\rm sh}$	s	nh		1.73E-11	.50	9061.00	4
s	$\mathbf{n}\mathbf{h}$	n	$^{\rm sh}$		1.55E-11	.56	6693.00	4
n	SO	no	s		1.50E-11	.00	3680.00	4
n	c2h4	hcn	ch3		3.69E-14	.00	161.00	4
hcn	ch3	n	c2h4		5.93E-16	.55	29014.00	4
n	c2h3	hcn	ch2		3.32E-11	.00	.00	4
hcn	ch2	n	c2h3		2.74E-12	.77	29190.00	4
n	c2h3	nh	c2h2		1.22E-11	.00	.00	4
nh	c2h2	n	c2h3		1.09E-11	.17	22394.00	4
n	c3h3	hcn	c2h2		1.66E-11	.00	.00	4
hcn	c2h2	n	c3h3		2.18E-11	.67	54694.00	4
n	ch4	hcn	h2	h	6.51E-14	.00	.00	4
n	$^{\rm ch}$	cn	h		1.66E-10	09	.00	4
cn	h	n	ch		1.63E-09	12	49578.00	4
n	$^{\rm ch}$	с	$^{\mathrm{nh}}$		3.04E-11	.65	1207.00	4
с	$\mathbf{n}\mathbf{h}$	n	ch		1.61E-11	.81	548.00	4
n	ch2	hcn	h		4.02E-11	.17	.00	4
hcn	h	n	ch2		3.93E-09	50	61703.00	4
n	ch2	hnc	h		4.02E-11	.17	.00	4
hnc	h	n	ch2		2.24E-09	54	54510.00	4
n	ch2	nh	ch		9.96E-13	.00	20382.00	4
nh	$^{\rm ch}$	n	ch2		1.19E-13	.07	9588.00	4
s	c2	cs	с		1.00E-10	.00	.00	4
cs	с	s	c2		1.25E-10	.27	13437.00	4
s	oh	so	h		6.59E-11	.00	.00	4
so	h	s	oh		8.09E-10	45	11193.00	4
s	h2s	$^{\rm sh}$	$^{\rm sh}$		1.38E-10	.00	3701.00	4
s	ch4	$^{\rm sh}$	ch3		3.39E-10	.00	10019.00	4
s	c3	c2	cs		5.00E-12	.00	900.00	4
c2	CS	s	c3		2.14E-12	.01	1497.00	4
s	nh3	nh2	$^{\rm sh}$		2.48E-13	1.81	2194.00	4
s	hcn	$^{\rm sh}$	cn		6.21E-10	.00	12441.00	4
s	$^{\rm ch}$	cs	h		6.59E-11	.00	.00	4
cs	h	s	$^{\rm ch}$		1.79E-09	13	45147.00	4
s	$^{\rm ch}$	$^{\rm sh}$	с		2.52E-11	.00	2381.00	4
$^{\rm sh}$	с	s	$^{\rm ch}$		1.49E-11	.10	4089.00	4
s	ch2	cs	h2		8.30E-11	.00	.00	4
cs	h2	s	ch2		9.15E-10	.05	46607.00	4
s	ch3	h2cs	h		1.40E-10	.00	.00	4

Tabela E.2 - Continuação

h2cshsch3 $9.31E-10$ 42 11170.00 4sso2sososo $9.76E-12$ $.00$ 4545.00 4cho2hcoo $7.11E-12$ $.42$ 40.00 4hcoocho2 00 hco 4hcoocho2 $1.62E-11$ $.18$ 36830.00 4cho2cooh $1.07E-11$ $.42$ 40.00 4cho2co2h $1.07E-11$ $.42$ 40.00 4cho2co2h $1.07E-11$ $.42$ 40.00 4co2hcho2 00 $3.94E-08$ 36 93161.00 4cho2cooh $7.11E-12$ $.42$ 40.00 4cho2cooh $7.11E-12$ $.42$ 40.00 4cho2cooh $7.11E-12$ $.42$ 40.00 4cho2cooh $7.11E-12$ $.42$ 40.00 4chsocosh 0.0 0.00 4chsocosh $1.66E-11$ $.00$ $.00$ 4chc2h3ch2c2h2 $8.30E-11$ $.34$ 68373.00 4chc2h3ch2c2h2 $8.30E-11$ $.00$ $.00$ 4	ão
sso2soso $9.76E-12$ $.00$ 4545.00 4 ch $o2$ hco o $7.11E-12$ $.42$ 40.00 4 hco o ch $o2$ $1.62E-11$ $.18$ 36830.00 4 ch $o2$ co o h $1.07E-11$ $.42$ 40.00 4 ch $o2$ co2 h $1.07E-11$ $.42$ 40.00 4 ch $o2$ co2 h $1.07E-11$ $.42$ 40.00 4 co2 h ch $o2$ $3.94E-08$ 36 93161.00 4 ch $o2$ co oh $7.11E-12$ $.42$ 40.00 4 ch $o2$ co oh $7.11E-12$ $.42$ 40.00 4 ch so co sh ch $o2$ $so394E-08$ 36 93161.00 4 ch $so2$ co sh $7.11E-12$ $.42$ 40.00 4 ch so co sh ch $so3300$ 4 ch so co sh $1.66E-11$ $.00$ $.00$ 4 ch ch so $so3387E-11$ $.34$ 68373.00 4 ch $c2h3$ $ch2$ $c2h2$ $8.30E-11$ $.00$ $.00$ 4	
ch $o2$ hco o $7.11E-12$ $.42$ 40.00 4 hco o ch $o2$ $1.62E-11$ $.18$ 36830.00 4 ch $o2$ co o h $1.07E-11$ $.42$ 40.00 4 ch $o2$ $co2$ h $1.07E-11$ $.42$ 40.00 4 ch $o2$ $co2$ h $1.07E-11$ $.42$ 40.00 4 ch $o2$ $co2$ h $.107E-11$ $.42$ 40.00 4 ch $o2$ co oh $7.11E-12$ $.42$ 40.00 4 ch $o2$ co oh $7.11E-12$ $.42$ 40.00 4 ch $o2$ co oh $7.11E-12$ $.42$ 40.00 4 ch so co sh ch $o2$ sh $sh5E-12$ $.84$ 80363.00 4 ch so co sh ch so $3.87E-11$ $.00$ $.00$ 4 ch $c2h3$ $ch2$ $c2h2$ $8.30E-11$ $.00$ $.00$ 4	
hcoocho2 $1.62E-11$ $.18$ 36830.00 4cho2cooh $1.07E-11$ $.42$ 40.00 4cho2co2h $1.07E-11$ $.42$ 40.00 4co2h $6h$ o2 $3.94E-08$ 36 93161.00 4cho2cooh $7.11E-12$ $.42$ 40.00 4coohcho2 $8.55E-12$ $.84$ 80363.00 4chsocosh $1.66E-11$ $.00$ $.00$ 4coshchso $3.87E-11$ $.34$ 68373.00 4chc2h3ch2c2h2 $8.30E-11$ $.00$ $.00$ 4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
ch o2 co oh 7.11E-12 .42 40.00 4 co oh ch o2 8.55E-12 .84 80363.00 4 ch so co sh 1.66E-11 .00 .00 4 co sh ch so 3.87E-11 .34 68373.00 4 ch c2h3 ch2 c2h2 8.30E-11 .00 .00 4	
co oh ch o2 8.55E-12 .84 80363.00 4 ch so co sh 1.66E-11 .00 .00 4 co sh ch so 3.87E-11 .34 68373.00 4 ch c2h3 ch2 c2h2 8.30E-11 .00 .00 4	
ch so co sh 1.66E-11 .00 .00 4 co sh ch so 3.87E-11 .34 68373.00 4 ch c2h3 ch2 c2h2 8.30E-11 .00 .00 4	
co sh ch so 3.87E-11 .34 68373.00 4 ch c2h3 ch2 c2h2 8.30E-11 .00 .00 4	
ch c2h3 ch2 c2h2 8.30E-11 .00 .00 4	
ch^2 c^2h^2 ch c^2h^3 $6.55E-10$ $.11$ 33188.00 4	
ch ch4 c2h4 h $1.06E-10 -1.03 -35.00 4$	
c2h4 h ch ch4 1.73E-08 -1.77 30483.00 4	
ch ch c2h h 2.49E-10 .00 .00 4	
c2h h ch ch 6.30E-0890 49101.00 4	
ch ch2 c2h2 h 6.64E-11 00 00 4	
c_{2h2} h ch ch2 $6.21E-07$ -1.33 65701.00 4	
ch $ch3$ $c2h3$ h $4.98E-11$ $.00$ $.00$ 4	
c_{2h3} h c_{h} c_{h3} $6.69E-09$ -1.05 27551.00 4	
ch2 $c2h2$ $c-c3h2$ $h2$ $5.00E-12$ $.00$ 3332.00 4	
c-c3h2 h2 $ch2$ $c2h2$ 2.55E-1019 20521.00 4	
ch2 $c2h2$ $c3h3$ h $1.50E-11$.00 3332.00 4	
c_{3h3} h c_{h2} c_{2h2} 1.18E-09 -1.33 10341.00 4	
ch2 $c2h$ ch $c2h2$ $3.01E-11$ $.00$ $.00$ 4	
ch c^{2h^2} ch^2 c^{2h} 1.11E-0943 16600.00 4	
ch2 $c2h3$ $c2h2$ $ch3$ $3.01E-11$ $.00$ $.00$ 4	
c_{2h2} c_{h3} c_{h2} c_{2h3} $c_{209E-09}$ -28 38150.00 4	
ch2 $ch4$ $ch3$ $ch3$ $7.14E-12$ $.00$ 5052.00 4	
ch2 $ch2$ $c2h2$ h h $3.32E-10$ $.00$ 5531.00 4	
ch^2 ch^2 c^2h^2 h^2 h^2 $6.16E-11$ 00 136.00 4	
c_{2h2} h_{2} c_{h2} c_{h2} c_{h2} $c_{2,33E-07}$ -1.15 67297.00 4	
ch2 $ch2$ $ch3$ ch $3.99E-10$.00 5001.00 4	
ch3 ch $ch2$ $ch2$ $3.51E-09$ 39 9963.00 4	
ch2 $ch2$ $c2h3$ h $3.32E-11$ $.00$ $.00$ 4	
$c^{2}h^{3}$ h ch^{2} ch^{2} $3.93E-08$ -1.44 32513.00 4	
ch^2 ch^3 c^2h^4 h $2.09E-10$ 00 00 4	
c_{2h4} h c_{h2} c_{h3} $1.35E_{-06}$ -1.21 32850.00 4	
$h_{1} = h_{2} = h_{2$	
$rac{1}{2}$ sh ch4 ch3 h2s 273F-12 87 8397 00 4	
ch3 sh s $ch4$ $3.27F-14$ 2.20 2240.00 4	
ch_3 $c2h_4$ ch_4 $c2h_3$ $6.91F-12$ 00 5601.00 4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
c2h4	h2	ch3	ch3		2.19E-06	65	44853.00	4
ch3	ch3	ch4	ch2		7.14E-12	.00	5053.00	4
ch4	c2h3	c2h4	ch3		3.72E-14	3.87	3266.00	4
c2	n2	cn	$^{\rm cn}$		2.49E-11	.00	21002.00	4
02	c2	со	со		1.10E-11	.00	382.00	4
c2	oh	со	$^{\rm ch}$		8.30E-12	.00	.00	4
со	$^{\rm ch}$	c2	oh		1.85E-11	.19	46148.00	4
c2	ch4	c2h	ch3		1.49E-11	.00	.00	4
c2h	ch3	c2	ch4		9.39E-13	13	4855.00	4
c2h	c2h3	c2h2	c2h2		1.60E-12	.00	.00	4
c2h2	c2h2	c2h	c2h3		4.67E-10	32	49788.00	4
c2h	ch4	c2h2	ch3		6.14E-12	1.13	264.00	4
c2h2	ch3	c2h	ch4		5.78E-12	1.17	14462.00	4
c4h	ch4	c4h2	ch3		1.69E-09	.00	619.00	4
c4h2	ch3	c4h	ch4		2.79E-09	26	16345.00	4
c2h3	c2h3	c2h4	c2h2		3.50E-11	.00	.00	4
c2h4	c2h2	c2h3	c2h3		1.25E-08	06	38486.00	4
02	$\mathbf{n}\mathbf{h}$	no	oh		2.54E-14	1.18	312.00	4
no	oh	02	nh		7.26E-15	1.35	27705.00	4
02	$\mathbf{n}\mathbf{h}$	hno	0		6.88E-14	2.07	3281.00	4
hno	0	02	$^{\mathrm{nh}}$		2.79E-13	1.63	4248.00	4
02	nh2	hno	oh		1.66E-11	.00	13233.00	4
hno	oh	o2	nh2		1.31E-11	18	19312.00	4
o2	cs	ocs	0		2.62E-16	.00	1862.00	4
ocs	0	o2	cs		1.09E-14	89	22548.00	4
02	cs	со	SO		1.40E-19	.00	.00	4
со	SO	o2	cs		7.56E-20	.10	46369.00	4
o2	$^{\rm sh}$	so	oh		1.66E-12	.00	5033.00	4
SO	oh	o2	$^{\rm sh}$		8.57E-13	.08	16982.00	4
02	SO	so2	0		1.11E-14	1.89	1540.00	4
o2	c2h2	hco	hco		6.64E-12	.00	14092.00	4
hco	hco	o2	c2h2		2.64E-14	.61	31134.00	4
02	c2h3	hco	hco	h	9.44E-11	-3.94	2521.00	4
02	ch2	со	oh	h	1.02E-12	.00	.00	4
o2	ch2	co2	h	h	1.20E-12	.00	.00	4
o2	ch2	h2co	0		4.82E-13	.00	.00	4
h2co	0	02	ch2		1.43E-11	37	30444.00	4
02	ch3	h2co	oh		1.74E-13	.00	2693.00	4
h2co	oh	02	ch3		1.11E-13	.16	28921.00	4
02	ch3	hco	h2o		3.54E-12	.00	1459.00	4
hco	h2o	02	ch3		4.17E-13	.33	42993.00	4
oh	co	co2	h		3.79E-13	.00	186.00	4
oh	nh	n	h2o		3.12E-12	1.20	.00	4
oh	 ph	h	hno		3.32E-11	.00	.00	4
			0					

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
oh	nh	о	nh2	2.93E-12	.10	5801.00	4
oh	nh	no	h2	3.32E-11	.00	.00	4
no	h2	oh	nh	7.28E-10	18	36523.00	4
oh	nh2	nh	h2o	1.41E-12	1.25	.00	4
oh	nh2	nh3	0	3.42E-13	.41	250.00	4
oh	hcn	co	nh2	1.07E-13	.00	5893.00	4
co	nh2	oh	hen	2.87E-14	.51	17021.00	4
oh	hcn	cn	h2o	2.21E-13	1.83	5180.00	4
oh	hnc	cn	h2o	2.49E-12	00	3865.00	4
cn	h?o	oh	hnc	1 12E-12	73	7893.00	4
oh	hno	h?o	no	1.12E-12 1.77E-12	1 10	168.00	4
h?o	nno	oh	hno	1.77E-12	1.15	34807.00	4
n20	hao	011	hlo	1.51E-12	1.03	00	4
011	hQa	co	haa	1.09E-10	.00	.00	4
co	1120 h.2	ul 0	h O -	1.14E-09	.50	00	4
on	nn3	nh2	h2o	1.53E-13	2.05	.00	4
on	h3co	h2co	h2o	4.00E-11	.00	.00	4
h2co	h2o	oh	h3co	4.45E-10	.46	44559.00	4
oh	ch3oh	h3co	h2o	7.73E-13	1.69	.00	4
h3co	h2o	oh	ch3oh	1.22E-13	1.85	11223.00	4
oh	cs	ocs	h	9.39E-14	1.12	800.00	4
ocs	h	oh	CS	1.48E-10	15	29902.00	4
oh	$^{\mathrm{sh}}$	s	h2o	1.66E-11	.00	.00	4
s	h2o	oh	$^{\rm sh}$	3.20E-10	.04	17385.00	4
oh	h2s	h2o	$^{\rm sh}$	6.56E-12	.36	94.00	4
h2o	$^{\rm sh}$	oh	h2s	7.78E-12	.59	14000.00	4
oh	c2h4	c2h3	h2o	3.40E-11	.00	2990.00	4
oh	c2h4	ch3	h2co	2.32E-12	.00	1636.00	4
ch3	h2co	oh	c2h4	3.85E-13	.45	7646.00	4
oh	c2h3	c2h2	h2o	5.00E-11	.00	.00	4
c2h2	h2o	oh	c2h3	9.54E-10	.15	42147.00	4
oh	c3h3	c2h3	hco	2.21E-11	.00	.00	4
c2h3	hco	oh	c3h3	3.07E-12	.60	5010.00	4
oh	ch4	ch3	h2o	3.69E-13	2.42	1163.00	4
oh	$^{\rm ch}$	hco	h	1.44E-11	.50	5001.00	4
hco	h	oh	$^{\rm ch}$	1.17E-09	13	50207.00	4
oh	ch2	$^{\rm ch}$	h2o	1.69E-12	2.00	1510.00	4
$^{\rm ch}$	h2o	oh	ch2	4.08E-12	2.04	10469.00	4
oh	ch2	h2co	h	2.61E-11	.00	.00	4
h2co	h	oh	ch2	2.78E-08	76	38861.00	4
oh	ch2	о	ch3	1.44E-11	.50	3001.00	4
о	ch3	oh	ch2	6.75E-10	03	7216.00	4
oh	ch3	ch2	h2o	4.98E-14	3.00	1399.00	4
ch2	h2o	oh	ch3	1.36E-14	3.43	5396.00	4
oh	ch3	h2co	h2	5.31E-15	.00	2530.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
h2co	h2	oh	ch3		2.60E-13	19	37889.00	4
oh	ch3	h3co	h		1.99E-14	.00	6991.00	4
oh	ch3	о	ch4		3.27E-14	2.20	2240.00	4
h2o	ch3	ch4	oh		2.32E-15	3.47	6683.00	4
h2o	c2h	c2h2	oh		7.87E-14	3.05	376.00	4
h2o	c2h3	c2h4	oh		1.22E-14	2.90	7479.00	4
h2o	hco	h2co	oh		8.62E-13	1.35	13147.00	4
h2o	nh	hno	h2		3.32E-11	.00	6971.00	4
h2o	$\mathbf{n}\mathbf{h}$	nh2	oh		1.83E-12	1.60	14092.00	4
h2o	n2	no	nh2		8.11E-10	-2.05	63143.00	4
со	o2	co2	0		8.09E-12	.00	23880.00	4
co2	0	со	o2		6.57E-10	82	28262.00	4
со	ch3	c2h2	oh		6.31E-11	.00	30431.00	4
со	hno	$^{\mathrm{nh}}$	co2		3.32E-12	.00	6193.00	4
nh	co2	со	hno		6.66E-11	38	9608.00	4
со	$^{\rm sh}$	ocs	h		4.15E-14	.00	7662.00	4
со	so2	so	co2		4.48E-12	.00	24311.00	4
so	co2	со	so2		2.72E-11	35	22212.00	4
co2	ch2	h2co	со		1.40E-14	.00	.00	4
h2co	со	co2	ch2		5.13E-15	.45	26062.00	4
hco	hno	h2co	no		1.00E-12	.00	1000.00	4
hco	hco	h2	со	со	3.64E-11	.00	.00	4
hco	hco	h2co	со		4.48E-11	.00	.00	4
h2co	со	hco	hco		1.63E-09	.39	36440.00	4
hco	h3co	ch3oh	со		2.01E-10	.00	.00	4
ch3oh	со	hco	h3co		8.61E-09	.40	40522.00	4
hco	h3co	h2co	h2co		3.01E-10	.00	.00	4
h2co	h2co	hco	h3co		1.80E-08	.29	29254.00	4
hco	ch3oh	h3co	h2co		2.45E-13	2.90	6597.00	4
hco	$^{\rm ch}$	со	ch2		2.87E-12	.70	500.00	4
со	ch2	hco	$^{\rm ch}$		7.58E-12	1.21	43286.00	4
hco	ch2	ch3	со		3.01E-11	.00	.00	4
ch3	со	hco	ch2		7.40E-10	.13	47748.00	4
hco	ch3	ch4	со		4.40E-11	.00	.00	4
ch4	со	hco	ch3		4.83E-09	.05	45188.00	4
hco	ch4	h2co	ch3		1.39E-13	2.85	11331.00	4
hco	c2h	c2h2	со		1.00E-10	.00	.00	4
c2h2	со	hco	c2h		1.03E-08	.09	59386.00	4
hco	c2h3	c2h4	со		1.50E-10	.00	.00	4
c2h4	со	hco	c2h3		1.90E-08	.35	48084.00	4
h2co	h3co	ch3oh	hco		7.86E-14	2.80	2950.00	4
h2co	ch2	hco	ch3		3.30E-13	.00	3270.00	4
hco	ch3	h2co	ch2		2.23E-13	26	14579.00	4
h2co	ch3	ch4	hco		1.34E-15	5.05	1636.00	4

Tabela E.2 - Continuação

Reage	entes		Produtos		γ	α	β	Tipo de Reação
h2co	c2h3	c2h4	hco		8.22E-14	2.81	2950.00	4
c2h4	hco	h2co	c2h3		3.02E-13	2.78	14595.00	4
h3co	h3co	ch3oh	h2co		8.00E-12	.00	.00	4
ch3oh	h2co	h3co	h3co		5.66E-10	.30	33336.00	4
h3co	h3co	h2co	h2co	h2	3.06E-11	70	.00	4
h3co	ch2	c2h4	oh		4.00E-11	.00	.00	4
c2h4	oh	h3co	ch2		9.82E-09	- 42	34552.00	4
h3co	ch2	ch3	h2co		2.01E-12	.00	.00	4
ch3	h2co	h3co	ch2		8.64E-11	.04	40562.00	4
h3co	ch3	ch4	h2co		1 41E-10	00	00	4
ch4	h2co	h3co	ch3		2.55E-08	- 05	38002.00	4
h3co	ch4	ch3oh	ch3		5.21E-15	5.00	7476.00	4
h3co	c2h2	c2h3	h2co		1 20E-12	00	4531.00	4
c2h3	h2co	h3co	c2h2		7.41E-13	32	6944.00	4
h3co	c2h3	c2h4	h2co		5.00E-11	.02	0044.00	4
c2h4	62115	h3co	c2h3		1 10F 08	.00	40800.00	4
ch3oh	ch2	ch?	h3co		1.10E-00	3.20	3600.00	4
ch3	h3co	ch3oh	ch2		9.57E 15	2.03	10836.00	4
ch3oh	ch3	ch4	h3co		2.57E-15	4.95	3380.00	4
ch2oh	alb	c114	h2ao		1.40E-15	4.50	00	4
and	6211	c2ll2	alb		2.41E 11	.00	.00	4
C2II2	115CO	chion	C211		2.41E-11	51	2600.00	4
cn3on	c2n3	C2n4	naco		4.47E-15	3.20	3009.00	4
c2n4	h3co	cn3on	c2h3		1.40E-14	3.16	11172.00	4
n2	ch2	ncn	nn		8.00E-12	.00	18002.00	4
hcn	nh	n2	ch2		2.27E-11	56	6086.00	4
nh	hno	nh2	no		1.44E-11	.50	00.	4
nh2	no	nh	hno		5.18E-12	.85	21313.00	4
nh	nh	n2	h	h	1.16E-09	.00	.00	4
nh	nh	n2	h2		4.98E-14	1.00	.00	4
n2	h2	nh	nh		6.17E-12	1.01	85873.00	4
nh	nh2	nh3	n		1.66E-11	.00	1007.00	4
nh3	n	nh	nh2		1.20E-09	23	15570.00	4
nh	nh3	nh2	nh2		5.25E-10	.00	13472.00	4
nh2	nh2	nh	nh3		6.25E-11	.05	5335.00	4
$\mathbf{n}\mathbf{h}$	$^{\rm ch}$	hcn	h		8.30E-11	.00	.00	4
hcn	h	nh	$^{\rm ch}$		7.21E-08	73	72497.00	4
$\mathbf{n}\mathbf{h}$	ch2	hcn	h	h	4.98E-11	.00	.00	4
$\mathbf{n}\mathbf{h}$	ch4	ch3	nh2		1.36E-10	.00	9820.00	4
$^{\mathrm{nh}}$	$^{\rm sh}$	n	h2s		3.12E-12	1.20	.00	4
$\mathbf{n}\mathbf{h}$	SO	no	$^{\rm sh}$		5.00E-11	.00	.00	4
no	$^{\rm sh}$	$^{\mathrm{nh}}$	SO		2.77E-11	.09	15443.00	4
nh2	h2o	nh3	$^{\rm oh}$		2.11E-13	1.90	5721.00	4
nh2	ch3oh	nh3	h3co		1.50E-15	.00	.00	4
nh3	h3co	nh2	ch3oh		8.39E-16	04	6034.00	4

Tabela E.2 - Continuação

Rea	gentes		Produtos	3	γ	α	β	Tipo de Reação
nh2	ch	hcn	h	h	4.98E-11	.00	.00	4
nh2	ch3	ch2	nh3		1.14E-13	1.87	3810.00	4
ch2	nh3	nh2	ch3		1.05E-13	2.09	2618.00	4
nh2	ch3	ch4	nh		7.43E-17	5.57	.00	4
nh2	ch4	ch3	nh3		2.90E-13	2.87	5380.00	4
nh2	sh	nh3	s		3.42E-13	41	250.00	4
nh3	ch3	ch4	nh2		8.95E-14	00	4852.00	4
no	no	n2	02		2.51E-11	00	30654.00	4
n2	02	no	no		4.96E-10	.02	52612.00	4
no	hco	0	hno		1 20E-11	00	00	4
0	hno	no	hco		9.50E-11	.06	17106.00	4
no	h2co	hno	hco		1.69E-11	.00	20542.00	4
no	ch		nh		1.33E-11	13	.00	4
co	nh	no	ch		5.60E-11	.12	52930.00	4
no	ch	cn	oh		1.66E-12	13	.00	4
cn	oh	no	ch		2.68E-12	.14	25310.00	4
no	$^{\rm ch}$	hcn	0		1.15E-10	13	.00	4
hcn	0	no	$^{\rm ch}$		9.23E-09	65	36688.00	4
no	$^{\rm ch}$	hco	n		9.97E-12	13	.00	4
hco	n	no	$^{\rm ch}$		1.34E-10	46	20938.00	4
no	ch2	hcn	oh		3.65E-12	.00	.00	4
hcn	oh	no	ch2		5.86E-11	37	37434.00	4
no	ch3	hcn	h2o		4.00E-12	.00	7901.00	4
hcn	h2o	no	ch3		1.76E-11	.06	49332.00	4
no	c2	cn	со		1.60E-10	.00	.00	4
cn	со	no	c2		5.76E-10	.46	71458.00	4
no	c2h	hcn	со		9.96E-11	.00	287.00	4
hcn	со	no	c2h		1.44E-09	.42	76612.00	4
no	c2h2	hcn	со	h	8.97E-12	.00	18973.00	4
no	s	SO	n		1.74E-10	.00	20202.00	4
hno	$^{\rm ch}$	no	ch2		1.73E-11	.00	.00	4
no	ch2	hno	$^{\rm ch}$		6.10E-12	.46	25680.00	4
hno	ch2	no	ch3		1.69E-11	.00	.00	4
no	ch3	hno	ch2		5.27E-11	.07	30642.00	4
cn	oh	hcn	о		1.00E-11	.00	1000.00	4
cn	oh	$\mathbf{n}\mathbf{h}$	со		9.96E-12	.00	.00	4
nh	со	cn	oh		2.60E-11	02	27620.00	4
cn	$\mathbf{n}\mathbf{h}$	hcn	n		2.93E-12	.50	1000.00	4
hcn	n	cn	$\mathbf{n}\mathbf{h}$		2.59E-10	20	23918.00	4
cn	cn	n2	c2		2.66E-09	.00	21600.00	4
cn	no	n2	со		1.60E-13	.00	.00	4
n2	со	cn	no		2.36E-12	.17	76970.00	4
cn	hno	hcn	no		3.01E-11	.00	.00	4
hcn	no	cn	hno		1.05E-10	18	37804.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
cn	$^{\rm sh}$	hcn	s	1.00E-11	.00	1000.00	4
cn	hco	hcn	со	1.00E-10	.00	.00	4
hcn	со	cn	hco	2.78E-09	12	54910.00	4
cn	h2o	hcn	oh	1.30E-11	.00	3755.00	4
cn	h2co	hcn	hco	6.71E-11	.00	412.00	4
cn	ch3oh	hcn	h3co	1.20E-10	.00	.00	4
hcn	h3co	cn	ch3oh	7.78E-11	52	14389.00	4
cn	ch4	hcn	ch3	2.32E-12	1.82	367.00	4
hcn	ch3	cn	ch4	5.86E-13	1.65	10090.00	4
cn	ch2	hcn	$^{\rm ch}$	5.30E-12	.00	2500.00	4
hcn	ch	cn	ch2	5.27E-11	64	14625.00	4
cn	ch3	hcn	ch2	9.18E-12	.70	1500.00	4
hcn	ch2	cn	ch3	1.04E-11	.45	8662.00	4
hcn	hco	h2co	cn	1.00E-11	.00	17202.00	4
SO	SO	so2	s	3.32E-12	.00	2013.00	4
$^{\rm sh}$	$^{\rm sh}$	h2s	s	4.00E-11	.00	.00	4
h2s	$^{\rm ch}$	h	h2cs	3.20E-10	.00	.00	4
h	h2cs	h2s	ch	7.36E-08	62	29506.00	4
$^{\rm sh}$	c2h	c2h2	s	3.01E-11	.00	.00	4
c2h2	s	$^{\rm sh}$	c2h	8.86E-09	43	25026.00	4
с	c2h2	c3	h2	1.45E-10	12	.00	4
c3	h2	с	c2h2	8.67E-12	.85	12018.00	4
с	c-c3h2	c4h	h	3.50E-10	.00	.00	4
c4h	h	с	h2c3	2.56E-08	73	41775.00	4
c4h	h	с	c-c3h2	2.60E-09	-1.10	20822.00	4
с	c2h	c3	h	9.66E-11	.00	.00	4
c3	h	с	c2h	5.28E-10	.36	27158.00	4
с	c3h	c4	h	9.00E-11	.00	.00	4
с	c4	c3	c2	8.97E-11	.00	.00	4
c3	c2	с	c4	4.29E-13	1.32	8933.00	4
$^{\rm ch}$	c2h2	c-c3h2	h	3.01E-11	.00	.00	4
c-c3h2	h	ch	c2h2	3.78E-09	37	15729.00	4
$^{\rm ch}$	c-c3h2	c4h2	h	2.91E-10	.00	.00	4
c2	c2h2	c4h	h	3.99E-10	.00	.00	4
c4h	h	c2	c2h2	1.71E-08	-1.07	4841.00	4
c2	c2h	c4	h	1.99E-10	.00	.00	4
c2	c2	c3	с	5.31E-10	.00	.00	4
c2h	c2h2	c4h2	h	1.50E-10	.00	.00	4
n	c2	с	cn	5.00E-11	.00	.00	4
n	c4	c3	cn	1.00E-10	.00	.00	4
c3	cn	n	c4	2.16E-13	1.69	26802.00	4
n	c3	c2	cn	1.00E-13	.00	.00	4
 c2	cn	p	c3	1.55E-14	.11	5029.00	4
n	cn	с	n2	1.00E-10	.18	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
0	c2h2	ch2	со		5.55E-13	1.67	916.00	4
ch2	со	0	c2h2		2.55E-15	3.03	23954.00	4
0	c2h	со	$^{\rm ch}$		1.00E-10	.00	.00	4
со	$^{\rm ch}$	0	c2h		1.70E-11	.93	39868.00	4
о	c3h	со	c2h		1.00E-10	.00	.00	4
со	c2h	0	c3h		3.46E-12	03	56987.00	4
0	c-c3h	со	c2h		1.00E-10	.00	.00	4
0	c2	со	с		2.00E-10	12	.00	4
0	c4	со	c3		2.00E-10	12	.00	4
0	c3	со	c2		5.00E-12	.00	900.00	4
0	cn	со	n		3.69E-11	.00	.00	4
h	c2h2	c2h	h2		3.80E-10	.00	13634.00	4
h	c4h2	c4h	h2		3.80E-10	.00	13634.00	4
h	c-c3h2	c-c3h	h2		3.80E-10	.00	13634.00	4
h	c4h2	c2h2	c2h		9.96E-10	.00	7750.00	4
h	c2h	c2	h2		8.40E-11	.00	14333.00	4
h	c4h	c4	h2		8.40E-11	.00	14333.00	4
h	hcn	cn	h2		6.33E-10	.00	12451.00	4
h2	c2h	c2h2	h		2.90E-12	1.75	539.00	4
h2	c4h	c4h2	h		2.90E-12	1.75	539.00	4
h2	c-c3h	c- $c3h2$	h		2.90E-12	1.75	539.00	4
h2	c2	c2h	h		1.78E-10	.00	1469.00	4
h2	c4	c4h	h		1.78E-10	.00	1469.00	4
h2	cn	hcn	h		1.17E-12	2.31	1188.00	4
ch3	c2h	c3h3	h		4.00E-11	.00	.00	4
oh	c2h	ch2	со		3.01E-11	.00	.00	4
oh	c2h	c2h2	0		3.01E-11	.00	.00	4
oh	c4h	c4h2	0		3.01E-11	.00	.00	4
oh	c2h	c2	h2o		5.98E-12	2.00	4026.00	4
c2	h2o	oh	c2h		5.85E-12	2.64	5728.00	4
oh	c2h2	c2h	h2o		8.73E-13	2.14	8587.00	4
oh	c2h2	ch3	со		1.05E-14	1.62	368.00	4
h3co	c2h	c3h3	oh		2.01E-11	.00	.00	4
c3h3	$^{\rm oh}$	h3co	c2h		2.53E-10	58	20349.00	4
h3co	c2h	c2h2	h2co		5.99E-11	.00	.00	4
h3co	c4h	c4h2	h2co		5.99E-11	.00	.00	4
с	ch2	$^{\rm ch}$	$^{\rm ch}$		2.69E-12	.00	23550.00	4
$^{\rm ch}$	ch4	ch3	ch2		2.28E-11	.70	3000.00	4
ch2	no	h2co	n		2.70E-12	.00	3500.00	4
0	nh2	no	h2		8.30E-12	.00	.00	4
0	c2h2	c2h	oh		5.30E-09	.00	8520.00	4
nh2	no	n2	$^{\rm oh}$	h	1.49E-12	.00	.00	4
c2	ch4	c3h3	h		1.50E-11	.00	.00	4
h	p-c3h4	c3h3	h2		4.48E-12	2.00	2516.00	4

Tabela E.2 - Continuação

h p-c3h4 | c3h3 Continua na próxima página...

Reag	entes		Produtos		γ	α	β	Tipo de Reação
c3h3	h2	h	p-c3h4		7.67E-14	2.24	9083.00	4
h	p-c3h4	a-c3h4	h		8.67E-10	26	3825.00	4
a-c3h4	h	h	p-c3h4		1.87E-09	36	3221.00	4
h	a-c3h4	c3h3	h2		4.48E-12	2.00	2516.00	4
c3h3	h2	h	a-c3h4		3.55E-14	2.34	9687.00	4
о	p-c3h4	c2h3	hco		5.31E-12	.00	1012.00	4
c2h3	hco	о	p-c3h4		6.22E-15	.81	11875.00	4
о	p-c3h4	c2h4	со		2.49E-11	.00	1057.00	4
c2h4	со	0	p-c3h4		3.68E-12	1.16	60004.00	4
0	p-c3h4	c3h3	oh		1.28E-14	2.16	2431.00	4
c3h3	oh	0	p-c3h4		1.08E-16	2.37	8284.00	4
о	p-c3h4	c2h2	со	h2	2.49E-11	.00	1062.00	4
о	a-c3h4	h2co	c2h2		1.66E-12	.00	.00	4
h2co	c2h2	0	a-c3h4		8.74E-14	.88	38309.00	4
о	a-c3h4	со	c2h4		1.30E-11	.00	806.00	4
со	c2h4	0	a-c3h4		8.87E-13	1.26	60357.00	4
$^{\rm ch}$	c2h4	a-c3h4	h		3.49E-10	33	14.00	4
a-c3h4	h	$^{\rm ch}$	c2h4		2.32E-07	-1.55	29201.00	4
ch2	c2h3	a-c3h4	h		4.98E-11	.00	.00	4
a-c3h4	h	ch2	c2h3		1.50E-06	-1.39	34486.00	4
ch3	c2h2	a-c3h4	h		7.15E-13	.91	10418.00	4
a-c3h4	h	ch3	c2h2		3.09E-10	20	6754.00	4
ch3	c2h2	p-c3h4	h		3.03E-13	1.86	5838.00	4
p-c3h4	h	ch3	c2h2		6.05E-11	.85	2778.00	4
ch3	a-c3h4	c3h3	ch4		3.32E-13	.00	3875.00	4
c3h3	ch4	ch3	a-c3h4		2.55E-13	31	11988.00	4
ch3	p-c3h4	c3h3	ch4		1.16E-15	3.50	2818.00	4
c3h3	ch4	ch3	p-c3h4		1.93E-15	3.09	10327.00	4
c2h	p-c3h4	c4h2	ch3		1.26E-10	30	.00	4
c4h2	ch3	c2h	p-c3h4		6.70E-10	50	18771.00	4
c2h3	c3h3	c2h2	p-c3h4		3.31E-11	50	.00	4
c2h2	p-c3h4	c2h3	c3h3		6.18E-09	45	28081.00	4
c2h3	p-c3h4	c3h3	c2h4		1.71E-15	3.50	2365.00	4
c3h3	c2h4	c2h3	p-c3h4		3.46E-15	3.40	12771.00	4
oh	a-c3h4	c3h3	h2o		2.99E-12	2.00	503.00	4
c3h3	h2o	oh	a-c3h4		1.41E-13	2.20	15173.00	4
$^{\rm oh}$	a-c3h4	h2co	c2h3		4.51E-12	35	.00	4
h2co	c2h3	$^{\rm oh}$	a-c3h4		1.60E-13	.28	4374.00	4
$^{\rm oh}$	a-c3h4	hco	c2h4		4.51E-12	35	.00	4
hco	c2h4	oh	a-c3h4		5.54E-13	.24	16019.00	4
oh	p-c3h4	c3h3	h2o		2.99E-12	2.00	503.00	4
c3h3	h2o	oh	p-c3h4		3.05E-13	2.10	14569.00	4
с	c2h2	c3h	h		1.45E-10	12	.00	4
c3h	h	с	c2h2		1.10E-09	.28	5018.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
с	h2c3	c4h	h	3.50E-10	.00	.00	4
c4	h	с	c3h	1.80E-09	-1.42	18183.00	4
с	c-c3h	c4	h	9.00E-11	.00	.00	4
$^{\rm ch}$	c2h2	c3h	h2	1.99E-11	.00	.00	4
c3h	h2	ch	c2h2	2.71E-10	.67	16612.00	4
$^{\rm ch}$	h2c3	c4h2	h	2.91E-10	.00	.00	4
c4h2	h	ch	h2c3	6.10E-06	-1.37	70037.00	4
$^{\rm ch}$	c2h	c3h	h	8.47E-11	.00	.00	4
$^{\rm ch}$	c3h	c4h	h	8.47E-11	.00	.00	4
0	c4h	со	c3h	1.00E-10	.00	.00	4
со	c3h	0	c4h	3.48E-11	1.90	57206.00	4
h	h2c3	c3h	h2	3.80E-10	.00	13634.00	4
h	c3h	c3	h2	1.66E-10	.00	5033.00	4
h2	c3h	h2c3	h	2.90E-12	1.75	539.00	4
h2	c3	c3h	h	2.86E-12	21	12355.00	4
oh	c3h	c2h2		2.00E 12	.21	00	4
°.	c2h	c2n2	h	1.00E-10	.00	.00	4
5	c2h	c25	11	1.00E-10	.00	.00	4
c2h	con	0211	c3h	3 20F 12	40	.00	4
0211	cs a a ² h	and	2511	1.00E 10	40	15507.00	4
s 12	C-C5II	-01	CS	1.00E-10	.00	.00	4
псэ	- 41-	C211	co	1.70E-11	.00	.00	4
0	c4n	nc3	со	8.50E-12	.00	.00	4
с	c2h2	hc3	h	1.45E-10	-0.12	.00	4
с	hc3	c4	h	1.00E-10	0.00	0.0	4
c2h	c-c3h2	c5h2	h	1.06E-10	25	.00	4
c2	c2h4	c4h3	h	3.50E-10	.00	.00	4
c4h3	с	c5h2	h	3.10E-10	.00	.00	4
с	p-c3h4	c4h3	h	2.70E-10	11	.00	4
с	a-c3h4	c4h3	h	2.70E-10	11	.00	4
c2h	c4h2	c6h2	h	1.06E-10	25	.00	4
c2h2	c4h	c6h2	\mathbf{h}	1.50E-10	.00	.00	4
с	c4h2	c5h	h	6.50E-10	.00	.00	4
0	c5h	c4h	со	1.70E-11	.00	.00	4
с	c4h	c5	h	1.00E-10	.00	.00	4
n	c5	cn	c4	1.00E-10	.00	.00	4
с	c5h2	c6h	h	5.30E-10	.00	.00	4
n	c6h	cn	c5h	1.00E-13	.00	.00	4
0	c6h	c5h	со	1.70E-13	.00	.00	4
с	c5h4	c6h2	h2	6.50E-10	.00	.00	4
с	c5h	c6	h	1.00E-10	.00	.00	4
о	c6	c5	со	1.00E-10	.00	.00	4
n	c6	cn	c5	1.00E-10	.00	.00	4
с	c6	c2	c5	1.00E-13	.00	.00	4
с	c6h	c7	h	2.00E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
n	c7	cn	c6		1.00E-13	.00	.00	4
0	c7	c6	со		5.00E-12	.00	900.00	4
с	c6h2	c7h	h		7.40E-10	.00	.00	4
о	m c7h	c6h	со		1.70E-11	.00	.00	4
c2h	c6h2	c8h2	h		1.06E-10	25	.00	4
с	c8	c2	c7		1.00E-13	.00	.00	4
n	c8	cn	c7		1.00E-10	.00	.00	4
0	c8	c7	со		1.00E-10	.00	.00	4
n	c8h	cn	m c7h		1.00E-10	.00	.00	4
о	c8h	c7h	со		1.70E-11	.00	.00	4
о	c9	c8	со		5.00E-12	.00	900.00	4
n	c9	cn	c8		1.00E-13	.00	.00	4
с	c8h	c9	h		2.00E-10	.00	.00	4
ch3	ch3	c2h5	h		1.46E-11	.10	5335.00	4
n	c2h5	c2h4	nh		7.15E-11	.00	.00	4
c	c2h5	p-c3h4	h		2.00E-10	.00	.00	4
C C	c2h5	p con i	h		2.00E 10	.00	.00	4
n	c2h	c2n	h		1.70E-11	.00	.00	4
	c2n	c211	cn		1.00E-10	.00	.00	4
n	c2n	cn	cn		1.00E-10	.00	.00	4
	c211	00	cn		6.00E 12	.00	.00	4
n	c211	hlen	h		7.40E 11	.00	.00 8.40	4
	b Dom	112CH	11 120		2.00E 10	.20	0.40	4
C L	h D arr	C211	112		2.00E-10	.00	.00	4
n	n2cn	ncn	n2		1.00E-10	.00	.00	4
n	h2cn	ncn	nn		1.00E-10	.00	200.00	4
n	c3n	c3n	h		1.70E-11	.00	.00	4
c	c3n	c3	cn		1.00E-13	.00	.00	4
c2h	cn	hc3n	photon		1.00E-16	.00	.00	3
c2h	hcn	hc3n	h		5.30E-12	.00	770.00	4
c2h	hnc	hc3n	h		5.30E-12	.00	770.00	4
cn	c2h2	hc3n	h		2.72E-10	52	19.00	4
ch3	cn	h3c2n	photon		1.00E-16	.00	.00	3
n	c4h	c4n	h		1.70E-11	.00	.00	4
n	c4n	cn	c3n		1.00E-10	.00	.00	4
О	c4n	c3n	со		6.00E-12	.00	.00	4
oh	c2h3	c2h4o	photon		5.00E-21	.00	10.00	3
$^{\rm ch}$	ch4o	ch3	h2co		2.49E-10	-1.93	.00	4
c2h4o2	c2h2	c4h6o2	photon		5.00E-07	50	.00	3
c2h4o2	c-c3h2	c4h6o2	с		1.00E-08	.00	.00	4
c2h4o2	c2h3	c4h6o2	h		1.00E-08	.00	.00	4
c4h6o2	h	c4h3	h2o	h2o	1.00E-10	.00	.00	4
c4h6o2	nh3	c4h5n	h2o	h2o	5.00E-07	50	.00	4
c4h5n	h	h3c2n	c2h3		1.00E-10	.00	.00	4
c3h3	h3c2n	c4h5n	$^{\rm ch}$		1.00E-08	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
c-c3h2	h3c2n	c4h5n	с	1.00E-08	.00	.00	4
с	c7n	c7	cn	1.00E-13	.00	.00	4
n	c7h	c7n	h	1.70E-11	.00	.00	4
n	c7n	c2n	c5n	1.00E-10	.00	.00	4
с	c5n	c5	cn	1.00E-13	.00	.00	4
n	c5h	c5n	h	1.70E-11	.00	.00	4
n	c5n	cn	c4n	1.00E-10	.00	.00	4
о	c5n	c4n	со	4.00E-11	.00	.00	4
cn	hnc	c2n2	h	2.50E-17	1.71	770.00	4
cn	hcn	c2n2	h	2.00E-10	.00	.00	4
с	c2n2	cn	c2n	3.00E-11	.00	.00	4
h	c2n2	hcn	cn	1.48E-10	.00	3588.00	4
n	c2n2	n2	c2n	1.00E-11	.00	.00	4
c2h	c2n2	hc3n	cn	2.00E-13	.00	.00	4
n	c2h3	c2h2n	h	6.20E-11	.00	.00	4
с	c2h2n	hc3n	h	1.00E-10	.00	.00	4
c4h	c2n2	hc5n	cn	2.00E-13	.00	.00	4
cn	c4h2	hc5n	h	2.72E-10	52	.00	4
n	c5h2	hc5n	h	1.00E-13	.00	.00	4
cn	c6h2	hc7n	h	2.72E-10	52	19.00	4
oh	h2co	ch2o2	h	2.00E-13	.00	.00	4
ch3no	s	ch3ns	0	5.00E-07	.50	.00	4
$^{\rm ch}$	nh3	ch3n	h	1.69E-10	41	19.00	4
c2n2	ch3n	c3h3n3	photon	5.00E-07	.50	.00	3
$^{\rm ch}$	c3h3n3	c4h4n	n2	5.00E-07	.50	.00	4
ch2	c3h3n3	c4h5n	n2	5.00E-07	.50	.00	4
$^{\rm ch}$	c4h5n	c5h5n	h	4.00E-10	.00	.00	4
ch3	ch3	c2h6	photon	1.68E-24	-7.00	1390.00	3
oh	c2h5	c2h6	0	1.04E-18	8.80	250.00	4
cn	c2h6	c2h5	hcn	4.80E-12	2.08	-484.00	4
c3n	c2h6	c5h5n	h	4.00E-10	.00	.00	4
cn	c2h4	c3h3n	h	1.25E-10	.70	30.00	4
ch3	cn	c2h3n	photon	1.00E-16	.00	.00	3
cn	p-c3h4	c4h3n	h	4.10E-10	.00	.00	4
cn	a-c3h4	c4h3n	h	4.10E-10	.00	.00	4
$^{\rm ch}$	no	ocn	h	3.49E-11	10	.00	4
cn	no	ocn	n	1.62E-10	.00	21205.00	4
cn	02	ocn	0	2.02E-11	20	-31.90	4
n	hco	ocn	h	1.00E-10	.00	.00	4
0	m c7n	c6	ocn	4.00E-11	.00	.00	4
0	h2cn	ocn	h2	1.00E-10	.00	.00	4
0	hcn	ocn	h	1.36E-12	1.40	3693.00	4
oh	cn	ocn	h	7.00E-11	.00	.00	4
oh	c2n2	hcn	ocn	3.11E-13	.00	1450.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
с	ocn	со	cn		1.00E-10	.00	.00	4
h	ocn	hcn	0		1.87E-11	.90	2924.00	4
h	ocn	$\mathbf{n}\mathbf{h}$	со		1.26E-10	.00	515.00	4
h	ocn	oh	cn		1.00E-10	.00	.00	4
no	ocn	n2	co2		4.55E-11	-1.30	242.00	4
02	ocn	co2	no		1.32E-12	.00	.00	4
0	ocn	no	со		1.00E-10	.00	.00	4
0	ocn	o2	cn		4.02E-10	-1.40	3501.00	4
no	o2	no2	0		2.80E-12	.00	23400.00	4
02	ocn	no2	со		8.10E-11	.00	773.00	4
0	hno	no2	h		1.00E-12	.00	.00	4
oh	no	no2	h		5.20E-12	.00	15100.00	4
ch2	no2	h2co	no		6.91E-11	.00	.00	4
ch3	no2	h2co	hno		5.41E-12	.00	.00	4
cn	no2	no	ocn		7.02E-11	30	8.30	4
со	no2	co2	no		1.48E-10	.00	17000.00	4
h	no2	no	oh		1.40E-10	.00	740.00	4
n	no2	n2	0	0	2.41E-12	.00	.00	4
n	no2	no	no		1.00E-12	.00	.00	4
n	no2	o2	n2		1.00E-12	.00	.00	4
nh	no2	hno	no		2.44E-11	-1.90	56.90	4
0	no2	$^{\rm o2}$	no		9.82E-12	20	5.20	4
n2	o2	n2o	0		1.00E-10	.00	55200.00	4
n	hno	n2o	h		1.43E-12	.50	1500.00	4
n	no2	n2o	0		3.00E-12	.00	.00	4
$\mathbf{n}\mathbf{h}$	no2	n2o	oh		1.70E-11	-1.90	56.90	4
$\mathbf{n}\mathbf{h}$	no	n2o	h		5.33E-11	80	40.00	4
no	hno	n2o	oh		1.41E-11	.00	14890.00	4
no	no	n2o	0		7.22E-12	.00	33155.00	4
no	ocn	n2o	со		3.47E-11	-1.30	242.00	4
со	n2o	co2	n2		1.62E-13	.00	8780.00	4
h	n2o	n2	oh		5.13E-14	3.10	3603.00	4
h	n2o	no	nh		4.96E-07	-2.20	18700.00	4
no	n2o	no2	n2		2.92E-13	2.20	23292.00	4
0	n2o	no	no		1.15E-10	.00	13400.00	4
0	n2o	o2	n2		1.66E-10	.00	14100.00	4
oh	n2o	hno	no		1.04E-17	4.30	12623.00	4
ch2	no	hnco	h		3.65E-12	.00	.00	4
hnco	с	со	hnc		1.00E-12	.00	.00	4
hocn	c	co	hcn		3.33E-11	.00	.00	4
hoen	0	oh	ocn		3.33E-11	.00	2470.00	4
hx	h	x	h2		1.00E-10	.00	.00	4
hx	c2h	x	c2h2		1.00E-10	.00	.00	4
x	hcn	heny	photon		1.00E-10	.00	.00	3
n nh o n2 n nh nh no no co h h no co h h no o o h ch2 hnco hocn hocn hocn hx hx x	no2 no2 o2 hno no2 no2 no no no no n20 n20 n20 n20 n20 n20 n20 n20 n20 n20	02 hno 02 n20 n20 n20 n20 n20 n20 n20 n20 n20	n2 no o h o o h o h o h co n2 o h nh n2 no n2 o h nh n2 no h h nc h cn o cn h h cn b cn h h c c 2 n2 o h h n b c b h c c c n h c c c c n h c c c n h c c c n h c c c c		1.00E-12 2.44E-11 9.82E-12 1.00E-10 1.43E-12 3.00E-12 1.70E-11 5.33E-11 1.41E-11 7.22E-12 3.47E-11 1.62E-13 5.13E-14 4.96E-07 2.92E-13 1.15E-10 1.66E-10 1.04E-17 3.65E-12 1.00E-12 3.33E-11 1.00E-10 1.00E-10 1.00E-10	.00 -1.90 .20 .00 .50 .00 -1.90 .00 -1.90 .00 .00 .00 .00 .00 .00 .00 .00 .00	00 56.90 5.20 1500.00 1500.00 26.90 40.00 14890.00 33155.00 242.00 3603.00 18700.00 23292.00 13400.00 12623.00 12623.00 12623.00 12623.00 200 .00 .00 2470.00 .00 .00	

