Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas Departamento de Astronomia

Carlos Roberto da Silveira

C, N, O e Zn em Estrelas do Bojo Galáctico

São Paulo

2017

Carlos Roberto da Silveira

C, N, O e Zn em Estrelas do Bojo Galáctico

Tese apresentada ao Departamento de Astronomia do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo como requisito parcial para a obtenção do título de Doutor em Ciências.

Área de Concentração: Astronomia Orientadora: Prof.^a Dr.^a Beatriz Leonor Silveira Barbuy Versão Corrigida: O original encontra-se disponível na Unidade

São Paulo 2017

À minha família, minha mãe Carmem, meu pai Ariovaldo (in memorian), meus irmãos André, César e Leandro, meu amado filho Eduardo, Marliane e Miguel !

Agradecimentos

À minha família, que sempre me apoiou em todos os momentos, especialmente quando mais precisei, dando forças e ajuda para superar;

À Marliane, minha noiva, amiga, que sempre esteve ao meu lado, me incentivando, apoiando, principalmente nos piores momentos;

À Professora Beatriz Leonor Silveira Barbuy, pelo apoio e dedicação;

Aos meus colegas de sala;

À CAPES, pelo apoio financeiro através do PROEX;

Esta tese/dissertação foi escrita em LATEX com a classe IAGTESE, para teses e dissertações do IAG.

"Alguns homens vêem as coisas como são, e dizem 'Por quê?' Eu sonho com as coisas que nunca foram e digo 'Por que não?""

George Bernard Shaw

"A menos que modifiquemos a nossa maneira de pensar, não seremos capazes de resolver os problemas causados pela forma como nos acostumamos a ver o mundo."

Albert Einstein

Resumo

O oxigênio e o zinco presentes nas estrelas do bojo galáctico são peças importantes para se compreender a evolução química do bojo. O oxigênio é um dos principais indicadores da evolução química do bojo. O zinco é um elemento de referência importante porque é um possível substituto ao ferro no estudo das DLAs (damped Lyman α), permitindo realizar uma comparação sobre a evolução química entre as populações estelares do bojo e as DLAs. Em relação à nucleossíntese do zinco, este comporta-se como um elemento alfa. Estrelas pobres em metais apresentam um enriquecimento na abundância do zinco, interpretado como produzido em hipernovas.

Os objetivos desse trabalho são determinar as abundâncias do oxigênio, nitrogênio e zinco, utilizando uma amostra de 56 e 417 estrelas gigantes vermelhas tipo K do bojo galáctico observadas, respectivamente, pelo FLAMES-UVES e FLAMES-GIRAFFE montados no Very Large Telescope (VLT). As abundâncias determinadas são comparadas com outras amostras para estrelas do bojo bem como com estrelas do disco espesso, do disco fino e do halo e com as DLAs, permitindo-nos entender como a evolução química se desenvolve nesses sistemas.

Os resultados encontrados para os dados UVES são $[Zn/Fe] = +0.24 \pm 0.02$ no intervalo de -1.3 < [Fe/H] < -0.5 e $[Zn/Fe] = +0.06 \pm 0.02$ entre -0.5 < [Fe/H] < -0.1. Entretanto, para $[Fe/H] \ge -0.1$, há um espalhamento da