Tabela E.2 - Continuação

Reagentes		Produtos			γ	α	β	Tipo de Reação
hcnx	c2h2	h2c3nx	h		1.00E-10	.00	.00	4
h2c3nx	c2h4	hx	c5h5n		1.00E-10	.00	.00	4
hy	h	у	h2		1.00E-10	.00	.00	4
hy	c2h	у	c2h2		1.00E-10	.00	.00	4
у	hcn	hcny	photon		1.00E-10	.00	.00	3
hcny	c2h2	h2c3ny	h		1.00E-10	.00	.00	4
h2c3ny	c2h4	hy	c5h5n		1.00E-10	.00	.00	4
hw	h	w	h2		1.00E-10	.00	.00	4
hw	c2h	w	c2h2		1.00E-10	.00	.00	4
w	hcn	hcnw	photon		1.00E-10	.00	.00	3
hcnw	c2h2	h2c3nw	h		1.00E-10	.00	.00	4
h2c3nw	c2h4	hw	c5h5n		1.00E-10	.00	.00	4
h	ch+	c+	h2		7.50E-10	.00	.00	4
h+	ch2	ch+	h2		1.40E-09	.00	.00	4
h	ch2+	ch+	h2		1.00E-09	.00	7080.00	4
h	ch3+	ch2+	h2		7.00E-10	.00	10560.00	4
h+	ch4	ch3+	h2		2.30E-09	.00	.00	4
h	ch4+	ch3+	h2		1.00E-11	.00	.00	4
h	ch5+	ch4+	h2		1.50E-10	.00	.00	4
h+	c2h	c2+	h2		1.50E-09	.00	.00	4
h+	c2h3	c2h2+	h2		2.00E-09	50	.00	4
h	c2h3+	c2h2+	h2		6.80E-11	.00	.00	4
h+	c2h4	c2h2+	h2	h	1.00E-09	.00	.00	4
h+	c2h4	c2h3+	h2		3.00E-09	.00	.00	4
h	c2h4+	c2h3+	h2		3.00E-10	.00	.00	4
h+	hco	co+	h2		9.40E-10	50	.00	4
h+	hco	со	h2+		9.40E-10	50	.00	4
h	c2h5+	c2h4+	h2		1.00E-11	.00	.00	4
h+	h2co	hco+	h2		3.57E-09	50	.00	4
h+	hno	no+	h2		4.00E-09	50	.00	4
h+	ch3oh	ch3oh+	h		5.90E-10	50	.00	4
h+	ch3oh	h3co+	h2		3.84E-09	50	.00	4
h+	ch3oh	ch3+	h2o		5.90E-10	50	.00	4
h+	ch3oh	hco+	h2	h2	8.85E-10	50	.00	4
h+	$^{\rm sh}$	$\mathbf{s}+$	h2		1.60E-09	.00	.00	4
h	sh+	$\mathbf{s}+$	h2		1.10E-10	.00	.00	4
h+	h2s	sh+	h2		9.90E-10	50	.00	4
h+	h2s	s+	h2	h	3.30E-10	50	.00	4
h	h2s+	sh+	h2		2.00E-10	.00	.00	4
h	h3s+	h2s+	h2		6.00E-11	.00	.00	4
h+	co2	hco+	0		3.50E-09	.00	.00	4
h	co2+	hco+	0		2.90E-10	.00	.00	4
h+	c4h	c4+	h2		2.00E-09	50	.00	4
h+	c4h2	c4h+	h2		2.00E-09	.00	.00	4

Tabela E.2 - Continuação
Reagentes Produtos	γ	α	β	Tipo de Reação
h+ ocs $sh+$ co 2.	.10E-09	.00	.00	4
h $so2+$ $so+$ oh 4.	.20E-10	.00	.00	4
h_{2+} h_{2} h_{3+} h 2.	.08E-09	.00	.00	4
h2 he+ he h+ h 3.	.70E-14	.00	35.00	4
h2+ c $ch+$ h 2.	.40E-09	.00	.00	4
h^2 c+ ch+ h 7.	.40E-10	.00	4537.00	61
h2+ ch $ch2+$ h 7.	.10E-10	50	.00	4
h2 ch+ ch2+ h 1.	.20E-09	.00	.00	4
h2+ n $nh+$ h 1.	.90E-09	.00	.00	4
h^2 $n+$ $nh+$ h 4.	.16E-10	.00	41.90	101
h2+ $ch2$ $ch3+$ h 1.	.00E-09	.00	.00	4
h2 $ch2+$ $ch3+$ h 1.	.60E-09	.00	.00	4
h2 nh+ n h3+ 2.	.25E-10	.00	.00	4
h2+ nh $nh2+$ h 7.	.60E-10	50	.00	4
h2 $nh+$ $nh2+$ h 1.	.28E-09	.00	.00	4
h2+ o oh+ h 1.	.50E-09	.00	.00	4
h2 $o+$ $oh+$ h 1.	.70E-09	.00	.00	4
h2 nh2+ nh3+ h 2.	.70E-10	.00	.00	4
h2+ $ch4$ $ch5+$ h 1.	.14E-10	.00	.00	4
h2 $ch4+$ $ch5+$ h 1.	.50E-10	.00	450.00	4
h2+ $ch4$ $ch3+$ $h2$ h 2.	.30E-09	.00	.00	4
h2+ oh $h2o+$ h 7.	.60E-10	50	.00	4
h2 oh+ $h20+$ h 1.	.01E-09	.00	.00	4
h^2 h^3+ h^4+ h 6 .	.20E-13	1.70	-63.00	4
h_{2+} h_{20} h_{30+} h 3 .	.40E-09	50	.00	4
h^2 h^{20+} h^{30+} h $6.$.40E-10	.00	.00	4
h2+ $c2$ $c2h+$ h 1.	.10E-09	.00	.00	4
h2 $c2+$ $c2h+$ h 1.	.10E-09	.00	.00	4
h2+ $c2h$ $c2h2+$ h 1.	.00E-09	.00	.00	4
h2 c2h+ c2h2+ h 1.	.10E-09	.00	.00	4
h2+ cn $hcn+$ h 1.	.20E-09	50	.00	4
h2 cn+ $hcn+$ h 1.	.00E-09	.00	.00	4
h2 cn+ hnc+ h 7 .	.50E-10	.00	.00	4
h2+ $c2h2$ $c2h3+$ h 4.	.80E-10	.00	.00	4
h2 $hcn+$ $hcnh+$ h 9.	.00E-10	.00	.00	4
h^{2+} co h^{+} h 2.	.16E-09	.00	.00	4
h^2 co+ $hco+$ h 7.	.50E-10	.00	.00	4
h2 co+ hoc+ h 7.	.50E-10	.00	.00	4
h2+ $n2$ $n2h+$ h 2.	.00E-09	.00	.00	4
h2 $n2+$ $n2h+$ h 2 .	.00E-09	.00	.00	4
h2+ $c2h4$ $c2h2+$ $h2$ $h2$ $k2$.82E-10	.00	.00	4
h2+ c2h4 c2h3+ h2 h 1	.81E-09	.00	.00	4
h2+ hco co $h3+$ 1	.00E-09	50	.00	4
h2+ no $hno+$ h 1.	.10E-09	.00	.00	4

Tabela E.2 - Continuação

h h 1.40E.09 .50 0.0 4 h2 sh hh h 1.10E-10 .00 9860.00 4 h2 sh h2 h2 7.70E-10 .50 .00 4 h2+ h2s sh h2 h 8.60E-10 .50 .00 4 h2+ h2s sh h 6.00E-10 .00 2900.00 4 h2+ co2 hco2+ h 9.50E-10 .00 0.00 4 h2 co2+ hco2+ h 5.00E-10 .00 0.00 4 h2 cdh+ chc2+ h 5.00E-10 .00 0.00 4 h2 cdh+ h2 co2E hco2+ h 5.00E-10 .00 0.00 4 h3 so2+ hso2+ h 5.00E-0 .00 0.0 4 h3+ ch2 h2 1.20E-09 .00	Reag	gentes		Produtos	8	 γ	α	β	Tipo de Reação
h2 s+ h 1.10E-10 .00 980.00 4 h2 sh+ h2 h2 7.70E-10 .50 .00 4 h2+ h2s sh+ h2 h2 7.70E-10 .50 .00 4 h2+ h2s sh+ h2 h 8.00E-10 .50 .00 4 h2 h2s+ hs+ h 6.00E-10 .00 290.00 4 h2 co2+ hco2+ h 9.50E-10 .00 .00 4 h2 co2+ hco2+ h 5.00E-10 .00 .00 4 h2 c4+ c4h+ h .50E-10 .00 .00 4 h2 c4+ c4h+ h .50E-10 .00 .00 4 h2 c4h+ h2 .200E-10 .00 .00 4 h3 ch ch2+ h2 .200E-09 .00 .00 4 h3+ ch h2 .200E-09 .00 .00	h2+	h2co	hco+	h2	h	1.40E-09	50	.00	4
h2sh+h2h2.00E-10.00638.0.04h2+h2ss+h2h27.70E-10.50.004h2+h2s+sh+h2h8.00E-10.00290.0004h2+h2s+h3s+h.00E-10.00.004h2+co2hco2+h.235E-09.00.004h2cs+hs+h.450E-10.00.004h2c4+c4h+h.300E-10.00.004h2c4+c4h+h.500E-11.00.004h3c4+h2.200E-09.00.004h3+c6ch+h2.200E-09.00.004h3+chch2+h.500E-11.00.004h3+chch2+h2.100E-09.50.004h3+chh2+h2.100E-09.50.004h3+ch2ch3+h2.130E-09.50.004h3+nhnh2+h2.130E-09.50.004h3+nhh2+h2.180E-09.50.004h3+nh3nh4+h2.30E-09.50.004h3+nhh2+h2.180E-09.50.004h3+nhh2+h2.100E-09.50.004 <td>h2</td> <td>$^{\mathrm{s}+}$</td> <td>sh+</td> <td>h</td> <td></td> <td>1.10E-10</td> <td>.00</td> <td>9860.00</td> <td>4</td>	h2	$^{\mathrm{s}+}$	sh+	h		1.10E-10	.00	9860.00	4
h2+h2ss+h2h27.70E-10.50.004h2+h2ssh+h2h8.60E-10.50290.004h2+co2h2.35E-09.00.004h2co2+hco2+h2.35E-09.00.004h2co2+hco2+h.00.00.004h2co2+hco2+h.00.00.004h2co4+hs+h4.50E-10.00.00.4h2cd++ch2+h.165E-10.00.00.4h3cd++h22.00E-09.00.00.4h3+chch2+h21.20E-09.50.00.4h3+chch2+h21.20E-09.50.00.4h3+chch2+h21.30E-09.50.00.4h3+oh2o+h3.42E-10.161.41.4h3+oh2o+h21.30E-09.50.00.4h3+oh2o+h21.30E-09.50.00.4h3+oh2o+h21.30E-09.50.00.4h3+oh2o+h21.30E-09.50.00.4h3+oh2o+h21.30E-09.50.00.4h3+oh2o+h21.30E-09.50.00.4	h2	sh+	h2s+	h		2.00E-10	.00	6380.00	4
h2+ h2s sh+ h2 h 8.60E-10 .50 .00 4 h2 h2s+ h3s+ h 6.00E-10 .00 290.00 4 h2+ co2+ h 2.35E-09 .00 .00 .4 h2 co2+ h 9.50E-10 .00 .00 .4 h2 cs+ hs+ h .50E-10 .00 .00 .4 h2 c4+ c4h+ h .50E-10 .00 .00 .4 h2 c4h+ h .50E-10 .00 .00 .4 h34 cc ch+ h2 .10E-00 .00 .00 .4 h34 ch ch2+ h2 .12E-00 .00 .00 .4 h34 ch2 ch3+ h2 .13E-00 .00 .4 h34 ch4 h2 .20E-00 .00 .00 .4 h34 ch h20 .30E-09 .50 .00 .4 h34 ch4 <	h2+	h2s	s+	h2	h2	7.70E-10	50	.00	4
h2h2s+h3s+h6.00E-10.002900.004h2+co2hco2+hh2.35E-09.00.00.4h2co2+hco2+hh9.50E-10.00.00.4h2cs+hcs+h4.50E-10.00.00.4h2cs++cdh+h1.65E-10.00.00.4h2so2+hso2+h.00E-11.00.00.4h3+cch+h22.00E-09.00.00.4h3+chch2+h21.20E-09.50.00.4h3+chch3+h21.30E-09.50.00.4h3+chch3+h21.30E-09.50.00.4h3+chh2+h21.30E-09.50.00.4h3+chh2+h21.30E-09.50.00.4h3+chh2+h21.30E-09.50.00.4h3+chh2+h21.30E-09.50.00.4h3+ch4ch5+h22.40E-09.00.00.4h3+chh2+h21.30E-09.50.00.4h3+chh2+h21.30E-09.50.00.4h3+chh2+h21.30E-09.50.00.4h3+ch4ch5+h21.30E-09.50<	h2+	h2s	sh+	h2	h	8.60E-10	50	.00	4
h2+ co2 hco2+ h 2.35E-09 .00 .00 .4 h2 co2+ hco2+ h h 9.50E-10 .00 .00 .4 h2 cs+ hcs+ h 4.50E-10 .00 .00 .4 h2 c4h+ c4h+ h .65E-10 .00 .00 .4 h2 c4h+ c4h+ h .65E-10 .00 .00 .4 h32 c6 ch+ h2 .200E-09 .00 .00 .4 h34 ch ch+ h2 .10E-09 .50 .00 .4 h34 ch ch+ h2 .10E-09 .00 .00 .4 h34 ch h h2 .10E-09 .50 .00 .4 h34 ch h h2 .10E-09 .50 .00 .4 h34 nh h2 .13E-0 .50 .00 .4 h34 nh h2 .20E-09 .50 .00 .4<	h2	h2s+	h3s+	h		6.00E-10	.00	2900.00	4
h2 $co2+$ hco2+h9.50E-10.00.00.4h2 $cs+$ hcs+h4.50E-10.00.00.4h2 $c4+$ $c4h+$ h3.00E-10.00.00.4h2 $cdh+$ $cdh+$ h1.65E-10.00.00.4h3+c $ch+$ h22.00E-09.00.00.4h3+ch $ch2+$ h21.20E-09.50.00.4h3+ch2 $ch3+$ h21.70E-09.00.00.4h3+ch3 $ch4+$ h22.10E-09.00.00.4h3+ch3 $ch4+$ h21.30E-09.50.00.4h3+chh2c+h1.30E-09.50.00.4h3+oh2c+h3.42E-10.161.41.4h3+oh2c+h21.30E-09.50.00.4h3+oh2c+h21.30E-09.50.00.4h3+h3nh4+h21.30E-09.50.00.4h3+ch2h2c+h21.30E-09.50.00.4h3+chh2c+h21.30E-09.50.00.4h3+h21.30E-09.50.00.4.4h3+chh21.30E-09.50.00.4h3+chh21.30E-09.50.00.4h	h2+	co2	hco2+	h		2.35E-09	.00	.00	4
h2cs+hcs+h4.50E-10.00.00.4h2c4+c4h+h.00E-10.00.00.4h2c4h+c4h2+h.50E-10.00.00.4h2so2+hso2+h5.00E-11.00.00.4h3+cch+h2.20E-09.50.00.4h3+chch2+h21.20E-09.50.00.4h3+chch3+h21.70E-09.00.00.4h3+chsch4+h22.10E-09.00.00.4h3+ooh+h27.8E-10.161.41.4h3+ooh+h27.8E-10.50.00.4h3+ohh2o+h $3.42E-10$.50.00.4h3+ohh2o+h21.30E-09.50.00.4h3+ohh2o+h21.30E-09.50.00.4h3+chh3o+h21.30E-09.50.00.4h3+chh2o+h21.30E-09.50.00.4h3+chh2o+h21.30E-09.50.00.4h3+chh2o+h21.30E-09.50.00.4h3+chh2o+h21.30E-09.50.00.4h3+chc2h+h21.30E-09.50.00.4 <td>h2</td> <td>co2+</td> <td>hco2+</td> <td>h</td> <td></td> <td>9.50E-10</td> <td>.00</td> <td>.00</td> <td>4</td>	h2	co2+	hco2+	h		9.50E-10	.00	.00	4
h2c4+c4h+h300E-10.00.004h2c4h+c4h2+h1.65E-10.00.004h2so2+hso2+h5.00E-11.00.004h3+cch+h22.00E-09.50.004h3+chch2+h21.20E-09.50.004h3+ch2ch3+h21.30E-09.50.004h3+ch3ch4+h22.10E-09.00.004h3+ooh+h27.98E-10.161.414h3+nh2o+h3.40E-09.50.004h3+nbh2o+h21.30E-09.50.004h3+nbh2o+h21.30E-09.50.004h3+nbh2o+h21.30E-09.50.004h3+nbh2o+h21.30E-09.50.004h3+nbh2o+h21.30E-09.50.004h3+ch4h2o+h21.30E-09.50.004h3+ch4h2o+h21.30E-09.50.004h3+c2hc2h+h21.70E-09.00.004h3+c2hc2h+h21.70E-09.50.004h3+c2hc2h+h21.70E-09.50.004 <t< td=""><td>h2</td><td>cs+</td><td>hcs+</td><td>h</td><td></td><td>4.50E-10</td><td>.00</td><td>.00</td><td>4</td></t<>	h2	cs+	hcs+	h		4.50E-10	.00	.00	4
h2c4h+c4h2+h1.65E-10.00.00.4h2so2+hso2+h5.00E-11.00.00.4h3+cch+h22.00E-09.00.00.4h3+chch2+h21.20E-09.50.00.4h3+chnhnh2+h21.30E-09.50.00.4h3+ch3ch4+h22.10E-09.00.00.4h3+ooh+h27.98E-10.161.41.4h3+oh2o+h3.42E-10.161.41.4h3+nh2nh3+h21.30E-09.50.00.4h3+nh3nh4+h22.40E-09.00.00.4h3+nh3nh4+h25.90E-09.50.00.4h3+nh3nh4+h21.30E-09.50.00.4h3+nh3nh4+h21.30E-09.50.00.4h3+nh3nh4+h2.500E-09.50.00.4h3+nb3nb4+h2.500E-09.50.00.4h3+nb3nb4+h2.500E-09.50.00.4h3+nb2c2h+h21.70E-09.00.00.4h3+nb2c2h+h2.500E-09.50.00.4h3+nbchcn+h2.00E-09.	h2	c4+	c4h+	h		3.00E-10	.00	.00	4
h2so2+hso2+h5.00E-11.00.004h3+cch+h22.00E-09.00.004h3+chch2+h21.20E-09.50.004h3+ch3ch4+h21.30E-09.50.004h3+ch3ch4+h22.10E-09.00.004h3+ch3ch4+h22.10E-09.00.004h3+ch3ch4+h22.10E-09.00.004h3+ch3ch4+h22.10E-09.00.004h3+ch3ch4+h22.10E-09.00.004h3+nb2h3+h21.80E-09.50.004h3+nh2h3+h21.30E-09.50.004h3+nb1h2+h21.30E-09.50.004h3+nb2c2h+h21.30E-09.50.004h3+ch4h3+h21.30E-09.50.004h3+c2hc2h+h21.30E-09.50.004h3+ch4h22.00E-09.50.004h3+c2hc2h+h21.30E-09.50.004h3+ch4h22.00E-09.50.004h3+c2hc2h+h21.00E-09.50.004h3+ <td< td=""><td>h2</td><td>c4h+</td><td>c4h2+</td><td>h</td><td></td><td>1.65E-10</td><td>.00</td><td>.00</td><td>4</td></td<>	h2	c4h+	c4h2+	h		1.65E-10	.00	.00	4
h $3+$ c ch+ h2 2.00E-09 .00 .00 4 h3+ ch2 ch2+ h2 1.20E-09 .50 .00 4 h3+ ch2 ch3+ h2 1.30E-09 .50 .00 4 h3+ nh nh2+ h2 1.30E-09 .50 .00 4 h3+ ch3 ch4+ h2 2.10E-09 .00 .00 4 h3+ o oh+ h2 7.98E-10 .16 1.41 4 h3+ o h2+ h2 1.80E-09 .50 .00 4 h3+ oh h2+ h2 1.30E-09 .50 .00 4 h3+ oh h2+ h2 1.30E-09 .50 .00 4 h3+ oh h2+ h2 1.30E-09 .50 .00 4 h3+ nb3 nh4+ h2 .30E-09 .50 .00 4 h3+ nb3 nb4+ h2 .30E-09 .50	h2	so2+	hso2+	h		5.00E-11	.00	.00	4
h $3+$ chch2+h21.20E-09.50.004h $3+$ ch3+h21.70E-09.00.004h $3+$ nhnh2+h21.30E-09.50.004h $3+$ ch3ch4+h22.10E-09.00.004h $3+$ ooh+h27.98E-10.161.414h $3+$ oh $2o+$ h3.42E-10.161.414h $3+$ nh2nh3+h21.80E-09.50.004h $3+$ ch4ch5+h22.40E-09.00.004h $3+$ ch4ch5+h22.40E-09.00.004h $3+$ nh3nh4+h21.30E-09.50.0004h $3+$ ch2ch2h+h21.30E-09.50.004h $3+$ ch2ch2h+h21.30E-09.00.004h $3+$ ch2ch2h+h21.30E-09.00.004h $3+$ ch2ch2h+h21.30E-09.00.004h $3+$ ch2ch2h+h21.30E-09.50.004h $3+$ ch2ch2h+h21.30E-09.50.004h $3+$ ch3hch+h23.50E-09.50.004h $3+$ ch4hch+h23.50E-09.50.004h $3+$ ch3ch4+h21.70E-09	h3+	с	ch+	h2		2.00E-09	.00	.00	4
h3+ch2ch3+h21.70E-09.00.00.4h3+nhnh2+h21.30E-09.50.00.4h3+ch3ch4+h22.10E-09.00.00.4h3+oh2o+h3.42E-10.161.41.4h3+oh2o+h3.42E-10.161.41.4h3+nh2nh3+h21.80E-09.50.00.4h3+ch4ch5+h22.40E-09.50.00.4h3+nb3nh4+h2.590E-09.50.00.4h3+ch3nb4+h2.590E-09.50.00.4h3+ch2c2b+h21.70E-09.00.00.4h3+c2hc2b+h21.30E-09.50.00.4h3+c2hc2b+h21.30E-09.50.00.4h3+c2hc2b+h21.70E-09.00.00.4h3+c2hc2b+h21.70E-09.00.00.4h3+c2hc2b+h21.70E-09.50.00.4h3+c2hc2b+h21.70E-09.50.00.4h3+c2hh2h+h2.20E-09.50.00.4h3+c2hh2h+h2.20E-09.50.00.4h3+c2hh2h+h2.20E-09.50 <t< td=""><td>h3+</td><td>$^{\rm ch}$</td><td>ch2+</td><td>h2</td><td></td><td>1.20E-09</td><td>50</td><td>.00</td><td>4</td></t<>	h3+	$^{\rm ch}$	ch2+	h2		1.20E-09	50	.00	4
h3+nhnh2+h21.30E-09.50.00.4h3+ch3ch4+h22.10E-09.00.00.4h3+oh2o+h3.42E-10.161.41.4h3+nh2nh3+h21.80E-09.50.00.4h3+ch4ch5+h22.40E-09.00.00.4h3+ohh2o+h21.30E-09.50.00.4h3+ohh2o+h21.30E-09.50.00.4h3+nh3nh4+h2.590E-09.50.00.4h3+c2c2h+h21.30E-09.50.00.4h3+c2c2h+h21.30E-09.50.00.4h3+c2c2h+h21.30E-09.50.00.4h3+c2c2h+h21.30E-09.50.00.4h3+c2c2h+h21.30E-09.50.00.4h3+c2hc2h+h21.30E-09.50.00.4h3+c2hc2h+h2.50.00.4h3+c2hc2h+h2.50.00.4h3+c2hc2h+h2.50.00.4h3+c2hc2h+h2.50.00.4h3+c3c2h+h2.50.00.4h3+c4.20.20.50 <td>h3+</td> <td>ch2</td> <td>ch3+</td> <td>h2</td> <td></td> <td>1.70E-09</td> <td>.00</td> <td>.00</td> <td>4</td>	h3+	ch2	ch3+	h2		1.70E-09	.00	.00	4
h3+ch3ch4+h22.10E-09.00.00.4h3+ooh+h27.98E-10161.414h3+oh2o+h3.42E-10161.414h3+nh2nh3+h21.80E-0950.004h3+ch4ch5+h22.40E-09.00.004h3+ohh2o+h21.30E-0950.004h3+nh3nh4+h24.39E-0950.004h3+nh3nh4+h25.90E-09.50.004h3+c2c2h+h21.70E-09.00.004h3+c2c2h+h23.50E-09.50.004h3+chhcn+h23.50E-09.50.004h3+chhcn+h23.50E-09.50.004h3+chhcn+h23.50E-09.50.004h3+chhcn+h23.50E-09.50.004h3+c2h2c2h3+h21.70E-09.50.004h3+chhcn+h22.00E-09.50.004h3+chhc+h21.70E-09.50.004h3+chhc+h21.5E-09.00.004h3+chh2c+h21.70E-09.50.004	h3+	nh	nh2+	h2		1.30E-09	50	.00	4
h3+ooh+h27.98E-10161.414h3+oh2o+h3.42E-10161.414h3+nh2nh3+h21.80E-0950.004h3+ch4ch5+h22.40E-09.00.004h3+ohh2o+h21.30E-0950.004h3+nh3nh4+h24.39E-0950.004h3+c2c2h+h21.80E-09.00.004h3+c2c2h+h21.70E-09.00.004h3+c2hc2h2+h21.70E-09.00.004h3+chhcn+h23.50E-09.00.004h3+c2h2c2h3+h23.50E-09.00.004h3+hcnhcn+h28.10E-09.50.004h3+c2h3c2h4+h22.00E-09.50.004h3+c0hco+h21.70E-09.00.004h3+c2h3c2h4+h22.00E-09.50.004h3+c0hco+h21.70E-09.00.004h3+chhco+h2.70E-11.00.004h3+chhco+h2.70E-11.00.004h3+chhco+h2.70E-09.50.00	h3+	ch3	ch4+	h2		2.10E-09	.00	.00	4
h3+oh2o+h $3.42E-10$ 16 1.41 4h3+nh2nh3+h2 $1.80E-09$ 50 0.00 4h3+ch4ch5+h2 $2.40E-09$ 0.00 0.00 4h3+ohh2o+h2 $1.30E-09$ 50 0.00 4h3+nh3nh4+h2 $4.39E-09$ 50 0.00 4h3+h2oh3o+h2 $5.90E-09$ 50 0.00 4h3+c2c2h+h2 $1.80E-09$ 0.00 0.00 4h3+c2hc2h2+h2 $1.70E-09$ 0.00 0.00 4h3+c2hc2h3+h2 $3.50E-09$ 0.00 0.00 4h3+hcnhcnh+h2 $8.10E-09$ 50 0.00 4h3+c2h3c2h4+h2 $2.00E-09$ 50 0.00 4h3+c2h3c2h4+h2 $8.10E-09$ 50 0.00 4h3+c2h3c2h4+h2 $2.00E-09$ 50 0.00 4h3+c2h4c2h3+h2 $1.70E-09$ 0.00 0.00 4h3+c2h4c2h4+h2 $0.00E-09$ 50 0.00 4h3+c3h2e+h2 $1.70E-09$ 0.00 0.00 4h3+n2n2h+h2 $1.5E-09$ 0.00 0.00 4h3+h2h2h2 $1.70E-$	h3+	0	oh+	h2		7.98E-10	16	1.41	4
h3+nh2nh3+h21.80E-09 50 $.00$ 4h3+ch4ch5+h2 $2.40E-09$ $.00$ $.00$ 4h3+ohh2o+h2 $1.30E-09$ 50 $.00$ 4h3+nh3nh4+h2 $4.39E-09$ 50 $.00$ 4h3+h2oh3o+h2 $5.90E-09$ 50 $.00$ 4h3+c2c2h+h2 $1.80E-09$ $.00$ $.00$ 4h3+c2hc2h2+h2 $1.70E-09$ $.00$ $.00$ 4h3+cnhcn+h2 $2.00E-09$ 50 $.00$ 4h3+c2h2c2h3+h2 $3.50E-09$ $.00$ $.00$ 4h3+c2h2c2h3+h2 $3.50E-09$ $.00$ $.00$ 4h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4h3+c0hco+h2 $1.70E-09$ $.00$ $.00$ 4h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4h3+c0hco+h2 $1.70E-09$ $.00$ $.00$ 4h3+c0hco+h2 $1.50E-09$ $.00$ $.00$ 4h3+c2h4c2h3+h2 $h2$ $h2E-09$ $.00$ $.00$ 4h3+hcohco+h2 $1.50E-09$ $.00$ $.00$ 4h3+hcohco+h2 $1.50E-09$ $.0$	h3+	0	h2o+	h		3.42E-10	16	1.41	4
h3+ch4ch5+h22.40E-09.00.004h3+ohh2o+h21.30E-0950.004h3+nh3nh4+h24.39E-0950.004h3+h2oh3o+h25.90E-0950.004h3+c2c2h+h21.80E-09.00.004h3+c2hc2h2+h21.70E-09.00.004h3+cnhcn+h22.00E-0950.004h3+ch2c2h3+h2 $3.50E-09$.00.004h3+c2hc2h4+h2 $2.00E-09$ 50.004h3+hcnhcnh+h2 $8.10E-09$.50.004h3+cb3c2h4+h2 $2.00E-09$.50.004h3+cohco+h2 $2.00E-09$.50.004h3+cb3c2h4+h2 $2.00E-09$.50.004h3+cbhco+h2 $1.70E-09$.00.004h3+cbhco+h2 $1.10E-09$.00.004h3+c2h4c2h5+h2 $1.10E-09$.00.004h3+hcoh2co+h2 $1.10E-09$.50.004h3+hcoh2co+h2 $8.40E+10$.50.004h3+h2oh3c+h2 $2.00E$	h3+	nh2	nh3+	h2		1.80E-09	50	.00	4
h3+ohh2o+h21.30E-09 50 $.00$ 4h3+nh3nh4+h2 $4.39E-09$ 50 $.00$ 4h3+h2oh3o+h2 $5.90E-09$ 50 $.00$ 4h3+c2c2h+h2 $1.80E-09$ $.00$ $.00$ 4h3+c2hc2h2+h2 $1.70E-09$ $.00$ $.00$ 4h3+cnhcn+h2 $2.00E-09$ 50 $.00$ 4h3+chhcn+h2 $3.50E-09$ $.00$ $.00$ 4h3+hcnhcn++h2 $8.10E-09$ 50 $.00$ 4h3+hcnhcn++h2 $2.00E-09$ 50 $.00$ 4h3+hcnhcn++h2 $2.00E-09$ 50 $.00$ 4h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4h3+c0hco+h2 $2.00E-09$ 50 $.00$ 4h3+c0hco+h2 $1.70E-09$ $.00$ $.00$ 4h3+c0hoc+h2 $1.15E-09$ $.00$ $.00$ 4h3+c2h4c2h3+h2 $h2$ $.15E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $.50E-09$ $.50$ $.00$ 4h3+hcoh2co+h2 $.50E-09$ $.5$	h3+	ch4	ch5+	h2		2.40E-09	.00	.00	4
h3+nh3nh4+h24.39E-09 \cdot .50 \cdot .004h3+h2oh3o+h2 $5.90E-09$ \cdot .50 \cdot .004h3+c2c2h+h2 $1.80E-09$ \cdot .00 \cdot .004h3+c2hc2h2+h2 $1.70E-09$ \cdot .00 \cdot .004h3+cnhcn+h2 $2.00E-09$ \cdot .50 \cdot .004h3+c2h2c2h3+h2 $3.50E-09$ \cdot .00 \cdot .004h3+hcnhcn+h2 $8.10E-09$ \cdot .50 \cdot .004h3+hcnhcn+h2 $2.00E-09$ \cdot .50 \cdot .004h3+c2h3c2h4+h2 $2.00E-09$ \cdot .50 \cdot .004h3+cohco+h2 $2.00E-09$ \cdot .50 \cdot .004h3+cohco+h2 $2.00E-09$ \cdot .50 \cdot .004h3+c2h3c2h4+h2 $2.00E-09$ \cdot .50 \cdot .004h3+cohco+h2 $1.70E-09$ \cdot .00 \cdot .004h3+cohco+h2 $1.70E-09$ \cdot .00 \cdot .004h3+c2h4c2h3+h2h2 $1.50E-09$ \cdot .00 \cdot .004h3+h2oh3co+h2 $1.70E-09$ \cdot .50 \cdot .004h3+h2oh2o+h2 $1.50E-09$ \cdot .00 \cdot .004h3+h2oh2o+h2	h3+	oh	h2o+	h2		1.30E-09	50	.00	4
h3+h2oh3+h25.90E-09 50 $.00$ 4h3+c2c2h+h2 $1.80E-09$ $.00$ $.00$ 4h3+c2hc2h2+h2 $1.70E-09$ $.00$ $.00$ 4h3+cnhcn+h2 $2.00E-09$ 50 $.00$ 4h3+c2h2c2h3+h2 $3.50E-09$ $.00$ $.00$ 4h3+hcnhcnh+h2 $8.10E-09$ 50 $.00$ 4h3+hcnhcnh+h2 $8.10E-09$ 50 $.00$ 4h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4h3+cohco+h2 $1.70E-09$ $.00$ $.00$ 4h3+cohco+h2 $1.70E-09$ $.00$ $.00$ 4h3+cohco+h2 $1.70E-09$ $.00$ $.00$ 4h3+chh2h2 $1.5E-09$ $.00$ $.00$ 4h3+c2h4c2h5+h2 $1.15E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $.10E-09$ $.50$ $.00$ 4h3+hcoh2co+h2 $.10E-09$ $.50$ $.00$ 4h3+hcoh2co+h2 $.10E-09$ $.50$ $.00$ 4h3+hcoh2co+h2 $.50E-09$ $.50$ $.00$ </td <td>h3+</td> <td>nh3</td> <td>nh4+</td> <td>h2</td> <td></td> <td>4.39E-09</td> <td>50</td> <td>.00</td> <td>4</td>	h3+	nh3	nh4+	h2		4.39E-09	50	.00	4
h3+c2c2h+h21.80E-09.00.004h3+c2hc2h2+h21.70E-09.00.004h3+cnhcn+h22.00E-0950.004h3+c2h2c2h3+h23.50E-09.00.004h3+hcnhcnh+h28.10E-0950.004h3+hcnhcnh+h28.10E-0950.004h3+c2h3c2h4+h22.00E-0950.004h3+c0hco+h21.70E-09.00.004h3+c0hco+h21.70E-09.00.004h3+c0hco+h21.50E-09.00.004h3+ch4c2h3+h2h21.50E-09.00.004h3+cb4c2h3+h2h21.5E-09.00.004h3+c2h4c2h3+h2h21.5E-09.00.004h3+hcoh2co+h21.70E-09.50.004h3+hcoh2co+h21.10E-09.00.004h3+hcoh2co+h21.01E-09.50.004h3+h2oh3+h23.71E-09.50.004h3+ch3ohh2s+h21.90E-09.00.004h3+shh2s+h2 </td <td>h3+</td> <td>h2o</td> <td>h3o+</td> <td>h2</td> <td></td> <td>5.90E-09</td> <td>50</td> <td>.00</td> <td>4</td>	h3+	h2o	h3o+	h2		5.90E-09	50	.00	4
h3+c2hc2h2+h21.70E-09.00.004h3+cnhcn+h22.00E-0950.004h3+c2h2c2h3+h2 $3.50E-09$.00.004h3+hcnhcnh+h2 $8.10E-09$ 50.004h3+hcnhcnh+h2 $8.10E-09$ 50.004h3+c2h3c2h4+h2 $2.00E-09$ 50.004h3+c0hco+h2 $1.70E-09$.00.004h3+c0hco+h2 $2.70E-11$.00.004h3+c0hco+h2 $1.70E-09$.00.004h3+c0hco+h2 $2.70E-11$.00.004h3+c2h4c2h3+h2h2h36E-09.00.004h3+c2h4c2h3+h2h2h36E-09.00.004h3+c2h4c2h3+h2h2h10E-09.00.004h3+c2h4c2h5+h21.10E-09.00.004h3+h2h3co+h26.30E-09.50.004h3+h2coh3co+h28.40E-10.50.004h3+ch3ohh2och3+h22.60E-09.00.004h3+shh2s+h21.90E-09.00.004h3+ <t< td=""><td>h3+</td><td>c2</td><td>c2h+</td><td>h2</td><td></td><td>1.80E-09</td><td>.00</td><td>.00</td><td>4</td></t<>	h3+	c2	c2h+	h2		1.80E-09	.00	.00	4
h3+cnhcn+h2 $2.00E-09$ 50 $.00$ 4h3+c2h2c2h3+h2 $3.50E-09$ $.00$ $.00$ 4h3+hcnhcnh+h2 $8.10E-09$ 50 $.00$ 4h3+hnchcnh+h2 $8.10E-09$ 50 $.00$ 4h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4h3+c0hco+h2 $1.70E-09$ $.00$ $.00$ 4h3+cohco+h2 $2.70E-11$ $.00$ $.00$ 4h3+n2n2h+h2 $1.80E-09$ $.00$ $.00$ 4h3+c2h4c2h3+h2h2 $1.5E-09$ $.00$ $.00$ 4h3+c2h4c2h3+h2h2 $1.5E-09$ $.00$ $.00$ 4h3+c2h4c2h5+h2 $1.10E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4h3+h2h3co+h2 $6.30E-09$ $.50$ $.00$ 4h3+h2oh3co+h2 $8.40E-10$ $.50$ $.00$ 4h3+shh2s+h2 $1.90E-09$ $.00$ $.00$ 4h3+shh2s+h2 $3.70E-09$ $.50$ $.00$ 4h3+h3s+h2 $.50E-09$ $.00$ $.00$ 4h3+h3s+h2s+h2 $.50E-09$ $.00$	h3+	c2h	c2h2+	h2		1.70E-09	.00	.00	4
h3+c2h2c2h3+h2 $3.50E-09$ $.00$ $.00$ 4 h3+hcnhcnh+h2 $8.10E-09$ 50 $.00$ 4 h3+hnchcnh+h2 $8.10E-09$ 50 $.00$ 4 h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4 h3+cohco+h2 $1.70E-09$ $.00$ $.00$ 4 h3+cohoc+h2 $2.70E-11$ $.00$ $.00$ 4 h3+n2n2h+h2 $1.80E-09$ $.00$ $.00$ 4 h3+c2h4c2h3+h2h2 $1.15E-09$ $.00$ $.00$ 4 h3+c2h4c2h5+h2 $1.15E-09$ $.00$ $.00$ 4 h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4 h3+hcoh2och3+h2 $6.30E-09$ 50 $.00$ 4 h3+h2oh3c+h2 $2.60E-09$ $.50$ $.00$ 4 h3+h2och3+h2 $2.60E-09$ $.00$ $.00$ 4 h3+shh2s+h2 $1.90E-09$ $.00$ $.00$ 4 h3+shh2s+h2 $1.90E-09$ $.00$ $.00$ 4	h3+	cn	hcn+	h2		2.00E-09	50	.00	4
h3+hcnhcnh+h2 $8.10E-09$ 50 $.00$ 4h3+hnchcnh+h2 $8.10E-09$ 50 $.00$ 4h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4h3+cohco+h2 $1.70E-09$ $.00$ $.00$ 4h3+cohoc+h2 $2.70E-11$ $.00$ $.00$ 4h3+n2n2h+h2 $1.70E-09$ $.00$ $.00$ 4h3+c2h4c2h3+h2h2 $1.15E-09$ $.00$ $.00$ 4h3+c2h4c2b5+h2 $1.15E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.70E-09$ $.50$ $.00$ 4h3+h2coh3co+h2 $8.40E-10$ $.50$ $.00$ 4h3+shh2sh2 $8.40E-10$ $.50$ $.00$ 4h3+shh2s+h2 $1.90E-09$ $.00$ $.00$ 4h3+shh2s+h2 $1.90E-09$ $.00$ $.00$ 4h3+h2sh3s+h2 $1.90E-09$ $.$	h3+	c2h2	c2h3+	h2		3.50E-09	.00	.00	4
h3+hnchcnh+h2 $8.10E-09$ 50 $.00$ 4h3+c2h3c2h4+h2 $2.00E-09$ 50 $.00$ 4h3+cohco+h2 $1.70E-09$ $.00$ $.00$ 4h3+cohoc+h2 $2.70E-11$ $.00$ $.00$ 4h3+n2n2h+h2 $2.70E-11$ $.00$ $.00$ 4h3+c2h4c2h3+h2h2 $1.15E-09$ $.00$ $.00$ 4h3+c2h4c2b5+h2 $1.15E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4h3+hcoh2co+h2 $1.10E-09$ $.00$ $.00$ 4h3+h2och3+h2 $3.71E-09$ 50 $.00$ 4h3+ch3ohh2och3+h2 $8.40E-10$ 50 $.00$ 4h3+ssh+h2 $2.60E-09$ $.00$ $.00$ 4h3+shh2s+h2 $1.90E-09$ $.00$ $.00$ 4h3+h2sh3s+h2 $3.70E-09$ $.50$ $.00$ 4	h3+	hcn	hcnh+	h2		8.10E-09	50	.00	4
h3+c2h3c2h4+h22.00E-0950.004h3+cohco+h2 $1.70E-09$.00.004h3+cohoc+h2 $2.70E-11$.00.004h3+n2n2h+h2 $1.80E-09$.00.004h3+c2h4c2h3+h2h2 $1.15E-09$.00.004h3+c2h4c2b5+h2 $1.15E-09$.00.004h3+hcoh2co+h2 $1.70E-09$.50.004h3+hcoh2co+h2 $1.10E-09$.00.004h3+h2h2 $1.10E-09$.00.004h3+h3co+h2 $8.40E-10$.50.004h3+ch3ohch5o+h2 $8.40E-10$.50.004h3+ssh+h2 $2.60E-09$.00.004h3+ssh+h2 $2.60E-09$.00.004h3+h2sh3s+h2 $3.70E-09$.50.004	h3+	hnc	hcnh+	h2		8.10E-09	50	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	c2h3	c2h4+	h2		2.00E-09	50	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	со	hco+	h2		1.70E-09	.00	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	со	hoc+	h2		2.70E-11	.00	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	n2	n2h+	h2		1.80E-09	.00	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	c2h4	c2h3+	h2	h2	1.15E-09	.00	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	c2h4	c2h5+	h2		1.15E-09	.00	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	hco	h2co+	h2		1.70E-09	50	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	no	hno+	h2		1.10E-09	.00	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	h2co	h3co+	h2		6.30E-09	50	.00	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h3+	ch3oh	h2o	ch3+	h2	3.71E-09	50	.00	4
	h3+	ch3oh	ch5o+	h2		8.40E-10	50	.00	4
	h3+	s	sh+	h2		2.60E-09	.00	.00	4
h_{3+} h_{2s} h_{3s+} h_{2} $3.70E-09$ 50 $.00$ 4	h3+	$^{\rm sh}$	h2s+	h2		1.90E-09	.00	.00	4
	h3+	h2s	h3s+	h2		3.70E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos			γ	α	β	Tipo de Reação
h3+	co2	hco2+	h2			2.00E-09	.00	.00	4
h3+	cs	hcs+	h2			2.90E-09	50	.00	4
h3+	h2cs	h3cs+	h2			2.80E-09	50	.00	4
h3+	c4	c4h+	h2			2.00E-09	.00	.00	4
h3+	SO	hso+	h2			1.90E-09	50	.00	4
h3+	c4h	c4h2+	h2			2.00E-09	50	.00	4
h3+	fe	fe+	h2	h		4.90E-09	.00	.00	4
h3+	005	hocs+	h2			1 90E-09	00	00	4
h3+	so2	hso2+	h2			1.30E-09	- 50	00	4
he+	ch	c+	he	h		1.00E 00	- 50	00	4
he+	ch2	c+	he	h2		7.50E-10	00	.00	4
he⊥	ch2	ch⊥	he	h2		7.50E-10	.00	.00	4
he l	nh	n	ho	h		1.10E-10	.00	.00	4
he l	ah 2	n⊤ ah i	he	11 h0		1.10E-03	50	.00	4
he+	ch3	n l	he	112 h2		2.00E 10	.00	.00	4
he+	11112 mh2	11+ mb.1	he	112 h		8.00E-10	50	.00	4
ne+	-1-4	-h-	ne	11	1.	0.00E-10	50	.00	4
ne+	cn4	cn+	ne	n2	n	2.40E-10	.00	.00	4
ne+	cn4	cn2+	he	h2		9.50E-10	.00	.00	4
ne+	cn4	cn3	ne	n+		4.80E-10	.00	.00	4
he+	ch4	ch3+	he	h		8.50E-11	.00	.00	4
he+	oh	o+	he	h		1.10E-09	50	.00	4
he+	nh3	nh+	he	h2		1.76E-10	50	.00	4
he+	nh3	nh2+	he	h		1.76E-09	50	.00	4
he+	h2o	oh	he	h+		2.04E-10	50	.00	4
he+	h2o	oh+	he	h		2.86E-10	50	.00	4
he+	c2	c+	с	he		1.60E-09	.00	.00	4
he+	c2h	ch+	с	he		5.10E-10	.00	.00	4
he+	c2h	$^{\rm ch}$	c+	he		5.10E-10	.00	.00	4
he+	c2h	c2+	he	h		5.10E-10	.00	.00	4
he+	cn	n	c+	he		8.80E-10	50	.00	4
he+	cn	n+	с	he		8.80E-10	50	.00	4
he+	c2h2	ch+	$^{\rm ch}$	he		7.70E-10	.00	.00	4
he+	c2h2	c2+	he	h2		1.61E-09	.00	.00	4
he+	c2h2	c2h+	he	h		8.75E-10	.00	.00	4
he+	hcn	n	ch+	he		6.51E-10	50	.00	4
he+	hcn	n+	$^{\rm ch}$	he		2.17E-10	50	.00	4
he+	hnc	nh+	с	he		5.00E-10	50	.00	4
he+	hcn	n	c+	he	h	7.75E-10	50	.00	4
he+	hcn	cn+	he	h		1.46E-09	50	.00	4
he+	hnc	n	c+	he	h	5.00E-10	50	.00	4
he+	hnc	cn+	he	h		5.00E-10	50	.00	4
he+	c2h3	c2h+	he	h2		1.00E-09	50	.00	4
he+	c2h3	c2h2+	he	h		1.00E-09	50	.00	4
he+	со	о	c+	he		1.50E-09	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos			γ	α	β	Tipo de Reação
he+	n2	n+	n	he		9.60E-10	.00	.00	4
he+	c2h4	ch2+	ch2	he		4.80E-10	.00	.00	4
he+	c2h4	c2h+	he	h2	h	4.40E-10	.00	.00	4
he+	c2h4	c2h2+	he	h2		2.20E-09	.00	.00	4
he+	c2h4	c2h3+	he	h		1.70E-10	.00	.00	4
he+	hco	0	ch+	he		4.90E-10	50	.00	4
he+	hco	co+	he	h		4.90E-10	50	.00	4
he+	no	o+	n	he		2.00E-10	.00	.00	4
he+	no	о	n+	he		1.40E-09	.00	.00	4
he+	h2co	о	ch2+	he		1.71E-09	50	.00	4
he+	h2co	co+	he	h2		1.88E-09	50	.00	4
he+	h2co	hco+	he	h		1.14E-09	50	.00	4
he+	hno	no+	he	h		1.00E-09	50	.00	4
he+	hno	no	he	h+		1.00E-09	50	.00	4
he+	o2	o+	о	he		1.10E-09	.00	.00	4
he+	ch3oh	oh+	ch3	he		1.10E-09	50	.00	4
he+	ch3oh	oh	ch3+	he		1.10E-09	50	.00	4
he+	$^{\rm sh}$	$\mathbf{s}+$	he	h		1.70E-09	.00	.00	4
he+	h2s	s+	he	h2		3.61E-09	50	.00	4
he+	h2s	sh+	he	h		4.84E-10	50	.00	4
he+	c3	c2	c+	he		1.00E-09	.00	.00	4
he+	c3	c2+	с	he		1.00E-09	.00	.00	4
he+	c3h3	c3+	he	h2	h	6.70E-10	50	.00	4
he+	co2	со	o+	he		1.00E-10	.00	.00	4
he+	co2	co+	0	he		8.70E-10	.00	.00	4
he+	co2	o2+	с	he		1.10E-11	.00	.00	4
he+	co2	o2	c+	he		4.00E-11	.00	.00	4
he+	cs	s+	с	he		1.30E-09	50	.00	4
he+	cs	s	c+	he		1.30E-09	50	.00	4
he+	h2cs	s	ch2+	he		8.10E-10	50	.00	4
he+	h2cs	s+	ch2	he		8.10E-10	50	.00	4
he+	h2cs	cs+	he	h2		8.10E-10	50	.00	4
he+	c2s	$\mathbf{s}+$	c2	he		2.50E-10	50	.00	4
he+	c2s	s	c2+	he		2.50E-10	50	.00	4
he+	c2s	\mathbf{cs}	c+	he		2.50E-10	50	.00	4
he+	c2s	cs+	с	he		2.50E-10	50	.00	4
he+	c4	c2+	c2	he		6.70E-10	.00	.00	4
he+	c4	c3	c+	he		6.70E-10	.00	.00	4
he+	c4	c3+	с	he		6.70E-10	.00	.00	4
he+	so	s	o+	he		8.30E-10	50	.00	4
he+	so	s+	0	he		8.30E-10	50	.00	4
he+	c4h	c2h+	c2	he		1.00E-09	50	.00	4
he+	c4h	c4+	he	h		1.00E-09	50	.00	4
he+	c4h2	c2h+	c2h	he		1.00E-09	.00	.00	4
Continua	a na próxi	ma página	ı						

Tabela E.2 - Continuação

Reag	gentes		Produto	s	γ	α	β	Tipo de Reação
he+	c4h2	c4+	he	h2	1.00E-09	.00	.00	4
he+	c4h2	c4h+	he	h	1.00E-09	.00	.00	4
he+	ocs	s+	со	he	7.60E-10	.00	.00	4
he+	ocs	s	co+	he	7.60E-10	.00	.00	4
he+	ocs	cs+	0	he	7.60E-10	.00	.00	4
he+	ocs	cs	o+	he	7.60E-10	.00	.00	4
he+	so2	s+	02	he	9.00E-10	50	.00	4
he+	so2	so+	0	he	2.97E-09	50	.00	4
c+	$^{\rm ch}$	c2+	h		3.80E-10	50	.00	4
с	ch+	c2+	h		1.20E-09	.00	.00	4
c+	ch2	c2h+	h		4.34E-10	50	.00	4
c+	ch2	ch2+	с		4.34E-10	50	.00	4
с	ch2+	c2h+	h		1.20E-09	.00	.00	4
с	nh+	n	ch+		1.60E-09	.00	.00	4
c+	nh	cn+	h		7.80E-10	50	.00	4
c+	ch3	c2h+	h2		1.00E-09	.00	.00	4
c+	ch3	c2h2+	h		1.30E-09	.00	.00	4
с	ch3+	c2h+	h2		1.20E-09	.00	.00	4
c+	nh2	hcn+	h		1.10E-09	50	.00	4
c+	ch4	c2h2+	h2		3.92E-10	.00	.00	4
c+	ch4	c2h3+	h		1.01E-09	.00	.00	4
с	oh+	о	ch+		1.20E-09	.00	.00	4
c+	oh	co+	h		7.70E-10	50	.00	4
c+	nh3	hcn+	h2		1.20E-10	50	.00	4
c+	nh3	h2nc+	h		1.61E-09	50	.00	4
c+	nh3	nh3+	с		6.72E-10	50	.00	4
с	ch5+	ch4	ch+		1.20E-09	.00	.00	4
с	h2o+	oh	ch+		1.10E-09	.00	.00	4
c+	h2o	hco+	h		7.00E-10	50	.00	4
c+	h2o	hoc+	h		1.40E-09	50	.00	4
с	nh4+	h2nc+	h2		1.00E-11	.00	.00	4
с	h3o+	hco+	h2		1.00E-11	.00	.00	4
c+	c2h	c3+	h		1.00E-09	50	.00	4
с	c2h+	c3+	h		1.10E-09	.00	.00	4
с	hcn+	cn	ch+		1.10E-09	.00	.00	4
c+	hnc	c2n+	h		3.10E-09	50	.00	4
c+	c2h4	c2h3+	$^{\rm ch}$		8.50E-11	.00	.00	4
c+	hco	со	ch+		4.80E-10	50	.00	4
с	hco+	со	ch+		1.10E-09	.00	.00	4
с	n2h+	n2	ch+		1.10E-09	.00	.00	4
c+	h2co	со	ch2+		2.34E-09	50	.00	4
c+	h2co	hco+	$^{\rm ch}$		7.80E-10	50	.00	4
с	hno+	no	ch+		1.00E-09	.00	.00	4
c+	02	co+	0		3.44E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produto	s	γ	α	β	Tipo de Reação
c+	02	со	o+		4.56E-10	.00	.00	4
с	o2+	co+	о		5.20E-11	.00	.00	4
c+	ch3oh	hco	ch3+		2.08E-09	50	.00	4
c+	ch3oh	h3co+	$^{\rm ch}$		5.20E-10	50	.00	4
c+	$^{\rm sh}$	cs+	h		1.10E-09	.00	.00	4
с	sh+	cs+	h		9.90E-10	.00	.00	4
c+	h2s	hcs+	h		1.40E-09	50	.00	4
с	h2s+	hcs+	h		1.00E-09	.00	.00	4
c+	c3h3	c4h+	h2		1.00E-09	50	.00	4
c+	c3h3	c4h2+	h		1.00E-09	50	.00	4
c+	co2	co+	со		1.10E-09	.00	.00	4
с	hco2+	co2	ch+		1.00E-09	.00	.00	4
c+	h2cs	cs	ch2+		1.50E-09	50	.00	4
c+	c2s	c3+	s		5.00E-10	50	.00	4
c+	so	s+	со		2.60E-10	50	.00	4
c+	so	s	co+		2.60E-10	50	.00	4
c+	so	cs+	0		2.60E-10	50	.00	4
c+	ocs	cs+	со		1.60E-09	.00	.00	4
c+	so2	so+	со		2.30E-09	50	.00	4
ch+	$^{\rm ch}$	c2+	h2		7.40E-10	50	.00	4
ch+	n	cn+	h		1.90E-10	.00	.00	4
$^{\rm ch}$	n+	cn+	h		3.60E-10	50	.00	4
ch+	ch2	c2h+	h2		1.00E-09	.00	.00	4
$^{\rm ch}$	nh+	ch2+	n		9.90E-10	50	.00	4
ch+	$\mathbf{n}\mathbf{h}$	cn+	h2		7.60E-10	50	.00	4
$^{\rm ch}$	ch3+	c2h2+	h2		7.10E-10	50	.00	4
ch+	0	co+	h		3.50E-10	.00	.00	4
$^{\rm ch}$	o+	co+	h		3.50E-10	50	.00	4
ch+	nh2	hcn+	h2		1.10E-09	50	.00	4
$^{\rm ch}$	nh2+	$^{\mathrm{nh}}$	ch2+		3.50E-10	50	.00	4
ch+	ch4	c2h4+	h		6.50E-11	.00	.00	4
ch+	ch4	c2h2+	h2	h	1.43E-10	.00	.00	4
ch+	ch4	c2h3+	h2		1.09E-09	.00	.00	4
$^{\rm ch}$	oh+	0	ch2+		3.50E-10	50	.00	4
ch+	oh	co+	h2		7.50E-10	50	.00	4
ch+	nh3	nh4+	с		4.05E-10	50	.00	4
$^{\rm ch}$	nh3+	nh4+	с		6.90E-10	50	.00	4
ch+	nh3	h2nc+	h2		1.84E-09	50	.00	4
$^{\rm ch}$	ch5+	ch4	ch2+		6.90E-10	50	.00	4
ch+	h2o	h3o+	с		5.80E-10	50	.00	4
$^{\rm ch}$	h2o+	oh	ch2+		3.40E-10	50	.00	4
ch+	h2o	h2co+	h		5.80E-10	50	.00	4
ch+	h2o	hco+	h2		2.90E-09	50	.00	4
$^{\rm ch}$	h3o+	h2o	ch2+		6.80E-10	50	.00	4

Tabela E.2 - Continuação

Reagentes Produtos γ α	β	Tipo de Reação
ch+ $c2$ $c3+$ h $1.00E-09$.00	.00	4
ch c^{2+} c^{3+} h $3.20E-10$ 50	.00	4
ch+ $c2h$ $c3+$ $h2$ $9.80E-10$.00	.00	4
ch $c2h+$ $c2$ $ch2+$ $3.20E-10$ 50	.00	4
ch+ cn $c2n+$ h $5.50E-10$ 50	.00	4
ch+ hcn hcnh+ c 1.80E-0950	.00	4
ch+ hnc hcnh+ c 1.80E-0950	.00	4
ch hcn+ cn ch2+ $6.30E-10$ 50	.00	4
ch+ hcn $c2n+$ h2 $3.60E-10$ 50	.00	4
ch $co+$ $hco+$ c $3.20E-10$ 50	.00	4
ch hcnh+ hcn ch2+ $1.90E-09$ 50	.00	4
ch+ hco co ch2+ 4.60E-1050	.00	4
ch hco+ co ch2+ $6.30\text{E}-10$ 50	.00	4
ch n2h+ n2 ch2+ $6.30E-10$ 50	.00	4
ch+h2co co $ch3+$ 9.60E-1050	.00	4
ch+ h2co h3co+ c 9.60E-1050	.00	4
ch+ h2co hco+ ch2 9.60E-1050	.00	4
ch h2co+ hco ch2+ $3.10E-10$ 50	.00	4
ch hno+ no ch2+ $6.20\text{E-}10$ 50	.00	4
ch h $3co+$ h $2co$ ch $2+$ 6.20E-1050	.00	4
ch+ o2 co+ oh 1.00E-11 .00	.00	4
ch+ o2 hco+ o 9.70E-10 .00	.00	4
ch+ o2 hco o+ 1.00E-11 .00	.00	4
ch $o2+$ hco+ o $3.10E-10$ 50	.00	4
ch+ $ch3oh$ $h2co$ $ch3+$ 1.45E-0950	.00	4
ch+ $ch3oh$ $h3co+$ $ch2$ 2.90E-1050	.00	4
ch+ $ch3oh$ $ch5o+$ c 1.16E-0950	.00	4
ch+s $sh+c$ $4.70E-10$.00	.00	4
ch+s $cs+h$ $4.70E-10$.00	.00	4
ch s+ cs+ h $6.20E-10$ 50	.00	4
ch sh+ s ch2+ $5.80E-10$ 50	.00	4
ch+h2s $h3s+c$ $6.30E-10$ 50	.00	4
h_{ch+} h2s hcs+ h2 1.47E-0950	.00	4
ch+ co2 hco+ co 1.60E-09 .00	.00	4
ch+ ocs $hcs+$ co $1.05E-09$.00	.00	4
ch+ ocs $hocs+$ c $8.55E-10$.00	.00	4
n $ch2+$ $hcn+$ h $2.20E-10$.00	.00	4
n+ nh $n2+$ h $3.70E-10$ 50	.00	4
n nh+ n^{2+} h $1.30E-09$.00	.00	4
n $ch3+$ $hcnh+$ h $6.11F-11$.00	.00	4
n $ch3+$ $hcn+$ $h2$ $3.29F-11$ 00	.00	4
n $nh2+$ $n2h+$ h $9.10E-11$ 00	.00	4
n+ ch4 ch3+ n h 4.70F-10 00	.00	4
n+ ch4 hcn+ h2 h 5.60E-11 .00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produto	s	γ	α	β	Tipo de Reação
n+	ch4	hcnh+	h	h	3.80E-10	.00	.00	4
n	oh+	no+	h		8.90E-10	.00	.00	4
n+	nh3	nh2+	$\mathbf{n}\mathbf{h}$		2.16E-10	50	.00	4
n+	nh3	n2h+	h2		2.16E-10	50	.00	4
n	h2o+	no+	h2		2.80E-11	.00	.00	4
n	h2o+	hno+	h		1.12E-10	.00	.00	4
n	c2+	cn	c+		4.00E-11	.00	.00	4
n	c2h+	cn	ch+		9.00E-11	.00	.00	4
n	c2h+	c2n+	h		1.00E-10	.00	.00	4
n	cn+	n2+	с		6.10E-10	.00	.00	4
n	c2h2+	hcn	ch+		2.50E-11	.00	.00	4
n	c2h2+	c2n+	h2		7.50E-11	.00	.00	4
n+	со	no+	с		1.45E-10	.00	.00	4
n+	hco	со	nh+		4.50E-10	50	.00	4
n+	no	n2+	о		7.90E-11	.00	.00	4
n+	h2co	hco+	nh		7.25E-10	50	.00	4
n+	h2co	no+	ch2		2.90E-10	50	.00	4
n+	o2	no	o+		3.66E-11	.00	.00	4
n+	o2	no+	0		2.63E-10	.00	.00	4
n	o2+	no+	о		1.80E-10	.00	.00	4
n+	ch3oh	no+	ch3	h	3.10E-10	50	.00	4
n+	ch3oh	no	ch3+	h	1.24E-10	50	.00	4
n+	ch3oh	h2co+	nh	h	9.30E-10	50	.00	4
n+	ch3oh	h3co+	nh		4.96E-10	50	.00	4
n+	h2s	h2s+	n		1.06E-09	50	.00	4
n+	h2s	sh+	nh		5.51E-10	50	.00	4
n+	h2s	s+	nh2		2.28E-10	50	.00	4
n+	h2s	$^{\rm sh}$	nh+		5.70E-11	50	.00	4
n+	co2	no	co+		2.50E-10	.00	.00	4
n	c4h2+	hcnh+	c3		9.50E-12	.00	.00	4
n+	ocs	s+	со	n	3.08E-10	.00	.00	4
n+	ocs	cs+	no		7.00E-11	.00	.00	4
ch2	nh+	ch3+	n		1.40E-09	.00	.00	4
ch2	ch3+	c2h3+	h2		9.90E-10	.00	.00	4
ch2+	0	hco+	h		7.50E-10	.00	.00	4
ch2	nh2+	ch3+	nh		4.90E-10	.00	.00	4
ch2+	ch4	c2h4+	h2		8.40E-10	.00	.00	4
ch2+	ch4	c2h5+	h		3.60E-10	.00	.00	4
ch2	oh+	о	ch3+		4.80E-10	.00	.00	4
ch2+	nh3	nh4+	$^{\rm ch}$		1.26E-09	50	.00	4
ch2	nh3+	nh2	ch3+		9.60E-10	.00	.00	4
ch2	ch5+	ch4	ch3+		9.60E-10	.00	.00	4
ch2+	h2o	h3co+	h		1.20E-09	50	.00	4
ch2	h2o+	oh	ch3+		4.70E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
ch2	h3o+	h2o	ch3+		9.40E-10	.00	.00	4
ch2	c2h+	c2	ch3+		4.40E-10	.00	.00	4
ch2	hcn+	cn	ch3+		8.70E-10	.00	.00	4
ch2	co+	hco+	ch		4.30E-10	.00	.00	4
ch2	hcnh+	hcn	ch3+		4.35E-10	.00	.00	4
ch2	hcnh+	hnc	ch3+		4.35E-10	.00	.00	4
ch2+	hco	со	ch3+		4.50E-10	50	.00	4
ch2	hco+	со	ch3+		8.60E-10	.00	.00	4
ch2	n2h+	n2	ch3+		8.60E-10	.00	.00	4
ch2+	h2co	c2h3o+	h		3.30E-10	50	.00	4
ch2+	h2co	hco+	ch3		2.81E-09	50	.00	4
ch2	h2co+	hco	ch3+		4.30E-10	.00	.00	4
ch2	hno+	no	ch3+		8.60E-10	.00	.00	4
ch2	o2+	h2co+	0		4.30E-10	.00	.00	4
ch2+	02	hco+	oh		9.10E-10	.00	.00	4
ch2+	s	hcs+	h		1.40E-09	.00	.00	4
ch2	$^{\mathrm{s}+}$	hcs+	h		1.00E-11	.00	.00	4
ch2+	h2s	hcs+	h2	h	9.25E-10	50	.00	4
ch2+	h2s	h3cs+	h		1.58E-09	50	.00	4
ch2+	co2	h2co+	со		1.60E-09	.00	.00	4
ch2+	ocs	hcs+	hco		1.08E-09	.00	.00	4
ch2+	ocs	h2cs+	со		7.20E-10	.00	.00	4
nh+	$^{\mathrm{nh}}$	nh2+	n		1.00E-09	50	.00	4
nh	ch3+	hcnh+	h2		7.40E-10	50	.00	4
nh+	0	oh+	n		1.00E-09	.00	.00	4
nh	o+	no+	h		3.60E-10	50	.00	4
nh+	nh2	nh3+	n		1.50E-09	50	.00	4
nh	nh2+	nh3+	n		7.30E-10	50	.00	4
nh+	oh	h2o+	n		1.00E-09	50	.00	4
nh	oh+	nh2+	0		3.60E-10	50	.00	4
nh+	nh3	nh4+	n		6.00E-10	50	.00	4
nh	nh3+	nh4+	n		7.10E-10	50	.00	4
$\mathbf{n}\mathbf{h}$	ch5+	ch4	nh2+		7.10E-10	50	.00	4
nh+	h2o	nh3+	0		1.75E-10	50	.00	4
nh+	h2o	h3o+	n		1.05E-09	50	.00	4
nh+	h2o	hno+	h2		3.50E-10	50	.00	4
nh	h2o+	h3o+	n		7.10E-10	50	.00	4
nh+	h2o	oh	nh2+		8.75E-10	50	.00	4
nh+	c2	c2h+	n		4.90E-10	.00	.00	4
nh+	c2	hcn+	c		4.90E-10	.00	.00	4
nh	c2+	c2h+	n		3.30E-10	50	.00	4
nh+	c2	c2n+	h		4.90E-10	.00	.00	4
nh	c2+	c2n+	h		3.30E-10	50	.00	4
nh+	c2h	c2h2+	n		1.40E-09	.00	.00	4
•					1	1		I

Tabela E.2 - Continuação

Reag	gentes		Produtos	3	γ	α	β	Tipo de Reação
nh+	cn	hcn+	n		1.60E-09	50	.00	4
nh+	hcn	hcnh+	n		1.80E-09	50	.00	4
nh+	hnc	hcnh+	n		1.80E-09	50	.00	4
nh	hcn+	cn	nh2+		6.50E-10	50	.00	4
nh+	со	hco+	n		4.41E-10	.00	.00	4
$\mathbf{n}\mathbf{h}$	co+	hco+	n		3.20E-10	50	.00	4
nh+	n2	n2h+	n		6.50E-10	.00	.00	4
nh+	hco	h2co+	n		1.30E-09	50	.00	4
nh	hco+	со	nh2+		6.40E-10	50	.00	4
nh	n2h+	n2	nh2+		6.40E-10	50	.00	4
nh+	no	n2h+	О		1.78E-10	.00	.00	4
nh+	h2co	h3co+	n		4.95E-10	50	.00	4
nh	h2co+	h3co+	n		6.40E-10	50	.00	4
nh+	h2co	hco+	nh2		1.82E-09	50	.00	4
nh	hno+	no	nh2+		6.30E-10	50	.00	4
nh	o2+	hno+	0		3.20E-10	50	.00	4
nh+	02	no+	oh		2.05E-10	.00	.00	4
nh+	s	sh+	n		6.90E-10	.00	.00	4
nh+	co2	no+	hco		3.30E-10	.00	.00	4
nh+	co2	hno+	со		3.85E-10	.00	.00	4
nh+	co2	hco2+	n		3.85E-10	.00	.00	4
ch3+	0	h2co+	h		4.00E-11	.00	.00	4
ch3+	0	hco+	h2		4.00E-10	.00	.00	4
ch3+	ch4	c2h5+	h2		1.20E-09	.00	.00	4
ch3+	oh	h2co+	h2		7.20E-10	50	.00	4
ch3+	nh3	nh4+	ch2		3.04E-10	50	.00	4
ch3+	c2h4	c-c3h3+	h2	h2	4.60E-11	.00	.00	4
ch3+	c2h4	c2h3+	ch4		3.50E-10	.00	.00	4
ch3+	c2h4	c3h5+	h2		5.24E-10	.00	.00	4
ch3+	hco	со	ch4+		4.40E-10	50	.00	4
ch3+	h2co	hco+	ch4		1.60E-09	50	.00	4
ch3+	02	h3co+	О		5.00E-12	.00	.00	4
ch3+	ch3oh	h3co+	ch4		2.30E-09	50	.00	4
ch3	s+	h2cs+	h		1.00E-11	.00	.00	4
ch3+	s	hcs+	h2		1.40E-09	.00	.00	4
ch3+	$^{\rm sh}$	h2cs+	h2		1.00E-09	.00	.00	4
ch3+	h2s	h3cs+	h2		1.30E-09	50	.00	4
ch3+	so	hocs+	h2		9.50E-10	50	.00	4
ch3+	ocs	h3cs+	со		1.30E-09	.00	.00	4
0	nh2+	hno+	h		7.20E-11	.00	.00	4
o+	ch4	oh	ch3+		1.10E-10	.00	.00	4
0	ch4+	oh	ch3+		1.00E-09	.00	.00	4
$^{\mathrm{o}+}$	oh	o2+	h		3.60E-10	50	.00	4
0	oh+	o2+	h		7.10E-10	.00	.00	4

Tabela E.2 - Continuação

o on+ | o2+ Continua na próxima página...

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
0	nh3+	hno+	h2	1.00E-11	.00	.00	4
0	ch5+	h30+	ch2	2.20E-10	.00	.00	4
0	ch5+	h3co+	h2	4.40E-12	.00	.00	4
0	h2o+	o2+	h2	4.00E-11	.00	.00	4
o+	c2	co+	с	4.80E-10	.00	.00	4
0	c2+	co+	с	3.10E-10	.00	.00	4
o+	c2h	co+	ch	4.60E-10	.00	.00	4
0	c2h+	hco+	c	3.30E-10	.00	.00	4
0+	cn	no+	c	1.00E-09	50	.00	4
0	c2h2+	hco+	ch	8.50E-11	.00	.00	4
0	c2h2+	c2ho+	h	8.50E-11	.00	.00	4
0+	hcn	no+	ch	1.20E-09	50	.00	4
0+	hcn	hco+	n	1.20E-09	50	.00	4
0	c2h3+	c2ho+	h2	8.50E-11	.00	.00	4
0+	n2	no+	n	1 20E-12	00	00	4
0	n2+	no+	n	1.30E-10	00	00	4
0	c^{2h4+}	ch3+	hco	1.08E-10	00	00	4
0+	c2h4	c^{2h^2+}	h2o	1.00E 10	.00	.00	4
0+	c2h4	c2h2 + c2h4 +	0	7.00E-11	.00	.00	4
0+	c2h4	c^{2h^2+}	ch	2 10E-10	.00	.00	4
0	c^{2h4}	hco+	ch3	2.10E 10 8 40E-11	.00	.00	4
0+	hco		oh+	4 30E-10	- 50	.00	4
0	n2h⊥	n2	oh+	1.00E-09	.00	650.00	4
0	h2co	hco+	oh	1.20E-00	- 50	00	4
0	ch3oh	h2co⊥	h2o	9.50E-11	- 50	.00	4
0+	ch3oh	h3co+	oh	1.33E_00	- 50	.00	4
0+	eh⊥	n5c0∓ e⊥	oh	2.90E-10	50	.00	4
0	ch	50 L	h	2.00E-10	.00	.00	4
0	h_{2c}	s0⊤	ii oh	2.30E-10	.00	.00	4
0+	h2a	sh+	oh	4.20E-10	50	.00	4
0	11287 h2a	511 -	b2c	2.20E 10	.00	.00	4
0+	h2a	5T	h2	2.20E-10 3.10E-10	50	.00	4
0	11287	s0⊤ 	112	0.40E 10	.00	.00	4
0+	co2	02+	60	9.40E-10	.00	.00	4
0	co2+	02+	60 l	6.00F 11	.00	.00	4
0	hco2	ി	heo l	1.00E-11	.00	.00	4
0	hee	02	hco	5.00E-03	.00	.00	4
0	hee	5	h	5.00E-12	.00	.00	4
U	ncs+	00s+	ii heo l	0.00E-12	.00	.00	4
U	0411+	ເວີ		2.00E-10	.00	.00	4
0+	ocs	co2	s+	2.00E-11	.00 E0	.00	4
0+	so2	so+	02 nh	3.00E-10	30 FO	.00	4
11112+	nn2	nn9+		1.00E-09	00 E0	.00	4
nh2	-100 	nno+	nh	1.61E.00	00 E0	.00	4
m_2+	1113	11114+	1111	1.01E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
nh2	nh3+	nh4+	nh		1.00E-11	50	.00	4
nh2	ch5+	nh3+	ch4		9.90E-10	50	.00	4
nh2+	h2o	nh3+	oh		1.00E-10	50	.00	4
nh2+	h2o	h3o+	$\mathbf{n}\mathbf{h}$		2.76E-09	50	.00	4
nh2	h2o+	nh3+	oh		4.90E-10	50	.00	4
nh2+	h2o	nh4+	о		1.45E-10	50	.00	4
nh2	h3o+	h2o	nh3+		9.70E-10	50	.00	4
nh2+	c2	c2h+	$\mathbf{n}\mathbf{h}$		9.70E-10	.00	.00	4
nh2+	c2h	c2h2+	$\mathbf{n}\mathbf{h}$		9.10E-10	.00	.00	4
nh2	c2h+	c2	nh3+		4.60E-10	50	.00	4
nh2+	cn	h2nc+	n		1.00E-10	50	.00	4
nh2	c2h2+	c2h	nh3+		4.50E-10	50	.00	4
nh2+	hcn	hcnh+	$^{\rm nh}$		1.20E-09	50	.00	4
nh2+	hnc	hcnh+	$^{\rm nh}$		1.20E-09	50	.00	4
nh2	hcn+	cn	nh3+		9.00E-10	50	.00	4
nh2	co+	hco+	$^{\mathrm{nh}}$		4.50E-10	50	.00	4
nh2	hcnh+	hcn	nh3+		4.45E-10	50	.00	4
nh2	hcnh+	hnc	nh3+		4.45E-10	50	.00	4
nh2	hco+	со	nh3+		8.90E-10	50	.00	4
nh2	n2h+	n2	nh3+		8.90E-10	50	.00	4
nh2+	h2co	hco	nh3+		5.60E-10	50	.00	4
nh2+	h2co	h3co+	$\mathbf{n}\mathbf{h}$		2.24E-09	50	.00	4
nh2	h2co+	hco	nh3+		8.80E-10	50	.00	4
nh2	hno+	no	nh3+		8.80E-10	50	.00	4
nh2	h3co+	h2co	nh3+		8.80E-10	50	.00	4
nh2+	o2	hno+	oh		2.10E-11	.00	.00	4
nh2+	s	sh+	$\mathbf{n}\mathbf{h}$		4.40E-10	.00	.00	4
nh2+	h2s	s	nh4+		1.80E-10	50	.00	4
nh2+	h2s	sh+	nh3		1.80E-10	50	.00	4
nh2+	h2s	$^{\rm sh}$	nh3+		4.50E-10	50	.00	4
nh2+	h2s	h3s+	$\mathbf{n}\mathbf{h}$		2.70E-10	50	.00	4
ch4+	ch4	ch5+	ch3		1.50E-09	.00	.00	4
ch4	oh+	ch5+	0		1.95E-10	.00	.00	4
ch4	oh+	h3o+	ch2		1.31E-09	.00	.00	4
ch4+	nh3	nh4+	ch3		1.15E-09	50	.00	4
ch4	nh3+	nh4+	ch3		4.80E-10	.00	.00	4
ch4+	h2o	h3o+	ch3		2.60E-09	50	.00	4
ch4	h2o+	h3o+	ch3		1.40E-09	.00	.00	4
ch4	c2+	c2h+	ch3		2.38E-10	.00	.00	4
ch4	c2+	c2h2+	ch2		1.82E-10	.00	.00	4
ch4	c2h+	c2h2+	ch3		3.74E-10	.00	.00	4
ch4+	c2h2	c2h3+	ch3		1.23E-09	.00	.00	4
ch4+	c2h2	c2h2+	ch4		1.13E-09	.00	.00	4
ch4+	c2h2	c- $c3h3+$	h2	h	1.51E-10	.00	.00	4
Continua	a na próxi	ma página	•••					

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
ch4	hcn+	c2h3+	nh2		2.60E-10	.00	.00	4
ch4	hcn+	hcnh+	ch3		1.04E-09	.00	.00	4
ch4	co+	c2h3o+	h		5.20E-11	.00	.00	4
ch4+	со	hco+	ch3		1.40E-09	.00	.00	4
ch4	co+	hco+	ch3		4.55E-10	.00	.00	4
ch4	n2+	n2	ch2+	h2	7.00E-11	.00	.00	4
ch4	n2+	n2	ch3+	h	9.30E-10	.00	.00	4
ch4+	c2h4	c2h5+	ch3		4.23E-10	.00	.00	4
ch4	n2h+	n2	ch5+		8.90E-10	.00	.00	4
ch4+	h2co	h3co+	ch3		1.98E-09	50	.00	4
ch4	h2co+	h3co+	ch3		9.35E-11	.00	.00	4
ch4	hno+	no	ch5+		1.00E-10	.00	.00	4
ch4+	ch3oh	ch5o+	ch3		1.20E-09	50	.00	4
ch4	s+	h3cs+	h		3.80E-10	.00	.00	4
ch4	sh+	h3cs+	h2		2.20E-10	.00	.00	4
ch4+	h2s	h3s+	ch3		1.16E-09	50	.00	4
ch4	c3+	c4h2+	h2		3.61E-10	.00	.00	4
ch4+	co2	hco2+	ch3		1.20E-09	.00	.00	4
ch4	co2+	hco2+	ch3		5.50E-10	.00	.00	4
ch4	cs+	hcs+	ch3		5.00E-10	.00	.00	4
ch4	hco2+	co2	ch5+		7.80E-10	.00	.00	4
ch4	c4+	c4h+	ch3		1.40E-10	.00	.00	4
ch4+	ocs	hocs+	ch3		9.80E-10	.00	.00	4
oh+	oh	h2o+	0		7.00E-10	50	.00	4
oh+	nh3	nh4+	0		1.20E-09	50	.00	4
oh	nh3+	nh4+	0		7.00E-10	50	.00	4
oh	ch5+	h2o+	ch4		7.00E-10	50	.00	4
oh+	h2o	h3o+	0		1.30E-09	50	.00	4
oh	h2o+	h3o+	0		6.90E-10	50	.00	4
oh+	c2	c2h+	0		4.80E-10	.00	.00	4
oh+	c2h	c2h2+	0		4.50E-10	.00	.00	4
oh+	cn	hcn+	0		1.00E-09	50	.00	4
oh+	hcn	hcnh+	0		1.20E-09	50	.00	4
oh+	hnc	hcnh+	0		1.20E-09	50	.00	4
oh	hcn+	cn	h2o+		6.30E-10	50	.00	4
oh+	со	hco+	0		1.05E-09	.00	.00	4
oh	co+	hco+	0		3.10E-10	50	.00	4
oh+	n2	n2h+	0		3.60E-10	.00	.00	4
oh	hco+	hco2+	h		1.00E-09	50	.00	4
oh	hco+	со	h2o+		1.00E-09	50	.00	4
oh+	hco	со	h2o+		2.80E-10	50	.00	4
oh+	hco	h2co+	0		2.80E-10	50	.00	4
oh	n2h+	n2	h2o+		6.20E-10	50	.00	4
oh+	no	hno+	0		6.11E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
oh+	h2co	h3co+	0	1.12E-09	50	.00	4
oh	hno+	no	h2o+	6.20E-10	50	.00	4
oh+	s	sh+	0	4.30E-10	.00	.00	4
oh+	s	so+	h	4.30E-10	.00	.00	4
oh	s+	so+	h	6.10E-10	50	.00	4
oh+	h2s	h3s+	0	8.20E-10	50	.00	4
oh+	co2	hco2+	0	1.44E-09	.00	.00	4
nh3+	nh3	nh4+	nh2	2.20E-09	50	.00	4
nh3	ch5+	nh4+	ch4	2.50E-09	50	.00	4
nh3+	h2o	nh4+	oh	1.10E-10	50	.00	4
nh3	h2o+	nh4+	oh	9.45E-10	50	.00	4
nh3	h3o+	nh4+	h2o	2.20E-09	50	.00	4
nh3+	c2	c2h2+	$\mathbf{n}\mathbf{h}$	1.00E-11	.00	.00	4
nh3	c2h+	c2	nh4+	5.50E-10	50	.00	4
nh3	c2h2+	c2h	nh4+	9.61E-10	50	.00	4
nh3	hcn+	hcnh+	nh2	8.40E-10	50	.00	4
nh3	c2h3+	c2h2	nh4+	2.50E-09	50	.00	4
nh3	co+	hco+	nh2	4.08E-11	50	.00	4
nh3	hcnh+	hcn	nh4+	1.10E-09	50	.00	4
nh3	hcnh+	hnc	nh4+	1.10E-09	50	.00	4
nh3+	hco	со	nh4+	4.20E-10	50	.00	4
nh3	hco+	со	nh4+	2.20E-09	50	.00	4
nh3	n2h+	n2	nh4+	2.30E-09	50	.00	4
nh3	c2h5+	c2h4	nh4+	2.10E-09	50	.00	4
nh3+	h2co	hco	nh4+	1.10E-09	50	.00	4
nh3	h2co+	hco	nh4+	1.28E-09	50	.00	4
nh3	hno+	no	nh4+	1.10E-09	50	.00	4
nh3	h3co+	h2co	nh4+	2.30E-09	50	.00	4
nh3	sh+	s	nh4+	9.75E-10	50	.00	4
nh3+	h2s	$^{\rm sh}$	nh4+	1.30E-09	50	.00	4
nh3	h2s+	$^{\rm sh}$	nh4+	1.36E-09	50	.00	4
nh3	h3s+	h2s	nh4+	1.90E-09	50	.00	4
nh3	c2n+	hcnh+	hcn	1.80E-09	50	.00	4
nh3	ch5o+	nh4+	ch3oh	1.00E-09	.00	.00	4
nh3	hco2+	co2	nh4+	1.00E-09	50	.00	4
nh3	hcs+	cs	nh4+	2.00E-09	50	.00	4
so+	nh3	so	nh3+	1.30E-09	50	.00	4
nh3	ocs+	nh3+	ocs	2.30E-09	50	.00	4
nh3	hso2+	so2	nh4+	2.00E-09	50	.00	4
ch5+	h2o	h3o+	ch4	3.70E-09	50	.00	4
ch5+	c2	c2h+	ch4	9.50E-10	.00	.00	4
ch5+	c2h	c2h2+	ch4	9.00E-10	.00	.00	4
ch5+	c2h2	c2h3+	ch4	1.60E-09	.00	.00	4
ch5+	hcn	hcnh+	ch4	1.20E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
ch5+	hnc	hcnh+	ch4	1.20E-09	50	.00	4
ch5+	со	hco+	ch4	1.00E-09	.00	.00	4
ch5+	c2h4	c2h5+	ch4	1.50E-09	.00	.00	4
ch5+	hco	h2co+	ch4	8.50E-10	50	.00	4
ch5+	h2co	h3co+	ch4	4.50E-09	50	.00	4
ch5+	s	sh+	ch4	1.30E-09	.00	.00	4
ch5+	h2s	h3s+	ch4	1.50E-09	50	.00	4
ch5+	co2	hco2+	ch4	1.90E-09	.00	1230.00	4
h2o+	h2o	h3o+	oh	2.10E-09	50	.00	4
h2o+	c2	c2h+	oh	4.70E-10	.00	.00	4
h2o	c2+	c2h+	oh	4.40E-10	50	.00	4
h2o	c2+	c2ho+	h	4.40E-10	50	.00	4
h2o+	c2h	c2h2+	oh	4.40E-10	.00	.00	4
h2o	cn+	hcn+	oh	1.60E-09	50	.00	4
h2o	cn+	h2nc+	0	4.80E-10	50	.00	4
h2o	cn+	hco+	nh	1.60E-10	50	.00	4
h2o	c2h2+	c2h	h3o+	2.20E-10	50	.00	4
h2o+	hcn	hcnh+	oh	2.10E-09	50	.00	4
h2o+	hnc	hcnh+	oh	1.10E-09	50	.00	4
h2o	hcn+	cn	h3o+	1.80E-09	50	.00	4
h2o	c2h3+	c2h2	$h_{30}+$	1.11E-09	50	.00	4
h2o+	со	hco+	oh	9.00E-10	.00	180.00	4
h2o	co+	hco+	oh	8.84E-10	50	.00	4
h2o	n2+	n2h+	oh	5.00E-10	50	.00	4
h2o+	hco	со	h3o+	2.80E-10	50	.00	4
h2o+	hco	h2co+	oh	2.80E-10	50	.00	4
h2o	hco+	со	h3o+	2.50E-09	50	.00	4
h2o	n2h+	n2	h3o+	2.60E-09	50	.00	4
h2o	c2h5+	c2h4	h3o+	1.40E-09	50	.00	4
h2o+	h2co	h3co+	oh	6.62E-10	50	.00	4
h2o	h2co+	hco	h3o+	2.60E-09	50	.00	4
h2o	hno+	no	$h_{30}+$	2.30E-09	50	.00	4
h2o	h3co+	h2co	h3o+	2.30E-09	.00	700.00	4
h2o+	s	sh+	oh	4.30E-10	.00	.00	4
h2o+	s	hso+	h	4.30E-10	.00	.00	4
h2o	sh+	s		7.80E-10	50	.00	4
h2o+	h2s	sh	h3o+	5.40E-11	50	.00	4
h2o	h2s+	sh	h3o+	8.10E-10	50	.00	4
h2o+	h2s	h3s+	oh	7.74E-10	50	.00	4
h2o	c^{2n+}	hco+	hcn	2 30E-10	- 50	.00	4
h2o	co2+	$hco2\pm$	oh	7.56E-10	- 50	.00	Δ.
h2o	hco2+	co2	h3o+	2.30E-09	50	.00	4
h2o	hocs+	h30+	005	3.40E-09	50	.00	4
h20+	so2	hso2+	oh	2.60E-09	50	.00	4
	552					.00	· · /

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
h2o	hso2+	so2	h3o+	2.13E-09	50	.00	4
h3o+	hcn	hcnh+	h2o	3.80E-09	50	.00	4
h3o+	hnc	hcnh+	h2o	4.00E-09	50	.00	4
h3o+	c2h3	c2h4+	h2o	2.00E-09	50	.00	4
h3o+	h2co	h3co+	h2o	3.40E-09	50	.00	4
h3o+	ch3oh	ch5o+	h2o	2.50E-09	50	.00	4
h3o+	h2s	h3s+	h2o	1.90E-09	50	.00	4
h3o+	cs	hcs+	h2o	1.00E-09	50	.00	4
h3o+	c4	c4h+	h2o	1.10E-09	.00	.00	4
h3o+	c4h	c4h2+	h2o	1.10E-09	50	.00	4
c2+	c2	c3+	с	8.70E-10	.00	.00	4
c2+	c2h2	c4h+	h	1.70E-09	.00	.00	4
c2	hcn+	cn	c2h+	8.40E-10	.00	.00	4
c2+	hco	со	c2h+	3.80E-10	50	.00	4
c2	hco+	со	c2h+	8.30E-10	.00	.00	4
c2	n2h+	n2	c2h+	8.30E-10	.00	.00	4
c2	h2co+	hco	c2h+	8.20E-10	.00	.00	4
c2	hno+	no	c2h+	8.20E-10	.00	.00	4
c2+	02	co+	со	8.00E-10	.00	.00	4
c2	o2+	co+	со	4.10E-10	.00	.00	4
c2+	s	cs+	с	5.80E-10	.00	.00	4
c2	$\mathbf{s}+$	cs+	с	8.10E-10	.00	.00	4
c2h+	c2h2	c4h2+	h	1.70E-09	.00	.00	4
c2h	c2h2+	c4h2+	h	1.40E-09	.00	.00	4
c2h+	hcn	c2h2+	cn	1.40E-09	50	.00	4
c2h+	hcn	hcnh+	c2	1.40E-09	50	.00	4
c2h+	hnc	hcnh+	c2	1.40E-09	50	.00	4
c2h	hcn+	c2h2+	cn	7.90E-10	.00	.00	4
c2h	c2h3+	c2h2+	c2h2	3.30E-10	.00	.00	4
c2h	c2h3+	c4h2+	h2	3.30E-10	.00	.00	4
c2h	co+	hco+	c2	3.90E-10	.00	.00	4
c2h+	hco	со	c2h2+	7.60E-10	50	.00	4
c2h	hco+	со	c2h2+	7.80E-10	.00	.00	4
c2h	n2h+	n2	c2h2+	7.80E-10	.00	.00	4
c2h+	h2co	h3co+	c2	1.10E-09	50	.00	4
c2h	h2co+	hco	c2h2+	7.70E-10	.00	.00	4
c2h	hno+	no	c2h2+	7.70E-10	.00	.00	4
c2h+	co2	c2ho+	со	9.40E-10	.00	.00	4
c2h	s+	c2s+	h	1.00E-09	.00	.00	4
cn+	hco	со	hcn+	3.70E-10	50	.00	4
cn+	h2co	hco+	hcn	5.20E-10	50	.00	4
cn+	02	no+	со	8.60E-11	.00	.00	4
c2h2+	c2h2	c4h2+	h2	4.90E-10	.00	.00	4
c2h2+	hcn	hcnh+	c2h	2.30E-10	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
c2h2+	hnc	hcnh+	c2h		2.30E-10	50	.00	4
c2h2+	hco	со	c2h3+		3.70E-10	50	.00	4
c2h2	hco+	со	c2h3+		1.40E-09	.00	.00	4
c2h2	n2h+	n2	c2h3+		1.41E-09	.00	.00	4
c2h2	02+	c2h2+	02		1.11E-09	.00	.00	4
c2h2	o2+	hco+	h	со	6.50E-11	.00	.00	4
c2h2+	s	c2s+	h2		1.00E-09	.00	.00	4
c2h2+	h2s	$^{\rm sh}$	c2h3+		4.60E-11	50	.00	4
c2h2+	h2s	h3s+	c2h		4.60E-11	50	.00	4
c2h2	hco2+	co2	c2h3+		1.37E-09	.00	.00	4
c2h2	so+	h2cs+	со		7.20E-10	.00	.00	4
c2h2	so+	hcs+	hco		2.64E-10	.00	.00	4
hcn+	hcn	hcnh+	cn		1.60E-09	50	.00	4
hcn+	hnc	hcnh+	cn		1.00E-09	50	.00	4
hcn	c2h3+	hcnh+	c2h2		2.90E-09	50	.00	4
hnc	c2h3+	hcnh+	c2h2		2.90E-09	50	.00	4
hcn+	со	hco+	cn		1.40E-10	.00	.00	4
hcn+	hco	hcnh+	со		3.70E-10	50	.00	4
hcn+	hco	h2co+	cn		3.70E-10	50	.00	4
hcn	hco+	hcnh+	со		3.10E-09	50	.00	4
hnc	hco+	hcnh+	со		3.10E-09	50	.00	4
hcn	n2h+	hcnh+	n2		3.20E-09	50	.00	4
hnc	n2h+	hcnh+	n2		3.20E-09	50	.00	4
hcn	c2h5+	c2h4	hcnh+		2.70E-09	50	.00	4
hnc	c2h5+	c2h4	hcnh+		2.70E-09	50	.00	4
hcn+	h2co	h3co+	cn		1.00E-09	50	.00	4
hcn	h2co+	hco	hcnh+		1.40E-09	50	.00	4
hnc	h2co+	hco	hcnh+		1.40E-09	50	.00	4
hcn	hno+	no	hcnh+		9.90E-10	50	.00	4
hnc	hno+	no	hcnh+		9.90E-10	50	.00	4
hcn	h3co+	h2co	hcnh+		2.40E-09	.00	190.00	4
hnc	h3co+	h2co	hcnh+		1.30E-09	50	.00	4
hcn+	s	sh+	cn		5.70E-10	.00	.00	4
hcn	sh+	s	hcnh+		8.60E-10	50	.00	4
hnc	sh+	s	hcnh+		8.60E-10	50	.00	4
hcn	h3s+	h2s	hcnh+		1.50E-09	50	.00	4
hnc	h3s+	h2s	hcnh+		1.50E-09	50	.00	4
hcn+	co2	hco2+	cn		2.10E-10	.00	.00	4
c2h3+	c2h3	c2h5+	c2h		5.00E-10	50	.00	4
c2h3	c2h4+	c2h5+	c2h2		5.00E-10	50	.00	4
c2h3+	c2h4	c2h5+	c2h2		8.90E-10	.00	.00	4
c2h3	hco+	c2h4+	со		1.40E-09	50	.00	4
c2h3+	h2s	h3s+	c2h2		8.40E-10	50	.00	4
c2h3+	c4h	c4h2+	c2h2		4.00E-10	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
со	n2h+	hco+	n2		8.80E-10	.00	.00	4
co+	h2co	hco+	hco		1.65E-09	50	.00	4
со	hno+	no	hco+		1.00E-10	.00	.00	4
co+	h2s	$^{\rm sh}$	hco+		1.56E-10	50	.00	4
со	hco2+	co2	hco+		7.80E-10	.00	.00	4
co+	so2	so+	co2		1.70E-09	50	.00	4
со	so2+	so+	co2		3.00E-10	.00	.00	4
n2+	hco	n2h+	со		3.70E-10	50	.00	4
n2+	h2co	hco+	n2	h	2.52E-09	50	.00	4
n2	hno+	no	n2h+		2.80E-10	.00	1000.00	4
no	n2h+	n2	hno+		3.40E-10	50	.00	4
n2+	h2s	s+	n2	h2	2.25E-10	50	.00	4
n2+	h2s	sh+	n2	h	1.13E-09	50	.00	4
n2+	ocs	s+	n2	со	1.04E-09	.00	.00	4
hcn	c4h+	c4h2+	cn		9.45E-11	50	.00	4
hcnh+	h2co	h3co+	hcn		1.05E-09	50	.00	4
hcnh+	h2s	h3s+	hcn		1.20E-09	.00	374.00	4
c2h4	hco+	c2h5+	со		1.40E-09	.00	.00	4
c2h4	o2+	c2h4+	o2		6.80E-10	.00	.00	4
c2h4	s+	hcs+	ch3		6.18E-10	.00	.00	4
c2h4	s+	c2h3+	$^{\rm sh}$		9.50E-11	.00	.00	4
c2h4+	h2s	h2s+	c2h4		6.57E-10	50	.00	4
c2h4+	h2s	h2cs+	ch4		7.42E-11	50	.00	4
c2h4+	h2s	h3cs+	ch3		3.29E-10	50	.00	4
c2h4	c3+	c2h4+	c3		3.96E-10	.00	.00	4
hco+	hco	h2co+	со		7.30E-10	50	.00	4
hco	n2h+	h2co+	n2		7.30E-10	50	.00	4
hco+	h2co	h3co+	со		3.30E-09	50	.00	4
hco	h2co+	h3co+	со		3.60E-10	50	.00	4
hco	hno+	h2co+	no		7.20E-10	50	.00	4
hco+	ch3oh	ch5o+	со		2.70E-09	50	.00	4
hco+	s	sh+	со		3.30E-10	.00	.00	4
hco	s+	sh+	со		3.60E-10	50	.00	4
hco+	$^{\rm sh}$	h2s+	со		8.20E-10	.00	.00	4
hco+	h2s	h3s+	со		1.60E-09	50	.00	4
hco+	cs	hcs+	со		1.20E-09	50	.00	4
hco+	h2cs	h3cs+	со		1.10E-09	50	.00	4
hco+	c4	c4h+	со		2.00E-09	.00	.00	4
hco+	SO	hso+	со		7.50 E- 10	50	.00	4
hco+	c4h	c4h2+	со		1.40E-09	50	.00	4
hco+	ocs	hocs+	со		1.10E-09	.00	.00	4
n2h+	h2co	h3co+	n2		3.30E-09	50	.00	4
n2h+	s	$^{\mathrm{sh}+}$	n2		1.10E-09	.00	.00	4
n2h+	co2	hco2+	n2		9.80E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
c2h5+	h2co	h3co+	c2h4		3.10E-09	50	.00	4
c2h5+	h2s	h3s+	c2h4		6.70E-10	50	.00	4
c2h5+	0	hco+	ch4		1.00E-11	.00	.00	4
h2co+	h2co	h3co+	hco		3.20E-09	50	.00	4
h2co	hno+	h3co+	no		1.00E-09	- 50	.00	4
h2co	02±	02	hco+	h	2 30E-10	- 50	.00	4
$h^2co\pm$	921	sh+	hco	11	5.50E-10	00	.00	4
h^2co	5 e⊥	eh	hco±		3.35E-10	- 50	.00	4
h2co	s+	b2c	1007		3.35E 10	50	.00	4
h2co	s⊤ ch2ch	11257	hao		2.16E 00	50	.00	4
h2ao	h2a l	h2c	h2co		2.10E-09	50	.00	4
11200	1158+	1128	11500+		2.20E-09	50	.00	4
hno+	s	sn+	по		1.10E-09	.00	.00	4
nno+	co2	nco2+	no		1.00E-10	.00	.00	4
h3co+	ch3oh	ch50+	h2co		1.90E-09	50	.00	4
h3co+	h2s	h3s+	h2co		2.50E-09	.00	480.00	4
02+	ch3oh	02	h3co+	h	5.00E-10	50	.00	4
o2	s+	so+	0		1.50E-11	.00	.00	4
o2+	s	so+	0		5.40E-10	.00	.00	4
02	cs+	ocs+	0		1.30E-10	.00	.00	4
s+	c4h2	c4h2+	s		7.20E-10	.00	.00	4
s+	c4h2	CS	c-c3h2+		1.20E-10	.00	.00	4
s+	c4h2	cs	c3h2+		1.20E-10	.00	.00	4
sh+	h2s	h3s+	s		4.70E-10	50	.00	4
h2s+	h2s	h3s+	$^{\rm sh}$		1.00E-09	50	.00	4
h2s	c2n+	hcs+	hcn		1.20E-09	50	.00	4
h2s	ocs+	h2s+	ocs		1.40E-09	50	.00	4
c4h+	c4h	c4h2+	c4		6.00E-10	50	.00	4
h	h2+	h2	h+		6.40E-10	.00	.00	4
h	he+	he	h+		1.20E-15	.25	.00	4
h+	$^{\rm ch}$	ch+	h		1.90E-09	50	.00	4
h+	ch2	ch2+	h		1.40E-09	.00	.00	4
h+	$\mathbf{n}\mathbf{h}$	nh+	h		2.10E-09	50	.00	4
h+	ch3	ch3+	h		3.40E-09	.00	.00	4
h	o+	о	h+		5.66E-10	.36	-8.60	4
h+	0	o+	h		7.31E-10	.23	226.00	4
h+	nh2	nh2+	h		2.90E-09	50	.00	4
h+	ch4	ch4+	h		1.50E-09	.00	.00	4
h+	oh	oh+	h		2.10E-09	50	.00	4
h+	nh3	nh3+	h		3.70E-09	50	.00	4
h+	h2o	h2o+	h		6.90E-09	50	.00	4
h+	c2	c2+	h		3.10E-09	.00	.00	4
h+	c2h	c2h+	h		1.50E-09	.00	.00	4
h	cn+	cn	h+		6.40E-10	.00	.00	4
h+	c2h2	c2h2+	h		5.40E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
h+	hcn	hcn+	h	1.05E-08	13	.00	4
h	hcn+	hcn	h+	3.70E-11	.00	.00	4
h+	c2h3	c2h3+	h	2.00E-09	50	.00	4
h	co+	со	h+	7.50E-10	.00	.00	4
h+	c2h4	c2h4+	h	1.00E-09	.00	.00	4
h+	hco	hco+	h	9.40E-10	50	.00	4
h+	no	no+	h	2.90E-09	.00	.00	4
h+	h2co	h2co+	h	2.96E-09	50	.00	4
h+	o2	o2+	h	2.00E-09	.00	.00	4
h+	s	s+	h	1.00E-14	.00	.00	4
h+	$^{\rm sh}$	sh+	h	1.60E-09	.00	.00	4
h+	h2s	h2s+	h	5.28E-09	50	.00	4
h+	c3	c3+	h	4.00E-09	.00	.00	4
h+	cs	cs+	h	4.90E-09	50	.00	4
h+	h2cs	h2cs+	h	4.70E-09	50	.00	4
h+	c2s	c2s+	h	1.00E-09	50	.00	4
h+	c4	c4+	h	4.00E-09	.00	.00	4
h+	so	so+	h	3.20E-09	50	.00	4
h+	c4h	c4h+	h	2.00E-09	50	.00	4
h+	c4h2	c4h2+	h	2.00E-09	.00	.00	4
h+	fe	fe+	h	7.40E-09	.00	.00	4
h+	ocs	ocs+	h	2.10E-09	.00	.00	4
h+	so2	so2+	h	5.78E-09	50	.00	4
h2	he+	he	h2+	7.20E-15	.00	.00	4
h2+	$^{\rm ch}$	ch+	h2	7.10E-10	50	.00	4
h2+	ch2	ch2+	h2	1.00E-09	.00	.00	4
h2+	$\mathbf{n}\mathbf{h}$	nh+	h2	7.60E-10	50	.00	4
h2+	nh2	nh2+	h2	2.10E-09	50	.00	4
h2+	ch4	ch4+	h2	1.40E-09	.00	.00	4
h2+	$^{\rm oh}$	oh+	h2	7.60E-10	50	.00	4
h2+	nh3	nh3+	h2	5.70E-09	50	.00	4
h2+	h2o	h2o+	h2	3.90E-09	50	.00	4
h2+	c2	c2+	h2	1.10E-09	.00	.00	4
h2+	c2h	c2h+	h2	1.00E-09	.00	.00	4
h2+	cn	cn+	h2	1.20E-09	50	.00	4
h2+	c2h2	c2h2+	h2	4.82E-09	.00	.00	4
h2+	hcn	hcn+	h2	2.70E-09	50	.00	4
h2+	со	co+	h2	6.44E-10	.00	.00	4
h2+	c2h4	c2h4+	h2	2.21E-09	.00	.00	4
h2+	hco	hco+	h2	1.00E-09	50	.00	4
h2+	no	no+	h2	1.10E-09	.00	.00	4
h2+	h2co	h2co+	h2	1.40E-09	50	.00	4
h2+	02	02+	h2	8.00E-10	.00	.00	4
h2+	h2s	h2s+	h2	2.70E-09	50	.00	4

Tabela E.2 - Continuação

 $\begin{array}{c|c} n_{2}+ & n_{2}s & | & n_{2}s+ \\ \hline \text{Continua na próxima página...} \end{array}$

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
he+	с	c+	he	6.30E-15	.75	.00	4
he+	ch	ch+	he	5.00E-10	50	.00	4
he+	ch4	ch4+	he	5.10E-11	.00	.00	4
he+	nh3	nh3+	he	2.64E-10	50	.00	4
he+	h2o	h2o+	he	6.05E-11	50	.00	4
he+	c2	c2+	he	5.00E-10	.00	.00	4
he+	c2h2	c2h2+	he	2.54E-10	.00	.00	4
he+	n2	n2+	he	6.40E-10	.00	.00	4
he+	c2h4	c2h4+	he	2.40E-10	.00	.00	4
he+	h2co	h2co+	he	9.69E-10	50	.00	4
he+	02	o2+	he	3.30E-11	.00	.00	4
he+	h2s	h2s+	he	3.08E-10	50	.00	4
he+	co2	co2+	he	1.21E-10	.00	.00	4
he+	so2	so2+	he	4.30E-10	50	.00	4
c+	ch	ch+	с	3.80E-10	50	.00	4
с	c2+	c2	c+	1.10E-10	.00	.00	4
с	cn+	cn	c+	1.10E-10	.00	.00	4
с	co+	со	c+	1.10E-10	.00	.00	4
с	n2+	n2	c+	1.10E-10	.00	.00	4
c+	c2h4	c2h4+	с	1.70E-11	.00	.00	4
c+	hco	hco+	с	4.80E-10	50	.00	4
c+	no	no+	с	5.20E-10	.00	.00	4
c+	h2co	h2co+	с	7.80E-10	50	.00	4
с	o2+	o2	c+	5.20E-11	.00	.00	4
c+	s	s+	с	5.00E-11	.00	.00	4
c+	h2s	h2s+	с	6.00E-10	50	.00	4
c+	c2s	c2s+	с	5.00E-10	50	.00	4
c+	so	so+	с	2.60E-10	50	.00	4
c+	c4h2	c4h2+	с	1.31E-09	.00	.00	4
c+	fe	fe+	с	2.60E-09	.00	.00	4
c+	ocs	ocs+	с	4.00E-10	.00	.00	4
$^{\rm ch}$	n+	n	ch+	3.60E-10	50	.00	4
$^{\rm ch}$	o+	о	ch+	3.50E-10	50	.00	4
$^{\rm ch}$	nh2+	nh2	ch+	3.50E-10	50	.00	4
$^{\rm ch}$	oh+	oh	ch+	3.50E-10	50	.00	4
ch+	nh3	nh3+	$^{\rm ch}$	4.59E-10	50	.00	4
$^{\rm ch}$	h2o+	h2o	ch+	3.40E-10	50	.00	4
$^{\rm ch}$	c2+	c2	ch+	3.20E-10	50	.00	4
$^{\rm ch}$	cn+	cn	ch+	6.40E-10	50	.00	4
$^{\rm ch}$	co+	со	ch+	3.20E-10	50	.00	4
$^{\rm ch}$	n2+	n2	ch+	6.30E-10	50	.00	4
ch+	hco	hco+	$^{\rm ch}$	4.60E-10	50	.00	4
ch+	no	no+	$^{\rm ch}$	7.60E-10	.00	.00	4
$^{\rm ch}$	h2co+	h2co	ch+	3.10E-10	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
$^{\rm ch}$	02+	o2	ch+	3.10E-10	50	.00	4
ch+	s	s+	ch	4.70E-10	.00	.00	4
ch+	fe	fe+	$^{\rm ch}$	2.60E-10	.00	.00	4
n+	ch2	ch2+	n	1.00E-09	.00	.00	4
n+	$\mathbf{n}\mathbf{h}$	nh+	n	3.70E-10	50	.00	4
n+	nh2	nh2+	n	1.00E-09	50	.00	4
n+	ch4	ch4+	n	2.80E-11	.00	.00	4
n+	oh	oh+	n	3.70E-10	50	.00	4
n+	nh3	nh3+	n	1.97E-09	50	.00	4
n+	h2o	h2o+	n	2.80E-09	50	.00	4
n+	c2	c2+	n	1.00E-09	.00	.00	4
n+	c2h	c2h+	n	9.50E-10	.00	.00	4
n+	cn	cn+	n	1.10E-09	50	.00	4
n+	hcn	hcn+	n	3.70E-09	50	.00	4
n+	со	co+	n	8.25E-10	.00	.00	4
n	n2+	n2	n+	1.00E-11	.00	.00	4
n+	hco	hco+	n	4.50E-10	50	.00	4
n+	no	no+	n	4.51E-10	.00	.00	4
n+	h2co	h2co+	n	1.88E-09	50	.00	4
n+	02	02+	n	3.11E-10	.00	.00	4
n+	ch3oh	ch3oh+	n	1.24E-09	50	.00	4
n+	co2	co2+	n	7.50E-10	.00	.00	4
n+	fe	fe+	n	1.50E-09	.00	.00	4
n+	ocs	ocs+	n	1.02E-09	.00	.00	4
ch2	o+	0	ch2+	9.70E-10	.00	.00	4
ch2	nh2+	nh2	ch2+	4.90E-10	.00	.00	4
ch2	oh+	oh	ch2+	4.80E-10	.00	.00	4
ch2	h2o+	h2o	ch2+	4.70E-10	.00	.00	4
ch2	c2+	c2	ch2+	4.50E-10	.00	.00	4
ch2	cn+	cn	ch2+	8.80E-10	.00	.00	4
ch2	co+	со	ch2+	4.30E-10	.00	.00	4
ch2	n2+	n2	ch2+	8.70E-10	.00	.00	4
ch2+	no	no+	ch2	4.20E-10	.00	.00	4
ch2	h2co+	h2co	ch2+	4.30E-10	.00	.00	4
ch2	02+	o2	ch2+	4.30E-10	.00	.00	4
nh	o+	0	nh+	3.60E-10	50	.00	4
nh+	nh3	nh3+	nh	1.80E-09	50	.00	4
nh+	h2o	h2o+	nh	1.05E-09	50	.00	4
$^{'}$ nh	cn+	cn	nh+	6.50E-10	50	.00	4
nh	co+	co	nh+	3.20E-10	50	.00	4
nh	n2+	n2	nh+	6.50E-10	50	.00	4
nh+	no	no+	nh	7.12E-10	.00	.00	4
nh+	h2co	h2co+	nh	9.90E-10	50	.00	4
nh+	02	02+	nh	4.51E-10	.00	.00	4
···· [02	521		1.011-10			⁻

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
nh+	s	s+	nh	6.90E-10	.00	.00	4
ch3+	c2h3	c2h3+	ch3	3.00E-10	50	.00	4
ch3+	hco	hco+	ch3	4.40E-10	50	.00	4
ch3+	no	no+	ch3	1.00E-09	.00	.00	4
ch3+	fe	fe+	ch3	2.40E-09	.00	.00	4
o+	nh2	nh2+	0	1.00E-09	50	.00	4
o+	ch4	ch4+	0	8.90E-10	.00	.00	4
o+	oh	oh+	0	3.60E-10	50	.00	4
o+	nh3	nh3+	0	1.20E-09	50	.00	4
o+	h2o	h2o+	0	3.20E-09	50	.00	4
o+	c2	c2+	0	4.80E-10	.00	.00	4
o+	c2h	c2h+	0	4.60E-10	.00	.00	4
0	cn+	cn	o+	6.50E-11	.00	.00	4
o+	c2h2	c2h2+	0	3.90E-11	.00	.00	4
0	co+	со	o+	1.40E-10	.00	.00	4
o+	со	co+	0	4.90E-12	.50	4580.00	4
0	n2+	n2	o+	1.00E-11	.00	.00	4
o+	hco	hco+	0	4.30E-10	50	.00	4
o+	h2co	h2co+	0	2.10E-09	50	.00	4
o+	02	02+	0	1.90E-11	.00	.00	4
o+	ch3oh	ch3oh+	0	4.75E-10	50	.00	4
o+	h2s	h2s+	0	1.36E-09	50	.00	4
о	co2+	co2	o+	9.62E-11	.00	.00	4
o+	fe	fe+	0	2.90E-09	.00	.00	4
o+	ocs	ocs+	0	6.50E-10	.00	.00	4
o+	so2	so2+	0	2.04E-09	50	.00	4
nh2	oh+	oh	nh2+	5.00E-10	50	.00	4
nh2+	nh3	nh3+	nh2	6.90E-10	50	.00	4
nh2	h2o+	h2o	nh2+	4.90E-10	50	.00	4
nh2	c2+	c2	nh2+	4.60E-10	50	.00	4
nh2	cn+	cn	nh2+	9.10E-10	50	.00	4
nh2	co+	со	nh2+	4.50E-10	50	.00	4
nh2	n2+	n2	nh2+	8.90E-10	50	.00	4
nh2+	hco	hco+	nh2	4.30E-10	50	.00	4
nh2+	no	no+	nh2	7.00E-10	.00	.00	4
nh2	o2+	o2	nh2+	8.70E-10	50	.00	4
nh2+	s	$\mathbf{s}+$	nh2	4.40E-10	.00	.00	4
nh2+	h2s	h2s+	nh2	7.20E-10	50	.00	4
ch4+	nh3	nh3+	ch4	1.65E-09	50	.00	4
ch4	co+	со	ch4+	7.93E-10	.00	.00	4
ch4+	c2h4	c2h4+	ch4	1.38E-09	.00	.00	4
ch4+	h2co	h2co+	ch4	1.62E-09	50	.00	4
ch4+	02	o2+	ch4	3.90E-10	.00	.00	4
ch4+	ch3oh	ch3oh+	ch4	1.80E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
ch4+	h2s	h2s+	ch4	9.45E-10	50	.00	4
ch4	co2+	co2	ch4+	5.50E-10	.00	.00	4
ch4+	ocs	ocs+	ch4	4.20E-10	.00	.00	4
oh+	nh3	nh3+	oh	1.20E-09	50	.00	4
oh+	h2o	h2o+	oh	1.59E-09	50	.00	4
oh+	c2	c2+	oh	4.80E-10	.00	.00	4
oh+	c2h	c2h+	oh	4.50E-10	.00	.00	4
oh	cn+	$^{\rm cn}$	oh+	6.40E-10	50	.00	4
oh	co+	со	oh+	3.10E-10	50	.00	4
oh	n2+	n2	oh+	6.30E-10	50	.00	4
oh+	hco	hco+	oh	2.80E-10	50	.00	4
oh+	no	no+	oh	3.59E-10	.00	.00	4
oh+	h2co	h2co+	oh	7.44E-10	50	.00	4
oh+	02	o2+	oh	5.90E-10	.00	.00	4
oh+	s	s+	oh	4.30E-10	.00	.00	4
oh+	h2s	h2s+	oh	1.23E-09	50	.00	4
nh3	h2o+	h2o	nh3+	2.21E-09	50	.00	4
nh3	c2h2+	c2h2	nh3+	2.14E-09	50	.00	4
nh3	hcn+	hcn	nh3+	1.68E-09	50	.00	4
nh3	co+	со	nh3+	2.02E-09	50	.00	4
nh3	n2+	n2	nh3+	1.90E-09	50	.00	4
nh3	c2h4+	c2h4	nh3+	1.80E-09	50	.00	4
nh3+	hco	hco+	nh3	4.20E-10	50	.00	4
nh3+	no	no+	nh3	7.20E-10	.00	.00	4
nh3	h2co+	h2co	nh3+	4.25E-10	50	.00	4
nh3	o2+	02	nh3+	2.00E-09	50	.00	4
nh3	s+	s	nh3+	1.44E-09	50	.00	4
nh3	sh+	$^{\rm sh}$	nh3+	5.25E-10	50	.00	4
nh3	h2s+	h2s	nh3+	3.40E-10	50	.00	4
nh3	co2+	co2	nh3+	1.90E-09	50	.00	4
nh3+	fe	fe+	nh3	2.30E-09	.00	.00	4
h2o+	c2	c2+	h2o	4.70E-10	.00	.00	4
h2o+	c2h	c2h+	h2o	4.40E-10	.00	.00	4
h2o+	c2h2	c2h2+	h2o	1.90E-09	.00	.00	4
h2o	hcn+	hcn	h2o+	1.80E-09	50	.00	4
h2o	co+	со	h2o+	1.72E-09	50	.00	4
h2o	n2+	n2	h2o+	2.30E-09	50	.00	4
h2o+	c2h4	c2h4+	h2o	1.50E-09	.00	.00	4
h2o+	hco	hco+	h2o	2.80E-10	50	.00	4
h2o+	no	no+	h2o	2.70E-10	.00	.00	4
h2o+	h2co	h2co+	h2o	1.41E-09	50	.00	4
h2o+	02	o2+	h2o	4.60E-10	.00	.00	4
h2o+	s	s+	h2o	4.30E-10	.00	.00	4
h2o+	h2s	h2s+	h2o	9.72E-10	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
h2o	co2+	co2	h2o+	2.04E-09	50	.00	4
h2o+	fe	fe+	h2o	1.50E-09	.00	.00	4
h2o+	ocs	ocs+	h2o	2.50E-09	.00	.00	4
c2	cn+	cn	c2+	8.50E-10	.00	.00	4
c2	co+	со	c2+	8.40E-10	.00	.00	4
c2	n2+	n2	c2+	8.40E-10	.00	.00	4
c2+	hco	hco+	c2	3.80E-10	50	.00	4
c2+	no	no+	c2	3.40E-10	.00	.00	4
c2	o2+	02	c2+	4.10E-10	.00	.00	4
c2+	s	s+	c2	5.80E-10	.00	.00	4
c2h	cn+	cn	c2h+	8.00E-10	.00	.00	4
c2h	co+	со	c2h+	3.90E-10	.00	.00	4
c2h	n2+	n2	c2h+	7.90E-10	.00	.00	4
c2h+	no	no+	c2h	1.20E-10	.00	.00	4
c2h+	s	s+	c2h	1.20E-09	.00	.00	4
cn+	hcn	hcn+	cn	1.79E-09	50	.00	4
cn+	со	co+	cn	6.30E-10	.00	.00	4
cn	n2+	n2	cn+	1.00E-10	50	.00	4
cn+	hco	hco+	cn	3.70E-10	50	.00	4
cn+	no	no+	cn	5.70E-10	.00	.00	4
cn+	h2co	h2co+	cn	5.20E-10	50	.00	4
cn+	02	o2+	cn	2.58E-10	.00	.00	4
cn+	s	s+	cn	1.10E-09	.00	.00	4
cn+	co2	co2+	cn	3.00E-10	.00	.00	4
c2h2	hcn+	c2h2+	hcn	1.50E-09	.00	.00	4
c2h2+	c2h3	c2h3+	c2h2	3.30E-10	50	.00	4
c2h2+	c2h4	c2h4+	c2h2	4.14E-10	.00	.00	4
c2h2+	hco	hco+	c2h2	5.00E-10	50	.00	4
c2h2+	no	no+	c2h2	1.20E-10	.00	.00	4
c2h2+	h2co	h2co+	c2h2	8.60E-10	50	.00	4
c2h2+	h2s	h2s+	c2h2	2.20E-09	50	.00	4
c2h2	co2+	co2	c2h2+	7.30E-10	.00	.00	4
c2h2+	c4h2	c4h2+	c2h2	1.26E-09	.00	.00	4
c2h2+	fe	fe+	c2h2	2.00E-09	.00	.00	4
hcn	co+	со	hcn+	3.40E-09	50	.00	4
hcn	n2+	n2	hcn+	3.90E-10	50	.00	4
hcn+	no	no+	hcn	8.10E-10	.00	.00	4
hcn+	02	o2+	hcn	3.20E-10	.00	.00	4
hcn+	s	s+	hcn	5.70E-10	.00	.00	4
c2h3	c2h4+	c2h4	c2h3+	5.00E-10	50	.00	4
со	n2+	n2	co+	7.40E-11	.00	.00	4
co+	hco	hco+	со	7.40E-10	50	.00	4
co+	no	no+	со	3.30E-10	.00	.00	4
co+	h2co	h2co+	со	1.35E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
co+	02	o2+	со	1.20E-10	.00	.00	4
co+	s	s+	со	1.10E-09	.00	.00	4
co+	h2s	h2s+	со	2.44E-09	50	.00	4
co+	co2	co2+	со	1.00E-09	.00	.00	4
n2+	hco	hco+	n2	3.70E-10	50	.00	4
n2+	no	no+	n2	4.40E-10	.00	.00	4
n2+	h2co	h2co+	n2	3.77E-10	50	.00	4
n2+	02	o2+	n2	5.00E-11	.00	.00	4
n2+	s	$\mathbf{s}+$	n2	1.10E-09	.00	.00	4
n2+	h2s	h2s+	n2	1.50E-10	50	.00	4
n2+	co2	co2+	n2	7.70E-10	.00	.00	4
n2+	fe	fe+	n2	4.30E-10	.00	.00	4
n2+	ocs	ocs+	n2	2.60E-10	.00	.00	4
c2h4	co2+	co2	c2h4+	1.50E-10	.00	.00	4
hco	h2co+	h2co	hco+	3.60E-10	50	.00	4
hco	o2+	o2	hco+	3.60E-10	50	.00	4
hco	s+	s	hco+	3.60E-10	50	.00	4
hco	h2s+	h2s	hco+	7.00E-10	50	.00	4
hco+	fe	fe+	hco	1.90E-09	.00	.00	4
no	h2co+	h2co	no+	7.80E-10	.00	.00	4
no	hno+	hno	no+	7.00E-10	.00	.00	4
no	o2+	o2	no+	4.60E-10	.00	.00	4
no	s+	s	no+	3.70E-10	.00	.00	4
no	sh+	$^{\rm sh}$	no+	4.50E-10	.00	.00	4
no	h2s+	h2s	no+	3.70E-10	.00	.00	4
no	co2+	co2	no+	1.20E-10	.00	.00	4
no	c4h2+	no+	c4h2	3.80E-10	.00	.00	4
no+	fe	fe+	no	9.20E-10	.00	.00	4
h2co	o2+	02	h2co+	2.07E-09	50	.00	4
h2co+	s	$\mathbf{s}+$	h2co	5.50E-10	.00	.00	4
h2co+	fe	fe+	h2co	1.90E-09	.00	.00	4
o2+	ch3oh	ch3oh+	o2	5.00E-10	50	.00	4
o2+	s	$\mathbf{s}+$	o2	5.40E-10	.00	.00	4
o2+	h2s	h2s+	02	1.40E-09	50	.00	4
02	co2+	co2	o2+	5.30E-11	.00	.00	4
o2+	fe	fe+	02	1.10E-09	.00	.00	4
02	so2+	so2	o2+	2.50E-10	.00	.00	4
s	sh+	$^{\rm sh}$	s+	9.70E-10	.00	.00	4
s	h2s+	h2s	s+	1.10E-09	.00	.00	4
s+	fe	fe+	s	1.80E-10	.00	.00	4
sh+	fe	fe+	$^{\rm sh}$	1.60E-09	.00	.00	4
h2s	co2+	co2	h2s+	1.40E-09	50	.00	4
h2s+	fe	fe+	h2s	1.80E-09	.00	.00	4
co2+	ocs	ocs+	co2	9.60E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
co2+	so2	so2+	co2		1.50E-09	50	.00	4
cs+	fe	fe+	cs		1.70E-10	.00	.00	4
so+	fe	fe+	so		1.60E-09	.00	.00	4
h	p-c3h4+	c- $c3h3+$	h2		3.00E-10	.00	.00	4
h	a-c3h4+	c-c3h3+	h2		1.70E-10	.00	.00	4
h2	c- c 3h2+	c- c 3h3+	h		1.50E-09	.00	2000.00	4
c+	c2h4	c3h3+	h		5.10E-10	.00	.00	4
c+	c2h4	c3h2+	h2		1.70E-10	.00	.00	4
ch+	c2h2	c-c3h2+	h		2.40E-09	.00	.00	4
n	c3h2+	c2h2+	cn		3.74E-11	.00	.00	4
n	c3h2+	hcnh+	c2		6.60E-12	.00	.00	4
c2h2	c2h4+	c-c3h3+	ch3		6.45E-10	.00	.00	4
ch3+	c2h	c3h3+	h		5.00E-10	.00	.00	4
ch3+	c2h2	c3h3+	h2		5.75E-10	.00	.00	4
ch3+	c-c3h2	c4h3+	h2		2.70E-09	.00	.00	4
ch4	c2h+	p-c3h4+	h		1.32E-10	.00	.00	4
ch4	c2h2+	p-c3h4+	h2		1.87E-10	.00	.00	4
ch4	c-c3h2+	c-c3h3+	ch3		5.50E-10	.00	.00	4
ch4	c3h2+	c3h3+	ch3		4.68E-10	.00	.00	4
c2h3+	c-c3h2	c-c3h3+	c2h2		8.00E-10	50	.00	4
c2h3+	c3h3	a-c3h4+	c2h2		5.00E-10	50	.00	4
c2h3+	c3h3	p-c3h4+	c2h2		5.00E-10	50	.00	4
c2h4+	c3h3	c4h3+	ch4		8.00E-10	50	.00	4
c2h	c2h3+	c4h3+	h		3.30E-10	.00	.00	4
c2h2+	c2h3	c4h3+	h2		3.30E-10	50	.00	4
c2h3+	c4h2	c4h3+	c2h2		3.00E-10	.00	.00	4
c2h4	c4h+	c4h3+	c2h2		7.50E-10	.00	.00	4
c2h4	c- c 3h2+	c- c 3h3+	c2h3		2.75E-10	.00	.00	4
c2h4	c- c 3h2+	p-c3h4+	c2h2		3.30E-10	.00	.00	4
c2h4	c- c 3h2+	a-c3h4+	c2h2		3.30E-10	.00	.00	4
h+	c-c3h2	c3h+	h2		2.00E-09	50	.00	4
h+	c3h	c3h+	h		2.00E-09	50	.00	4
h+	c-c3h2	c-c3h2+	h		2.00E-09	50	.00	4
h3+	c3h	c3h2+	h2		2.00E-09	50	.00	4
h3+	c-c3h2	c- $c3h3+$	h2		2.00E-09	50	.00	4
h3+	c3h3	p-c3h4+	h2		1.00E-09	50	.00	4
h3+	c3h3	a-c3h4+	h2		1.00E-09	50	.00	4
he+	c3h	c3+	he	h	2.00E-09	50	.00	4
he+	c-c3h2	c3h+	he	h	1.00E-09	50	.00	4
c+	c3h	c4+	h		1.00E-09	50	.00	4
c+	c-c3h2	c4h+	h		1.00E-09	50	.00	4
c+	c-c3h2	c4+	h2		1.00E-09	50	.00	4
с	p-c3h4+	c4h2+	h2		1.00E-09	.00	.00	4
с	p-c3h4+	c4h3+	h		1.00E-09	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	γ	α	β	Tipo de Reação
с	a-c3h4+	c4h2+	h2	1.00E-09	.00	.00	4
с	a-c3h4+	c4h3+	h	1.00E-09	.00	.00	4
о	c3h2+	hco+	c2h	2.00E-10	.00	.00	4
0	p-c3h4+	hco+	c2h3	2.00E-10	.00	.00	4
0	a-c3h4+	hco+	c2h3	2.00E-10	.00	.00	4
c2h3+	c2h3	c-c3h3+	ch3	5.00E-10	50	.00	4
h3o+	c3h	c3h2+	h2o	2.00E-09	50	.00	4
h3o+	h2c3	c3h3+	h2o	3.00E-09	50	.00	4
h3o+	c-c3h2	c-c3h3+	h2o	3.00E-09	50	.00	4
h_{30+}	c3h3	a-c3h4+	h20	2.00E-09	50	.00	4
hco+	c3h	c3h2+		1.40E-09	50	.00	4
hco+	c-c3h	c-c3h2+	60	1 40E-09	- 50	00	4
hco+	c-c3h2	$c - c^{3}h^{3} +$	60	1.40E-09	- 50	00	4
hco+	h2c3	c3h3⊥	60	1.40E-00	- 50	.00	4
hco l	112C3	r_{c3h4}	60	7.00E 10	50	.00	4
hee -	cono -21-2	p-c3114+	0	7.00E-10	50	.00	4
nco+	cana - 41-2 -	a-con4+	- 41- 9	7.00E-10	50	.00	4
cnoon	c4n3+	cnəo+	c4n2	3.00E-10	50	.00	4
n+	hnc	ncn	n+	1.00E-09	.00	.00	4
h2	noc+	nco+	n2	3.80E-10	.00	.00	4
ch	0	hco+	electr	2.00E-11	.44	.00	4
hnc+	с	ch+	cn	1.10E-09	.00	.00	4
hnc+	s	s+	hnc	5.70E-10	.00	.00	4
hnc+	s	sh+	cn	5.70E-10	.00	.00	4
hnc+	c2	c2h+	cn	8.40E-10	.00	.00	4
hnc+	$^{\rm ch}$	ch2+	cn	6.30E-10	.00	.00	4
hnc+	h2	hcnh+	h	7.00E-10	.00	.00	4
hnc+	$\mathbf{n}\mathbf{h}$	nh2+	cn	6.50E-10	.00	.00	4
hnc+	no	no+	hnc	8.10E-10	.00	.00	4
hnc+	02	no+	hco	9.00E-11	.00	.00	4
hnc+	oh	h2o+	cn	6.30E-10	.00	.00	4
hnc+	c2h	c2h2+	cn	7.90E-10	.00	.00	4
hnc+	ch2	ch3+	cn	8.70E-10	.00	.00	4
hnc+	h2o	h3o+	cn	8.50E-10	.00	.00	4
hnc+	hcn	hcnh+	cn	1.60E-09	.00	.00	4
hnc+	hco	hcnh+	со	3.70E-10	.00	.00	4
hnc+	hco	h2co+	cn	3.70E-10	.00	.00	4
hnc+	nh2	nh3+	cn	9.00E-10	.00	.00	4
hnc+	h2co	h3co+	cn	1.00E-09	.00	.00	4
hnc+	nh3	nh3+	hnc	1.70E-09	.00	.00	4
c2n+	ch4	c2h3+	hcn	4.20E-10	.00	.00	4
c2n+	ch4	hcnh+	c2h2	7.00E-11	.00	.00	4
c4h3+	0	hco+	c-c3h2	2.50E-11	.00	.00	4
c2h5+	с	c3h3+	h2	5.00E-10	.00	.00	4
c2h5+	с	p-c3h4+	h	5.00E-10	.00	.00	4

Tabela E.2 - Continuação

 c_{2h5+} c | p- c_{3h4+} Continua na próxima página...

Reag	entes		Produtos			γ	α	β	Tipo de Reação
c2h5+	с	a-c3h4+	h			5.00E-10	.00	.00	4
o+	no	no+	0			1.70E-12	.00	.00	4
co+	n	no+	с			8.10E-11	.00	.00	4
n2+	h	h+	n2			1.20E-10	.00	.00	4
c2n+	h2	hcnh+	с			8.10E-10	.00	.00	4
ch2+	$^{\rm ch}$	c2h2+	h			7.20E-10	.00	.00	4
ch2+	$\mathbf{n}\mathbf{h}$	hcnh+	h			7.50E-10	.00	.00	4
ch2+	oh	h2co+	h			7.40E-10	.00	.00	4
ch2+	ch2	c2h3+	h			1.00E-09	.00	.00	4
ch2+	nh2	hcnh+	h2			1.00E-09	.00	.00	4
hcn+	0	o+	hcn			6.50E-11	.00	.00	4
hoc+	со	hco+	со			4.00E-10	.00	.00	4
hoc+	n2	n2h+	со			2.00E-09	.00	.00	4
c2h2+	02	hco+	hco			9.80E-13	.00	.00	4
he+	h2c3	c3+	he	h2		1.00E-09	50	.00	4
c+	hcn	cnc+	h			3.10E-09	50	.00	4
c+	h2c3	c4h+	h			1.00E-09	50	.00	4
c+	h2c3	c4+	h2			1.00E-09	50	.00	4
ch+	cn	cnc+	h			5.50E-10	50	.00	4
n	c3h5+	c2h4+	hcn			1.10E-10	.00	.00	4
ch4	c2h2+	c3h5+	h			7.03E-10	.00	.00	4
ch4	c2h3+	c3h5+	h2			2.00E-10	.00	.00	4
nh3	cnc+	hcnh+	hcn			1.90E-09	50	.00	4
h2o	cnc+	hco+	hcn			1.63E-09	50	.00	4
c2h4+	c2h4	c3h5+	ch3			7.11E-10	.00	.00	4
c2h4	c2h5+	c3h5+	ch4			3.90E-10	.00	.00	4
h	c3h2+	c3h+	h2			6.00E-11	.00	.00	4
h2	c3+	c3h+	h			2.40E-10	.00	.00	4
h2	c3h+	c-c3h2+	h			1.04E-12	.00	.00	4
h2	c3h+	c3h2+	h			4.16E-12	.00	.00	4
h3+	p-c3h4	c-c3h3+	h2	h2		1.35E-09	.00	.00	4
h3+	p-c3h4	c3h3+	h2	h2		6.75E-10	.00	.00	4
h3+	p-c3h4	c3h5+	h2			6.75E-10	.00	.00	4
h3+	a-c3h4	c-c3h3+	h2	h2		1.35E-09	.00	.00	4
h3+	a-c3h4	c3h3+	h2	h2		6.75E-10	.00	.00	4
h3+	a-c3h4	c3h5+	h2			6.75E-10	.00	.00	4
he+	c3h3	c3h+	he	h2		6.70E-10	50	.00	4
he+	c3h3	c3h2+	he	h		6.70E-10	50	.00	4
he+	p-c3h4	c3+	he	h2	h2	5.00E-10	.00	.00	4
he+	p-c3h4	c3h+	he	h2	h	5.00E-10	.00	.00	4
he+	p-c3h4	c3h2+	he	h2		5.00E-10	.00	.00	4
he+	p-c3h4	c3h3+	he	h		5.00E-10	.00	.00	4
he+	a-c3h4	c3+	he	h2	h2	5.00E-10	.00	.00	4
he+	a-c3h4	c3h+	he	h2	h	5.00E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	8	γ	α	β	Tipo de Reação
he+	a-c3h4	c3h2+	he	h2	5.00E-10	.00	.00	4
he+	a-c3h4	c3h3+	he	h	5.00E-10	.00	.00	4
c+	c2h2	c3h+	h		1.80E-09	.00	.00	4
c+	c2h4	c3h+	h2	h	8.50E-11	.00	.00	4
c+	c2h4	c-c3h3+	h		5.10E-10	.00	.00	4
c+	c2h4	c- c 3 h 2 $+$	h2		1.70E-10	.00	.00	4
c+	c3h3	c3h3+	с		1.00E-09	50	.00	4
c+	p-c3h4	c2h2+	c2h2		1.90E-10	.00	.00	4
c+	p-c3h4	c3h3+	$^{\rm ch}$		3.80E-10	.00	.00	4
c+	p-c3h4	c2h3+	c2h		1.90E-10	.00	.00	4
c+	p-c3h4	c4h2+	h2		5.70E-10	.00	.00	4
c+	p-c3h4	p-c3h4+	с		5.70E-10	.00	.00	4
c+	a-c3h4	c2h2+	c2h2		1.90E-10	.00	.00	4
c+	a-c3h4	c3h3+	$^{\rm ch}$		3.80E-10	.00	.00	4
c+	a-c3h4	c2h3+	c2h		1.90E-10	.00	.00	4
c+	a-c3h4	c4h2+	h2		5.70E-10	.00	.00	4
c+	a-c3h4	a-c3h4+	с		5.70E-10	.00	.00	4
c+	c4h2	c3h+	c2h		1.45E-10	.00	.00	4
n	c4h2+	c3h+	hcn		1.71E-10	.00	.00	4
ch3+	c2h	c3h2+	h2		5.00E-10	.00	.00	4
ch3+	c2h	c- $c3h3+$	h		5.00E-10	.00	.00	4
ch3+	c2h2	c- c 3h3+	h2		5.75E-10	.00	.00	4
ch3+	c2h3	c3h3+	h2	h	1.00E-10	50	.00	4
ch3+	c2h3	a-c3h4+	h2		6.00E-10	50	.00	4
ch3+	c3h	c4h2+	h2		5.00E-10	50	.00	4
ch3+	c4h2	c3h3+	c2h2		1.27E-09	.00	.00	4
0	c4h2+	c3h2+	со		1.08E-10	.00	.00	4
ch4	c2+	c3h+	h2	h	1.96E-10	.00	.00	4
ch4	c2+	c3h2+	h2		5.74E-10	.00	.00	4
ch4	c2+	c3h3+	h		2.10E-10	.00	.00	4
ch4	c2h+	c3h3+	h2		3.74E-10	.00	.00	4
ch4	c3+	c3h+	ch3		2.38E-10	.00	.00	4
ch4	c3h+	c2h3+	c2h2		7.83E-10	.00	.00	4
ch4	c3h+	c4h3+	h2		8.70E-11	.00	.00	4
ch4	c4+	c3h2+	c2h2		1.56E-10	.00	.00	4
nh3	c3h+	nh4+	c3		1.82E-09	50	.00	4
nh3	c3h+	h2nc+	c2h2		5.60E-10	50	.00	4
nh3	c3h+	hcn	c2h3+		4.20E-10	50	.00	4
nh3	c3h3+	nh4+	c- $c3h2$		1.80E-10	50	.00	4
h2o	c3h+	со	c2h3+		1.80E-10	50	.00	4
h2o	c3h+	hco+	c2h2		2.48E-10	50	.00	4
h3o+	p-c3h4	c3h5+	h2o		1.80E-09	.00	.00	4
h3o+	a-c3h4	c3h5+	h2o		1.40E-09	.00	.00	4
c2h	c2h4+	c- c 3h3+	ch2		5.00E-10	50	.00	4

Tabela E.2 - Continuação

Reage	entes		Produtos	γ	α	β	Tipo de Reação
c2h	c2h4+	c4h3+	h2	5.00E-10	50	.00	4
c2h2+	c2h3	c3h3+	ch2	3.30E-10	50	.00	4
c2h2+	c2h4	c3h3+	ch3	6.62E-10	.00	.00	4
c2h2	c2h5+	c3h3+	ch4	6.84E-11	.00	.00	4
c2h2	c2n+	c3h+	hcn	8.00E-10	.00	.00	4
c2h2+	p-c3h4	p-c3h4+	c2h2	5.00E-10	.00	.00	4
c2h2+	a-c3h4	a-c3h4+	c2h2	5.00E-10	.00	.00	4
c2h3+	c3h	c3h2+	c2h2	1.00E-09	50	.00	4
c2h3+	h2c3	c3h3+	c2h2	8.00E-10	50	.00	4
c2h3+	a-c3h4	c3h5+	c2h2	5.00E-10	.00	.00	4
c2h3+	p-c3h4	c3h5+	c2h2	5.00E-10	.00	.00	4
c2h4+	c3h	c4h2+	ch3	1.90E-09	50	.00	4
c2h2+	c3h3	c3h3+	c2h2	1.00E-09	50	.00	4
c2h4+	c3h3	c3h3+	c2h4	8.00E-10	50	.00	4
ch3+	h2c3	c4h3+	h2	2.70E-09	50	.00	4
c2h4+	h2c3	c4h3+	ch3	1.50E-09	50	.00	4
c2h2	c4+	c3h2+	c3	1.92E-10	.00	.00	4
hcn	c3+	c3h+	cn	2.60E-10	50	.00	4
c2h4	c3+	c3h2+	c2h2	1.35E-10	.00	.00	4
c2h4	c3h+	c3h3+	c2h2	4.50E-10	.00	.00	4
c2h4	c3h+	c-c3h3+	c2h2	4.50E-10	.00	.00	4
c2h4	c3h2+	p-c3h4+	c2h2	3.30E-10	.00	.00	4
c2h4	c3h2+	a-c3h4+	c2h2	3.30E-10	.00	.00	4
h2s	c3h+	cs	c2h3+	3.60E-10	50	.00	4
h2s	c3h+	hcs+	c2h2	7.56E-10	50	.00	4
c3h2+	p-c3h4	c4h2+	c2h4	1.17E-10	50	.00	4
c3h2+	p-c3h4	c4h3+	c2h3	1.56E-10	50	.00	4
c3h2+	a-c3h4	c4h2+	c2h4	5.60E-11	.00	.00	4
c3h2+	a-c3h4	c4h3+	c2h3	1.96E-10	.00	.00	4
c3h3+	c4h2	c-c3h3+	c4h2	3.36E-10	.00	.00	4
p-c3h4+	p-c3h4	c3h5+	c3h3	1.98E-10	.00	.00	4
о	c3h3+	c2h3+	со	4.50E-11	.00	.00	4
0	c3h3+	c2h2+	hco	3.75E-11	.00	.00	4
h+	c3h	c3+	h2	2.00E-09	50	.00	4
h+	h2c3	c3h+	h2	2.00E-09	50	.00	4
h+	h2c3	c3h2+	h	2.00E-09	50	.00	4
h+	c3h3	c3h2+	h2	2.00E-09	50	.00	4
h+	p-c3h4	c3h3+	h2	2.00E-09	.00	.00	4
h+	a-c3h4	c3h3+	h2	2.00E-09	.00	.00	4
h+	c-c3h	c3h+	h	2.00E-09	50	.00	4
h+	c3h3	c3h3+	h	2.00E-09	50	.00	4
h+	p-c3h4	p-c3h4+	h	2.00E-09	.00	.00	4
h+	a-c3h4	a-c3h4+	h	2.00E-09	.00	.00	4
h3+	c3	c3h+	h2	2.00E-09	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
h3+	c-c3h	c-c3h2+	h2		2.00E-09	50	.00	4
h3+	h2c3	c3h3+	h2		2.00E-09	.00	.00	4
he+	c-c3h	c3+	he	h	2.00E-09	50	.00	4
he+	h2c3	c3h+	he	h	1.00E-09	50	.00	4
c+	c2h3	c3h2+	h		1.00E-09	50	.00	4
c+	c-c3h	c4+	h		1.00E-09	50	.00	4
с	c2h2+	c3h+	h		1.10E-09	.00	.00	4
с	c2h3+	c3h+	h2		1.00E-09	.00	.00	4
с	c2h3+	c3h2+	h		1.00E-09	.00	.00	4
с	c2h4+	c3h3+	h		1.00E-09	.00	.00	4
с	c2h4+	c3h2+	h2		1.00E-09	.00	.00	4
с	c3h2+	c4h+	h		1.00E-09	.00	.00	4
с	c3h3+	c4h+	h2		1.00E-09	.00	.00	4
с	c3h3+	c4h2+	h		1.00E-09	.00	.00	4
с	c-c3h3+	c4h2+	h		1.00E-09	.00	.00	4
$^{\rm ch}$	c2h+	c3h+	h		3.20E-10	50	.00	4
$^{\rm ch}$	c2h2+	c3h2+	h		6.40E-10	50	.00	4
ch2	c2+	c3h+	h		4.50E-10	.00	.00	4
ch2+	c2h	c3h2+	h		9.50E-10	.00	.00	4
ch2	c2h+	c3h2+	h		4.40E-10	.00	.00	4
ch2	c2h2+	c3h3+	h		8.80E-10	.00	.00	4
ch3+	c2	c3h+	h2		9.90E-10	.00	.00	4
0	c-c3h2+	hco+	c2h		2.00E-10	.00	.00	4
h3o+	c3	c3h+	h2o		2.00E-09	.00	.00	4
h3o+	c-c3h	c-c3h2+	h2o		2.00E-09	50	.00	4
hco+	c3	c3h+	со		2.00E-09	.00	.00	4
hco+	p-c3h4	c3h5+	со		1.40E-09	.00	.00	4
hco+	a-c3h4	c3h5+	со		1.40E-09	.00	.00	4
h3+	c4h2	c4h3+	h2		2.60E-09	.00	.00	4
c2h2+	c2h2	c4h3+	h		9.10E-10	.00	.00	4
c2h2	c2h3+	c4h3+	h2		7.20E-10	.00	.00	4
h3o+	c4h2	c4h3+	h2o		1.10E-09	.00	.00	4
h3co+	c4h2	c4h3+	h2co		9.30E-10	.00	.00	4
с	c3h5+	c4h3+	h2		1.00E-09	.00	.00	4
hco+	c4h2	c4h3+	со		1.40E-09	.00	.00	4
c3h5+	0	hco+	c2h4		2.00E-10	.00	.00	4
c2h5+	с	c-c3h3+	h2		5.00E-10	.00	.00	4
ch2+	c2	c3h+	h		1.00E-09	.00	.00	4
cnc+	c2h2	c3h+	hcn		6.40E-10	.00	.00	4
cnc+	c2h2	hcnh+	c3		5.60E-11	.00	.00	4
h+	hc3	c3h+	h		1.58E-08	50	.00	4
, h+	hc3	c3+	h2		1.58E-08	50	.00	4
he+	hc3	c3+	h	he	2.00E-09	.00	.00	4
c+	hc3	c4+	h		1.07E-08	50	.00	4

Tabela E.2 - Continuação

c+ nc3 | c4+ Continua na próxima página...

ch3+ $hc3$ $c3h+$ $ch3$ $4.90E-09$ 50 $.00$ 4 $ch3+$ $hc3$ $c4h2+$ $h2$ $4.35E-09$ 50 $.00$ 4 $c2h4+$ $hc3$ $c4h2+$ $ch3$ $5.34E-09$ 50 $.00$ 4 $c3h+$ no $no+$ $hc3$ $8.65E-11$ 50 $.00$ 4 $c3h+$ $nh3$ $nh3+$ $hc3$ $2.79E-10$ 50 $.00$ 4 $c3h+$ $nh3$ $nh3+$ $hc3$ $2.79E-10$ 50 $.00$ 4 $b2+$ $o2$ $o2h+$ h $1.90E-09$ $.00$ $.00$ 4 $h2+$ $o2$ $o2h+$ h $1.90E-09$ $.00$ $.00$ 4 $h2+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ $.00$ 4 $h3+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ $.00$ 4 $nh+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ 4 $o2h+$ $nh3$ $nh4+$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $n2$ $n2h+$ $o2$ $8.00E-10$ $.00$ $.00$ 4 $o2h+$ no $ho+$ $o2$ $.00E-10$ $.00$ $.00$ 4 $o2h+$ no $no+$ $.02$ $.00E-10$ $.00$ $.00$ 4 $o2h+$ no $.00E-10$ $.00$ $.00$ 4 $o2h+$ $no+$ $.02$ $.00E-10$ $.00$	ío
harharhorhorhorhorhor $ch3+$ $hc3$ $c4h2+$ $h2$ $4.35E-09$ 50 $.00$ 4 $c2h4+$ $hc3$ $c4h2+$ $ch3$ $5.34E-09$ 50 $.00$ 4 $c3h+$ no $no+$ $hc3$ $8.65E-11$ 50 $.00$ 4 $c3h+$ $nh3$ $nh3+$ $hc3$ $2.79E-10$ 50 $.00$ 4 $h2+$ $o2$ $o2h+$ h $1.90E-09$ $.00$ $.00$ 4 $h2+$ $o2$ $o2h+$ $h2$ $6.40E-10$ $.00$ $.00$ 4 $h3+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ 150.00 4 $h3+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ 4 $nh+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ 4 $o2h+$ $h3$ $n4+$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $nh3$ $nh4+$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $n2$ $n2h+$ $o2$ $8.00E-10$ $.00$ $.00$ 4 $o2h+$ $n0$ $ho+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ $n0$ $ho 0.00$ $.00$ 4 $o2h+$ $n0$ $ho 0.00$ $.00$ 4 $o2h+$ $n0$ $ho 0.00$ $.00$ 4 $o2h+$ $n0$ $ho-$ <td< td=""><td></td></td<>	
c2h4+ $hc3$ $c4h2+$ $ch3$ $5.34E-09$ 50 $.00$ 4 $c3h+$ no $no+$ $hc3$ $8.65E-11$ 50 $.00$ 4 $c3h+$ $nh3$ $nh3+$ $hc3$ $2.79E-10$ 50 $.00$ 4 $h2+$ $o2$ $o2h+$ h $1.90E-09$ $.00$ $.00$ 4 $o2h+$ $h3+$ $o2$ $6.40E-10$ $.00$ $.00$ 4 $nh+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ 150.00 4 $nh+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ 4 $o2h+$ $ch5+$ $o2$ $1.00E-09$ $.00$ $.00$ 4 $o2h+$ $nh4$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $nh4$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $nh+$ $o2$ $1.00E-09$ $.00$ $.00$ 4 $o2h+$ $nb+$ $o2$ $.00$ $.00$ 4 $o2h+$ $nb+$ $o2$ $.00$ $.00$ 4 $o2h+$ $nb+$ $o2$ $.00$ $.00$ $.00$ 4 $o2h+$ $nb+$ $o2$ $.00$ $.00$ $.00$ $.00$ <td></td>	
c3h+no $no+$ $hc3$ $8.65E-11$ 50 $.00$ 4 $c3h+$ $nh3$ $nh3+$ $hc3$ $2.79E-10$ 50 $.00$ 4 $h2+$ $o2$ $o2h+$ h $1.90E-09$ $.00$ $.00$ 4 $o2h+$ $h3+$ $o2$ $6.40E-10$ $.00$ $.00$ 4 $h3+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ 150.00 4 $nh+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ 4 $o2h+$ $ch5+$ $o2$ $1.00E-09$ $.00$ $.00$ 4 $o2h+$ $nh4$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $n2$ $nh4+$ $o2$ $8.00E-10$ $.00$ $.00$ 4 $o2h+$ $n2$ $nbh+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ no $hno+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ no $hno+$ $o2$ $7.00E-10$ $.00$ $.00$ 4	
c3h+ $nh3$ $nh3+$ $hc3$ $2.79E-10$ 50 $.00$ 4 $h2+$ $o2$ $o2h+$ h $1.90E-09$ $.00$ $.00$ $.4$ $o2h+$ $h3+$ $o2$ $6.40E-10$ $.00$ $.00$ $.4$ $h3+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ 150.00 4 $nh+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ $.4$ $o2h+$ $ch4$ $ch5+$ $o2$ $1.00E-09$ $.00$ $.00$ $.4$ $o2h+$ $nh3$ $nh4+$ $o2$ $1.80E-09$ $.00$ $.00$ $.4$ $o2h+$ $n2$ $n2h+$ $o2$ $3.00E-10$ $.00$ $.00$ $.4$ $o2h+$ $n2$ $n2h+$ $o2$ $3.00E-10$ $.00$ $.00$ $.4$ $o2h+$ $n2$ $a2h+$ $o2$ $a.00E-10$ $.00$ $.00$ $.00$ $.4$ $o2h+$ $n2$ $a2h+$ $a2$ $a.00E-10$ $.00$ $.00$ $.00$ $.4$ $a2h+$ $a2$ $a2h+$ $a2$ $a.00E-10$ $.00$ $.00$ $.00$ $.4$ $a2h+$ $a2$ $a2h+$ $a2h+$ $a2h+$ $a2h+$ $aAh+$ <	
h2+ $o2$ $o2h+$ h $1.90E-09$ $.00$ $.00$ 4 $o2h+$ $h3+$ $o2$ $6.40E-10$ $.00$ $.00$ 4 $h3+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ 150.00 4 $nh+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ 4 $o2h+$ $ch4$ $ch5+$ $o2$ $1.00E-09$ $.00$ $.00$ 4 $o2h+$ $ch4$ $ch5+$ $o2$ $1.00E-09$ $.00$ $.00$ 4 $o2h+$ $nh3$ $nh4+$ $o2$ $8.00E-10$ $.00$ $.00$ 4 $o2h+$ $n2$ $n2h+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ $n0$ $hno+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ c $ch+$ $o2$ $1.00E-09$ $.00$ $.00$ 4	
o2h+ $h2$ $h3+$ $o2$ $6.40E-10$ $.00$ $.00$ 4 $h3+$ $o2$ $o2h+$ $h2$ $5.00E-09$ $.00$ 150.00 4 $nh+$ $o2$ $o2h+$ n $1.60E-10$ $.00$ $.00$ $.00$ 4 $o2h+$ $ch4$ $ch5+$ $o2$ $1.00E-09$ $.00$ $.00$ $.00$ 4 $o2h+$ $nh3$ $nh4+$ $o2$ $1.80E-09$ $.00$ $.00$ $.00$ 4 $o2h+$ $n2$ $n2h+$ $o2$ $8.00E-10$ $.00$ $.00$ $.4$ $o2h+$ no $hno+$ $o2$ $7.00E-10$ $.00$ $.00$ $.4$ $o2h+$ c $ch+$ $o2$ $1.00E-09$ $.00$ $.00$ $.00$ $.4$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
o2h+ $ch4$ $ch5+$ $o2$ $1.00E-09$ $.00$ $.00$ 4 $o2h+$ $nh3$ $nh4+$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $n2$ $n2h+$ $o2$ $8.00E-10$ $.00$ $.00$ 4 $o2h+$ $n0$ $hno+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ $n0$ $hno+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ c $ch+$ $o2$ $1.00E-09$ $.00$ $.00$ 4	
o2h+ $nh3$ $nh4+$ $o2$ $1.80E-09$ $.00$ $.00$ 4 $o2h+$ $n2$ $n2h+$ $o2$ $8.00E-10$ $.00$ $.00$ 4 $o2h+$ no $hno+$ $o2$ $7.00E-10$ $.00$ $.00$ 4 $o2h+$ c $ch+$ $o2$ $1.00E-09$ $.00$ $.00$ 4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
o2h+ no hno+ o2 7.00E-10 .00 .00 4 $o2h+$ c ch+ o2 1.00E-09 .00 .00 4	
o2h+ c $ch+$ $o2$ $1.00E-09$ $.00$ $.00$ 4	
o2h+ o oh+ o2 6.20E-10 .00 .00 4	
o_{2h+} n n_{h+} o_{2} $6.40E-12$ $.00$ $.00$ 4	
o_{2h+} s s_{h+} o_{2} 1.10E-09 .00 .00 4	
o_{2h+} ch ch2+ o2 6.20E-10 .00 4	
o_{2h+} c_{h2} c_{h3+} o_{2} a_{50E-10} c_{00} a_{00} 4	
o_{2h+} nh nh2+ o2 6.30E-10 .00 4	
o_{2h+} nh2 nh3+ o2 8.70E-10 .00 .00 4	
o_{2h+} oh h_{2o+} o_{2} $6.10E-10$ $.00$ 4	
a^{2h+} b^{2o} b^{3o+} a^{2} $8.20E-10$ $.00$ $.00$ 4	
a^{2h+} c^{2} c^{2h+} a^{2} $8.10E-10$ $.00$ $.00$ 4	
o_{2h+} c_{2h} c_{2h2+} o_{2} 7.60E-10 0.00 4	
a^{2h+} cn b^{2h+} o2 $8.60E_{-10}$ 00 00 4	
o_{2h+} hcn hcnh+ o ₂ 9.70E-10 .00 .00 4	
o_{2h+} hnc hcnh+ o ₂ 9.70E-10 .00 .00 4	
a^{2h+} co b^{co+} o2 $8.40E-10$.00 .00 4	
a^{2h+} co^{2} bco^{2+} o^{2} $1.10E-09$ $.00$ $.00$ 4	
h2c3+ o $hco+$ c2h $2.00E-10$.00 4	
c4h2+ o $h2c3+$ co $1.10E-10$.00 .00 4	
c_{3h+} h $h_{2c_{3}+}$ photon $2.00E_{-14}$ -1.50 .00 3	
c2h4+ c $h2c3+$ $h2$ 5.00E-10 .00 4	
$h^{2}c^{3}+$ c $c^{4}h^{+}$ h $1.00E-09$.00 4	
$h^{2}c^{3}+$ $h^{2}c^{3}h^{+}$ h^{2} $h^{2}c^{3}c^{3}c^{3}c^{3}c^{3}c^{3}c^{3}c^{3$	
ch2+ $c2h$ $h2c3+$ h $4.75E-10$.00 .00 4	
ch_{3+} c_{2h} $h_{2c_{3+}}$ h_{2} $f_{6.00E-10}$ -50 00 4	
c_{2+} c_{h4} $h_{2c_{3+}}$ h_{2} $5.74E-10$ $.00$ $.00$ 4	
c_{2h+} c_{h2} $h_{2c_{3+}}$ h $c_{2.20F-10}$ c_{00} c_{00} d_{4}	
c2h2+ ch $h2c3+$ h $2.30F-09 - 50 - 00 - 4$	
c_{2b3+} c h_{2c3+} h $5.00F-10$ 00 4	
h_{3+} $h_{2}^{-1.0}$ $h_{2}^{-1.$	
hco+ $hc3$ $h2c3+$ co $1.40E-09$ $.00$ $.00$ 4	

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
h3o+	hc3	h2c3+	h2o		2.00E-09	.00	.00	4
c2h3+	hc3	h2c3+	c2h2		2.71E-09	50	.00	4
h+	h2c3	h2c3+	h		7.11E-09	50	.00	4
s+	c4h2	h2c3+	cs		1.20E-10	.00	.00	4
ch+	c2h2	h2c3+	h		1.20E-09	.00	.00	4
c2h4+	c2h	h3c3+	ch2		5.00E-10	50	.00	4
c2h4+	c2h2	h3c3+	ch3		3.15E-10	.00	.00	4
h3c3+	с	c4h+	h2		1.00E-09	.00	.00	4
h3c3+	с	c4h2+	h		1.00E-09	.00	.00	4
h3c3+	о	c2h3+	со		4.50E-11	.00	.00	4
h2c3+	h	h3c3+	photon		4.00E-15	-1.50	.00	3
c3h+	h2	h3c3+	photon		3.00E-13	-1.00	.00	3
ch3+	c2h	h3c3+	h		6.00E-10	50	.00	4
ch4+	c2h2	h3c3+	h2	h	6.25E-11	.00	.00	4
c2+	ch4	h3c3+	h		2.10E-10	.00	.00	4
c2h+	ch4	h3c3+	h2		1.87E-10	.00	.00	4
c2h2+	ch2	h3c3+	h		3.66E-10	50	.00	4
c2h4+	с	h3c3+	h		5.00E-10	.00	.00	4
h3+	h2c3	h3c3+	h2		8.42E-09	50	.00	4
hco+	h2c3	h3c3+	со		1.40E-09	.00	.00	4
h3o+	h2c3	h3c3+	h2o		3.00E-09	.00	.00	4
c2h3+	h2c3	h3c3+	c2h2		1.21E-09	50	.00	4
ch3+	c4h2	h3c3+	c2h2		1.20E-09	.00	.00	4
c2h2	c2h4+	c4h5+	h		1.93E-10	.00	.00	4
ch3+	c3h3	c4h5+	h		4.00E-09	.00	.00	4
c2h2+	c2h4	c4h5+	h		3.17E-10	.00	.00	4
he+	c5h2	c3h+	c2h	he	1.00E-09	.00	.00	4
h+	c4h3	c4h2+	h2		2.00E-09	.00	.00	4
he+	c4h3	c3h2+	$^{\rm ch}$	he	6.70E-10	.00	.00	4
he+	c4h3	c4h2+	he	h	6.70E-10	.00	.00	4
he+	c4h3	c3h3+	с	he	6.70E-10	.00	.00	4
c+	c4h3	c3h2+	c2h		3.10E-10	.00	.00	4
he+	c6h2	c4h+	c2h	he	1.00E-09	.00	.00	4
he+	c5h	c3h+	c2	he	1.50E-09	.00	.00	4
he+	c5	c3+	c2	he	1.00E-09	.00	.00	4
c2h2+	c3h3	c5h4+	h		1.00E-09	.00	.00	4
c2h3	c3h2+	c5h4+	h		6.00E-10	.00	.00	4
c2h3	c3h3+	c5h4+	h2		1.50E-09	.00	.00	4
c2h4+	c3h	c5h4+	h		6.30E-10	.00	.00	4
ch4	c4h2+	c5h4+	h2		2.00E-10	.00	.00	4
c2h3+	c3h3	c5h5+	h		1.00E-09	.00	.00	4
c2h4	c3h2+	c5h5+	h		4.40E-10	.00	.00	4
c2h4	c3h3+	c5h5+	h2		1.10E-19	.00	.00	4
c2h2	p-c3h4+	c5h5+	h		4.90E-10	.00	.00	4

Tabela E.2 - Continuação

c2h2 p-c3h4+ \mid c5h5+ Continua na próxima página...

Reag	entes		Produtos		γ	α	β	Tipo de Reação
c2h2	a-c3h4+	c5h5+	h		4.90E-10	.00	.00	4
c2h2	c4h2+	c6h3+	h		7.00E-12	.00	.00	4
c2h2+	c4h2	c6h3+	h		1.40E-10	.00	.00	4
c2h3	c4h+	c6h3+	h		2.00E-09	.00	.00	4
c2h3	c4h2+	c6h3+	h2		3.00E-10	.00	.00	4
c2h3+	c4h	c6h3+	h		4.00E-10	.00	.00	4
0	c6h3+	c5h2	hco+		2.00E-10	.00	.00	4
h3+	c5h4	c5h5+	h2		2.50E-09	.00	.00	4
hco+	c5h4	c5h5+	со		2.00E-09	.00	.00	4
he+	c6	c4+	c2	he	1.40E-09	.00	.00	4
c2h	c4h+	c6h+	h		6.00E-10	.00	.00	4
c2h2	c4+	c6h+	h		1.41E-09	.00	.00	4
c2h2+	c4h	c6h+	h2		1.00E-09	.00	.00	4
h+	c6h	c6h+	h		2.00E-09	.00	.00	4
h+	c6h2	c6h+	h2		2.00E-09	.00	.00	4
he+	c6h2	c6h+	h	he	1.00E-09	.00	.00	4
c+	c5h4	c6h2+	h2		7.50E-10	.00	.00	4
c2h	c4h2+	c6h2+	h		1.30E-09	.00	.00	4
c2h2	c4h+	c6h2+	h		1.50E-09	.00	.00	4
c2h2+	c4h	c6h2+	h		1.00E-09	.00	.00	4
c2h2+	c4h2	c6h2+	h2		1.00E-17	.00	.00	4
h2	c6h+	c6h2+	h		1.30E-12	.00	.00	4
c2h3	c4h2+	c6h4+	h		1.20E-09	.00	.00	4
c2h3+	c4h2	c6h4+	h		3.00E-10	.00	.00	4
c2h4	c4h+	c6h4+	h		7.50E-10	.00	.00	4
c-c3h2	c3h3+	c6h4+	h		1.00E-09	.00	.00	4
c2h2	c4h2+	c6h4+	photon		1.00E-09	.00	.00	3
c2h3	c4h3+	c6h5+	h		5.00E-10	.00	.00	4
c2h4	c4h2+	c6h5+	h		8.00E-10	.00	.00	4
c3h3+	c3h3	c6h5+	h		1.50E-09	.00	.00	4
p-c3h4+	p-c3h4	c6h5+	h2	h	8.80E-11	.00	.00	4
a-c3h4+	a-c3h4	c6h5+	h2	h	8.80E-11	.00	.00	4
h	c4h3+	c4h4+	photon		6.00E-14	70	.00	3
h3+	c4h3	c4h4+	h2		1.00E-09	.00	.00	4
h3o+	c4h3	c4h4+	h2o		1.00E-09	.00	.00	4
hco+	c4h3	c4h4+	со		9.00E-10	.00	.00	4
c2h2	c4h4+	c6h5+	h		9.00E-11	.00	.00	4
c2h2	c4h4+	c6h4+	h2		1.20E-11	.00	.00	4
c4h2	c4h4+	c6h4+	c2h2		7.00E-10	.00	.00	4
he+	c8h2	c6h+	c2h	he	1.00E-09	.00	.00	4
c2h4	c6h5+	c6h7+	c2h2		8.50E-11	.00	.00	4
p-c3h4	c3h5+	c6h7+	h2		3.50E-10	.00	.00	4
- p-c3h4+	p-c3h4	c6h7+	h		7.48E-10	.00	.00	4
a-c3h4	c3h5+	c6h7+	h2		3.50E-10	.00	.00	4

Tabela E.2 - Continuação

Reage	entes		Produtos		γ	α	eta	Tipo de Reação
a-c3h4+	a-c3h4	c6h7+	h		7.48E-10	.00	.00	4
h2	c6h5+	c6h7+	photon		6.00E-11	.00	.00	3
he+	c8h	c6h+	c2	he	1.50E-09	.00	.00	4
c2h2	c6h+	c8h2+	h		5.80E-10	.00	.00	4
c2h2+	c6h	c8h2+	h		1.20E-09	.00	.00	4
c2h2+	c6h2	c8h2+	h2		5.00E-10	.00	.00	4
c2h3+	c6h	c8h2+	h2		5.00E-10	.00	.00	4
c4h	c4h2+	c8h2+	h		1.30E-09	.00	.00	4
c4h+	c4h2	c8h2+	h		1.50E-09	.00	.00	4
h3+	c8h	c8h2+	h2		2.50E-09	.00	.00	4
hco+	c8h	c8h2+	со		2.00E-09	.00	.00	4
h+	c8h2	c8h2+	h		2.00E-09	.00	.00	4
с	c8h2+	c9h+	h		5.00E-10	.00	.00	4
c2h2+	c7h	c9h+	h2		2.00E-09	.00	.00	4
c3h2+	c6h	c9h+	h2		5.00E-10	.00	.00	4
h3+	c9	c9h+	h2		2.00E-09	.00	.00	4
hco+	c9	c9h+	со		1.40E-09	.00	.00	4
c9h+	о	c8	hco+		2.00E-10	.00	.00	4
c+	c8h2	c9h+	h		1.20E-09	.00	.00	4
с	c8h2+	c9+	h2		5.00E-10	.00	.00	4
c+	c8	c9+	photon		1.00E-09	.00	.00	3
h2	c9+	c9h+	h		4.10E-11	.00	.00	4
c+	c8h	c9+	h		1.40E-09	.00	.00	4
h+	c9	c9+	h		4.00E-09	.00	.00	4
c+	c8h2	c9+	h2		1.20E-09	.00	.00	4
c+	c6h6	c3h3+	c4h3		1.44E-10	.00	.00	4
c2h3+	c6h6	c6h7+	c2h2		1.60E-09	.00	.00	4
c3h5+	c6h6	c6h7+	p-c3h4		1.15E-10	.00	.00	4
c3h5+	c6h6	c6h7+	a-c3h4		1.15E-10	.00	.00	4
ch5+	c6h6	c6h7+	ch4		2.00E-09	.00	.00	4
h3+	c6h6	c6h7+	h2		3.90E-09	.00	.00	4
h3o+	c6h6	c6h7+	h2o		1.30E-09	.00	.00	4
hco+	c6h6	c6h7+	со		1.60E-09	.00	.00	4
he+	c6h6	c6h5+	he	h	7.00E-10	.00	.00	4
he+	c6h6	c5h5+	$^{\rm ch}$	he	7.00E-10	.00	.00	4
c+	c2h5	c3h3+	h2		5.00E-10	.00	.00	4
h+	c2h5	c2h3+	h2	h	3.06E-09	.00	.00	4
h+	c2h5	c2h4+	h2		1.65E-09	.00	.00	4
he+	c2h5	c2h3+	he	h2	5.00E-10	.00	.00	4
he+	c2h5	c2h4+	he	h	5.00E-10	.00	.00	4
he+	c2n	cn	c+	he	8.00E-09	.00	.00	4
he+	c3n	cn	c2+	he	8.00E-09	.00	.00	4
c+	hc3n	c3h+	cn		3.25E-09	.00	.00	4
$\mathbf{c}+$	hc3n	c3+	hcn		2.50E-10	.00	.00	4

Tabela E.2 - Continuação
Reag	entes		Produtos		γ	α	β	Tipo de Reação
c2h+	hc3n	c4h+	hcn		7.60E-10	.00	.00	4
c2h+	hc3n	c4h2+	cn		4.56E-10	.00	.00	4
ch3+	hc3n	c3h3+	hcn		1.00E-09	.00	.00	4
he+	hc3n	cn	c2h+	he	2.20E-09	.00	.00	4
he+	hc3n	c3h+	n	he	4.00E-10	.00	.00	4
hcn	c3+	c4n+	h		1.04E-09	.00	.00	4
c+	hc3n	c4n+	h		1.40E-09	.00	.00	4
ch4	c4n+	c2h3+	hc3n		1.43E-10	.00	.00	4
ch4	c4n+	c4h3+	hcn		1.71E-10	.00	.00	4
h2	c4n+	c3h+	hcn		2.20E-11	.00	.00	4
h2o	c4n+	hc3n	hco+		7.50E-10	.00	.00	4
c+	h3c2n	c2h3+	cn		1.06E-09	.00	.00	4
c2h2+	h3c2n	c3h5+	cn		1.06E-09	.00	.00	4
h+	h3c2n	ch3+	hcn		3.00E-09	.00	.00	4
o+	h3c2n	no	c2h3+		1.26E-09	.00	.00	4
ch3+	c2h4o	h3co+	c2h4		1.98E-09	.00	.00	4
c2h4o	h3+	c2h3+	h2	h2o	8.97E-10	.00	.00	4
c2h4o	h3+	h3o+	c2h4		1.04E-09	.00	.00	4
h3+	c2h4o	ch5+	h2co		8.28E-10	.00	.00	4
he+	c2h4o	hco	ch3+	he	3.00E-09	.00	.00	4
c2h4o	h3+	ch4o	ch3+		1.45E-09	.00	.00	4
c+	ch4o	hco	ch3+		2.08E-09	.00	.00	4
c+	ch4o	h3co+	ch		5.20E-10	.00	.00	4
ch+	ch4o	h3co+	ch2		2.90E-10	.00	.00	4
ch+	ch4o	h2co	ch3+		1.45E-09	.00	.00	4
ch3+	ch4o	h3co+	ch4		2.30E-09	.00	.00	4
ch4o	c3h+	h3co+	c-c3h2		2.20E-10	.00	.00	4
h+	ch4o	h3co+	h2		3.84E-09	.00	.00	4
h+	ch4o	hco+	h2	h2	8.85E-10	.00	.00	4
h+	ch4o	ch3+	h2o		5.90E-10	.00	.00	4
h3+	ch4o	ch3+	h2o	h2	3.71E-09	.00	.00	4
he+	ch4o	oh+	ch3	he	1.10E-09	.00	.00	4
he+	ch4o	oh	ch3+	he	1.10E-09	.00	.00	4
n+	ch4o	no	ch3+	h	1.24E-10	.00	.00	4
n+	ch4o	h3co+	nh		4.96E-10	.00	.00	4
n+	ch4o	no+	ch3	h	3.10E-10	.00	.00	4
n+	ch4o	h2co+	nh	h	9.30E-10	.00	.00	4
o+	ch4o	h3co+	oh		1.33E-09	.00	.00	4
o+	ch4o	h2co+	h2o		9.50E-11	.00	.00	4
o2+	ch4o	h3co+	h	o2	5.00E-10	.00	.00	4
ch+	ch4o	ch5o+	с		1.16E-09	.00	.00	4
ch4o	c4h3+	ch5o+	c4h2		3.00E-10	.00	.00	4
ch4+	ch4o	ch5o+	ch3		1.20E-09	.00	.00	4
h2co+	ch4o	ch5o+	hco		2.16E-09	.00	.00	4

Tabela E.2 - Continuação

Reage	entes		Produtos		γ	α	β	Tipo de Reação
h3+	ch4o	ch5o+	h2		8.40E-10	.00	.00	4
h3co+	ch4o	ch5o+	h2co		1.90E-09	.00	.00	4
h3o+	ch4o	ch5o+	h2o		2.50E-09	.00	.00	4
hco+	ch4o	ch5o+	со		2.70E-09	.00	.00	4
h2co	ch5o+	c2h5o2+	h2		2.10E-11	.00	.00	4
h3+	c2h4o2	c2h5o2+	h2		3.00E-09	.00	.00	4
h3o+	c2h4o2	c2h5o2+	h2o		3.00E-09	.00	.00	4
hco+	c2h4o2	c2h5o2+	со		2.90E-09	.00	.00	4
he+	c2h4o2	hco2+	ch3	he	3.00E-09	.00	.00	4
c+	c2h4o2	c2h4o2+	с		3.00E-09	.00	.00	4
h+	c2h4o2	c2h4o2+	h		3.00E-09	.00	.00	4
he+	c5n	c4+	cn	he	3.00E-09	.00	.00	4
he+	c2n2	cn+	cn	he	2.70E-09	.00	.00	4
ch+	hcn	c2nh+	h		2.40E-10	.00	.00	4
h3+	c2n	c2nh+	h2		9.00E-09	.00	.00	4
n	c2h2+	c2nh+	h		1.50E-10	.00	.00	4
n	c2h3+	c2nh+	h2		2.20E-10	.00	.00	4
nh2	c2+	c2nh+	h		4.60E-10	.00	.00	4
no	c3h+	c2nh+	со		4.20E-10	.00	.00	4
he+	c2h2n	cn	ch2+	he	3.30E-09	.00	.00	4
c2h+	hcn	hc3n+	h		1.35E-09	.00	.00	4
cn	c2h2+	hc3n+	h		9.00E-10	.00	.00	4
h+	hc3n	hc3n+	h		4.00E-09	.00	.00	4
h3+	c3n	hc3n+	h2		9.00E-09	.00	.00	4
h3o+	c3n	hc3n+	h2o		2.00E-09	.00	.00	4
hco+	c3n	hc3n+	со		3.70E-09	.00	.00	4
c2h2	hc3n+	c2h2+	hc3n		1.28E-10	.00	.00	4
c2h2	hc3n+	c4h2+	hcn		5.12E-10	.00	.00	4
c2h4	hc3n+	c2h4+	hc3n		5.36E-10	.00	.00	4
ch4	hc3n+	c3h5+	cn		4.57E-10	.00	.00	4
h2	hc3n+	hcn	c2h2+		2.00E-12	.00	.00	4
n	hc3n+	c3h+	n2		9.60E-11	.00	.00	4
nh3	hc3n+	hc3n	nh3+		1.70E-09	.00	.00	4
he+	hc5n	c3n	c2h+	he	1.00E-09	.00	.00	4
he+	hc5n	c4h+	cn	he	1.00E-13	.00	.00	4
cn+	hcn	c2n2+	h		3.15E-10	.00	.00	4
n+	c2n2	c2n2+	n		1.40E-09	.00	.00	4
c2h2	c2n2+	c2h2+	c2n2		5.80E-10	.00	.00	4
c2h4	c2n2+	c2h4+	c2n2		1.30E-09	.00	.00	4
h	c2n2+	hcn+	cn		6.20E-10	.00	.00	4
hcn	c2n2+	hcn+	c2n2		5.40E-10	.00	.00	4
he+	hc7n	c6h+	cn	he	7.00E-09	.00	.00	4
c+	c2h2n	c2h2n+	с		2.00E-09	.00	.00	4
ch2+	hcn	c2h2n+	h		1.80E-09	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
ch3+	cn	c2h2n+	h		1.10E-09	.00	.00	4
h+	c2h2n	c2h2n+	h		6.30E-09	.00	.00	4
nh	c2h2+	c2h2n+	h		6.50E-10	.00	.00	4
nh2	c2h+	c2h2n+	h		4.60E-10	.00	.00	4
nh3	c2h+	c2h2n+	h2		5.50E-10	.00	.00	4
h3+	ch2o2	h3o+	со	h2	1.80E-09	.00	.00	4
h3+	ch2o2	hco+	h2o	h2	4.30E-09	.00	.00	4
0	c5h+	c4	hco+		2.00E-10	.00	.00	4
с	c4h2+	c5h+	h		5.00E-10	.00	.00	4
с	c4h3+	c5h+	h2		5.00E-10	.00	.00	4
c+	c4h3	c5h+	h2		3.10E-10	.00	.00	4
c+	c4h2	c5h+	h		1.45E-09	.00	.00	4
c+	hc5n	c5h+	cn		6.00E-09	.00	.00	4
c2h2	c3+	c5h+	h		1.70E-09	.00	.00	4
c2h2	c4n+	c5h+	hcn		8.00E-10	.00	.00	4
c2h2+	c3h	c5h+	h2		1.75E-09	.00	.00	4
c3+	hc3n	c5h+	cn		3.20E-09	.00	.00	4
c3h+	c4h2	c5h+	c2h2		1.20E-10	.00	.00	4
h+	c5h	c5h+	h		3.00E-09	.00	.00	4
h+	c5h2	c5h+	h2		2.50E-09	.00	.00	4
h3+	c5	c5h+	h2		2.00E-09	.00	.00	4
hco+	c5	c5h+	со		2.00E-09	.00	.00	4
he+	c5h2	c5h+	he	h	1.00E-09	.00	.00	4
he+	c7h	c5h+	c2	he	2.00E-09	.00	.00	4
n	c6h2+	c5h+	hcn		1.90E-10	.00	.00	4
n	c5h+	c5n+	h		2.00E-10	.00	.00	4
c2h+	hc3n	hc5n+	h		1.18E-09	.00	.00	4
h+	hc5n	hc5n+	h		4.00E-09	.00	.00	4
h2	c5n+	hc5n+	h		1.50E-09	.00	.00	4
h3+	c5n	hc5n+	h2		8.00E-09	.00	.00	4
hcn	c4h+	hc5n+	h		1.23E-09	.00	.00	4
hco+	c5n	hc5n+	со		3.00E-09	.00	.00	4
n	c7h+	c7n+	h		2.00E-10	.00	.00	4
0	c7h+	c6	hco+		2.00E-10	.00	.00	4
с	c6h2+	c7h+	h		5.00E-10	.00	.00	4
с	c6h3+	c7h+	h2		5.00E-10	.00	.00	4
c+	c6h2	c7h+	h		1.20E-09	.00	.00	4
c2h2+	c5h	c7h+	h2		1.75E-09	.00	.00	4
c3h	c4h+	c7h+	h		1.50E-09	.00	.00	4
c3h2+	c4h	c7h+	h2		5.00E-10	.00	.00	4
h+	c7h	c7h+	h		3.00E-09	.00	.00	4
h3+	c7	c7h+	h2		2.00E-09	.00	.00	4
hco+	c7	c7h+	со		1.40E-09	.00	.00	4
c2+	hcn	c3n+	h		2.60E-09	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos			γ	α	β	Tipo de Reação
c2h+	cn	c3n+	h			9.10E-10	.00	.00	4
he+	c3n	c3n+	he			8.20E-09	.00	.00	4
n	c3h+	c3n+	h			2.70E-10	.00	.00	4
he+	hc3n	c3n+	he	h		2.45E-09	.00	.00	4
h+	ch3n	nh2+	ch2			1.00E-09	.00	.00	4
h+	ch3n	nh2	ch2+			1.00E-09	.00	.00	4
he+	ch3n	nh	ch2+	he		1.00E-09	.00	.00	4
oh+	c2h6	c2h4	h3o+			1.60E-10	.00	.00	4
oh+	c2h6	c2h4+	oh	h2		1.04E-09	.00	.00	4
c+	c2h6	c3h3+	h2	h		7.10E-10	.00	.00	4
c+	c2h6	c2h4+	ch2			1.16E-10	.00	.00	4
c+	c2h6	c3h2+	h2	h2		1.65E-11	.00	.00	4
c+	c2h6	c2h3+	ch3			4.95E-10	.00	.00	4
c+	c2h6	c2h2+	ch4			8.25E-11	.00	.00	4
c2h2+	c2h6	c2h4+	c2h4			2.48E-10	.00	.00	4
c2h2+	c2h6	c3h5+	ch3			7.45E-10	.00	.00	4
c2h3+	c2h6	c3h5+	ch4			2.48E-10	.00	.00	4
$^{\rm ch}$	c2h6	c2h4	ch3			1.63E-10	.00	.00	4
ch3+	c2h6	c3h5+	h2	h2		1.57E-10	.00	.00	4
h+	c2h6	c2h4+	h2	h		1.40E-09	.00	.00	4
h+	c2h6	c2h3+	h2	h2		2.80E-09	.00	.00	4
h2+	c2h6	c2h4+	h2	h2		2.35E-09	.00	.00	4
h2o+	c2h6	c2h4+	h2o	h2		1.92E-10	.00	.00	4
h2o+	c2h6	c2h5	h3o+			1.33E-09	.00	.00	4
he+	c2h6	c2h2+	he	h2	h2	8.40E-10	.00	.00	4
he+	c2h6	c2h4+	he	h2		4.20E-10	.00	.00	4
he+	c2h6	c2h3+	he	h2	h	1.80E-09	.00	.00	4
c2h4	c2h6+	c2h6	c2h4+			1.15E-09	.00	.00	4
c2h6+	h2s	h2s+	c2h6			1.98E-09	.00	.00	4
nh3	c2h6+	c2h6	nh3+			6.24E-10	.00	.00	4
oh+	c2h6	c2h6+	oh			4.80E-11	.00	.00	4
h2+	c2h6	c2h6+	h2			2.94E-10	.00	.00	4
h2o+	c2h6	c2h6+	h2o			6.40E-11	.00	.00	4
c2h2	c2h6+	c3h5+	ch3			9.10E-10	.00	.00	4
c2h6+	h2s	h3s+	c2h5			8.90E-10	.00	.00	4
h2o	c2h6+	c2h5	h3o+			2.95E-09	.00	.00	4
h3+	c2h5	c2h6+	h2			1.40E-09	.00	.00	4
hco+	c2h5	c2h6+	со			1.40E-09	.00	.00	4
nh3	c2h6+	c2h5	nh4+			1.40E-09	.00	.00	4
c+	c3h3n	c3h2+	hcn			9.84E-10	.00	.00	4
c+	c3h3n	c3h3+	cn			1.80E-09	.00	.00	4
c3h5+	n	c3h3n+	h2			1.50E-11	.00	.00	4
с+	c2h3n	c2h3+	cn			5.60E-09	50	.00	4
c2h2+	c2h3n	p-c3h4+	hcn			1.06E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
c2h2+	c2h3n	a-c3h4+	hen		1.06E-09	50	.00	4
c2h2+	c2h3n	c3h5+	cn		1.06E-09	50	.00	4
ch3+	c2h3n	hcnh+	c2h4		1.04E-09	50	.00	4
h+	c2h3n	c2h2n+	h2		6.00E-10	50	.00	4
h+	c2h3n	ch3+	hcn		3.00E-09	50	.00	4
he+	c2h3n	cn+	ch3	he	1.20E-09	50	.00	4
he+	c2h3n	cn	ch3+	he	1.20E-09	50	.00	4
o+	c2h3n	no	c2h3+		1.26E-09	50	.00	4
h+	c2h3n	c2h3n+	h		8.40E-09	50	.00	4
o+	c2h3n	c2h3n+	0		2.94E-09	50	.00	4
h3+	c2h2n	c2h3n+	h2		3.70E-09	50	.00	4
n	c2h4+	c2h3n+	h		3.00E-10	.00	.00	4
nh2	c2h2+	c2h3n+	h		4.50E-10	50	.00	4
со	c2h3n+	c2h2n	hco+		2.00E-09	.00	.00	4
c+	c4h3n	c3n	c2h3+		2.00E-09	.00	.00	4
c+	c4h3n	c4h3+	cn		5.00E-09	.00	.00	4
h+	c4h3n	hc3n	ch3+		8.00E-09	.00	.00	4
h2	c3h3n+	c3h4n+	h		1.20E-12	.00	.00	4
h3+	c3h3n	c3h4n+	h2		9.90E-09	50	.00	4
hcnh+	c3h3n	c3h4n+	hcn		2.25E-09	50	.00	4
hcnh+	c3h3n	c3h4n+	hnc		2.25E-09	50	.00	4
hco+	c3h3n	c3h4n+	со		3.50E-09	50	.00	4
nh3	c3h4n+	nh4+	c3h3n		1.70E-09	50	.00	4
c2h2+	c2h3n	c2h4n+	c2h		8.36E-10	50	.00	4
c2h3n	hco2+	co2	c2h4n+		4.10E-09	50	.00	4
h3+	c2h3n	c2h4n+	h2		1.05E-08	50	.00	4
h3o+	c2h3n	c2h4n+	h2o		4.70E-09	50	.00	4
hcnh+	c2h3n	c2h4n+	hcn		1.90E-09	50	.00	4
hcnh+	c2h3n	c2h4n+	hnc		1.90E-09	50	.00	4
hco+	c2h3n	c2h4n+	со		4.10E-09	50	.00	4
h2	c2h3n+	c2h4n+	h		5.70E-10	.00	.00	4
hcn	ch50+	c2h4n+	h2o		2.30E-11	50	.00	4
ch3+	hcn	c2h4n+	photon		9.00E-09	50	.00	3
h3+	c4h3n	c4h4n+	h2		9.00E-09	.00	.00	4
hco+	c4h3n	c4h4n+	со		4.00E-09	.00	.00	4
n	c4h5+	c4h4n+	h		1.00E-10	.00	.00	4
ch3+	hc3n	c4h4n+	photon		8.60E-11	-1.40	.00	3
c+	c3h3n	h2c4n+	h		1.19E-09	50	.00	4
h2	h2c4n+	c4h3n+	h		1.00E-09	.00	.00	4
h2	c4h3n+	c4h4n+	h		1.00E-09	.00	.00	4
h2	hc4n+	h2c4n+	h		1.00E-09	.00	.00	4
c2h2	c2n+	hc4n+	h		2.00E-10	.00	.00	4
n	c4h2+	hc4n+	h		9.50E-12	.00	.00	4
c+	c-	с	с		2.30E-07	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	5	γ	α	β	Tipo de Reação
C-	с	c2	electr		5.00E-10	.00	.00	4
c-	$^{\rm ch}$	c2h	electr		5.00E-10	.00	.00	4
c-	ch2	c2h2	electr		5.00E-10	.00	.00	4
C-	co2	со	со	electr	4.70E-10	.00	.00	4
c-	fe+	fe	с		2.30E-07	50	.00	4
C-	h2o	h2co	electr		5.00E-10	.00	.00	4
C-	n	cn	electr		5.00E-10	.00	.00	4
c-	n+	n	с		2.30E-07	50	.00	4
c-	$\mathbf{n}\mathbf{h}$	hcn	electr		5.00E-10	.00	.00	4
c-	о	со	electr		5.00E-10	.00	.00	4
c-	o+	0	с		2.30E-07	50	.00	4
c-	02	co2	electr		5.00E-11	.00	.00	4
c-	oh	hco	electr		5.00E-10	.00	.00	4
h	C-	$^{\rm ch}$	electr		5.00E-10	.00	.00	4
h+	C-	с	h		2.30E-07	50	.00	4
h2	C-	ch2	electr		1.00E-13	.00	.00	4
he+	C-	с	he		2.30E-13	50	.00	4
h+	h-	h	h		2.30E-07	50	.00	4
h-	с	$^{\rm ch}$	electr		1.00E-09	.00	.00	4
h-	c+	с	h		2.30E-07	50	.00	4
h-	c2	c2h	electr		1.00E-09	.00	.00	4
h-	c2h	c2h2	electr		1.00E-09	.00	.00	4
h-	$^{\rm ch}$	ch2	electr		1.00E-10	.00	.00	4
h-	ch2	ch3	electr		1.00E-09	.00	.00	4
h-	ch3	ch4	electr		1.00E-09	.00	.00	4
h-	cn	hcn	electr		1.00E-10	.00	.00	4
h-	со	hco	electr		5.00E-11	.00	.00	4
h-	fe+	fe	h		2.30E-07	50	.00	4
h-	h	h2	electr		1.30E-09	.00	.00	4
h-	h2+	h2	h		2.30E-07	50	.00	4
h-	h3+	h2	h2		2.30E-07	50	.00	4
h-	h3o+	oh	h2	h	2.30E-07	50	.00	4
h-	h3o+	h2o	h2		2.30E-07	50	.00	4
h-	hco	h2co	electr		1.00E-09	.00	.00	4
h-	hco+	со	h2		2.30E-07	50	.00	4
h-	he+	he	h		2.30E-07	50	.00	4
h-	n	nh	electr		1.00E-09	.00	.00	4
h-	n+	n	h		2.30E-07	50	.00	4
h-	$\mathbf{n}\mathbf{h}$	nh2	electr		1.00E-10	.00	.00	4
h-	nh2	nh3	electr		1.00E-09	.00	.00	4
h-	nh4+	nh3	h2		2.30E-07	50	.00	4
h-	о	oh	electr		1.00E-09	.00	.00	4
h-	o+	о	h		2.30E-07	50	.00	4
h-	oh	h2o	electr		1.00E-10	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
с-	02	co	0-		4.00E-10	.00	.00	4
с	0-	со	electr		5.00E-10	.00	.00	4
ch	0-	hco	electr		5.00E-10	.00	.00	4
ch2	0-	h2co	electr		5.00E-10	.00	.00	4
h	0-	oh	electr		5.00E-10	.00	.00	4
h2	0-	h2o	electr		7.00E-10	.00	.00	4
n	0-	no	electr		2.20E-10	.00	.00	4
0-	со	co2	electr		6.50E-10	.00	.00	4
0-	0	o2	electr		1.90E-10	.00	.00	4
h-	h2o	oh-	h2		3.80E-09	.00	.00	4
h2	0-	oh-	h		3.00E-11	.00	.00	4
0-	ch4	oh-	ch3		1.00E-10	.00	.00	4
с	oh-	hco	electr		5.00E-10	.00	.00	4
$^{\rm ch}$	oh-	h2co	electr		5.00E-10	.00	.00	4
h	oh-	h2o	electr		1.40E-09	.00	.00	4
ch3	oh-	ch4o	electr		1.00E-09	.00	.00	4
C-	no	cn-	0		1.00E-09	.00	.00	4
h	cn-	hcn	electr		1.30E-09	.00	.00	4
h-	hcn	cn-	h2		3.80E-09	.00	.00	4
0-	cn	cn-	0		1.00E-09	.00	.00	4
0-	hcn	cn-	oh		1.20E-09	.00	.00	4
oh-	cn	cn-	oh		1.00E-09	.00	.00	4
oh-	hcn	cn-	h2o		1.20E-09	.00	.00	4
ch3	cn-	h3c2n	electr		1.00E-09	00	00	4
ch3	cn-	c2h3n	electr		1.00E-09	00	00	4
c+	ocn	co+	cn		3.80E-09	00	00	4
he+	ocn	cn+	0	he	3.00E-09	00	.00	4
he+	ocn	cn	0+	he	3.00E-09	00	.00	4
h2o	cn⊥	hnco+	b t	пе	6.40E-10	- 50	.00	4
000	b3⊥	hnco+	h9		1.64E-08	- 50	.00	4
ocn	110∓ h3⊥	hocn+	h2		1.64E-08	- 50	.00	4
001	no+	no?	olectr		3.10E-10	- 80	.00	4
0- h⊥	no?	no±	oh		1.90E-09	00	.00	4
n⊤ h3⊥	no2	no+	oh	h9	7.00E-10	.00	.00	4
0±	no2	02	no⊥	112	8 30E-10	.00	.00	4
0∓ c∔	n20	no±	no		9.10E-10	.00	.00	4
ch3⊥	n20	hco+	n9	h9	1 30E-09	.00	.00	4
h⊥	n20	nco∓ n2h⊥	0	112	3.52E-10	.00	.00	4
n⊤- he⊥	n20	n2⊥1∓	0	he	$1.94E_{-00}$		00	Δ
he !	n20	n9		he	2.76F 10		.00	
he !	n20	nc	0+ n	ho	4.011-10	00.	.00	
he !	n20	no+	n-	he	3.00F 10	00.	.00	4 /
ne+	1120	ocn	11 	пе	2.00E-10	00	.00	
cn+	02 nc	ocn -	n		4 00F 10	.00	.00	μ ⁴ ± Λ
	10	0011+	11		4.501-10		.00	- ⁴

Tabela E.2 - Continuação

Reage	entes		Produtos		γ	α	β	Tipo de Reação
cn+	02	ocn+	0		8.60E-11	.00	.00	4
nh+	со	ocn+	h		5.39E-10	.00	.00	4
ocn+	h2	hnco+	h		1.51E-09	.00	.00	4
ocn+	h2	hocn+	h		1.51E-09	.00	.00	4
o2+	no2	no2+	02		6.60E-10	.00	.00	4
n	o2h+	no2+	h		1.00E-12	.00	.00	4
$\mathbf{n}\mathbf{h}$	o2+	no2+	h		3.20E-10	50	.00	4
о	hno+	no2+	h		1.00E-12	.00	.00	4
h2	no2+	no+	h2o		1.50E-10	.00	.00	4
h	no2+	no+	oh		1.90E-10	.00	.00	4
he+	hnco	hnco+	he		5.68E-09	50	.00	4
h+	hnco	nh2+	со		7.94E-09	50	.00	4
he+	hnco	ocn+	h	he	5.68E-09	50	.00	4
hocn+	h2	h2ocn+	h		1.51E-09	.00	.00	4
h3+	hocn	h2ocn+	h2		8.54E-09	50	.00	4
he+	hocn	ocn+	h	he	8.54E-09	50	.00	4
nh2	h2co	ch3no	h		2.60E-12	-2.10	26.90	4
c+	ch3no	c2h3o+	n		1.85E-09	50	.00	4
c+	ch3no	h3co+	cn		1.85E-09	50	.00	4
c+	ch3no	h2co+	hcn		1.85E-09	50	.00	4
c+	ch3no	hcn+	h2co		1.85E-09	50	.00	4
c+	ch3no	c2h2n+	oh		1.85E-09	50	.00	4
c+	ch3no	c2h3n+	0		1.85E-09	50	.00	4
h+	ch3no	nh4+	со		8.62E-09	50	.00	4
h+	ch3no	hco+	nh3		8.62E-09	50	.00	4
h+	ch3no	h2nc+	h2o		8.62E-09	50	.00	4
h+	ch3no	nh2+	h2co		8.62E-09	50	.00	4
he+	ch3no	hco+	nh2	he	1.40E-09	50	.00	4
he+	ch3no	h2co+	$\mathbf{n}\mathbf{h}$	he	1.40E-09	50	.00	4
he+	ch3no	nh+	h2co	he	1.40E-09	50	.00	4
he+	ch3no	nh3+	со	he	1.40E-09	50	.00	4
he+	ch3no	co+	nh3	he	1.40E-09	50	.00	4
h3+	ch3no	ch4no+	h2		2.00E-08	50	.00	4
hco+	ch3no	ch4no+	со		8.15E-09	50	.00	4
n2h+	ch3no	ch4no+	n2		8.15E-09	50	.00	4
h3o+	ch3no	ch4no+	h2o		9.37E-09	50	.00	4
ch4no+	electr	nh3	со	h	1.50E-07	50	.00	4
ch4no+	electr	h2cn	h2o		1.50E-07	50	.00	4
ch4no+	electr	ocn	h2	h2	1.50E-07	50	.00	4
ch4no+	electr	nh2	h2co		1.50E-07	50	.00	4
ch3+	nh3	ch6n+	photon		9.40E-10	90	.00	3
ch6n+	electr	ch3n	h2	h	1.50E-07	50	.00	4
ch2+	nh3	ch4n+	h		1.54E-09	50	.00	4
ch3+	nh2	ch4n+	h		1.00E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos			γ	α	β	Tipo de Reação
ch3+	nh3	ch4n+	h2			1.30E-09	50	.00	4
ch4n+	electr	cn	h2	h2		3.00E-08	50	.00	4
ch4n+	electr	hcn	h2	h		3.00E-07	50	.00	4
h3+	ch5n	ch6n+	h2			3.10E-09	50	.00	4
hco+	ch5n	ch6n+	со			1.30E-09	50	.00	4
ch6n+	electr	ch5n	h			1.50E-07	50	.00	4
he+	ch5n	nh2+	ch3	he		6.70E-10	50	.00	4
he+	ch5n	ch3+	nh2	he		6.70E-10	50	.00	4
he+	ch5n	hcnh+	h	h2	he	6.70E-10	50	.00	4
he+	ch5n	ch4n+	h	he		6.70E-10	50	.00	4
c+	ch5n	ch4n+	$^{\rm ch}$			6.20E-10	50	.00	4
h+	ch5n	ch4n+	h2			2.60E-09	50	.00	4
c+	ch5n	ch5n+	с			1.10E-09	50	.00	4
h+	ch5n	ch5n+	h			2.60E-09	50	.00	4
ch3+	ch3no	ch5n+	hco			1.00E-08	50	.00	4
ch5n+	electr	ch3	nh2			1.50E-07	50	.00	4
ch5n+	electr	ch3n	h2			1.50E-07	50	.00	4
c2h+	hc3n	h2c3n+	c2			1 41E-09	- 50	00	4
c2h2+	hcn	h^2c^{3n+}	ь ь			1.30E-10	50	.00	4
c2h3+	hc3n	h2c3n+	c2h2			3.80E-09	50	.00	4
c2h4+	hc3n	h^2c^{3n+}	c2h3			1.10E-09	50	.00	4
c2h4	hc3n+	h^2c^{3n+}	c2h3			1.34E-10	50	.00	4
c^{2h5+}	hc3n	h2c3n+	c2h4			3.30E-09	- 50	00	4
c_{3h5+}	hc3n	h2c3n+	p-c3h4			1.00E-10	- 50	00	4
c3h5+	hc3n	h2c3n+	a-c3h4			1.00E-10	- 50	00	4
ch4	c4n+	h2c3n+	c2h2			2.00E-10	00	00	4
ch4	hc3n+	$h2c3n \pm$	ch3			2.00E-10	00	.00	4
ch5+	hc3n	$h2c3n \pm$	ch4			4 50E-09	- 50	00	4
h⊥	c3h3n	$h2c3n \pm$	h2			7.50E-09	- 50	.00	4
h9	bc3n⊥	$h2c3n\perp$	112 h			5.00E-12	00	.00	4
h2o	c4n⊥	$h2c3n\perp$				7 50E-10	- 50	.00	4
h3⊥	hc3n	$h2c3n\perp$	60 h2			9.10F-09	- 50	.00	4
h3o⊥	hc3n	$h2c3n\perp$	h2o			4 00F-09	- 50	.00	4
hcnh+	hc3n	h2c3n+	hen			4.00E-09	- 50	.00	4
hcnh+	hc3n	$h2c3n \pm$	hnc			1.70E-09	- 50	.00	4
hco+	hc3n	$h2c3n \perp$	inic co			1.70E-09	- 50	.00	4
he⊥	c3h3n	$h2c3n \perp$	he	h		4.00E-09	- 50	.00	4
ne⊤	n c ³ h4	$h2c3n \downarrow$	h2	11		1.20E-09	50	.00	4
n	p -c3h4 \perp	h2c3n +	112 h9			1.00E-10		.00	-±
11 h2e3n 1	a-coll4+	112001+	112 (P)			7 20E 07	.00	.00	-4 A
h2c2n+	oloctr	CZ11Z	b0			1.20E-01	00 E0	.00	4
h2c3n +	electr	con he?n	112 h			4.90E-08	00	.00	4 1
1120011+	bless 1	a2h4n i	II he?n			3 60E 00	00	.00	4
c211311	1120011+	c211411+	he2m			1.00E-09	00	.00	4
cn40	n2c3n+	cnoo+	ncan			1.90E-09	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	3	γ	α	β	Tipo de Reação
nh3	h2c3n+	nh4+	hc3n		2.00E-09	50	.00	4
h2c3n+	electr	hnc3	h		7.50E-08	50	.00	4
hnc3	c+	c3+	hcn		1.55E-09	50	.00	4
hnc3	c+	c3	hcn+		1.55E-09	50	.00	4
hnc3	c+	c3n+	$^{\rm ch}$		1.55E-09	50	.00	4
hnc3	c+	c4n+	h		1.55E-09	50	.00	4
hnc3	ch3+	c3h3+	hnc		2.84E-09	50	.00	4
hnc3	h+	c3h+	$\mathbf{n}\mathbf{h}$		3.23E-09	50	.00	4
hnc3	h+	c3n+	h2		3.23E-09	50	.00	4
hnc3	h+	hc3n+	h		3.23E-09	50	.00	4
hnc3	h+	hc3n	h+		3.23E-09	50	.00	4
hnc3	h+	hcn+	c2h		3.23E-09	50	.00	4
hnc3	h+	hnc	c2h+		3.23E-09	50	.00	4
hnc3	h3+	h2c3n+	h2		1.14E-08	50	.00	4
hnc3	h3o+	h2c3n+	h2o		5.19E-09	50	.00	4
hnc3	hco+	h2c3n+	со		4.50E-09	50	.00	4
hnc3	he+	c2+	hnc	he	2.00E-09	50	.00	4
hnc3	he+	c2nh+	с	he	2.00E-09	50	.00	4
hnc3	he+	c3+	$\mathbf{n}\mathbf{h}$	he	2.00E-09	50	.00	4
hnc3	he+	c3	nh+	he	2.00E-09	50	.00	4
hnc3	he+	c3n+	h	he	2.00E-09	50	.00	4
hnc3	n2h+	h2c3n+	n2		4.50E-09	50	.00	4
hnc3	с	c3	hnc		2.00E-10	.00	.00	4
hnc3	h	hc3n	h		1.00E-11	.00	.00	4
n2h+	hc3n	h2c3n+	n2		4.20E-09	50	.00	4
hnc3	electr	c3n-	h		2.00E-08	50	.00	4
n	c5-	c3n-	c2		2.30E-11	.00	.00	4
n	c6-	c3n-	c3		8.25E-11	.00	.00	4
n	c6h-	c3n-	c3h		4.40E-12	.00	.00	4
n	c7-	c3n-	c4		2.53E-11	.00	.00	4
c3n	electr	c3n-	photon		2.63E-10	50	.00	3
с	c3n-	c4n	electr		1.00E-09	.00	.00	4
h	c3n-	hc3n	electr		5.40E-10	.00	.00	4
о	c3n-	со	c2n	electr	5.00E-10	.00	.00	4
c3n-	c+	с	c3n		7.51E-08	50	.00	4
c3n-	c2h2+	c3n	c2h2		7.51E-08	50	.00	4
c3n-	c2h3+	c3n	c2h3		7.51E-08	50	.00	4
c3n-	c4h3+	c3n	c4h3		7.51E-08	50	.00	4
c3n-	c3h3+	c3n	c3h3		7.51E-08	50	.00	4
c3n-	ch3+	c3n	ch3		7.51E-08	50	.00	4
c3n-	$\operatorname{cnc}+$	c3n	c2n		7.51E-08	50	.00	4
c3n-	fe+	c3n	fe		7.51E-08	50	.00	4
c3n-	h+	c3n	h		7.51E-08	50	.00	4
c3n-	h2co+	c3n	h2co		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	i	γ	α	β	Tipo de Reação
c3n-	h2s+	c3n	h2s		7.51E-08	50	.00	4
c3n-	h3+	c3n	h2	h	7.51E-08	50	.00	4
c3n-	h3o+	c3n	h	h2o	7.51E-08	50	.00	4
c3n-	hcnh+	c3n	hcn	h	3.76E-08	50	.00	4
c3n-	hcnh+	c3n	hnc	h	3.76E-08	50	.00	4
c3n-	hco+	c3n	h	со	3.76E-08	50	.00	4
c3n-	hco+	c3n	hco		3.76E-08	50	.00	4
c3n-	he+	c3n	he		7.51E-08	50	.00	4
c3n-	n+	c3n	n		7.51E-08	50	.00	4
c3n-	n2h+	c3n	n2	h	7.51E-08	50	.00	4
c3n-	nh3+	c3n	nh3		7.51E-08	50	.00	4
c3n-	nh4+	c3n	nh3	h	7.51E-08	50	.00	4
c3n-	no+	c3n	no		7.51E-08	50	.00	4
c3n-	o+	c3n	0		7.51E-08	50	.00	4
c3n-	s+	c3n	s		7.51E-08	50	.00	4
c3n-	so+	c3n	so		7.51E-08	50	.00	4
c3n-	si+	c3n	si		7.51E-08	50	.00	4
c5-	c5	c10	electr		1.00E-09	.00	.00	4
c6-	c4	c10	electr		1.00E-09	.00	.00	4
c7-	c3	c10	electr		1.00E-09	.00	.00	4
h+	c10	c9h+	с		1.23E-09	.00	.00	4
he+	c10	c9+	с	he	4.20E-11	.00	.00	4
n	c10	cn	c9		1.00E-10	.00	.00	4
0	c10	со	c9		1.00E-10	.00	.00	4
c10	electr	c10-	photon		1.70E-07	50	.00	3
с	c10-	c5	c6	electr	1.80E-09	.00	.00	4
n	c10-	c3n-	c7		4.00E-11	.00	.00	4
n	c10-	cn-	c9		3.00E-11	.00	.00	4
c10-	c+	с	c10		7.51E-08	50	.00	4
c10-	c2h2+	c10	c2h2		7.51E-08	50	.00	4
c10-	c2h3+	c10	c2h3		7.51E-08	50	.00	4
c10-	c4h3+	c10	c4h3		7.51E-08	50	.00	4
c10-	c3h3+	c10	c3h3		7.51E-08	50	.00	4
c10-	ch3+	c10	ch3		7.51E-08	50	.00	4
c10-	$\operatorname{cnc}+$	c10	c2n		7.51E-08	50	.00	4
c10-	fe+	c10	fe		7.51E-08	50	.00	4
c10-	h+	c10	h		7.51E-08	50	.00	4
c10-	h2co+	c10	h2co		7.51E-08	50	.00	4
c10-	h2s+	c10	h2s		7.51E-08	50	.00	4
c10-	h3+	c10	h2	h	7.51E-08	50	.00	4
c10-	h3o+	c10	h	h2o	7.51E-08	50	.00	4
c10-	hcnh+	c10	hcn	h	3.76E-08	50	.00	4
c10-	hcnh+	c10	hnc	h	3.76E-08	50	.00	4
c10-	hco+	c10	h	со	3.76E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos			γ	α	β	Tipo de Reação
c10-	hco+	c10	hco			3.76E-08	50	.00	4
c10-	he+	c10	he			7.51E-08	50	.00	4
c10-	n+	c10	n			7.51E-08	50	.00	4
c10-	n2h+	c10	n2	h		7.51E-08	50	.00	4
c10-	nh3+	c10	nh3			7.51E-08	50	.00	4
c10-	nh4+	c10	nh3	h		7.51E-08	50	.00	4
c10-	no+	c10	no			7.51E-08	50	.00	4
c10-	o+	c10	0			7.51E-08	50	.00	4
c10-	s+	c10	s			7.51E-08	50	.00	4
c10-	so+	c10	SO			7.51E-08	50	.00	4
c10-	si+	c10	si			7.51E-08	50	.00	4
h	c10-	c10h	electr			1.80E-10	.00	.00	4
c+	c10h	c9h+	c2			2.30E-10	50	.00	4
he+	c10h	c5h+	c3	c2	he	3.75E-10	50	.00	4
he+	c10h	c5h+	c5	he		1.13E-09	50	.00	4
he+	c10h	c7h+	c2	с	he	4.80E-10	50	.00	4
he+	c10h	c7h+	c3	he		4.05E-09	50	.00	4
he+	c10h	c9+	с	h	he	3.83E-09	50	.00	4
c10h	electr	c10h-	photon			6.00E-08	50	.00	3
n	c10h-	c3n-	c7h			5.00E-12	.00	.00	4
c10h-	c+	с	c10h			7.51E-08	50	.00	4
c10h-	c2h2+	c10h	c2h2			7.51E-08	50	.00	4
c10h-	c2h3+	c10h	c2h3			7.51E-08	50	.00	4
c10h-	c4h3+	c10h	c4h3			7.51E-08	50	.00	4
c10h-	c4h2+	c10h	c4h2			7.51E-08	50	.00	4
c10h-	c3h3+	c10h	c3h3			7.51E-08	50	.00	4
c10h-	ch3+	c10h	ch3			7.51E-08	50	.00	4
c10h-	$\operatorname{cnc}+$	c10h	c2n			7.51E-08	50	.00	4
c10h-	fe+	c10h	fe			7.51E-08	50	.00	4
c10h-	h+	c10h	h			7.51E-08	50	.00	4
c10h-	h2co+	c10h	h2co			7.51E-08	50	.00	4
c10h-	h2s+	c10h	h2s			7.51E-08	50	.00	4
c10h-	h3+	c10h	h2	h		7.51E-08	50	.00	4
c10h-	h3o+	c10h	h	h2o		7.51E-08	50	.00	4
c10h-	hcnh+	c10h	hcn	h		3.76E-08	50	.00	4
c10h-	hcnh+	c10h	hnc	h		3.76E-08	50	.00	4
c10h-	hco+	c10h	h	со		3.76E-08	50	.00	4
c10h-	hco+	c10h	hco			3.76E-08	50	.00	4
c10h-	he+	c10h	he			7.51E-08	50	.00	4
c10h-	n+	c10h	n			7.51E-08	50	.00	4
c10h-	n2h+	c10h	n2	h		7.51E-08	50	.00	4
c10h-	nh3+	c10h	nh3			7.51E-08	50	.00	4
c10h-	nh4+	c10h	nh3	h		7.51E-08	50	.00	4
c10h-	no+	c10h	no			7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
c10h-	o+	c10h	о		7.51E-08	50	.00	4
c10h-	s+	c10h	s		7.51E-08	50	.00	4
c10h-	so+	c10h	so		7.51E-08	50	.00	4
c10h-	si+	c10h	si		7.51E-08	50	.00	4
m c7h	electr	c7h-	photon		1.90E-07	50	.00	3
с	c7h-	c8h	electr		1.00E-09	.00	.00	4
n	c7h-	hc7n	electr		5.00E-12	.00	.00	4
n	c7h-	c3n-	c4h		2.50E-12	.00	.00	4
n	c7h-	cn-	c6h		2.50E-12	.00	.00	4
о	c7h-	со	c6h-		5.00E-10	.00	.00	4
c7h-	c+	с	c7h		7.51E-08	50	.00	4
c7h-	c2h2+	m c7h	c2h2		7.51E-08	50	.00	4
c7h-	c2h3+	m c7h	c2h3		7.51E-08	50	.00	4
c7h-	c4h2+	m c7h	c4h2		7.51E-08	50	.00	4
c7h-	c4h3+	m c7h	c4h3		7.51E-08	50	.00	4
c7h-	c3h3+	m c7h	c3h3		7.51E-08	50	.00	4
c7h-	ch3+	m c7h	ch3		7.51E-08	50	.00	4
c7h-	$\operatorname{cnc}+$	m c7h	c2n		7.51E-08	50	.00	4
c7h-	fe+	m c7h	fe		7.51E-08	50	.00	4
c7h-	h+	m c7h	h		7.51E-08	50	.00	4
c7h-	h2co+	m c7h	h2co		7.51E-08	50	.00	4
c7h-	h2s+	m c7h	h2s		7.51E-08	50	.00	4
c7h-	h3+	m c7h	h2	h	7.51E-08	50	.00	4
c7h-	h3o+	m c7h	h	h2o	7.51E-08	50	.00	4
c7h-	hcnh+	m c7h	hcn	h	3.76E-08	50	.00	4
c7h-	hcnh+	m c7h	hnc	h	3.76E-08	50	.00	4
c7h-	hco+	m c7h	h	со	3.76E-08	50	.00	4
c7h-	hco+	m c7h	hco		3.76E-08	50	.00	4
c7h-	he+	m c7h	he		7.51E-08	50	.00	4
c7h-	n+	m c7h	n		7.51E-08	50	.00	4
c7h-	n2h+	m c7h	n2	h	7.51E-08	50	.00	4
c7h-	nh3+	m c7h	nh3		7.51E-08	50	.00	4
c7h-	nh4+	m c7h	nh3	h	7.51E-08	50	.00	4
c7h-	no+	m c7h	no		7.51E-08	50	.00	4
c7h-	o+	m c7h	0		7.51E-08	50	.00	4
c7h-	s+	m c7h	s		7.51E-08	50	.00	4
c7h-	so+	m c7h	so		7.51E-08	50	.00	4
c7h-	si+	m c7h	si		7.51E-08	50	.00	4
c8	electr	c8-	photon		1.70E-07	50	.00	3
c8-	c2	c10	electr		1.00E-09	.00	.00	4
с	c8-	c9	electr		1.00E-09	.00	.00	4
h	c8-	c8h	electr		2.41E-10	.00	.00	4
n	c8-	c3n-	c5		4.00E-11	.00	.00	4
n	c8-	cn-	c7		3.00E-11	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	5	γ	α	β	Tipo de Reação
n	c8-	$^{\rm cn}$	c7-		1.00E-10	.00	.00	4
о	c8-	со	c7-		5.00E-10	.00	.00	4
c8-	c+	с	c8		7.51E-08	50	.00	4
c8-	c2h2+	c8	c2h2		7.51E-08	50	.00	4
c8-	c2h3+	c8	c2h3		7.51E-08	50	.00	4
c8-	c4h2+	c8	c4h2		7.51E-08	50	.00	4
c8-	c4h3+	c8	c4h3		7.51E-08	50	.00	4
c8-	c3h3+	c8	c3h3		7.51E-08	50	.00	4
c8-	ch3+	c8	ch3		7.51E-08	50	.00	4
c8-	$\operatorname{cnc}+$	c8	c2n		7.51E-08	50	.00	4
c8-	fe+	c8	fe		7.51E-08	50	.00	4
c8-	h+	c8	h		7.51E-08	50	.00	4
c8-	h2co+	c8	h2co		7.51E-08	50	.00	4
c8-	h2s+	c8	h2s		7.51E-08	50	.00	4
c8-	h3+	c8	h2	h	7.51E-08	50	.00	4
c8-	h3o+	c8	h	h2o	7.51E-08	50	.00	4
c8-	hcnh+	c8	hcn	h	3.76E-08	50	.00	4
c8-	hcnh+	c8	hnc	h	3.76E-08	50	.00	4
c8-	hco+	c8	h	со	3.76E-08	50	.00	4
c8-	hco+	c8	hco		3.76E-08	50	.00	4
c8-	he+	c8	he		7.51E-08	50	.00	4
c8-	n+	c8	n		7.51E-08	50	.00	4
c8-	n2h+	c8	n2	h	7.51E-08	50	.00	4
c8-	nh3+	c8	nh3		7.51E-08	50	.00	4
c8-	nh4+	c8	nh3	h	7.51E-08	50	.00	4
c8-	no+	c8	no		7.51E-08	50	.00	4
c8-	o+	c8	0		7.51E-08	50	.00	4
c8-	s+	c8	s		7.51E-08	50	.00	4
c8-	so+	c8	so		7.51E-08	50	.00	4
c8-	si+	c8	si		7.51E-08	50	.00	4
c8h	electr	c8h-	photon		6.20E-08	50	.00	3
h	c8h-	c8h2	electr		1.00E-09	.00	.00	4
n	c8h-	c3n-	c5h		5.00E-12	.00	.00	4
n	c8h-	cn-	m c7h		5.00E-12	.00	.00	4
c8h-	c+	с	c8h		7.51E-08	50	.00	4
c8h-	c2h2+	c8h	c2h2		7.51E-08	50	.00	4
c8h-	c2h3+	c8h	c2h3		7.51E-08	50	.00	4
c8h-	c4h2+	c8h	c4h2		7.51E-08	50	.00	4
c8h-	c4h3+	c8h	c4h3		7.51E-08	50	.00	4
c8h-	c3h3+	c8h	c3h3		7.51E-08	50	.00	4
c8h-	ch3+	c8h	ch3		7.51E-08	50	.00	4
c8h-	$\operatorname{cnc}+$	c8h	c2n		7.51E-08	50	.00	4
c8h-	fe+	c8h	fe		7.51E-08	50	.00	4
c8h-	h+	c8h	h		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
c8h-	h2co+	c8h	h2co		7.51E-08	50	.00	4
c8h-	h2s+	c8h	h2s		7.51E-08	50	.00	4
c8h-	h3+	c8h	h2	h	7.51E-08	50	.00	4
c8h-	h3o+	c8h	h	h2o	7.51E-08	50	.00	4
c8h-	hcnh+	c8h	hen	h	3 76E-08	- 50	00	4
c8h-	henh⊥	c8h	hnc	h	3.76E-08	- 50	.00	4
c8h	heo l	cSh	h		3.76E-08	50	.00	4
c8h	hco l	c8h	hco	0	3.76E-08	50	.00	4
con-	he l	con	ho		5.70E-08	50	.00	4
con-	ne+	con	ne		7.51E-08	50	.00	4
con-		con	11 m2	h	7.51E-08	50	.00	4
con-	n2n+	con	n2	n	7.51E-08	50	.00	4
c8n-	nn3+	c8n	nh3	,	7.51E-08	50	.00	4
c8h-	nh4+	c8h	nh3	h	7.51E-08	50	.00	4
c8h-	no+	c8h	no		7.51E-08	50	.00	4
c8h-	o+	c8h	0		7.51E-08	50	.00	4
c8h-	s+	c8h	s		7.51E-08	50	.00	4
c8h-	so+	c8h	so		7.51E-08	50	.00	4
c8h-	si+	c8h	si		7.51E-08	50	.00	4
n	c10-	cn	c9-		1.00E-10	.00	.00	4
0	c10-	со	с9-		5.00E-10	.00	.00	4
c9	electr	с9-	photon		5.00E-07	50	.00	3
с	с9-	c10	electr		1.00E-09	.00	.00	4
n	c9-	c3n-	c6		2.00E-11	.00	.00	4
n	с9-	cn-	c8		1.50E-11	.00	.00	4
n	c9-	cn	c8-		5.00E-11	.00	.00	4
0	c9-	со	c8-		5.00E-10	.00	.00	4
c9-	c+	с	c9		7.51E-08	50	.00	4
c9-	c2h2+	c9	c2h2		7.51E-08	50	.00	4
c9-	c2h3+	c9	c2h3		7.51E-08	50	.00	4
c9-	c4h2+	c9	c4h2		7.51E-08	50	.00	4
c9-	c4h3+	c9	c4h3		7.51E-08	50	.00	4
с9-	c3h3+	c9	c3h3		7.51E-08	50	.00	4
c9-	ch3+	c9	ch3		7.51E-08	50	.00	4
c9-	$\operatorname{cnc}+$	c9	c2n		7.51E-08	50	.00	4
c9-	fe+	c9	fe		7.51E-08	50	.00	4
c9-	h+	c9	h		7.51E-08	50	.00	4
c9-	h2co+	c9	h2co		7.51E-08	50	.00	4
c9-	h2s+	c9	h2s		7.51E-08	50	.00	4
c9-	h3+	c9	h2	h	7.51E-08	50	.00	4
c9-	h3o+	c9	h	h2o	7.51E-08	50	.00	4
c9-	hcnh+	c9	hen	h	3.76E-08	50	.00	4
c9-	hcnh+	c9	hnc	h	3.76E-08	50	.00	4
c9-	hco+	c9	h	co	3.76E-08	50	.00	4
c9-	hco+	c9	hco		3.76E-08	50	.00	4
					0.101 00	1		

Tabela E.2 - Continuação

Reag	rentes		Produtos			γ	α	β	Tipo de Beação
6	,	1			i	,		<i>P</i> =	
c9-	he+	с9	he		7.	51E-08	50	.00	4
c9-	n+	с9	n		7.	51E-08	50	.00	4
c9-	n2h+	c9	n2	h	7.	51E-08	50	.00	4
c9-	nh3+	с9	nh3		7.	51E-08	50	.00	4
c9-	nh4+	с9	nh3	h	7.	51E-08	50	.00	4
c9-	no+	с9	no		7.	51E-08	50	.00	4
c9-	o+	с9	0		7.	51E-08	50	.00	4
c9-	s+	c9	s		7.	51E-08	50	.00	4
c9-	so+	c9	so		7.	51E-08	50	.00	4
c9-	si+	c9	si		7.	51E-08	50	.00	4
0	c10h-	со	c9h-		5.	00E-10	.00	.00	4
с	c9h-	c10h	electr		1.	00E-09	.00	.00	4
n	c9h-	c3n-	c6h		2.	50E-12	.00	.00	4
n	c9h-	cn-	c8h		2.	50E-12	.00	.00	4
о	c9h-	со	c8h-		5.	50E-10	.00	.00	4
s+	c4h	c4s+	h		1.	00E-09	50	.00	4
c4s+	electr	c2s	c2		1.	00E-07	50	.00	4
c4s+	electr	cs	c3		1.	00E-07	50	.00	4
C-	c4s+	с	c4s		7.	51E-08	50	.00	4
c10-	c4s+	c10	c4s		7.	51E-08	50	.00	4
c10h-	c4s+	c10h	c4s		7.	51E-08	50	.00	4
c3n-	c4s+	c3n	c4s		7.	51E-08	50	.00	4
c4h-	c4s+	c4h	c4s		7.	51E-08	50	.00	4
c5-	c4s+	c5	c4s		7.	51E-08	50	.00	4
c6-	c4s+	c6	c4s		7.	51E-08	50	.00	4
c6h-	c4s+	c6h	c4s		7.	51E-08	50	.00	4
c7-	c4s+	c7	c4s		7.	51E-08	50	.00	4
c7h-	c4s+	m c7h	c4s		7.	51E-08	50	.00	4
c8-	c4s+	c8	c4s		7.	51E-08	50	.00	4
c8h-	c4s+	c8h	c4s		7.	51E-08	50	.00	4
c9-	c4s+	c9	c4s		7.	51E-08	50	.00	4
cn-	c4s+	cn	c4s		7.	51E-08	50	.00	4
h-	c4s+	h	c4s		7.	51E-08	50	.00	4
о-	c4s+	о	c4s		7.	51E-08	50	.00	4
oh-	c4s+	oh	c4s		7.	51E-08	50	.00	4
c+	c4s	c4s+	с		5.	00E-10	50	.00	4
h+	c4s	c4s+	h		1.	00E-09	50	.00	4
he+	c4s	cs+	c3	he	5.	00E-10	50	.00	4
he+	c4s	cs	c3+	he	5.	00E-10	50	.00	4
c2h2+	s	hc2s+	h		1.	00E-09	.00	.00	4
c2h2	$\mathbf{s}+$	hc2s+	h		9.	50E-10	.00	.00	4
c2h3+	s	hc2s+	h2		1.	00E-09	.00	.00	4
c2h3	$\mathbf{s}+$	hc2s+	h2		1.	00E-09	.00	50	4
c2h4+	s	hc2s+	h2	h	1.	00E-09	.00	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos			γ	α	β	Tipo de Reação
h2	c2s+	hc2s+	h			1.00E-09	.00	.00	4
h3+	c2s	hc2s+	h2			1.00E-09	50	.00	4
h3o+	c2s	hc2s+	h2o			1.00E-09	50	.00	4
hco+	c2s	hc2s+	со			1.00E-09	50	.00	4
hc2s+	electr	c2s	h			1.50E-07	50	.00	4
hc2s+	electr	cs	$^{\rm ch}$			1.50E-07	50	.00	4
c-	hc2s+	с	c2s	h		7.51E-08	50	.00	4
c10-	hc2s+	c10	c2s	h		7.51E-08	50	.00	4
c10h-	hc2s+	c10h	c2s	h		7.51E-08	50	.00	4
c3n-	hc2s+	c3n	c2s	h		7.51E-08	50	.00	4
c4h-	hc2s+	c4h	c2s	h		7.51E-08	50	.00	4
c5-	hc2s+	c5	c2s	h		7.51E-08	50	.00	4
c6-	hc2s+	c6	c2s	h		7.51E-08	50	.00	4
c6h-	hc2s+	c6h	c2s	h		7.51E-08	50	.00	4
с7-	hc2s+	c7	c2s	h		7.51E-08	50	.00	4
c7h-	hc2s+	c7h	c2s	h		7.51E-08	50	.00	4
c8-	hc2s+	c8	c2s	h		7.51E-08	50	.00	4
c8h-	hc2s+	c8h	c2s	h		7.51E-08	50	.00	4
c9-	hc2s+	c9	c2s	h		7.51E-08	50	.00	4
cn-	hc2s+	cn	c2s	h		7.51E-08	50	.00	4
h-	hc2s+	h	c2s	h		7.51E-08	50	.00	4
О-	hc2s+	0	c2s	h		7.51E-08	50	.00	4
oh-	hc2s+	oh	c2s	h		7.51E-08	50	.00	4
c+	mg	mg+	с			1.10E-09	.00	.00	4
ch+	mg	mg+	$^{\rm ch}$			3.60E-10	.00	.00	4
ch3+	mg	mg+	ch3			3.50E-09	.00	.00	4
h+	mg	mg+	h			1.10E-09	.00	.00	4
h2o+	mg	mg+	h2o			2.20E-09	.00	.00	4
mg	c2h2+	c2h2	mg+			3.00E-09	.00	.00	4
mg	cs+	cs	mg+			2.70E-10	.00	.00	4
mg	h2co+	h2co	mg+			2.90E-09	.00	.00	4
mg	h2s+	h2s	mg+			2.80E-09	.00	.00	4
mg	hco+	hco	mg+			2.90E-09	.00	.00	4
mg	n2+	n2	mg+			7.00E-10	.00	.00	4
mg	no+	no	mg+			8.10E-10	.00	.00	4
mg	o2+	02	mg+			1.20E-09	.00	.00	4
mg	s+	s	mg+			2.80E-10	.00	.00	4
mg	so+	so	mg+			1.00E-10	.00	.00	4
mg	si+	si	mg+			2.90E-09	.00	.00	4
n+	mg	mg+	n			1.20E-09	.00	.00	4
nh3+	mg	mg+	nh3			3.30E-09	.00	.00	4
ch5+	mg	mg+	ch4	h		1.40E-09	.00	.00	4
h3+	mg	mg+	h2	h		1.00E-09	.00	.00	4
c-	mg+	mg	с			7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos			γ	α	β	Tipo de Reação
c10-	mg+	c10	mg		1	7.51E-08	50	.00	4
c10h-	mg+	c10h	mg			7.51E-08	50	.00	4
c3n-	mg+	c3n	mg			7.51E-08	50	.00	4
c4h-	mg+	c4h	mg			7.51E-08	50	.00	4
c5-	mg+	c5	mg			7.51E-08	50	.00	4
c6-	mg+	c6	mg			7.51E-08	50	.00	4
c6h-	mg+	c6h	mg			7.51E-08	50	.00	4
c7-	mg+	c7	mg			7.51E-08	50	.00	4
c7h-	mg+	m c7h	mg			7.51E-08	50	.00	4
c8-	mg+	c8	mg			7.51E-08	50	.00	4
c8h-	mg+	c8h	mg			7.51E-08	50	.00	4
с9-	mg+	c9	mg			7.51E-08	50	.00	4
cn-	mg+	cn	mg			7.51E-08	50	.00	4
h-	mg+	h	mg			7.51E-08	50	.00	4
О-	mg+	о	mg			7.51E-08	50	.00	4
oh-	mg+	oh	mg			7.51E-08	50	.00	4
mg+	electr	mg	photon			2.78E-12	68	.00	3
c+	na	na+	с			1.10E-09	.00	.00	4
ch+	na	na+	$^{\rm ch}$			3.50E-10	.00	.00	4
ch3+	na	na+	ch3			3.40E-09	.00	.00	4
h2o+	na	na+	h2o			6.20E-09	.00	.00	4
nh3+	na	na+	nh3			3.20E-09	.00	.00	4
na	c2h2+	c2h2	na+			2.70E-09	.00	.00	4
na	cs+	cs	na+			2.30E-10	.00	.00	4
na	fe+	fe	na+			1.00E-11	.00	.00	4
na	h2co+	h2co	na+			2.60E-09	.00	.00	4
na	h2s+	h2s	na+			2.50E-09	.00	.00	4
na	hco+	hco	na+			2.60E-09	.00	.00	4
na	mg+	mg	na+			1.00E-11	.00	.00	4
na	n2+	n2	na+			2.00E-09	.00	.00	4
na	no+	no	na+			7.70E-11	.00	.00	4
na	o2+	02	na+			7.10E-10	.00	.00	4
na	s+	s	na+			2.60E-10	.00	.00	4
na	so+	so	na+			2.30E-09	.00	.00	4
na	si+	si	na+			2.70E-09	.00	.00	4
h3+	na	na+	h2	h		2.10E-09	.00	.00	4
h3o+	na	na+	h2o	h		3.10E-09	.00	.00	4
na	h3co+	h2co	na+	h		2.60E-09	.00	.00	4
na	hcnh+	hcn	na+	h		1.35E-09	.00	.00	4
na	hcnh+	hnc	na+	h		1.35E-09	.00	.00	4
c-	na+	na	с			7.51E-08	50	.00	4
c10-	na+	c10	na			7.51E-08	50	.00	4
c10h-	na+	c10h	na			7.51E-08	50	.00	4
c3n-	na+	c3n	na			7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
c4h-	na+	c4h	na	7.51E-08	50	.00	4
c5-	na+	c5	na	7.51E-08	50	.00	4
c6-	na+	c6	na	7.51E-08	50	.00	4
c6h-	na+	c6h	na	7.51E-08	50	.00	4
c7-	na+	c7	na	7.51E-08	50	.00	4
c7h-	na+	c7h	na	7.51E-08	- 50	00	4
c8-	na+	c8	na	7.51E-08	- 50	.00	4
c8h-	na+	c8h	na	7.51E-08	- 50	.00	4
c9-	na	c0	na	7.51E-08	- 50	.00	4
cp-	na+	c5	na	7.51E-08	50	.00	4
b	na	h	na	7.51E-08	50	.00	4
	na -		na	7.51E-08	50	.00	4
0-	na+	oh	na	7.51E-00	50	.00	4
on-	na+	on	na	1.01E-00	30	.00	4
na+	electr	na	pnoton	2.70E-12	08	.00	3
on	s1+	\$10+	n	6.30E-10	50	.00	4
0	s1+	s10+	photon	9.22E-19	08	-21.20	3
\$10+	electr	81	0	2.00E-07	50	.00	4
с	sio+	si+	со	1.00E-09	.00	.00	4
ch2	sio+	h2co	si+	8.20E-10	.00	.00	4
$^{\rm ch}$	sio+	hco+	si	5.90E-10	50	.00	4
со	sio+	co2	si+	7.90E-10	.00	.00	4
n	sio+	no+	si	9.00E-11	.00	.00	4
n	sio+	no	si+	2.10E-10	.00	.00	4
0	sio+	o2	si+	2.00E-10	.00	.00	4
s	sio+	so	si+	1.00E-09	.00	.00	4
mg	sio+	sio	mg+	1.00E-09	.00	.00	4
no	sio+	sio	no+	7.20E-10	.00	.00	4
sio+	fe	sio	fe+	1.00E-09	.00	.00	4
c-	sio+	sio	с	7.51E-08	50	.00	4
c10-	sio+	c10	sio	7.51E-08	50	.00	4
c10h-	sio+	c10h	sio	7.51E-08	50	.00	4
c3n-	sio+	c3n	sio	7.51E-08	50	.00	4
c4h-	sio+	c4h	sio	7.51E-08	50	.00	4
c5-	sio+	c5	sio	7.51E-08	50	.00	4
c6-	sio+	c6	sio	7.51E-08	50	.00	4
c6h-	sio+	c6h	sio	7.51E-08	50	.00	4
c7-	sio+	c7	sio	7.51E-08	50	.00	4
c7h-	sio+	m c7h	sio	7.51E-08	50	.00	4
c8-	sio+	c8	sio	7.51E-08	50	.00	4
c8h-	sio+	c8h	sio	7.51E-08	50	.00	4
с9-	sio+	c9	sio	7.51E-08	50	.00	4
cn-	sio+	cn	sio	7.51E-08	50	.00	4
h-	sio+	h	sio	7.51E-08	50	.00	4
о-	sio+	о	sio	7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
oh-	sio+	oh	sio		7.51E-08	50	.00	4
oh	si	sio	h		1.00E-10	.00	.00	4
si	co2	sio	со		2.72E-10	.00	282.00	4
si	со	sio	с		1.30E-09	.00	34513.00	4
si	no	sio	n		9.00E-11	96	28.00	4
si	02	sio	0		1.72E-10	53	17.00	4
о	si	sio	photon		5.52E-18	.31	.00	3
h+	sio	sio+	h		3.30E-09	50	282.00	4
he+	sio	si+	0	he	8.60E-10	50	282.00	4
he+	sio	si	o+	he	8.60E-10	50	282.00	4
h2	sio+	sioh+	h		3.20E-10	.00	.00	4
h2o	si+	$\sinh +$	h		2.30E-10	50	.00	4
h3+	sio	$\sinh +$	h2		2.00E-09	50	.00	4
h3o+	sio	$\sinh +$	h2o		2.00E-09	50	.00	4
hco+	sio	$\sinh +$	со		7.90E-10	50	.00	4
oh+	sio	$\sinh +$	0		9.40E-10	50	.00	4
si+	ch3oh	$\sinh +$	ch3		1.65E-09	50	.00	4
$\sinh +$	electr	si	oh		1.50E-07	50	.00	4
$\sinh +$	electr	sio	h		1.50E-07	50	.00	4
nh3	$\sinh +$	nh4+	sio		2.50E-09	50	.00	4
C-	$\sinh +$	с	sio	h	7.51E-08	50	.00	4
c10-	$\sinh +$	c10	sio	h	7.51E-08	50	.00	4
c10h-	$\sinh +$	c10h	sio	h	7.51E-08	50	.00	4
c3n-	$\sinh +$	c3n	sio	h	7.51E-08	50	.00	4
c4h-	$\operatorname{sioh}+$	c4h	sio	h	7.51E-08	50	.00	4
c5-	$\sinh +$	c5	sio	h	7.51E-08	50	.00	4
c6-	$\sinh +$	c6	sio	h	7.51E-08	50	.00	4
c6h-	$\sinh +$	c6h	sio	h	7.51E-08	50	.00	4
c7-	$\sinh +$	c7	sio	h	7.51E-08	50	.00	4
c7h-	$\sinh +$	m c7h	sio	h	7.51E-08	50	.00	4
c8-	$\sinh +$	c8	sio	h	7.51E-08	50	.00	4
c8h-	$\sinh +$	c8h	sio	h	7.51E-08	50	.00	4
c9-	$\sinh +$	c9	sio	h	7.51E-08	50	.00	4
cn-	$\sinh +$	cn	sio	h	7.51E-08	50	.00	4
h-	$\sinh +$	h	sio	h	7.51E-08	50	.00	4
О-	$\sinh +$	о	sio	h	7.51E-08	50	.00	4
oh-	$\sinh +$	oh	sio	h	7.51E-08	50	.00	4
si+	ocs	sis+	со		9.00E-10	.00	.00	4
sis+	electr	s	si		2.00E-07	50	.00	4
02	sis+	so+	sio		6.23E-11	.00	.00	4
02	sis+	sio+	so		2.67E-11	.00	.00	4
C-	sis+	с	sis		7.51E-08	50	.00	4
c10-	sis+	c10	sis		7.51E-08	50	.00	4
c10h-	sis+	c10h	sis		7.51E-08	50	.00	4

TabelaE.2- Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
c3n-	sis+	c3n	sis		7.51E-08	50	.00	4
c4h-	sis+	c4h	sis		7.51E-08	50	.00	4
c5-	sis+	c5	sis		7.51E-08	50	.00	4
c6-	sis+	c6	sis		7.51E-08	50	.00	4
c6h-	sis+	c6h	sis		7.51E-08	50	.00	4
c7-	sis+	c7	sis		7.51E-08	50	.00	4
c7h-	sis+	m c7h	sis		7.51E-08	50	.00	4
c8-	sis+	c8	sis		7.51E-08	50	.00	4
c8h-	sis+	c8h	sis		7.51E-08	50	.00	4
c9-	sis+	c9	sis		7.51E-08	50	.00	4
cn-	sis+	cn	sis		7.51E-08	50	.00	4
h-	sis+	h	sis		7.51E-08	50	.00	4
О-	sis+	о	sis		7.51E-08	50	.00	4
oh-	sis+	$^{\rm oh}$	sis		7.51E-08	50	.00	4
c+	sis	sis+	с		2.30E-09	50	.00	4
h+	sis	sis+	h		1.50E-09	50	.00	4
$\mathbf{s}+$	sis	sis+	s		3.20E-09	50	.00	4
he+	sis	s+	si	he	3.80E-09	50	.00	4
he+	sis	s	si+	he	3.80E-09	50	.00	4
c2	electr	c2-	photon		2.00E-15	50	.00	3
c2-	c2	c4	electr		1.00E-09	.00	.00	4
c2-	c3	c5	electr		1.00E-09	.00	.00	4
c2-	c4	c6	electr		1.00E-09	.00	.00	4
c2-	c5	c7	electr		1.00E-09	.00	.00	4
c2-	c6	c8	electr		1.00E-09	.00	.00	4
c2-	c7	c9	electr		1.00E-09	.00	.00	4
c2-	c8	c10	electr		1.00E-09	.00	.00	4
с	c2-	c3	electr		1.00E-09	.00	.00	4
h	c2-	c2h	electr		7.70E-09	.00	.00	4
n	c2-	c2n	electr		1.15E-10	.00	.00	4
n	c2-	cn-	с		1.15E-10	.00	.00	4
0	c2-	c-	со		2.90E-10	.00	.00	4
c2-	c+	с	c2		7.51E-08	50	.00	4
c2-	c2h2+	c2	c2h2		7.51E-08	50	.00	4
c2-	c2h3+	c2	c2h3		7.51E-08	50	.00	4
c2-	c4h2+	c2	c4h2		7.51E-08	50	.00	4
c2-	c4h3+	c2	c4h3		7.51E-08	50	.00	4
c2-	c4s+	c2	c4s		7.51E-08	50	.00	4
c2-	c3h3+	c2	c3h3		7.51E-08	50	.00	4
c2-	ch3+	c2	ch3		7.51E-08	50	.00	4
c2-	$\operatorname{cnc}+$	c2	c2n		7.51E-08	50	.00	4
c2-	fe+	c2	fe		7.51E-08	50	.00	4
c2-	h+	c2	h		7.51E-08	50	.00	4
c2-	h2co+	c2	h2co		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reagentes			Produtos			α	β	Tipo de Reação
c2-	h2s+	c2	h2s		7.51E-08	50	.00	4
c2-	h3+	c2	h2	h	7.51E-08	50	.00	4
c2-	h3o+	c2	h	h2o	7.51E-08	50	.00	4
c2-	hc2s+	c2	c2s	h	7.51E-08	50	.00	4
c2-	hcnh+	c2	hcn	h	3.76E-08	50	.00	4
c2-	hcnh+	c2	hnc	h	3.76E-08	50	.00	4
c2-	hco+	c2	h	со	3.76E-08	50	.00	4
c2-	hco+	c2	hco		3.76E-08	50	.00	4
c2-	he+	c2	he		7.51E-08	50	.00	4
c2-	mg+	c2	mg		7.51E-08	50	.00	4
c2-	n+	c2	n		7.51E-08	50	.00	4
c2-	n2h+	c2	n2	h	7.51E-08	50	.00	4
c2-	nh3+	c2	nh3		7.51E-08	50	.00	4
c2-	nh4+	c2	nh3	h	7.51E-08	50	.00	4
c2-	no+	c2	no		7.51E-08	50	.00	4
c2-	na+	c2	na		7.51E-08	50	.00	4
c2-	o+	c2	0		7.51E-08	50	.00	4
c2-	s+	c2	s		7.51E-08	50	.00	4
c2-	so+	c2	so		7.51E-08	50	.00	4
c2-	si+	c2	si		7.51E-08	50	.00	4
c2-	sio+	c2	sio		7.51E-08	50	.00	4
c2-	sioh+	c2	sio	h	7.51E-08	50	.00	4
c2-	sis+	c2	sis		7.51E-08	50	.00	4
c3	electr	c3-	photon		1.70E-14	50	.00	3
c3-	c3	c6	electr		1.00E-09	.00	.00	4
c3-	c4	c7	electr		1.00E-09	.00	.00	4
c3-	c5	c8	electr		1.00E-09	.00	.00	4
c3-	c6	c9	electr		1.00E-09	.00	.00	4
c3-	c7	c10	electr		1.00E-09	.00	.00	4
с	c3-	c4	electr		1.00E-09	.00	.00	4
h	c3-	c3h	electr		7.70E-09	.00	.00	4
n	c3-	c3n	electr		1.00E-10	.00	.00	4
n	c3-	cn-	c2		5.00E-11	.00	.00	4
n	c3-	cn	c2-		5.00E-11	.00	.00	4
о	c3-	со	c2-		5.00E-11	.00	.00	4
c3-	c+	с	c3		7.51E-08	50	.00	4
c3-	c2h2+	c3	c2h2		7.51E-08	50	.00	4
c3-	c2h3+	c3	c2h3		7.51E-08	50	.00	4
c3-	c4h2+	c3	c4h2		7.51E-08	50	.00	4
c3-	c4h3+	c3	c4h3		7.51E-08	50	.00	4
c3-	c4s+	c3	c4s		7.51E-08	50	.00	4
c3-	c3h3+	c3	c3h3		7.51E-08	50	.00	4
c3-	ch3+	c3	ch3		7.51E-08	50	.00	4
c3-	$\operatorname{cnc}+$	c3	c2n		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Rea	gentes		Produtos			γ	α	β	Tipo de Reação
c3-	fe+	c3	fe		7.	.51E-08	50	.00	4
c3-	h+	c3	h		7.	.51E-08	50	.00	4
c3-	h2co+	c3	h2co		7.	.51E-08	50	.00	4
c3-	h2s+	c3	h2s		7.	.51E-08	50	.00	4
c3-	h3+	c3	h2	h	7.	.51E-08	50	.00	4
c3-	h3o+	c3	h	h2o	7.	.51E-08	50	.00	4
c3-	hc2s+	c3	c2s	h	7.	.51E-08	50	.00	4
c3-	hcnh+	c3	hcn	h	3.	76E-08	50	.00	4
c3-	hcnh+	c3	hnc	h	3.	.76E-08	50	.00	4
c3-	hco+	c3	h	со	3.	.76E-08	50	.00	4
c3-	hco+	c3	hco		3.	.76E-08	50	.00	4
c3-	he+	c3	he		7.	.51E-08	50	.00	4
c3-	mg+	c3	mg		7.	.51E-08	50	.00	4
c3-	n+	c3	n		7.	.51E-08	50	.00	4
c3-	n2h+	c3	n2	h	7.	.51E-08	50	.00	4
c3-	nh3+	c3	nh3		7.	.51E-08	50	.00	4
c3-	nh4+	c3	nh3	h	7.	.51E-08	50	.00	4
c3-	no+	c3	no		7.	.51E-08	50	.00	4
c3-	na+	c3	na		7.	.51E-08	50	.00	4
c3-	o+	c3	0		7.	.51E-08	50	.00	4
c3-	s+	c3	s		7.	.51E-08	50	.00	4
c3-	so+	c3	so		7.	.51E-08	50	.00	4
c3-	si+	c3	si		7.	.51E-08	50	.00	4
c3-	sio+	c3	sio		7.	.51E-08	50	.00	4
c3-	sioh+	c3	sio	h	7.	.51E-08	50	.00	4
c3-	sis+	c3	sis		7.	51E-08	50	.00	4
n	c5-	cn	c4-		2.	.70E-11	.00	.00	4
о	c5-	со	c4-		6.	.40E-10	.00	.00	4
c4	electr	c4-	photon		1.	10E-08	50	.00	3
c4-	c2	c6	electr		1.	.00E-09	.00	.00	4
c4-	c3	c7	electr		1.	.00E-09	.00	.00	4
c4-	c4	c8	electr		1.	.00E-09	.00	.00	4
c4-	c5	c9	electr		1.	.00E-09	.00	.00	4
c4-	c6	c10	electr		1.	.00E-09	.00	.00	4
с	c4-	c5	electr		1.	.00E-09	.00	.00	4
h	c4-	c4h	electr		6.	.20E-10	.00	.00	4
n	c4-	c4n	electr		1.	.00E-10	.00	.00	4
n	c4-	cn-	c3		5.	.00E-11	.00	.00	4
n	c4-	cn	c3-		5.	.00E-11	.00	.00	4
о	c4-	со	c3-		5.	.60E-10	.00	.00	4
c4-	c+	с	c4		7.	.51E-08	50	.00	4
c4-	c2h2+	c4	c2h2		7.	.51E-08	50	.00	4
c4-	c2h3+	c4	c2h3		7.	.51E-08	50	.00	4
c4-	c4h2+	c4	c4h2		7.	.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produto	s	γ	α	β	Tipo de Reação
c4-	c4h3+	c4	c4h3		7.51E-08	50	.00	4
c4-	c4s+	c4	c4s		7.51E-08	50	.00	4
c4-	c3h3+	c4	c3h3		7.51E-08	50	.00	4
c4-	ch3+	c4	ch3		7.51E-08	50	.00	4
c4-	cnc+	c4	c2n		7.51E-08	50	.00	4
c4-	fe+	c4	fe		7.51E-08	50	.00	4
c4-	h+	c4	h		7.51E-08	50	.00	4
c4-	h2co+	c4	h2co		7.51E-08	50	.00	4
c4-	h2s+	c4	h2s		7.51E-08	50	.00	4
c4-	h3+	c4	h2	h	7.51E-08	50	.00	4
c4-	h3o+	c4	h	h2o	7.51E-08	50	.00	4
c4-	hc2s+	c4	c2s	h	7.51E-08	50	.00	4
c4-	hcnh+	c4	hcn	h	3.76E-08	50	.00	4
c4-	hcnh+	c4	hnc	h	3.76E-08	50	.00	4
c4-	hco+	c4	h	со	3.76E-08	50	.00	4
c4-	hco+	c4	hco		3.76E-08	50	.00	4
c4-	he+	c4	he		7.51E-08	50	.00	4
c4-	mg+	c4	mg		7.51E-08	50	.00	4
c4-	n+	c4	n		7.51E-08	50	.00	4
c4-	n2h+	c4	n2	h	7.51E-08	50	.00	4
c4-	nh3+	c4	nh3		7.51E-08	50	.00	4
c4-	nh4+	c4	nh3	h	7.51E-08	50	.00	4
c4-	no+	c4	no		7.51E-08	50	.00	4
c4-	na+	c4	na		7.51E-08	50	.00	4
c4-	o+	c4	о		7.51E-08	50	.00	4
c4-	s+	c4	s		7.51E-08	50	.00	4
c4-	so+	c4	so		7.51E-08	50	.00	4
c4-	si+	c4	si		7.51E-08	50	.00	4
c4-	sio+	c4	sio		7.51E-08	50	.00	4
c4-	sioh+	c4	sio	h	7.51E-08	50	.00	4
c4-	sis+	c4	sis		7.51E-08	50	.00	4
о-	c+	с	о		7.51E-08	50	.00	4
о-	c2h2+	о	c2h2		7.51E-08	50	.00	4
0-	c2h3+	о	c2h3		7.51E-08	50	.00	4
О-	c4h2+	о	c4h2		7.51E-08	50	.00	4
0-	c4h3+	о	c4h3		7.51E-08	50	.00	4
0-	c3h3+	о	c3h3		7.51E-08	50	.00	4
0-	ch3+	о	ch3		7.51E-08	50	.00	4
0-	$\operatorname{cnc}+$	о	c2n		7.51E-08	50	.00	4
О-	fe+	о	fe		7.51E-08	50	.00	4
О-	h+	о	h		7.51E-08	50	.00	4
О-	h2co+	о	h2co		7.51E-08	50	.00	4
О-	h2s+	о	h2s		7.51E-08	50	.00	4
о-	h3+	о	h2	h	7.51E-08	50	.00	4

Tabela E.2 - Continuação

Rea	agentes		Produtos	8	γ	α	β	Tipo de Reação
0-	h3o+	о	h	h2o	7.51E-08	50	.00	4
0-	hcnh+	о	hcn	h	3.76E-08	50	.00	4
0-	hcnh+	о	hnc	h	3.76E-08	50	.00	4
0-	hco+	о	h	со	3.76E-08	50	.00	4
0-	hco+	о	hco		3.76E-08	50	.00	4
0-	he+	о	he		7.51E-08	50	.00	4
0-	n+	о	n		7.51E-08	50	.00	4
0-	n2h+	о	n2	h	7.51E-08	50	.00	4
0-	nh3+	о	nh3		7.51E-08	50	.00	4
0-	nh4+	о	nh3	h	7.51E-08	50	.00	4
0-	no+	о	no		7.51E-08	50	.00	4
0-	o+	о	0		7.51E-08	50	.00	4
0-	s+	о	s		7.51E-08	50	.00	4
0-	so+	о	so		7.51E-08	50	.00	4
0-	si+	о	si		7.51E-08	50	.00	4
oh-	c+	с	oh		7.51E-08	50	.00	4
oh-	c2h2+	oh	c2h2		7.51E-08	50	.00	4
oh-	c2h3+	oh	c2h3		7.51E-08	50	.00	4
oh-	c4h2+	oh	c4h2		7.51E-08	50	.00	4
oh-	c4h3+	oh	c4h3		7.51E-08	50	.00	4
oh-	c3h3+	oh	c3h3		7.51E-08	50	.00	4
oh-	ch3+	oh	ch3		7.51E-08	50	.00	4
oh-	cnc+	oh	c2n		7.51E-08	50	.00	4
oh-	fe+	oh	fe		7.51E-08	50	.00	4
oh-	h+	oh	h		7.51E-08	50	.00	4
oh-	h2co+	oh	h2co		7.51E-08	50	.00	4
oh-	h2s+	oh	h2s		7.51E-08	50	.00	4
oh-	h3+	oh	h2	h	7.51E-08	50	.00	4
oh-	h3o+	oh	h	h2o	7.51E-08	50	.00	4
oh-	hcnh+	oh	hcn	h	3.76E-08	50	.00	4
oh-	hcnh+	oh	hnc	h	3.76E-08	50	.00	4
oh-	hco+	oh	h	со	3.76E-08	50	.00	4
oh-	hco+	oh	hco		3.76E-08	50	.00	4
oh-	he+	oh	he		7.51E-08	50	.00	4
oh-	n+	oh	n		7.51E-08	50	.00	4
oh-	n2h+	oh	n2	h	7.51E-08	50	.00	4
oh-	nh3+	oh	nh3		7.51E-08	50	.00	4
oh-	nh4+	oh	nh3	h	7.51E-08	50	.00	4
oh-	no+	oh	no		7.51E-08	50	.00	4
oh-	o+	oh	о		7.51E-08	50	.00	4
oh-	s+	oh	s		7.51E-08	50	.00	4
oh-	so+	oh	so		7.51E-08	50	.00	4
oh-	si+	oh	si		7.51E-08	50	.00	4
n	c4h-	cn-	c3h		3.00E-12	.00	.00	4

Tabela E.2 - Continuação

Rea	gentes		Produtos		γ	α	β	Tipo de Reação
n	c5-	cn-	c4		8.50E-11	.00	.00	4
n	c6-	cn-	c5		5.25E-11	.00	.00	4
n	c6h-	cn-	c5h		5.60E-12	.00	.00	4
n	c7-	cn-	c6		1.76E-11	.00	.00	4
cn-	c+	с	cn		7.51E-08	50	.00	4
cn-	c2h2+	$^{\mathrm{cn}}$	c2h2		7.51E-08	50	.00	4
cn-	c2h3+	$^{\mathrm{cn}}$	c2h3		7.51E-08	50	.00	4
cn-	c4h2+	cn	c4h2		7.51E-08	50	.00	4
cn-	c4h3+	cn	c4h3		7.51E-08	50	.00	4
cn-	c3h3+	cn	c3h3		7.51E-08	50	.00	4
cn-	ch3+	cn	ch3		7.51E-08	50	.00	4
cn-	cnc+	cn	c2n		7.51E-08	50	.00	4
cn-	fe+	cn	fe		7.51E-08	50	.00	4
cn-	h+	$^{\mathrm{cn}}$	h		7.51E-08	50	.00	4
cn-	h2co+	$^{\mathrm{cn}}$	h2co		7.51E-08	50	.00	4
cn-	h2s+	$^{\mathrm{cn}}$	h2s		7.51E-08	50	.00	4
cn-	h3+	$^{\mathrm{cn}}$	h2	h	7.51E-08	50	.00	4
cn-	h3o+	$^{\mathrm{cn}}$	h	h2o	7.51E-08	50	.00	4
cn-	hcnh+	cn	hcn	h	3.76E-08	50	.00	4
cn-	hcnh+	$^{\mathrm{cn}}$	hnc	h	3.76E-08	50	.00	4
cn-	hco+	cn	h	со	3.76E-08	50	.00	4
cn-	hco+	cn	hco		3.76E-08	50	.00	4
cn-	he+	cn	he		7.51E-08	50	.00	4
cn-	n+	cn	n		7.51E-08	50	.00	4
cn-	n2h+	cn	n2	h	7.51E-08	50	.00	4
cn-	nh3+	cn	nh3		7.51E-08	50	.00	4
cn-	nh4+	cn	nh3	h	7.51E-08	50	.00	4
cn-	no+	cn	no		7.51E-08	50	.00	4
cn-	0+	cn	0		7.51E-08	50	.00	4
cn-	s+	cn	s		7.51E-08	50	.00	4
cn-	so+	cn	80		7.51E-08	50	.00	4
cn-	si+	cn	si		7.51E-08	50	.00	4
n	c6-	cn	c5-		1.50E-11	.00	.00	4
0	c6-	co	c5-		4.70E-10	.00	.00	4
c5-	c2	c7	electr		1.00E-09	.00	.00	4
c5-	с <u>з</u>	c8	electr		1.00E-09	.00	.00	4
c5-	c4	c9	electr		1.00E-09	00	.00	4
c c	c5-	c6	electr		1.00E-09	00	.00	4
h	c5-	c5h	electr		6 20E-09	00	.00	4
n	c5-	c5n	electr		1.35E-10	00	.00	4
	c+	con	c5		7.51E-08	- 50	.00	т 4
c5-	c2h2+	c5	c2h2		7.51E-08	50	.00	т 4
c5-	c2h3+	c5	c2h3		7.51E-08	50	.00	<u>т</u> 4
c5-	$c_{2h0\pm}$	c5	c4h9		7.51E-08	- 50	.00	± Д
00-	011121	00	0 1112		1.011-00		.00	*

TabelaE.2- Continuação

Rea	gentes		Produtos	3	γ	α	β	Tipo de Reação
c5-	c4h3+	c5	c4h3		7.51E-08	50	.00	4
c5-	c3h3+	c5	c3h3		7.51E-08	50	.00	4
c5-	ch3+	c5	ch3		7.51E-08	50	.00	4
c5-	cnc+	c5	c2n		7.51E-08	50	.00	4
c5-	fe+	c5	fe		7.51E-08	50	.00	4
c5-	h+	c5	h		7.51E-08	50	.00	4
c5-	h2co+	c5	h2co		7.51E-08	50	.00	4
c5-	h2s+	c5	h2s		7.51E-08	50	.00	4
c5-	h3+	c5	h2	h	7.51E-08	50	.00	4
c5-	h3o+	c5	h	h2o	7.51E-08	50	.00	4
c5-	hcnh+	c5	hcn	h	3.76E-08	50	.00	4
c5-	hcnh+	c5	hnc	h	3.76E-08	50	.00	4
c5-	hco+	c5	h	со	3.76E-08	50	.00	4
c5-	hco+	c5	hco		3.76E-08	50	.00	4
c5-	he+	c5	he		7.51E-08	50	.00	4
c5-	n+	c5	n		7.51E-08	50	.00	4
c5-	n2h+	c5	n2	h	7.51E-08	50	.00	4
c5-	nh3+	c5	nh3		7.51E-08	50	.00	4
c5-	nh4+	c5	nh3	h	7.51E-08	50	.00	4
c5-	no+	c5	no		7.51E-08	50	.00	4
c5-	o+	c5	о		7.51E-08	50	.00	4
c5-	s+	c5	s		7.51E-08	50	.00	4
c5-	so+	c5	so		7.51E-08	50	.00	4
c5-	si+	c5	si		7.51E-08	50	.00	4
n	c7-	cn	c6-		5.06E-11	.00	.00	4
0	c7-	со	c6-		5.30E-10	.00	.00	4
c6-	c2	c8	electr		1.00E-09	.00	.00	4
c6-	c3	c9	electr		1.00E-09	.00	.00	4
с	c6-	c7	electr		1.00E-09	.00	.00	4
h	c6-	c6h	electr		6.10E-10	.00	.00	4
c6-	c+	с	c6		7.51E-08	50	.00	4
c6-	c2h2+	c6	c2h2		7.51E-08	50	.00	4
c6-	c2h3+	c6	c2h3		7.51E-08	50	.00	4
c6-	c4h2+	c6	c4h2		7.51E-08	50	.00	4
c6-	c4h3+	c6	c4h3		7.51E-08	50	.00	4
c6-	c3h3+	c6	c3h3		7.51E-08	50	.00	4
c6-	ch3+	c6	ch3		7.51E-08	50	.00	4
c6-	cnc+	c6	c2n		7.51E-08	50	.00	4
c6-	fe+	c6	fe		7.51E-08	50	.00	4
c6-	h+	c6	h		7.51E-08	50	.00	4
c6-	h2co+	c6	h2co		7.51E-08	50	.00	4
c6-	h2s+	c6	h2s		7.51E-08	50	.00	4
c6-	h3+	c6	h2	h	7.51E-08	50	.00	4
c6-	h3o+	c6	h	h2o	7.51E-08	50	.00	4

Tabela E.2 - Continuação

Rea	gentes		Produtos	3	γ	α	β	Tipo de Reação
сб-	hcnh+	c6	hcn	h	3.76E-08	50	.00	4
c6-	hcnh+	c6	hnc	h	3.76E-08	50	.00	4
c6-	hco+	c6	h	со	3.76E-08	50	.00	4
c6-	hco+	c6	hco		3.76E-08	50	.00	4
c6-	he+	c6	he		7.51E-08	50	.00	4
c6-	n+	c6	n		7.51E-08	50	.00	4
c6-	n2h+	c6	n2	h	7.51E-08	50	.00	4
c6-	nh3+	c6	nh3		7.51E-08	50	.00	4
c6-	nh4+	c6	nh3	h	7.51E-08	50	.00	4
c6-	no+	c6	no		7.51E-08	50	.00	4
c6-	0+	c6	0		7.51E-08	50	.00	4
c6-	s+	c6	S		7.51E-08	50	.00	4
c6-	so+	c6	SO		7.51E-08	50	.00	4
c6-	si+	c6	si		7.51E-08	50	.00	4
c7-	c2	c9	electr		1.00E-09	.00	.00	4
c	c7-	c8	electr		1.00E-09	.00	.00	4
h	c7-	c7h	electr		2.83E-10	.00	.00	4
n	c7-	c7n	electr		1 10E-10	.00	.00	4
	c+	C/II	c7		7.51E-08	- 50	.00	4
c7-	c^{2h^2+}	c7	c2h2		7.51E-08	- 50	.00	4
c7-	$c2h3\perp$	c7	c2h3		7.51E-08	- 50	.00	4
07	02115⊤	07	c2115		7.51E-08	50	.00	4
c7-	c4112+	07	c4112		7.51E-08	50	.00	4
c7-	c4115+	e7	c4115		7.51E-08	50	.00	4
c7-	collo+	e7	c5115		7.51E-08	50	.00	4
c7-	cn3+	c7	cn3		7.51E-08	50	.00	4
-7	chc+	-7	6-		7.51E-08	50	.00	4
c7-	Ie+	c7	ie 1		7.51E-08	50	.00	4
c7-	n+	c7	n h.a.,		7.51E-08	50	.00	4
c/-	n2co+	c7	h2co		7.51E-08	50	.00	4
c/-	n2s+	c7	h2s	,	7.51E-08	50	.00	4
c7-	h3+	c7	h2	h	7.51E-08	50	.00	4
c7-	h3o+	c7	h	h2o	7.51E-08	50	.00	4
c7-	hcnh+	c7	hcn	h	3.76E-08	50	.00	4
c7-	hcnh+	c7	hnc	h	3.76E-08	50	.00	4
c7-	hco+	c7	h	со	3.76E-08	50	.00	4
c7-	hco+	c7	hco		3.76E-08	50	.00	4
c7-	he+	c7	he		7.51E-08	50	.00	4
c7-	n+	c7	n		7.51E-08	50	.00	4
c7-	n2h+	c7	n2	h	7.51E-08	50	.00	4
c7-	nh3+	c7	nh3		7.51E-08	50	.00	4
c7-	nh4+	с7	nh3	h	7.51E-08	50	.00	4
с7-	no+	c7	no		7.51E-08	50	.00	4
c7-	o+	с7	0		7.51E-08	50	.00	4
c7-	s+	c7	s		7.51E-08	50	.00	4

TabelaE.2- Continuação

Rea	gentes		Produtos		γ	α	β	Tipo de Reação
c7-	so+	c7	SO		7.51E-08	50	.00	4
c7-	si+	c7	si		7.51E-08	50	.00	4
с	c6h-	c7h	electr		1.00E-09	.00	.00	4
h	c6h-	c6h2	electr		5.00E-10	.00	.00	4
c6h-	c+	с	c6h		7.51E-08	50	.00	4
c6h-	c2h2+	c6h	c2h2		7.51E-08	50	.00	4
c6h-	c2h3+	c6h	c2h3		7.51E-08	50	.00	4
c6h-	c4h2+	c6h	c4h2		7.51E-08	50	.00	4
c6h-	c4h3+	c6h	c4h3		7.51E-08	50	.00	4
c6h-	c3h3+	c6h	c3h3		7.51E-08	50	.00	4
c6h-	ch3+	c6h	ch3		7.51E-08	50	.00	4
c6h-	$\operatorname{cnc}+$	c6h	c2n		7.51E-08	50	.00	4
c6h-	fe+	c6h	fe		7.51E-08	50	.00	4
c6h-	h+	c6h	h		7.51E-08	50	.00	4
c6h-	h2co+	c6h	h2co		7.51E-08	50	.00	4
c6h-	h2s+	c6h	h2s		7.51E-08	50	.00	4
c6h-	h3+	c6h	h2	h	7.51E-08	50	.00	4
c6h-	h3o+	c6h	h	h2o	7.51E-08	50	.00	4
c6h-	hcnh+	c6h	hcn	h	3.76E-08	50	.00	4
c6h-	hcnh+	c6h	hnc	h	3.76E-08	50	.00	4
c6h-	hco+	c6h	h	со	3.76E-08	50	.00	4
c6h-	hco+	c6h	hco		3.76E-08	50	.00	4
c6h-	he+	c6h	he		7.51E-08	50	.00	4
c6h-	n+	c6h	n		7.51E-08	50	.00	4
c6h-	n2h+	c6h	n2	h	7.51E-08	50	.00	4
c6h-	nh3+	c6h	nh3		7.51E-08	50	.00	4
c6h-	nh4+	c6h	nh3	h	7.51E-08	50	.00	4
c6h-	no+	c6h	no		7.51E-08	50	.00	4
c6h-	o+	c6h	0		7.51E-08	50	.00	4
c6h-	s+	c6h	s		7.51E-08	50	.00	4
c6h-	so+	c6h	so		7.51E-08	50	.00	4
c6h-	si+	c6h	si		7.51E-08	50	.00	4
c4h-	c+	с	c4h		7.51E-08	50	.00	4
c4h-	c2h2+	c4h	c2h2		7.51E-08	50	.00	4
c4h-	c2h3+	c4h	c2h3		7.51E-08	50	.00	4
c4h-	c4h2+	c4h	c4h2		7.51E-08	50	.00	4
c4h-	c4h3+	c4h	c4h3		7.51E-08	50	.00	4
c4h-	c3h3+	c4h	c3h3		7.51E-08	50	.00	4
c4h-	ch3+	c4h	ch3		7.51E-08	50	.00	4
c4h-	$\operatorname{cnc}+$	c4h	c2n		7.51E-08	50	.00	4
c4h-	fe+	c4h	fe		7.51E-08	50	.00	4
c4h-	h+	c4h	h		7.51E-08	50	.00	4
c4h-	h2co+	c4h	h2co		7.51E-08	50	.00	4
c4h-	h2s+	c4h	h2s		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produto	3	γ	α	β	Tipo de Reação
c4h-	h3+	c4h	h2	h	7.51E-08	50	.00	4
c4h-	h3o+	c4h	h	h2o	7.51E-08	50	.00	4
c4h-	hcnh+	c4h	hcn	h	3.76E-08	50	.00	4
c4h-	hcnh+	c4h	hnc	h	3.76E-08	50	.00	4
c4h-	hco+	c4h	h	со	3.76E-08	50	.00	4
c4h-	hco+	c4h	hco		3.76E-08	50	.00	4
c4h-	he+	c4h	he		7.51E-08	50	.00	4
c4h-	n+	c4h	n		7.51E-08	50	.00	4
c4h-	n2h+	c4h	n2	h	7.51E-08	50	.00	4
c4h-	nh3+	c4h	nh3		7.51E-08	50	.00	4
c4h-	nh4+	c4h	nh3	h	7.51E-08	50	.00	4
c4h-	no+	c4h	no		7.51E-08	50	.00	4
c4h-	o+	c4h	0		7.51E-08	50	.00	4
c4h-	s+	c4h	s		7.51E-08	50	.00	4
c4h-	so+	c4h	so		7.51E-08	50	.00	4
c4h-	si+	c4h	si		7.51E-08	50	.00	4
с	c10h	c11	h		2.00E-10	.00	.00	4
0	c11	со	c10		1.00E-10	.00	.00	4
c10h+	electr	c10	h		1.53E-06	30	.00	4
c10h+	electr	c5h	c5		5.40E-08	30	.00	4
c10h+	electr	c7h	c3		3.92E-07	30	.00	4
0	c10h+	c9	hco+		1.50E-10	.00	.00	4
0	c10h+	c9h+	со		1.50E-10	.00	.00	4
h+	c10h	c10h+	h		3.98E-08	50	.00	4
he+	c10h	c10h+	he		1.50E-08	50	.00	4
h3+	c10	c10h+	h2		2.00E-09	.00	.00	4
hco+	c10	c10h+	со		1.40E-09	.00	.00	4
n	c4h-	cn	c3h	electr	3.00E-12	.00	.00	4
c9h-	c+	с	c9h		7.51E-08	50	.00	4
c9h-	c2h2+	c9h	c2h2		7.51E-08	50	.00	4
c9h-	c2h3+	c9h	c2h3		7.51E-08	50	.00	4
c9h-	c4h2+	c9h	c4h2		7.51E-08	50	.00	4
c9h-	c4h3+	c9h	c4h3		7.51E-08	50	.00	4
c9h-	c4s+	c9h	c4s		7.51E-08	50	.00	4
c9h-	c3h3+	c9h	c3h3		7.51E-08	50	.00	4
c9h-	ch3+	c9h	ch3		7.51E-08	50	.00	4
c9h-	$\operatorname{cnc}+$	c9h	c2n		7.51E-08	50	.00	4
c9h-	fe+	c9h	fe		7.51E-08	50	.00	4
c9h-	h+	c9h	h		7.51E-08	50	.00	4
c9h-	h2co+	c9h	h2co		7.51E-08	50	.00	4
c9h-	h2s+	c9h	h2s		7.51E-08	50	.00	4
c9h-	h3+	c9h	h2	h	7.51E-08	50	.00	4
c9h-	h3o+	c9h	h	h2o	7.51E-08	50	.00	4
c9h-	hc2s+	c9h	c2s	h	7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos			γ	α	β	Tipo de Reação
c9h-	hcnh+	c9h	hcn	h		3.76E-08	50	.00	4
c9h-	hcnh+	c9h	hnc	h		3.76E-08	50	.00	4
c9h-	hco+	c9h	h	со		3.76E-08	50	.00	4
c9h-	hco+	c9h	hco			3.76E-08	50	.00	4
c9h-	he+	c9h	he			7.51E-08	50	.00	4
c9h-	mg+	c9h	mg			7.51E-08	50	.00	4
c9h-	n+	c9h	n			7.51E-08	50	.00	4
c9h-	n2h+	c9h	n2	h		7.51E-08	50	.00	4
c9h-	nh3+	c9h	nh3			7.51E-08	50	.00	4
c9h-	nh4+	c9h	nh3	h		7.51E-08	50	.00	4
c9h-	no+	c9h	no			7.51E-08	50	.00	4
c9h-	na+	c9h	na			7.51E-08	50	.00	4
c9h-	o+	c9h	0			7.51E-08	50	.00	4
c9h-	s+	c9h	s			7.51E-08	50	.00	4
c9h-	so+	c9h	SO			7.51E-08	50	.00	4
c9h-	si+	c9h	si			7.51E-08	50	.00	4
c9h-	sio+	c9h	sio			7.51E-08	50	.00	4
c9h-	sioh+	c9h	sio	h		7.51E-08	50	.00	4
c9h-	sis+	c9h	sis			7.51E-08	50	.00	4
0	c10h	c9h	со			1.70E-11	.00	.00	4
0	c9h	c8h	co			1.70E-11	.00	.00	4
he+	c9h	c7h+	c2	he		2.50E-09	50	.00	4
h+	c9h	c9h+	h			3.50E-09	50	.00	4
n	c10h-	cn-	c9h			5.00E-12	.00	.00	4
h	c9-	c9h	electr			1.22E-10	.00	.00	4
c9h	electr	c9h-	photon			2.00E-07	.00	.00	3
h	c10h-	c10h2	electr			1 00E-09	00	00	4
c2h	c8h2	c10h2	h			1.00E-09	.00	.00	4
h+	c10h2	$c10h\pm$	h2			2.00E-09	.00	.00	4
ho i	c10h2	c0h		h	ho	2.00E-03	.00	.00	4
he	c10h2	c7h	c3h	ho	ne	4.65E 11	.00	.00	4
he i	c10h2	c7n∓	c511	h	ho	5.07E 10	.00	.00	4
he i	c10h2	c711+	65 h	n ho	ne	1.65E 11	.00	.00	4
h i	c10112	c511+	6011 b	ne		2.76E.00	.00	.00	4
II+	c10	c10+	II b o			2.70E-09	.00	.00	4
ne+	c10	c10+	h			1.50E-09	.00	.00	4
c+	-01-1	-10	11			4.00E-09	50	.00	4
с	c9n+	c10+	n	,	,	1.00E-09	.00	.00	4
ne+	c10h2	c10+	n L	n	he	2.19E-10	.00	.00	4
c+	c9	c10+	photon			1.00E-09	.00	.00	3
c10+	electr	c8	c2			1.00E-06	30	.00	4
c10+	electr	c9	c			1.00E-06	30	.00	4
h2	c10+	c10h+	h			1.00E-11	.00	.00	4
h+	c5	c5+	h			4.00E-09	.00	.00	4
c+	c4h	c5+	h			1.00E-09	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos			γ	α	β	Tipo de Reação
c+	c4s	c5+	s			5.00E-10	50	.00	4
с	c4h+	c5+	h			1.00E-09	.00	.00	4
с	c4h2+	c5+	h2			5.00E-10	.00	.00	4
h+	c5h	c5+	h2			3.00E-09	50	.00	4
he+	c10	c5+	c5	he		5.25E-11	.00	.00	4
he+	c5h2	c5+	he	h2		1.00E-09	50	.00	4
he+	c5h	c5+	he	h		1.50E-09	50	.00	4
he+	c6	c5+	с	he		1.40E-09	.00	.00	4
he+	c7	c5+	c2	he		1.40E-09	.00	.00	4
c+	c4	c5+	photon			1.00E-09	.00	.00	3
c2h4	c5+	c2h4+	c5			3.06E-10	.00	.00	4
c5+	electr	c3	c2			3.00E-07	50	.00	4
c2h2	c5+	c7h+	h			1.80E-09	.00	.00	4
ch4	c5+	c4h2+	c2h2			2.64E-10	.00	.00	4
ch4	c5+	c5h+	ch3			3.61E-10	.00	.00	4
ch4	c5+	c6h2+	h2			9.68E-11	.00	.00	4
ch4	c5+	c6h3+	h			1.58E-10	.00	.00	4
h2	c5+	c5h+	h			6.20E-10	.00	.00	4
hcn	c5+	c5h+	cn			3.30E-10	50	.00	4
h+	c6	c6+	h			4.00E-09	.00	.00	4
c+	c5h2	c6+	h2			1.20E-09	50	.00	4
c+	c5h	c6+	h			3.00E-09	50	.00	4
c2h	c4h+	c6+	h2			6.00E-10	.00	.00	4
с	c5h+	c6+	h			1.00E-09	.00	.00	4
h+	c6h	c6+	h2			2.00E-09	50	.00	4
he+	c10	c6+	c3	с	he	3.58E-10	.00	.00	4
he+	c10	c6+	c4	he		2.70E-11	.00	.00	4
he+	c6h2	c6+	he	h2		1.00E-09	50	.00	4
he+	c6h	c6+	he	h		1.40E-09	50	.00	4
he+	c7	c6+	с	he		1.40E-09	.00	.00	4
he+	c7n	c6+	cn	he		3.00E-09	50	.00	4
he+	c8	c6+	c2	he		1.50E-09	.00	.00	4
c+	c5	c6+	photon			1.00E-09	.00	.00	3
c6+	electr	c4	c2			1.00E-06	30	.00	4
c6+	electr	c5	с			1.00E-06	30	.00	4
h2	c6+	c6h+	h			5.40E-11	.00	.00	4
h2	c6+	c6h2+	photon			5.20E-14	50	.00	3
	c7	c7+	h			4.00E-09	.00	.00	4
c+	c6h2	c7+	h2			1.20E-09	50	.00	4
c+	c6h	c7+	 h			2.00E-10	50	.00	4
c3h	c4h+	c7+	h2			1.50E-09	50	.00	4
C	c6h2+	c7+	h2			5.00E-10	.00	.00	4
h+	c7h	c7+	h2			3.00E-09	50	.00	4
he+	c10	c7+	c3	he		8 19E-10	00	00	
ne⊤	010		C0	ne		0.1912-10		.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	3		γ	α	β	Tipo de Reação
he+	c10h	c7+	c3	h	he	4.73E-09	50	.00	4
he+	c7h	c7+	he	h		2.00E-09	50	.00	4
he+	c8	c7+	с	he		1.50E-09	.00	.00	4
he+	c9	c7+	c2	he		1.50E-09	.00	.00	4
c+	c6	c7+	photon			1.00E-09	.00	.00	3
c7+	electr	c4	c3			3.00E-07	50	.00	4
c7+	electr	c5	c2			1.00E-06	30	.00	4
c7+	electr	c6	с			1.00E-06	30	.00	4
h2	c7+	c7h+	h			1.90E-10	.00	.00	4
h+	c8	c8+	h			4.00E-09	.00	.00	4
c+	c7h	c8+	h			3.00E-09	50	.00	4
с	c7h+	c8+	h			1.00E-09	.00	.00	4
h+	c8h	c8+	h2			2.00E-09	50	.00	4
he+	c10	c8+	c2	he		1.82E-10	.00	.00	4
he+	c8h2	c8+	he	h2		1.00E-09	50	.00	4
he+	c8h	c8+	he	h		1.50E-09	50	.00	4
he+	c9	c8+	с	he		1.50E-09	50	.00	4
c+	c7	c8+	photon			1.00E-09	.00	.00	3
c8+	electr	c6	c2			1.00E-06	30	.00	4
c8+	electr	c7	с			1.00E-06	30	.00	4
c+	c10h2	c11+	h2			2.40E-09	.00	.00	4
c+	c10h	c11+	h			4.75E-09	50	.00	4
с	c10h+	c11+	h			4.75E-11	.00	.00	4
c+	c10	c11+	photon			1.00E-09	.00	.00	3
c11+	electr	c6	c5			8.39E-08	30	.00	4
c11+	electr	c7	c4			2.66E-08	30	.00	4
c11+	electr	c8	c3			1.20E-06	30	.00	4
c11+	electr	c9	c2			6.76E-07	30	.00	4
n	c10-	c5n-	c5			3.00E-11	.00	.00	4
n	c7-	c5n-	c2			1.65E-11	.00	.00	4
n	c8-	c5n-	c3			3.00E-11	.00	.00	4
n	c9-	c5n-	c4			1.50E-11	.00	.00	4
c5n	electr	c5n-	photon			1.25E-07	50	.00	3
h	c5n-	hc5n	electr			5.80E-10	.00	.00	4
0	c5n-	со	c4n	electr		5.00E-10	.00	.00	4
c5n-	c+	с	c5n			7.51E-08	50	.00	4
c5n-	c2h2+	c5n	c2h2			7.51E-08	50	.00	4
c5n-	c2h3+	c5n	c2h3			7.51E-08	50	.00	4
c5n-	c4h2+	c5n	c4h2			7.51E-08	50	.00	4
c5n-	c4h3+	c5n	c4h3			7.51E-08	50	.00	4
c5n-	c4s+	c5n	c4s			7.51E-08	50	.00	4
c5n-	c3h3+	c5n	c3h3			7.51E-08	50	.00	4
c5n-	ch3+	c5n	ch3			7.51E-08	50	.00	4
c5n-	$\operatorname{cnc}+$	c5n	c2n			7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produto	s	γ	α	β	Tipo de Reação
c5n-	fe+	c5n	fe		7.51E-08	50	.00	4
c5n-	h+	c5n	h		7.51E-08	50	.00	4
c5n-	h2co+	c5n	h2co		7.51E-08	50	.00	4
c5n-	h2s+	c5n	h2s		7.51E-08	50	.00	4
c5n-	h3+	c5n	h2	h	7.51E-08	50	.00	4
c5n-	h3o+	c5n	h	h2o	7.51E-08	50	.00	4
c5n-	hc2s+	c5n	c2s	h	7.51E-08	50	.00	4
c5n-	hcnh+	c5n	hcn	h	3.76E-08	50	.00	4
c5n-	hcnh+	c5n	hnc	h	3.76E-08	50	.00	4
c5n-	hco+	c5n	h	со	3.76E-08	50	.00	4
c5n-	hco+	c5n	hco		3.76E-08	50	.00	4
c5n-	he+	c5n	he		7.51E-08	50	.00	4
c5n-	mg+	c5n	mg		7.51E-08	50	.00	4
c5n-	n+	c5n	n		7.51E-08	50	.00	4
c5n-	n2h+	c5n	n2	h	7.51E-08	50	.00	4
c5n-	nh3+	c5n	nh3		7.51E-08	50	.00	4
c5n-	nh4+	c5n	nh3	h	7.51E-08	50	.00	4
c5n-	no+	c5n	no		7.51E-08	50	.00	4
c5n-	na+	c5n	na		7.51E-08	50	.00	4
c5n-	o+	c5n	0		7.51E-08	50	.00	4
c5n-	$\mathbf{s}+$	c5n	s		7.51E-08	50	.00	4
c5n-	so+	c5n	so		7.51E-08	50	.00	4
c5n-	si+	c5n	si		7.51E-08	50	.00	4
c5n-	sio+	c5n	sio		7.51E-08	50	.00	4
c5n-	sioh+	c5n	sio	h	7.51E-08	50	.00	4
c5n-	sis+	c5n	sis		7.51E-08	50	.00	4
h+	c10h2	c10h2+	h		2.00E-09	.00	.00	4
c2h2+	c8h2	c10h2+	h2		1.00E-09	.00	.00	4
c2h2+	c8h	c10h2+	h		5.00E-09	50	.00	4
h2	c10h+	c10h2+	h		1.00E-17	.00	.00	4
h3+	c10h	c10h2+	h2		2.00E-08	50	.00	4
hco+	c10h	c10h2+	со		1.40E-08	50	.00	4
c10h2+	electr	c10h	h		1.35E-06	30	.00	4
с	c10h2+	c11+	h2		1.00E-09	.00	.00	4
о	c10h2+	c9h	hco+		2.00E-10	.00	.00	4
h	c9h-	c9h2	electr		1.00E-09	.00	.00	4
c+	c9h2	c10+	h2		2.40E-09	50	.00	4
c+	c9h2	c10h+	h		4.98E-10	.00	.00	4
h+	c9h2	c9h+	h2		2.50E-09	50	.00	4
he+	c9h2	c7h+	c2h	he	1.00E-09	50	.00	4
he+	c9h2	c9+	he	h2	1.00E-09	50	.00	4
he+	c9h2	c9h+	he	h	1.00E-09	50	.00	4
с	c9h2	c10h	h		2.90E-10	08	.00	4
n	с9-	c9n	electr		1.00E-10	.00	.00	4

Tabela E.2 - Continuação

Rea	gentes		Produtos		γ	α	β	Tipo de Reação
n	c9h	c9n	h		1.70E-11	.00	.00	4
he+	c9n	c8+	cn	he	4.00E-09	50	.00	4
с	c9n	c9	cn		1.00E-13	.00	.00	4
n	c9n	c2n	c7n		1.00E-10	.00	.00	4
0	c9n	c8	ocn		4.00E-11	.00	.00	4
с	c10h-	c5h-	c6		1.00E-09	.00	.00	4
0	c6h-	со	c5h-		5.40E-10	.00	.00	4
c5h	electr	c5h-	photon		4.10E-08	50	.00	3
с	c5h-	c6h	electr		1.00E-09	.00	.00	4
h	c5h-	c5h2	electr		1.00E-09	.00	.00	4
n	c5h-	hc5n	electr		5.00E-12	.00	.00	4
n	c5h-	cn-	c4h		2.50E-12	.00	.00	4
n	c5h-	cn	c4h-		2.50E-12	.00	.00	4
0	c5h-	со	c4h-		5.00E-10	.00	.00	4
c5h-	c+	с	c5h		7.51E-08	50	.00	4
c5h-	c2h2+	c5h	c2h2		7.51E-08	50	.00	4
c5h-	c2h3+	c5h	c2h3		7.51E-08	50	.00	4
c5h-	c4h2+	c5h	c4h2		7.51E-08	50	.00	4
c5h-	c4h3+	c5h	c4h3		7.51E-08	50	.00	4
c5h-	c4s+	c5h	c4s		7.51E-08	50	.00	4
c5h-	c3h3+	c5h	c3h3		7.51E-08	50	.00	4
c5h-	ch3+	c5h	ch3		7.51E-08	50	.00	4
c5h-	cnc+	c5h	c2n		7.51E-08	50	.00	4
c5h-	fe+	c5h	fe		7.51E-08	50	.00	4
c5h-	h+	c5h	h		7.51E-08	50	.00	4
c5h-	h2co+	c5h	h2co		7.51E-08	50	.00	4
c5h-	h2s+	c5h	h2s		7.51E-08	50	.00	4
c5h-	h3+	c5h	h2	h	7.51E-08	50	.00	4
c5h-	h3o+	c5h	h	h2o	7.51E-08	50	.00	4
c5h-	hc2s+	c5h	c2s	h	7.51E-08	50	.00	4
c5h-	hcnh+	c5h	hcn	h	3.76E-08	50	.00	4
c5h-	hcnh+	c5h	hnc	h	3.76E-08	50	.00	4
c5h-	hco+	c5h	h	со	3.76E-08	50	.00	4
c5h-	hco+	c5h	hco		3.76E-08	50	.00	4
c5h-	he+	c5h	he		7.51E-08	50	.00	4
c5h-	mg+	c5h	mg		7.51E-08	50	.00	4
c5h-	n+	c5h	n		7.51E-08	50	.00	4
c5h-	n2h+	c5h	n2	h	7.51E-08	50	.00	4
c5h-	nh3+	c5h	nh3		7.51E-08	50	.00	4
c5h-	nh4+	c5h	nh3	h	7.51E-08	50	.00	4
c5h-	no+	c5h	no		7.51E-08	50	.00	4
c5h-	na+	c5h	na		7.51E-08	50	.00	4
c5h-	o+	c5h	0		7.51E-08	50	.00	4
c5h-	s+	c5h	\mathbf{s}		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos	1	γ	α	β	Tipo de Reação
c5h-	so+	c5h	so		7.51E-08	50	.00	4
c5h-	si+	c5h	si		7.51E-08	50	.00	4
c5h-	sio+	c5h	sio		7.51E-08	50	.00	4
c5h-	sioh+	c5h	sio	h	7.51E-08	50	.00	4
c5h-	sis+	c5h	sis		7.51E-08	50	.00	4
h	c7h-	c7h2	electr		7.40E-10	.00	.00	4
c2h	c5h2	c7h2	h		1.06E-10	25	.00	4
c+	c7h2	c8+	h2		1.20E-09	50	.00	4
h+	c7h2	c7h+	h2		2.50E-09	50	.00	4
he+	c7h2	c5h+	c2h	he	1.00E-09	50	.00	4
he+	c7h2	c7+	he	h2	1.00E-09	50	.00	4
he+	c7h2	c7h+	he	h	1.00E-09	50	.00	4
c2h	c7h2	c9h2	h		1.06E-10	25	.00	4
с	c7h2	c8h	h		8.40E-09	50	.00	4
n	c7h2	hc7n	h		1.00E-13	.00	.00	4
n	c9h-	hc9n	electr		5.00E-12	.00	.00	4
cn	c8h2	hc9n	h		2.72E-10	52	19.00	4
c+	hc9n	c9h+	cn		6.00E-09	50	.00	4
c4s+	electr	c3s	с		1.00E-07	50	.00	4
c2h	cs	c3s	h		1.70E-11	.00	.00	4
c+	c3s	c4+	s		5.00E-10	50	.00	4
he+	c3s	cs+	c2	he	5.00E-10	50	.00	4
he+	c3s	cs	c2+	he	5.00E-10	50	.00	4
h3+	c4s	hc4s+	h2		1.00E-09	50	.00	4
h3o+	c4s	hc4s+	h2o		1.00E-09	50	.00	4
hco+	c4s	hc4s+	со		1.00E-09	50	.00	4
s+	c4h2	hc4s+	h		4.80E-10	.00	.00	4
s	c4h2+	hc4s+	h		1.00E-09	.00	.00	4
s	c4h3+	hc4s+	h2		1.00E-09	.00	.00	4
hc4s+	electr	c2s	c2h		1.00E-07	50	.00	4
hc4s+	electr	c3s	$^{\rm ch}$		1.00E-07	50	.00	4
hc4s+	electr	c4s	h		1.00E-07	50	.00	4
h-	c2h2	c2h-	h2		3.10E-09	.00	.00	4
c2h	electr	c2h-	photon		2.00E-15	50	.00	3
с	c2h-	c3h	electr		1.00E-09	.00	.00	4
h	c2h-	c2h2	electr		1.60E-09	.00	.00	4
n	c2h-	c2n	h	electr	3.00E-12	.00	.00	4
c2h-	c+	с	c2h		7.51E-08	50	.00	4
c2h-	c2h2+	c2h	c2h2		7.51E-08	50	.00	4
c2h-	c2h3+	c2h	c2h3		7.51E-08	50	.00	4
c2h-	c4h2+	c2h	c4h2		7.51E-08	50	.00	4
c2h-	c4h3+	c2h	c4h3		7.51E-08	50	.00	4
c2h-	c4s+	c2h	c4s		7.51E-08	50	.00	4
c2h-	c3h3+	c2h	c3h3		7.51E-08	50	.00	4
		1			1		I	1 I

Tabela E.2 - Continuação
Rea	gentes		Produtos		γ	α	β	Tipo de Reação
c2h-	ch3+	c2h	ch3		7.51E-08	50	.00	4
c2h-	cnc+	c2h	c2n		7.51E-08	50	.00	4
c2h-	fe+	c2h	fe		7.51E-08	50	.00	4
c2h-	h+	c2h	h		7.51E-08	50	.00	4
c2h-	h2co+	c2h	h2co		7.51E-08	50	.00	4
c2h-	h2s+	c2h	h2s		7.51E-08	50	.00	4
c2h-	h3+	c2h	h2	h	7.51E-08	50	.00	4
c2h-	h3o+	c2h	h	h2o	7.51E-08	50	.00	4
c2h-	hc2s+	c2h	c2s	h	7.51E-08	50	.00	4
c2h-	hcnh+	c2h	hcn	h	3.76E-08	50	.00	4
c2h-	hcnh+	c2h	hnc	h	3.76E-08	50	.00	4
c2h-	hco+	c2h	h	со	3.76E-08	50	.00	4
c2h-	hco+	c2h	hco		3.76E-08	50	.00	4
c2h-	he+	c2h	he		7.51E-08	50	.00	4
c2h-	mg+	c2h	mg		7.51E-08	50	.00	4
c2h-	n+	c2h	n		7.51E-08	50	.00	4
c2h-	n2h+	c2h	n2	h	7.51E-08	50	.00	4
c2h-	nh3+	c2h	nh3		7.51E-08	50	.00	4
c2h-	nh4+	c2h	nh3	h	7.51E-08	50	.00	4
c2h-	no+	c2h	no		7.51E-08	50	.00	4
c2h-	na+	c2h	na		7.51E-08	50	.00	4
c2h-	o+	c2h	0		7.51E-08	50	.00	4
c2h-	s+	c2h	s		7.51E-08	50	.00	4
c2h-	so+	c2h	so		7.51E-08	50	.00	4
c2h-	si+	c2h	si		7.51E-08	50	.00	4
c2h-	sio+	c2h	sio		7.51E-08	50	.00	4
c2h-	sioh+	c2h	sio	h	7.51E-08	50	.00	4
c2h-	sis+	c2h	sis		7.51E-08	50	.00	4
о	c4h-	со	c3h-		5.30E-10	.00	.00	4
c3h	electr	c3h-	photon		1.70E-14	50	.00	3
с	c3h-	c4h	electr		1.00E-09	.00	.00	4
h	c3h-	h2c3	electr		1.00E-10	.00	.00	4
n	c3h-	hc3n	electr		5.00E-12	.00	.00	4
n	c3h-	cn-	c2h		2.50E-12	.00	.00	4
n	c3h-	$^{\rm cn}$	c2h-		2.50E-12	.00	.00	4
о	c3h-	со	c2h-		5.00E-10	.00	.00	4
c3h-	c+	с	c3h		7.51E-08	50	.00	4
c3h-	c2h2+	c3h	c2h2		7.51E-08	50	.00	4
c3h-	c2h3+	c3h	c2h3		7.51E-08	50	.00	4
c3h-	c4h2+	c3h	c4h2		7.51E-08	50	.00	4
c3h-	c4h3+	c3h	c4h3		7.51E-08	50	.00	4
c3h-	c4s+	c3h	c4s		7.51E-08	50	.00	4
c3h-	c3h3+	c3h	c3h3		7.51E-08	50	.00	4
c3h-	ch3+	c3h	ch3		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	gentes		Produtos	5	γ	α	β	Tipo de Reação
c3h-	$\operatorname{cnc}+$	c3h	c2n		7.51E-08	50	.00	4
c3h-	fe+	c3h	fe		7.51E-08	50	.00	4
c3h-	h+	c3h	h		7.51E-08	50	.00	4
c3h-	h2co+	c3h	h2co		7.51E-08	50	.00	4
c3h-	h2s+	c3h	h2s		7.51E-08	50	.00	4
c3h-	h3+	c3h	h2	h	7.51E-08	50	.00	4
c3h-	h3o+	c3h	h	h2o	7.51E-08	50	.00	4
c3h-	hc2s+	c3h	c2s	h	7.51E-08	50	.00	4
c3h-	hcnh+	c3h	hcn	h	3.76E-08	50	.00	4
c3h-	hcnh+	c3h	hnc	h	3.76E-08	50	.00	4
c3h-	hco+	c3h	h	со	3.76E-08	50	.00	4
c3h-	hco+	c3h	hco		3.76E-08	50	.00	4
c3h-	he+	c3h	he		7.51E-08	50	.00	4
c3h-	mg+	c3h	mg		7.51E-08	50	.00	4
c3h-	n+	c3h	n		7.51E-08	50	.00	4
c3h-	n2h+	c3h	n2	h	7.51E-08	50	.00	4
c3h-	nh3+	c3h	nh3		7.51E-08	50	.00	4
c3h-	nh4+	c3h	nh3	h	7.51E-08	50	.00	4
c3h-	no+	c3h	no		7.51E-08	50	.00	4
c3h-	na+	c3h	na		7.51E-08	50	.00	4
c3h-	o+	c3h	о		7.51E-08	50	.00	4
c3h-	s+	c3h	s		7.51E-08	50	.00	4
c3h-	so+	c3h	so		7.51E-08	50	.00	4
c3h-	si+	c3h	si		7.51E-08	50	.00	4
c3h-	sio+	c3h	sio		7.51E-08	50	.00	4
c3h-	$\sinh +$	c3h	sio	h	7.51E-08	50	.00	4
c3h-	sis+	c3h	sis		7.51E-08	50	.00	4
о	c2h-	со	ch-		3.10E-10	.00	.00	4
с	ch-	c2h	electr		1.00E-09	.00	.00	4
h	ch-	ch2	electr		1.00E-10	.00	.00	4
ch-	c+	с	$^{\rm ch}$		7.51E-08	50	.00	4
ch-	c2h2+	$^{\rm ch}$	c2h2		7.51E-08	50	.00	4
ch-	c2h3+	$^{\rm ch}$	c2h3		7.51E-08	50	.00	4
ch-	c4h2+	$^{\rm ch}$	c4h2		7.51E-08	50	.00	4
ch-	c4h3+	$^{\rm ch}$	c4h3		7.51E-08	50	.00	4
ch-	c4s+	$^{\rm ch}$	c4s		7.51E-08	50	.00	4
ch-	c3h3+	$^{\rm ch}$	c3h3		7.51E-08	50	.00	4
ch-	ch3+	$^{\rm ch}$	ch3		7.51E-08	50	.00	4
ch-	cnc+	$^{\rm ch}$	c2n		7.51E-08	50	.00	4
ch-	fe+	$^{\rm ch}$	fe		7.51E-08	50	.00	4
ch-	h+	$^{\rm ch}$	h		7.51E-08	50	.00	4
ch-	h2co+	$^{\rm ch}$	h2co		7.51E-08	50	.00	4
ch-	h2s+	$^{\rm ch}$	h2s		7.51E-08	50	.00	4
ch-	h3+	$^{\rm ch}$	h2	h	7.51E-08	50	.00	4

Tabela E.2 - Continuação

Rea	gentes		Produtos	S	γ	α	β	Tipo de Reação
ch-	h3o+	ch	h	h2o	7.51E-08	50	.00	4
ch-	hc2s+	ch	c2s	h	7.51E-08	50	.00	4
ch-	hcnh+	ch	hcn	h	3.76E-08	50	.00	4
ch-	hcnh+	ch	hnc	h	3.76E-08	50	.00	4
ch-	hco+	ch	h	 CO	3.76E-08	50	.00	4
ch-	hco+	ch	hco		3.76E-08	50	.00	4
ch-	he+	ch	he		7.51E-08	50	.00	4
ch-	mg+	ch	mø		7.51E-08	50	.00	4
ch-	n+	ch	n		7.51E-08	50	.00	4
ch-	n2h+	ch	n2	h	7.51E-08	- 50	.00	4
ch-	nh3+	ch	nh3	11	7.51E-08	- 50	.00	4
ch-	nh4+	ch	nh3	h	7.51E-08	- 50	.00	4
ch-	no+	ch	no	11	7.51E-08	- 50	.00	4
ch-	no+	ch	na		7.51E-08	- 50	.00	4
ch-		ch	0		7.51E-08	- 50	.00	4
ch-	s+	ch	S		7.51E-08	- 50	.00	4
ch-	87 80±	ch	5		7.51E-08	- 50	.00	4
ch-	si⊥	ch			7.51E-08	- 50	.00	4
ch-	sio+	ch	sio		7.51E-08	- 50	.00	4
ch-	sioh+	ch	sio	h	7.51E-08	- 50	.00	4
ch-	sie+	ch	sis	11	7.51E-08	- 50	.00	4
0-	02	02-	0		7.30E-10	00	890.00	4
0-	02	02-	റ	olectr	7.00E-10	.00	00	4
02-	02 c⊥	6	02	electi	7.51E-08	- 50	.00	4
02-	$c^{2h^{2}\pm}$	02	c2h2		7.51E-08	- 50	.00	4
02-	$c^{2h^{2}+}$	02	c2h3		7.51E-08	- 50	.00	4
02-	c_{2h0+}	02	c4h2		7.51E-08	- 50	.00	4
02-	c4h3⊥	02	c4h3		7.51E-08	- 50	.00	4
02-		02	c/s		7.51E-08	- 50	.00	4
02-	c3h3⊥	02	c3h3		7.51E-08	- 50	.00	4
02-	ch3+	02	ch3		7.51E-08	- 50	.00	4
02-	cnc+	02	c2n		7.51E-08	- 50	.00	4
02-	fe+	02	fe		7.51E-08	- 50	.00	4
02-	h+	02	h		7.51E-08	- 50	.00	4
02-	h^2co+	02	h2co		7.51E-08	- 50	.00	4
02-	h2s+	02	h2s		7.51E-08	50	.00	4
02-	h3+	02	h2	h	7.51E-08	- 50	.00	4
02-	h_{30+}	02	h	h2o	7.51E-08	- 50	.00	4
02-	hc2s+	02	c2s	h	7.51E-08	50	.00	4
02-	hcnh+	02	hcn	h	3.76E-08	50	.00	4
02-	hcnh+	02	hnc	n h	3.76E-08	50	.00	Δ.
02-	hco+	02	h	co	3.76E-08	50	.00	4
02-	hco+	02	hco		3.76E-08	50	.00	4
02-	he+	02	he		7.51E-08	50	.00	4
		1	-		1	1		

Tabela E.2 - Continuação

Reagentes			Produtos		γ	α	β	Tipo de Reação
02-	mg+	02	mg		7.51E-08	50	.00	4
o2-	n+	02	n		7.51E-08	50	.00	4
o2-	n2h+	02	n2	h	7.51E-08	50	.00	4
02-	nh3+	02	nh3		7.51E-08	50	.00	4
02-	nh4+	02	nh3	h	7.51E-08	50	.00	4
02-	no+	02	no		7.51E-08	50	.00	4
o2-	na+	o2	na		7.51E-08	50	.00	4
o2-	o+	o2	0		7.51E-08	50	.00	4
o2-	s+	o2	s		7.51E-08	50	.00	4
02-	so+	02	SO		7.51E-08	50	.00	4
02-	si+	02	si		7.51E-08	50	.00	4
o2-	sio+	o2	sio		7.51E-08	50	.00	4
02-	sioh+	02	sio	h	7.51E-08	50	.00	4
02-	sis+	02	sis		7.51E-08	50	.00	4
s	electr	s-	photon		5.00E-15	.00	.00	3
c	S-	cs	electr		1.00E-10	.00	.00	4
co.	S-	005	electr		3.00E-10	.00	.00	4
02	S-	so2	electr		3.00E-11	.00	.00	4
0	S-	so	electr		1.00E-10	.00	.00	4
S-	c+	c	s		7.51E-08	50	.00	4
S-	$c^{2h}2+$	s	c2h2		7.51E-08	50	.00	4
S-	c2h3+	s	c2h3		7.51E-08	50	.00	4
S-	c_{4h2+}	s	c4h2		7.51E-08	- 50	00	4
S-	c4h3+	s	c4h3		7.51E-08	- 50	.00	4
S-	c4s+	s	c4s		7.51E-08	- 50	.00	4
S-	c3h3+	s	c3h3		7.51E-08	- 50	.00	4
S-	ch3+	s	ch3		7.51E-08	- 50	.00	4
S-	cnc+	s	c2n		7.51E-08	- 50	.00	4
S-	fe+	s	fe		7.51E-08	- 50	.00	4
S-	h+	s	h		7.51E-08	- 50	.00	4
S-	h2co+	s	h2co		7.51E-08	- 50	00	4
S-	h2s+	s	h2s		7.51E-08	- 50	.00	4
S-	h3+	s	h2	h	7.51E-08	50	.00	4
S-	h_{30+}	s	h	h2o	7.51E-08	50	.00	4
S-	hc2s+	s	c2s	h	7.51E-08	50	.00	4
S-	hcnh+	s	hcn	h	3.76E-08	50	.00	4
S-	hcnh+	s	hnc	h	3.76E-08	50	.00	4
S-	hco+	s	h	co	3.76E-08	50	.00	4
S-	hco+	s	hco		3.76E-08	50	.00	4
S-	he+	s	he		7.51E-08	50	.00	4
- S-	mg+	s	mg		7.51E-08	50	.00	4
s-	8 ' n+	s	n		7.51E-08	50	.00	4
s-	n2h+	s	n2	h	7.51E-08	50	.00	4
s-	nh3+	s	nh3		7.51E-08	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produto	s	γ	α	β	Tipo de Reação
s-	nh4+	s	nh3	h	7.51E-08	50	.00	4
s-	no+	s	no		7.51E-08	50	.00	4
s-	na+	s	na		7.51E-08	50	.00	4
s-	o+	s	о		7.51E-08	50	.00	4
s-	s+	s	s		7.51E-08	50	.00	4
s-	so+	s	so		7.51E-08	50	.00	4
s-	si+	s	si		7.51E-08	50	.00	4
s-	sio+	s	sio		7.51E-08	50	.00	4
s-	$\sinh +$	s	sio	h	7.51E-08	50	.00	4
s-	sis+	s	sis		7.51E-08	50	.00	4
c+	c3s	c3s+	с		5.00E-10	50	.00	4
h+	c3s	c3s+	h		1.00E-09	50	.00	4
с	hc2s+	c3s+	h		1.00E-09	.00	.00	4
s+	c3h	c3s+	h		1.00E-09	50	.00	4
c3s+	electr	c2s	с		1.00E-07	50	.00	4
c3s+	electr	c3	s		1.00E-07	50	.00	4
c3s+	electr	cs	c2		1.00E-07	50	.00	4
ch5+	s	hs+	ch4		1.30E-09	.00	.00	4
h+	h2s	hs+	h2		9.90E-10	50	.00	4
h+	ocs	hs+	со		2.10E-09	.00	.00	4
h2+	h2s	hs+	h2	h	8.60E-10	50	.00	4
h2	s+	hs+	h		1.10E-10	.00	9860.00	4
h2co+	s	hs+	hco		5.50E-10	.00	.00	4
h2o+	s	hs+	oh		4.30E-10	.00	.00	4
h3+	s	hs+	h2		2.60E-09	.00	.00	4
h	h2s+	hs+	h2		2.00E-10	.00	.00	4
hcn+	s	hs+	cn		5.70E-10	.00	.00	4
hco+	s	hs+	со		3.30E-10	.00	.00	4
hco	s+	hs+	со		3.60E-10	50	.00	4
hno+	s	hs+	no		1.10E-09	.00	.00	4
he+	h2s	hs+	he	h	4.84E-10	50	.00	4
n+	h2s	hs+	nh		5.51E-10	50	.00	4
n2+	h2s	hs+	n2	h	1.13E-09	50	.00	4
nh+	s	hs+	n		6.90E-10	.00	.00	4
nh2+	h2s	hs+	nh3		1.80E-10	50	.00	4
nh2+	s	hs+	nh		4.40E-10	.00	.00	4
$^{\mathrm{o}+}$	h2s	hs+	oh		4.20E-10	50	.00	4
о	h2s+	hs+	oh		3.10E-10	.00	.00	4
oh+	s	hs+	0		4.30E-10	.00	.00	4
s	o2h+	hs+	02		1.10E-09	.00	.00	4
hs+	electr	s	h		2.00E-07	50	.00	4
с	hs+	cs+	h		9.90E-10	.00	.00	4
ch4	hs+	h3cs+	h2		2.20E-10	.00	.00	4
$^{\rm ch}$	hs+	s	ch2+		5.80E-10	50	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
h2	hs+	h2s+	h		2.00E-10	.00	6380.00	4
h2o	hs+	s	h3o+		7.80E-10	50	.00	4
h	hs+	s+	h2		1.10E-10	.00	.00	4
hcn	hs+	s	hcnh+		8.60E-10	50	.00	4
hnc	hs+	s	hcnh+		8.60E-10	50	.00	4
hs+	h2s	h3s+	s		4.70E-10	50	.00	4
hs+	nh3	s	nh4+		9.75E-10	50	.00	4
о	hs+	s+	oh		2.90E-10	.00	.00	4
0	hs+	so+	h		2.90E-10	.00	.00	4
h2	hs+	h3s+	photon		2.40E-16	80	.00	3
h	s-	hs	electr		1.00E-10	.00	.00	4
hs+	fe	fe+	hs		1.60E-09	.00	.00	4
mg	hs+	hs	mg+		2.60E-09	.00	.00	4
nh3	hs+	hs	nh3+		5.25E-10	50	.00	4
no	hs+	hs	no+		4.50E-10	.00	.00	4
na	hs+	hs	na+		2.20E-09	.00	.00	4
s	hs+	hs	s+		9.70E-10	.00	.00	4
si	hs+	hs	si+		1.40E-09	.00	.00	4
h2s+	electr	hs	h		1.50E-07	50	.00	4
h3s+	electr	hs	h2		4.20E-08	86	.00	4
h3s+	electr	hs	h	h	1.62E-07	86	.00	4
c2h2+	h2s	hs	c2h3+		4.60E-11	50	.00	4
c2h4	s+	c2h3+	hs		9.50E-11	.00	.00	4
co+	h2s	hs	hco+		1.56E-10	50	.00	4
h2co	s+	hs	hco+		3.35E-10	50	.00	4
h2o+	h2s	hs	h3o+		5.40E-11	50	.00	4
h2o	h2s+	hs	h3o+		8.10E-10	50	.00	4
h2s+	h2s	h3s+	hs		1.00E-09	50	.00	4
h	sis+	hs	si+		1.90E-09	.00	.00	4
n+	h2s	hs	nh+		5.70E-11	50	.00	4
nh2+	h2s	hs	nh3+		4.50E-10	50	.00	4
nh3+	h2s	hs	nh4+		1.30E-09	50	.00	4
nh3	h2s+	hs	nh4+		1.36E-09	50	.00	4
$\mathbf{s}+$	c4h2	c4h+	hs		1.60E-10	.00	.00	4
ch3	h2s	hs	ch4		3.30E-13	.00	1105.00	4
ch4	s	hs	ch3		3.39E-10	.00	10019.00	4
$^{\rm ch}$	s	hs	с		1.73E-11	.50	4000.00	4
$^{\rm ch}$	SO	со	hs		9.00E-11	.00	.00	4
h2	s	hs	h		1.76E-13	2.88	6126.00	4
h	h2s	hs	h2		3.71E-12	1.94	455.00	4
h	ocs	hs	со		1.23E-11	.00	1949.00	4
h	so	hs	0		1.73E-11	.50	19930.00	4
nh	s	hs	n		1.73E-11	.50	4000.00	4
о	h2s	hs	oh		2.98E-12	1.62	1462.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
oh	cs	со	hs		3.00E-11	.00	.00	4
oh	h2s	hs	h2o		6.30E-12	.00	80.00	4
s	hco	hs	со		4.00E-11	.00	.00	4
h+	hs	hs+	h		1.60E-09	.00	.00	4
c+	hs	cs+	h		1.10E-09	.00	.00	4
ch3+	hs	h2cs+	h2		1.00E-09	.00	.00	4
h+	hs	s+	h2		1.60E-09	.00	.00	4
h3+	hs	h2s+	h2		1.90E-09	.00	.00	4
hco+	hs	h2s+	со		8.20E-10	.00	.00	4
he+	hs	s+	he	h	1.70E-09	.00	.00	4
c	hs	CS	h		1.00E-10	.00	.00	4
c	hs	s	ch		1.20E-11	.58	5880.00	4
h2	hs	h2s	h		6.52E-12	09	8050.00	4
	hs	s	h9		2.50E-11	00	00	4
ha	hs	hDa	112		1 30F 11	.00	.00	4
n5 115	hs	1125	nh		1.50E-11	50	0060.00	4
	hs	5	oh		1.75E-11	.50	9000.00	4
0	ha	8	b		1.74E-11	.07	5 70	4
0	ns	so	11		1.74E-10 2.20E 00	20	00	4
C+	SIS	sic+	s		2.50E-09	50	.00	4
C2	\$10+	sic+	co		(.00E-10	.00	.00	4
cn	s1+	sic+	h		6.30E-10	50	.00	4
sic+	electr	S1	с		2.00E-07	50	.00	4
n	sic+	si+	cn		7.70E-10	.00	.00	4
0	sic+	sio+	с		6.00E-10	.00	.00	4
h3+	si	sih+	h2		3.70E-09	.00	.00	4
h3o+	si	sih+	h2o		1.80E-09	.00	.00	4
oh+	si	sih+	0		1.90E-09	.00	.00	4
si	hco+	$\sinh +$	со		1.60E-09	.00	.00	4
h	si+	$\sinh +$	photon		1.17E-17	14	.00	3
$\sinh +$	electr	si	h		2.00E-07	50	.00	4
с	$\sinh +$	sic+	h		2.00E-10	.00	.00	4
$^{\rm ch}$	$\sinh +$	si	ch2+		6.00E-10	50	.00	4
h2o	$\sinh +$	si	h3o+		8.00E-10	50	.00	4
h	$\sinh +$	si+	h2		1.90E-09	.00	.00	4
nh3	$\sinh +$	si	nh4+		1.00E-09	50	.00	4
n	$\sinh +$	$\sin +$	h		2.00E-10	.00	.00	4
$\mathbf{n}\mathbf{h}$	si+	$\sin +$	h		1.00E-09	50	.00	4
$\sin +$	electr	si	n		2.00E-07	50	.00	4
о	$\sin +$	sio+	n		1.00E-09	.00	.00	4
oh	sio	sio2	h		2.00E-12	.00	.00	4
he+	sio2	02	si+	he	2.00E-09	.00	.00	4
ch2	si	hcsi	h		1.00E-10	.00	.00	4
h+	hcsi	$\operatorname{sic}+$	h2		1.50E-09	.00	.00	4
he+	hcsi	si+	$^{\rm ch}$	he	1.00E-09	.00	.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
he+	hcsi	sic+	he	h	1.00E-09	.00	.00	4
0	hcsi	sio	$^{\rm ch}$		2.00E-11	.00	.00	4
hnco	h	nh2co	photon		1.00E-10	.00	.00	3
nh2co	h	ch3no	photon		1.00E-12	.00	.00	3
ch2	c2h4	c3h6	photon		8.00E-10	-2.00	350.00	3
$^{\rm ch}$	c2h6	c3h6	h		6.17E-11	52	29.20	4
c+	c3h6	c2h2+	c2h4		3.00E-10	.00	.00	4
c+	c3h6	c2h3+	c2h3		6.00E-10	.00	.00	4
c+	c3h6	c3h3+	ch3		3.00E-10	.00	.00	4
c+	c3h6	c3h5+	$^{\rm ch}$		4.00E-10	.00	.00	4
c+	c3h6	c4h3+	h2	h	2.00E-10	.00	.00	4
h3+	c3h6	c2h3+	ch4	h2	9.00E-10	.00	.00	4
h3+	c3h6	c3h5+	h2	h2	2.10E-09	.00	.00	4
n2h+	c3h6	c3h5+	n2	h2	6.30E-10	.00	.00	4
o2+	c3h6	c2h4+	ch2o2		3.00E-11	.00	.00	4
o2+	c3h6	c2h5+	oh	со	5.55E-10	.00	.00	4
s+	c3h6	c3h5+	hs		4.80E-10	.00	.00	4
s+	c3h6	h2cs+	c2h4		1.20E-10	.00	.00	4
s+	c3h6	hcs+	c2h5		1.20E-10	.00	.00	4
so+	c3h6	c2h5+	со	hs	1.69E-10	.00	.00	4
c2	c3h6	c5h4	h	h	4.10E-10	.00	.00	4
c2h	c3h6	p-c3h4	c2h3		1.42E-10	-1.24	57.60	4
с	c3h6	c4h3	h	h2	2.90E-10	08	.00	4
c3h6	c4h	c6h2	ch3	h2	2.42E-10	84	48.90	4
c3h6	oh	c2h4o	ch3		2.08E-11	-2.03	170.00	4
c3h6	oh	h2co	c2h5		2.08E-11	-2.03	170.00	4
$^{\rm ch}$	c3h6	a-c3h4	ch3		9.00E-11	.00	.00	4
cn	c3h6	c3h3n	ch3		2.23E-10	.00	.00	4
c2h4	c2h3	c4h6	h		1.50E-14	3.00	1700.00	4
$^{\rm ch}$	c3h6	c4h6	h		3.10E-10	.00	.00	4
c4h6	h	c2h4	c2h3		6.64E-13	.00	.00	4
c4h6	c2h	c6h6	h		3.00E-10	.00	.00	4
nh3	$\mathbf{p}+$	р	nh3+		3.08E-10	50	.00	4
$\mathbf{p}+$	h2s	h2s+	р		4.34E-10	50	.00	4
si	$\mathbf{p}+$	р	si+		1.00E-09	.00	.00	4
c+	р	p+	с		1.00E-09	.00	.00	4
h+	р	p+	h		1.00E-09	.00	.00	4
he+	р	$^{\rm p+}$	he		1.00E-09	.00	.00	4
c+	$^{\rm cp}$	cp+	с		1.00E-09	.00	.00	4
h+	ср	cp+	h		1.00E-09	.00	.00	4
cp+	electr	р	с		1.00E-07	50	.00	4
0	cp+	$^{\rm p+}$	со		2.00E-10	.00	.00	4
с	р	$^{\rm cp}$	photon		1.41E-18	.03	55.00	3
he+	$^{\rm cp}$	p+	с	he	5.00E-10	.00	.00	4

Tabela E.2 - Continuação

Reage	entes		Produtos	3	γ	α	β	Tipo de Reação
he+	ср	р	c+	he	5.00E-10	.00	.00	4
0	ср	р	со		4.00E-11	.00	.00	4
h3+	ph	ph2+	h2		2.00E-09	.00	.00	4
hco+	ph	ph2+	со		1.00E-09	.00	.00	4
h2	- p+	ph2+	photon		7.50E-18	-1.30	.00	3
ph2+	electr	р	h2		5.36E-08	64	.00	4
ph2+	electr	р	h	h	5.23E-07	64	.00	4
ph2+	electr	ph	h		9.38E-08	64	.00	4
h2o	ph2+	ph	h3o+		1.62E-10	50	.00	4
nh3	ph2+	ph	nh4+		3.80E-10	50	.00	4
he+	ph	p+	he	h	1.00E-09	.00	.00	4
с	ph	ср	h		7.50E-11	.00	.00	4
c+	ph	ph+	с		1.00E-09	.00	.00	4
h+	ph	ph+	h		1.00E-09	.00	.00	4
h3+	р	ph+	h2		1.00E-09	.00	.00	4
hco+	р	ph+	со		1.00E-09	.00	.00	4
ph+	electr	р	h		1.00E-07	50	.00	4
h2o	ph+	р	h3o+		2.52E-10	50	.00	4
ph+	hcn	hcnh+	р		3.06E-10	50	.00	4
nh3	ph+	р	nh4+		3.99E-10	50	.00	4
ph+	h2s	h3s+	р		1.35E-10	50	.00	4
h2	ph+	ph3+	photon		2.40E-17	-1.40	.00	3
ph3+	electr	ph	h2		1.50E-07	50	.00	4
ph3+	electr	ph2	h		1.50E-07	50	.00	4
ch3oh	ph3+	ch5o+	ph2		1.00E-09	50	.00	4
nh3	ph3+	ph2	nh4+		2.30E-09	50	.00	4
ph3+	h2s	h3s+	ph2		1.00E-09	50	.00	4
h+	ph2	ph2+	h		1.00E-09	.00	.00	4
h3+	ph2	ph3+	h2		2.00E-09	.00	.00	4
hco+	ph2	ph3+	со		1.00E-09	.00	.00	4
he+	ph2	p+	he	h2	1.00E-09	.00	.00	4
о	ph2	$_{\rm ph}$	oh		2.00E-11	.00	.00	4
ph3	h	ph2	h2		3.82E-12	.00	.00	4
ph3	nh2	ph2	nh3		2.73E-13	.00	.00	4
ph2	h	ph3	photon		2.08E-09	.00	.00	3
ch3no	cn	c2h3n2o	photon		1.00E-10	.00	.00	3
c2h3n2o	photon	c2h2n2o	h		1.00E-10	.00	.00	5
c2h2n2o	cn	c3h2n3o	photon		1.00E-10	.00	.00	3
c3h2n3o	h	c3h3n3o	photon		1.00E-10	.00	.00	3
c3h3n3o	cn	c4h3n4o	photon		1.00E-10	.00	.00	3
c4h3n4o	h	c4h4n4o	photon		1.00E-10	.00	.00	3
c4h4n4o	h	c4h3n4	h2o		1.00E-10	.00	.00	4
c4h3n4	h	c4h4n4	photon		1.00E-10	.00	.00	3
c4h4n4	cn	c5h4n5	photon		1.00E-10	.00	.00	3

Tabela E.2 - Continuação

Reage	entes		Produtos			γ	α	β	Tipo de Reação
c5h4n5	nh2	c5h6n6	photon			1.00E-10	.00	.00	3
c5h6n6	h2o	nh3	c5h5n5o			1.00E-10	.00	.00	4
c5h4n5	h	c5h5n5	photon			1.00E-10	.00	.00	3
c5h6n6	h2	nh3	c5h5n5			1.00E-10	.00	.00	4
c5h5n5	h2	hcn	c4h6n4			1.00E-10	.00	.00	4
c4h6n4	h2o	nh3	c4h5n3o			1.00E-10	.00	.00	4
c4h5n3o	h2o	nh3	c4h4n2o2			1.00E-10	.00	.00	4
c5h5n5o	h	ch3no	c4h3n4			1.00E-10	.00	.00	4
c4h4n2o2	$^{\rm ch}$	c5h5n	no2			1.00E-10	.00	.00	4
ch5o+	ch3oh	c2h7o+	h2o			7.60E-11	-1.60	.00	4
ch3+	ch3oh	c2h7o+	photon			7.80E-12	-1.10	.00	3
c2h7o+	electr	ch3	ch4	0		7.48E-07	70	.00	4
c2h7o+	electr	ch3oh	ch3			8.33E-07	70	.00	4
ch4	h2co+	c2h5o+	h			1.65E-11	.00	.00	4
h2co	ch50+	c2h5o+	h2o			2.10E-11	50	.00	4
h3+	c2h4o	c2h5o+	h2			1.52E-09	50	.00	4
h3o+	c2h4o	c2h5o+	h2o			3.60E-09	50	.00	4
hco+	c2h4o	c2h5o+	со			3.40E-09	50	.00	4
o2+	c3h6	c2h5o+	со	h		3.00E-11	.00	.00	4
ch4	hco+	c2h5o+	photon			1.00E-17	.00	.00	3
ch5+	со	c2h5o+	photon			7.20E-24	.00	.00	3
h3o+	c2h2	c2h5o+	photon			4.50E-12	-1.60	.00	3
c2h5o+	electr	ch2	h2co	h		8.47E-07	74	.00	4
c2h5o+	electr	ch3	hco	h		8.47E-07	74	.00	4
c2h5o+	electr	c2h4o	h			3.00E-07	74	.00	4
c2h5o+	electr	со	ch4	h		8.47E-07	74	.00	4
c2h5o+	electr	h2co	ch3			8.47E-07	74	.00	4
nh3	c2h5o+	c2h4o	nh4+			1.80E-09	50	.00	4
nh3	c2h5o+	ch3oh	ch4n+			5.00E-10	50	.00	4
c2h7o+	electr	c2h6o	h			1.19E-07	70	.00	4
c+	c2h6o	c2h6o+	с			2.00E-09	50	.00	4
h+	c2h6o	c2h6o+	h			2.00E-09	50	.00	4
02+	c2h6o	c2h6o+	02			4.50E-10	50	.00	4
so+	c2h6o	c2h6o+	SO			1.80E-10	50	.00	4
ch3+	c2h6o	c2h5o+	ch4			3.50E-10	50	.00	4
h3+	c2h6o	c2h7o+	h2			2.00E-09	50	.00	4
h3o+	c2h6o	c2h7o+	h2o			2.70E-09	50	.00	4
hco+	c2h6o	c2h7o+	со			2.10E-09	50	.00	4
he+	c2h6o	h2co	ch3+	he	h	2.00E-09	50	.00	4
c2h6o+	electr	ch3oh	ch2			1.50E-07	50	.00	4
c2h6o+	electr	0	ch3	ch3		1.50E-07	50	.00	4
ch	photon	c	h			6.60E-10	.00	1.15	5
ch2	photon	ch	h			4.90E-10	.00	1.67	5
ch3	photon	ch2	h			3.20E-10	.00	1.88	5
	-	1					1		

TabelaE.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
ch3	photon	$^{\rm ch}$	h2		3.20E-10	.00	1.88	5
ch4	photon	ch3	h		1.70E-10	.00	2.15	5
ch4	photon	ch2	h2		8.10E-10	.00	2.15	5
ch4	photon	$^{\rm ch}$	h2	h	1.70E-10	.00	2.15	5
c2	photon	с	с		1.70E-10	.00	2.09	5
c2h	photon	c2	h		3.40E-10	.00	1.89	5
c2h2	photon	c2h	h		2.10E-09	.00	1.84	5
c2h3	photon	c2h2	h		7.00E-10	.00	1.70	5
c2h4	photon	c2h2	h2		2.00E-09	.00	1.67	5
c3	photon	c2	с		2.50E-09	.00	1.80	5
c-c3h	photon	c3	h		7.70E-10	.00	1.70	5
c3h	photon	c3	h		1.26E-09	.00	1.70	5
c-c3h2	photon	c-c3h	h		6.00E-10	.00	1.79	5
c-c3h2	photon	c3	h2		6.00E-10	.00	1.79	5
h2c3	photon	c3h	h		1.80E-09	.00	2.07	5
h2c3	photon	c3	h2		1.80E-09	.00	2.07	5
c4	photon	c3	с		3.00E-09	.00	2.30	5
c4	photon	c2	c2		3.00E-09	.00	2.30	5
c4h	photon	c4	h		1.30E-09	.00	1.70	5
c4h	photon	c2h	c2		1.30E-09	.00	1.70	5
c4h2	photon	c4h	h		1.33E-09	.00	1.60	5
c4h2	photon	c2h	c2h		1.33E-09	.00	1.60	5
o2	photon	о	о		5.30E-10	.00	1.76	5
oh	photon	о	h		2.90E-10	.00	1.72	5
h2o	photon	oh	h		5.50E-10	.00	1.70	5
co2	photon	со	0		6.50E-10	.00	2.50	5
hco	photon	со	h		1.00E-09	.00	.80	5
h2co	photon	со	h2		3.35E-10	.00	1.74	5
h2co	photon	со	h	h	3.35E-10	.00	1.74	5
h3co	photon	ch2	oh		4.70E-10	.00	1.76	5
ch3oh	photon	h2co	h2		4.70E-10	.00	1.76	5
ch3oh	photon	ch3	oh		4.70E-10	.00	1.76	5
n2	photon	n	n		2.10E-10	.00	3.82	5
$\mathbf{n}\mathbf{h}$	photon	n	h		3.30E-10	.00	1.97	5
nh2	photon	$^{\mathrm{nh}}$	h		5.00E-10	.00	1.63	5
nh3	photon	nh2	h		7.80E-10	.00	1.79	5
nh3	photon	$^{\rm nh}$	h2		3.30E-10	.00	1.79	5
cn	photon	n	с		2.50E-10	.00	3.07	5
hcn	photon	cn	h		1.10E-09	.00	2.08	5
hnc	photon	cn	h		1.05E-09	.00	2.10	5
no	photon	о	n		3.30E-10	.00	1.71	5
hno	photon	no	h		1.20E-10	.00	.53	5
$^{\rm sh}$	photon	s	h		6.50E-10	.00	1.42	5
h2s	photon	$^{\rm sh}$	h		1.00E-09	.00	1.87	5

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
h2s	photon	s	h2		1.00E-09	.00	1.87	5
so	photon	s	0		2.40E-09	.00	1.95	5
so2	photon	so	0		1.20E-09	.00	1.88	5
cs	photon	с	s		6.30E-10	.00	2.03	5
h2cs	photon	cs	h2		7.00E-10	.00	1.70	5
c2s	photon	s	c2		1.00E-10	.00	2.00	5
ocs	photon	со	s		2.40E-09	.00	1.69	5
c3h3	photon	c3h	h2		7.00E-10	.00	1.70	5
c3h3	photon	h2c3	h		7.00E-10	.00	1.70	5
a-c3h4	photon	c3h3	h		1.30E-09	.00	1.70	5
a-c3h4	photon	h2c3	h2		1.60E-10	.00	1.70	5
p-c3h4	photon	c3h3	h		1.30E-09	.00	1.70	5
p-c3h4	photon	h2c3	h2		1.60E-10	.00	1.70	5
h2+	photon	h+	h		3.80E-10	.00	1.85	5
h3+	photon	h2+	h		3.50E-15	.00	2.30	5
h3+	photon	h+	h2		3.50E-15	.00	1.80	5
ch+	photon	с	h+		2.50E-10	.00	2.50	5
ch2+	photon	ch+	h		3.27E-11	.00	2.21	5
ch2+	photon	ch	h+		3.27E-11	.00	2.21	5
ch2+	photon	c+	h2		3.27E-11	.00	2.21	5
ch3+	photon	ch2+	h		7.00E-10	.00	1.70	5
ch3+	photon	ch+	h2		7.00E-10	.00	1.70	5
ch4+	photon	ch2+	h2		1.60E-10	.00	2.71	5
ch4+	photon	ch3+	h		3.70E-11	.00	2.71	5
ch5+	photon	ch4+	h		7.00E-10	.00	1.70	5
c2+	photon	c+	с		7.00E-12	.00	1.70	5
c2h+	photon	c2+	h		7.00E-12	.00	2.00	5
c2h2+	photon	c2h+	h		7.00E-10	.00	1.70	5
c2h3+	photon	c2h2+	h		7.00E-10	.00	1.70	5
c2h4+	photon	c2h3+	h		7.00E-10	.00	1.70	5
c2h5+	photon	c2h4+	h		7.00E-10	.00	1.70	5
c3+	photon	c2	c+		7.00E-10	.00	1.70	5
c3h+	photon	c3+	h		7.00E-10	.00	1.70	5
c3h2+	photon	c3+	h2		7.00E-10	.00	1.70	5
c4+	photon	c3+	с		7.00E-10	.00	1.70	5
c4h+	photon	c4+	h		7.00E-10	.00	1.70	5
c4h2+	photon	c4+	h2		7.00E-10	.00	1.70	5
c4h3+	photon	c4+	h2	h	7.00E-10	.00	1.70	5
o2+	photon	o+	0		2.45E-11	.00	2.02	5
oh+	photon	o+	h		8.50E-12	.00	2.80	5
h2o+	photon	oh+	h		7.00E-13	.00	2.00	5
h3o+	photon	h2o+	h		7.00E-10	.00	1.70	5
co+	photon	c+	0		7.00E-11	.00	2.52	5
hco+	photon	co+	h		3.80E-12	.00	3.32	5

Tabela E.2 - Continuação

Reage	entes		Produtos	γ	α	β	Tipo de Reação
hoc+	photon	co+	h	3.80E-12	.00	3.32	5
h2co+	photon	co+	h2	7.00E-10	.00	1.70	5
h3co+	photon	hco+	h2	7.00E-10	.00	1.70	5
ch3oh+	photon	ch3+	oh	7.00E-10	.00	1.70	5
c2ho+	photon	ch+	со	7.00E-10	.00	1.70	5
co2+	photon	co+	0	7.00E-10	.00	1.70	5
c2h3o+	photon	ch3+	co	7.00E-10	.00	1.70	5
ch5o+	photon	ch3+	h2o	7.00E-10	.00	1.70	5
hco2+	photon	ch+	02	7.00E-10	.00	1.70	5
n2+	photon	n	n+	7.00E-10	.00	1.70	5
nh+	photon	n+	h	3.90E-11	.00	1.39	5
nh2+	photon	n	h2+	7.00E-10	.00	1.70	5
nh3+	photon	nh	h2+	7.00E-10	.00	1.70	5
nh4+	photon	nh2	h2+	7 00E-10	00	1 70	5
cn+	photon	c+	n	7 00E-10	00	1 70	5
hcn+	photon	ch+	n	7.00E-10	.00	1.70	5
hnc+	photon	nh+	c	7.00E-10	.00	1.70	5
hcnh+	photon	ch+	nh	7.00E-10	.00	1.70	5
n2h+	photon	n2+	h	7.00E-10	.00	1.70	5
h2nc+	photon	h2+	cn	7 00E-10	00	1 70	5
c^{2n+}	photon	cn+	C C	7.00E-10	.00	1.70	5
no+	photon	n+	0	7.00E-10	.00	1.70	5
hno+	photon	nh+	0	7.00E-10	.00	1.70	5
sh+	photon	s+	h	1.00E-10	.00	1.10	5
h2s+	photon	h2+	s s	7.00E-10	.00	1.00	5
h3s+	photon	h2+	sh	7.00E-10	.00	1.70	5
cs+	photon	s+	c.	1.40E-10	.00	2.00	5
hcs+	photon	cs+	h	7.00E-10	.00	1 70	5
so+	photon	s±	0	7.00E-10	.00	1.70	5
so?+	photon	so+	0	7.00E-10	.00	1.70	5
0.05+	photon	50 CO+	5	7.00E-10	.00	1.70	5
h2cs+	photon	cs+	h2	7.00E-10	.00	1.70	5
h3cs+	photon	hcs+	h2	7.00E-10	.00	1.70	5
c2s+	photon	cs+	п <u>-</u>	1.00E-09	.00	1.70	5
hso+	photon	so+	h	7.00E-10	.00	1.70	5
hso2+	photon	sh+	02	7.00E-10	.00	1.70	5
hocs+	photon	cs+	oh	7.00E-10	.00	1.70	5
$c_{-}c_{3}h_{2}+$	photon	c3+	h2	7.00E-10	.00	1.70	5
$c3h3 \pm$	photon	c3h⊥	h2	7.00E-10	.00	1 70	5
c-c3h3⊤	photon	c3h⊥	112 h9	7 00E-10	.00	1 70	5
$p_c h/ \perp$	photon	c3h9⊥	112 h9	7 00E-10	00	1 70	5
p -con4 \pm	photon	$c_{3h2\perp}$	112 h9	7 00E-10	00	1 70	5
$c3h5\perp$	photon	c_{3h}^{2}	112 h9	7 00E-10	.00	1 70	5
cnc+	photon	cn+		7.00E-10	.00	1 70	5
one L	PHOTON	UII [-	C	1.001.10	.00	1.10	

Tabela E.2 - Continuação

Reag	gentes		Produtos		γ	α	β	Tipo de Reação
с	photon	c+	electr		2.20E-10	.00	3.33	5
$^{\rm ch}$	photon	ch+	electr		5.50E-10	.00	2.84	5
ch2	photon	ch2+	electr		7.00E-10	.00	2.30	5
ch3	photon	ch3+	electr		7.00E-11	.00	2.10	5
ch4	photon	ch4+	electr		6.90E-12	.00	4.04	5
c2	photon	c2+	electr		3.40E-10	.00	3.54	5
c2h	photon	c2h+	electr		7.00E-12	.00	2.00	5
c2h2	photon	c2h2+	electr		2.50E-10	.00	3.12	5
c2h3	photon	c2h3+	electr		2.10E-10	.00	2.30	5
c2h4	photon	c2h4+	electr		3.10E-10	.00	2.77	5
c4h2	photon	c4h2+	electr		3.20E-10	.00	2.30	5
02	photon	o2+	electr		6.80E-11	.00	3.73	5
oh	photon	oh+	electr		1.12E-12	.00	3.10	5
h2o	photon	h2o+	electr		3.10E-11	.00	3.85	5
hco	photon	hco+	electr		3.90E-10	.00	2.10	5
h2co	photon	h2co+	electr		3.50E-10	.00	2.82	5
h2co	photon	hco+	h	electr	9.80E-12	.00	3.10	5
ch3oh	photon	ch3oh+	electr		9.10E-11	.00	2.60	5
ch3oh	photon	h3co+	h	electr	9.10E-11	.00	2.60	5
$\mathbf{n}\mathbf{h}$	photon	nh+	electr		7.00E-12	.00	2.00	5
nh2	photon	nh2+	electr		1.20E-10	.00	2.60	5
nh3	photon	nh3+	electr		2.00E-10	.00	2.70	5
no	photon	no+	electr		1.90E-10	.00	2.32	5
s	photon	s+	electr		4.40E-10	.00	2.58	5
h2s	photon	h2s+	electr		5.10E-10	.00	2.69	5
cs	photon	cs+	electr		1.40E-10	.00	3.00	5
so	photon	so+	electr		4.20E-10	.00	2.50	5
ocs	photon	ocs+	electr		5.40E-10	.00	2.96	5
fe	photon	fe+	electr		1.80E-10	.00	1.86	5
hc3	photon	c3	h		1.00E-09	.00	1.70	5
h2c3	photon	hc3	h		1.00E-09	.00	1.70	5
h2c3+	photon	c3+	h2		1.00E-10	.00	3.00	5
h3c3+	photon	c3h+	h2		1.00E-10	.00	3.00	5
c5h2	photon	c3h	c2h		1.00E-11	.00	1.70	5
c5h2	photon	c5h	h		1.00E-11	.00	1.70	5
c5h	photon	c3	c2h		1.00E-11	.00	1.70	5
c5h	photon	c3h	c2		1.00E-11	.00	1.70	5
c5h	photon	c5	h		1.00E-11	.00	1.70	5
c5h4	photon	c4h	ch3		2.00E-11	.00	1.70	5
c7	photon	c6	с		1.00E-09	.00	1.70	5
m c7h	photon	c7	h		1.00E-09	.00	1.70	5
c8h	photon	c8	h		1.00E-09	.00	1.70	5
c8	photon	c7	с		1.00E-09	.00	1.70	5
c8h2	photon	c8h	h		1.00E-09	.00	1.70	5

Tabela E.2 - Continuação

Reag	entes		Produto	s	γ	α	β	Tipo de Reação
c9	photon	c8	с		1.00E-09	.00	1.70	5
c9	photon	c9+	electr		2.00E-10	.00	2.50	5
c2h5	photon	c2h3	h2		1.00E-09	.00	1.70	5
c2n	photon	cn	с		5.00E-10	.00	1.70	5
c2n	photon	c2	n		5.00E-10	.00	1.70	5
c3n	photon	cn	c2		5.00E-10	00	1.80	5
hc3n	photon	cn	c2h		7 40E-09	.00	1.80	5
h3c2n	photon	cn	ch3		3 40E-09	.00	2.00	5
c4n	photon	c3	cn		5.40E-00	.00	1.70	5
c4n	photon	c4	n		1.00E-10	.00	1.70	5
c2h4o	photon	hco	ch 3		1.00E-09	.00	1.70	5
c21140	photon	1100	chi3		1.10E-09	.00	1.50	5
c21140	photon	- CO	CI14		1.10E-09	.00	1.00	5
cn4o	pnoton	n2co	n2		6.00E-10	.00	1.80	5
cn4o	photon	on	ch3		6.00E-10	.00	1.80	5
ch4o	photon	h3co+	h	electr	1.30E-10	.00	2.60	5
c4h6o2	photon	c4h2	h2o	h2o	3.30E-12	.00	1.70	5
c4h6o2	photon	c2h4	hco	hco	3.30E-12	.00	1.80	5
c4h6o2	photon	c3h3	ch3	02	3.30E-12	.00	1.80	5
c4h5n	photon	c2h5	c2n		2.00E-12	.00	1.80	5
c4h5n	photon	h2cn	c3h3		2.00E-12	.00	1.80	5
c4h5n	photon	hc3n	ch4		2.00E-12	.00	1.80	5
c4h5n	photon	h3c2n	c2h2		2.00E-12	.00	1.80	5
c4h5n	photon	p-c3h4	hcn		2.00E-12	.00	1.80	5
c4h5n	photon	a-c3h4	hcn		2.00E-12	.00	1.80	5
c7n	photon	c6	cn		5.00E-10	.00	1.70	5
c5n	photon	c4	cn		5.00E-10	.00	1.70	5
c7n	photon	c7n+	electr		2.00E-10	.00	2.50	5
c2n2	photon	cn	cn		4.70E-11	.00	2.60	5
hc5n	photon	c5n	h		5.00E-10	.00	1.80	5
hc5n	photon	c4h	cn		5.00E-10	.00	1.80	5
hc7n	photon	c6h	cn		1.00E-09	.00	1.70	5
ch2o2	photon	hco	oh		4.10E-10	.00	1.80	5
ch3ns	photon	ch3	n	s	2.00E-12	.00	1.80	5
ch3ns	photon	h2cs	$\mathbf{n}\mathbf{h}$		2.00E-12	.00	1.80	5
ch3ns	photon	h2s	hnc		2.00E-12	.00	1.80	5
ch3ns	photon	$^{\rm sh}$	h2cn		2.00E-12	.00	1.80	5
ch3ns	photon	h2s	hcn		2.00E-12	.00	1.80	5
c7h	photon	c7h+	electr		2.00E-10	.00	2.50	5
ch3n	photon	hnc	h2		3.50E-09	.00	1.60	5
c3h3n3	photon	hcn	hcn	hcn	9.00E-11	.00	1.80	5
c4h4n	- photon	c2h2	c2h2	n	3.30E-12	.00	1.80	5
c4h4n	photon	c3h3	hcn		3.30E-12	.00	1.80	5
c4h4n	- photon	c3h3	hnc		3.30E-12	.00	1.80	5
c5h5n	photon	c3h3	c2h2n		4.00E-12	.00	1.80	5

Tabela E.2 - Continuação

Reage	entes		Produtos			γ	α	β	Tipo de Reação
c5h5n	photon	c2h4	hc3n			4.00E-12	.00	1.80	5
c5h5n	photon	c2h2	c3h3n			4.00E-12	.00	1.80	5
c3h3n	photon	c2h3	cn			1.00E-10	.00	1.70	5
c3h3n	photon	c3h3n+	electr			2.00E-10	.00	2.50	5
c2h3n	photon	cn	ch3			2.50E-09	.00	2.60	5
c2h3n	photon	c2h3n+	electr			6.20E-10	.00	3.10	5
c4h3n	photon	c3n	ch3			2.00E-11	.00	1.70	5
c4h-	photon	c4h	electr			1.97E-09	.00	2.00	5
c5-	photon	c5	electr			3.77E-09	.00	1.50	5
c6-	photon	c6	electr			1.93E-09	.00	2.00	5
c7-	photon	c7	electr			2.83E-09	.00	1.50	5
c6h-	photon	c6h	electr			1.10E-09	.00	2.00	5
ocn	photon	cn	0			1.00E-11	.00	2.00	5
no2	photon	no	0			1.40E-09	.00	2.10	5
n2o	photon	n2	0			9.50E-10	.00	2.40	5
n2o	photon	no	n			9.50E-10	.00	2.40	5
no2	photon	no2+	electr			1.50E-10	.00	3.30	5
hnco	photon	$^{\mathrm{nh}}$	со			1.00E-09	.00	1.70	5
hocn	photon	oh	cn			1.00E-09	.00	1.70	5
hx	photon	x	h			1.00E-11	.00	1.50	5
h2c3nx	photon	hx	hc3n			1.00E-11	.00	1.50	5
hcnx	photon	x	hcn			1.00E-11	.00	1.50	5
hy	photon	у	h			1.00E-11	.00	1.50	5
h2c3ny	photon	hy	hc3n			1.00E-11	.00	1.50	5
hcny	photon	у	hcn			1.00E-11	.00	1.50	5
hw	photon	w	h			1.00E-11	.00	1.50	5
h2c3nw	photon	hw	hc3n			1.00E-11	.00	1.50	5
hcnw	photon	w	hcn			1.00E-11	.00	1.50	5
ch5n	photon	cn	h2	h2	h	9.42E-11	.00	1.50	5
ch5n	photon	hcn	h2	h	h	3.50E-10	.00	1.50	5
ch5n	photon	ch3	nh2			1.55E-10	.00	1.50	5
ch5n	photon	ch3n	h	h		6.63E-11	.00	1.50	5
ch5n	photon	ch5n+	electr			2.60E-10	.00	2.28	5
hnc3	photon	c3n	h			9.54 E- 10	.00	1.80	5
c10	photon	c6	c3	с		1.16E-12	.00	5.20	5
c10	photon	c6	c4			9.47E-12	.00	3.90	5
c10	photon	c7	c2	с		3.46E-12	.00	5.10	5
c10	photon	c8	c2			1.96E-10	.00	3.00	5
c10	photon	c9	с			9.37E-10	.00	2.60	5
c10-	photon	c10	electr			5.41E-09	.00	2.00	5
c10h	photon	c10	h			7.36E-10	.00	2.60	5
c10h	photon	c5	c5	h		2.30E-11	.00	3.80	5
c10h	photon	c5h	c5			3.19E-11	.00	3.00	5
c10h	photon	c7	c3	h		5.95E-11	.00	3.90	5

Tabela E.2 - Continuação

Reag	entes		Produto	s	γ	α	β	Tipo de Reação
c10h	photon	c7h	c3		1.86E-10	.00	2.60	5
c10h	photon	c8	c2	h	1.42E-12	.00	5.00	5
c10h	photon	c9	с	h	2.07E-11	.00	4.60	5
c10h-	photon	c10h	electr		1.40E-09	.00	2.00	5
c7h-	photon	c7h	electr		3.46E-09	.00	1.50	5
c8-	photon	c8	electr		1.77E-09	.00	2.00	5
c8h-	photon	c8h	electr		8.67E-08	.00	2.00	5
с9-	photon	c9	electr		2.41E-09	.00	2.00	5
c4s	photon	cs	c3		1.00E-10	.00	2.00	5
mg	photon	mg+	electr		7.90E-11	.00	2.10	5
na	photon	na+	electr		1.50E-11	.00	1.80	5
sio+	photon	si+	0		1.00E-10	.00	2.00	5
sio	photon	si	0		1.60E-09	.00	2.30	5
sio	photon	sio+	electr		2.40E-10	.00	2.00	5
sis	photon	s	si		1.00E-10	.00	2.30	5
c2-	photon	c2	electr		2.96E-09	.00	2.00	5
c3-	photon	c3	electr		6.88E-09	.00	1.50	5
c4-	photon	c4	electr		2.20E-09	.00	2.00	5
c11	photon	c5	c3	c3	3.83E-11	.00	4.50	5
c11	photon	c6	c5		5.28E-11	.00	3.10	5
c11	photon	c7	c4		2.31E-11	.00	3.30	5
c11	photon	c8	c3		4.41E-10	.00	2.70	5
c11	photon	c9	c2		2.86E-10	.00	2.80	5
c10h	photon	c10h+	electr		5.45E-10	00	3 10	5
c9h	photon	c9	h		1.00E-09	00	1 70	5
c9h	photon	c9h+	electr		2.18E-10	00	2 50	5
c10h2	photon	c7h	c3	h	6.14E-13	00	5 20	5
c10h2	photon	c10h	h	11	5.27E-10	00	3 10	5
c10h2	photon	c10	h	h	3.10E-12	00	5.10	5
c10	photon	c10+	electr	11	5.49E-10	.00	3.10	5
c10	photon	c10+	oloctr		2.00F 10	.00	2.60	5
c0 c7	photon	c0+	oloctr		2.00E-10	.00	2.00	5
68	photon	c8+	oloctr		2.00E-10	.00	2.50	5
c11	photon	c11+	electr		2.00E-10 5.73E-10	.00	2.00	5
c5n	photon	c117	oloctr		1 10F 08	.00	2.00	5
c10h2	photon	c10h2	oloctr		1.10E-08	.00	2.00	5
c10112	photon	c10112+	h		4.94E-10	.00	1.70	5
c9112	photon	C911	11		1.00E-09	.00	1.70	5
c911	photon		cli		1.00E-09	.00	1.70	5
con-	photon	con	eiectr		3.70E-09	.00	1.30	0 E
c/h2	pnoton	c/h	n		1.00E-09	.00	1.70	0
nc9n	pnoton	c8n	cn -9		1.00E-09	.00	1.70	5
CJS	pnoton	CS	c2		1.00E-10	.00	2.00	0
c2n-	pnoton	c2n	electr		2.99E-09	.00	2.00	5
c3h-	photon	c3h	electr		7.28E-09	00.	1.50	5

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
ch-	photon	ch	electr	1.36E-08	.00	1.50	5
o2-	photon	o2	electr	6.10E-08	.00	0.50	5
s-	photon	s	electr	2.40E-07	.00	0.90	5
hs+	photon	s+	h	3.00E-10	.00	1.80	5
hs+	photon	s	h+	2.50E-10	.00	1.70	5
hs	photon	h	s	9.80E-10	.00	2.00	5
$\sinh +$	photon	si+	h	2.70E-09	.00	1.20	5
sio2	photon	sio	0	3.13E-10	.00	2.00	5
c3h6	photon	c2h4	ch2	1.13E-09	.00	1.60	5
c4h6	photon	c3h6	с	1.13E-09	.00	1.60	5
р	photon	$\mathbf{p}+$	electr	1.00E-09	.00	2.70	5
$^{\rm cp}$	photon	с	р	1.00E-09	.00	2.80	5
$_{\rm ph}$	photon	h	р	4.00E-10	.00	1.50	5
ph2	photon	ph2+	electr	1.73E-10	.00	2.60	5
ph2	photon	$_{\rm ph}$	h	2.11E-10	.00	1.50	5
ph3	photon	ph2	h	2.11E-10	.00	1.50	5
c2h6o	photon	c2h6o+	electr	4.60E-10	.00	2.30	5
c2h6o	photon	h2co	ch4	1.50E-09	.00	1.60	5
с	0	со	photon	1.35E-19	.00	.00	3
с	n	cn	photon	5.71E-19	.00	.00	3
с	s	cs	photon	4.36E-19	.00	.00	3
c+	о	co+	photon	2.50E-18	.00	.00	3
n+	n	n2+	photon	3.40E-18	.00	.00	3
c+	n	cn+	photon	8.90E-19	.00	.00	3
c+	s	cs+	photon	3.07E-19	.00	.00	3
с	$\mathbf{s}+$	cs+	photon	7.37E-19	.00	.00	3
hnc	h	hcn	h	1.36E-13	.00	.00	4
с	h2s	$^{\rm ch}$	$^{\rm sh}$	1.99E-10	.00	4451.00	4
$^{\rm ch}$	$^{\rm sh}$	с	h2s	2.40E-10	.00	.00	4
с	ch4	$^{\rm ch}$	ch3	8.30E-11	.00	12087.00	4
$^{\rm ch}$	ch3	с	ch4	2.00E-12	.00	.00	4
о	oh	o2	h	3.50E-11	.00	.00	4
о	$^{\rm sh}$	so	h	1.58E-10	.00	.00	4
so	h	о	$^{\rm sh}$	2.28E-09	31	20290.00	4
n	oh	h	no	5.75E-11	20	.00	4
n	no	n2	0	3.75E-11	.00	26.00	4
n	ch4	$^{\mathrm{nh}}$	ch3	1.66E-11	.00	12079.00	4
$\mathbf{n}\mathbf{h}$	ch3	n	ch4	2.06E-12	.00	.00	4
n	ch3	hcn	h2	5.30E-12	.00	.00	4
hcn	h2	n	ch3	1.94E-10	10	58621.00	4
s	o2	so	0	1.72E-12	.00	.00	4
so	0	s	02	5.22E-14	2.05	2047.00	4
$^{\rm ch}$	ocs	hco	cs	1.87E-10	.00	.00	4
hco	cs	ch	ocs	5.17E-12	.64	15914.00	4

Tabela E.2 - Continuação

Reag	entes		Produtos		γ	α	β	Tipo de Reação
$^{\rm ch}$	so2	hco	SO		3.00E-10	.00	.00	4
hco	so	$^{\rm ch}$	so2		2.13E-11	.22	30059.00	4
ch3	c2h3	ch4	c2h2		5.36E-11	.00	.00	4
ch4	c2h2	ch3	c2h3		4.65E-09	36	35204.00	4
02	cn	no	со		6.62E-12	-1.33	21.00	4
no	со	02	cn		4.94E-12	-1.18	55033.00	4
02	c2h3	h2co	hco		1.10E-11	.00	.00	4
h2co	hco	02	c2h3		1.79E-12	.58	43709.00	4
oh	oh	h2o	о		1.48E-12	.00	.00	4
oh	h2co	hco	h2o		2.00E-11	.00	.00	4
oh	so	so2	h		8.12E-11	.00	.00	4
so2	h	oh	so		4.11E-08	-2.20	14897.00	4
h2o	$^{\rm ch}$	h2co	h		1.54E-11	.00	.00	4
h2co	h	h2o	$^{\rm ch}$		6.80E-09	-2.22	29902.00	4
co2	$^{\rm ch}$	hco	со		1.80E-12	.00	.00	4
hco	со	co2	$^{\rm ch}$		8.40E-15	2.32	31885.00	4
h2co	$^{\rm ch}$	ch3	со		3.80E-10	.00	.00	4
ch3	со	h2co	$^{\rm ch}$		3.02E-10	.26	53834.00	4
ch3oh	$^{\rm ch}$	ch3	h2co		2.49E-10	.00	.00	4
ch3	h2co	ch3oh	$^{\rm ch}$		6.58E-10	-1.78	42826.00	4
$\mathbf{n}\mathbf{h}$	nh	nh2	n		4.70E-13	.00	.00	4
nh2	n	nh	$\mathbf{n}\mathbf{h}$		7.73E-14	3.01	5219.00	4
nh3	c2h	nh2	c2h2		1.00E-10	.00	.00	4
no	nh	oh	n2		1.02E-11	53	-53.00	4
oh	n2	no	$\mathbf{n}\mathbf{h}$		5.75E-11	34	49295.00	4
no	nh2	n2	h2o		5.30E-14	.00	.00	4
no	nh3	nh2	hno		3.33E-13	1.73	28457.00	4
nh2	hno	no	nh3		3.00E-12	.00	.00	4
hno	ch3	ch4	no		1.00E-11	.00	.00	4
ch4	no	hno	ch3		2.58E-10	.75	28257.00	4
cn	nh3	hcn	nh2		3.09E-11	95	-10.00	4
hcn	nh2	cn	nh3		3.59E-11	-1.43	8344.00	4
o2	c2h	со	со	h	2.10E-11	32	.00	4
o2	c4h	со	со	c2h	2.10E-11	32	.00	4
o2	c3h	со	со	$^{\rm ch}$	2.10E-11	32	.00	4
h+	grain	h			$1.00E{+}00$	0.00	0.00	14
he+	grain	he			$1.00E{+}00$	0.00	0.00	14
c+	grain	с			$1.00E{+}00$	0.00	0.00	14
o+	grain	0			$1.00E{+}00$	0.00	0.00	14
n+	grain	n			$1.00E{+}00$	0.00	0.00	14
s+	grain	s			$1.00E{+}00$	0.00	0.00	14
fe+	grain	fe			$1.00E{+}00$	0.00	0.00	14
si	photon	si+	electr		3.10E-09	0.00	1.91	5
si+	electr	si	photon		4.90E-12	-0.60	0.00	3

Tabela E.2 - Continuação

Reag	entes		Produtos	γ	α	β	Tipo de Reação
h+	si	si+	h	9.90E-10	0.00	0.00	4
he+	si	si+	he	3.30E-09	0.00	0.00	4
c+	si	si+	с	2.10E-09	0.00	0.00	4
si+	fe	fe+	si	1.90E-09	0.00	0.00	4
si+	grain	si		1.00E + 00	0.00	0.00	14
		I					1

Tabela E.2 - Continuação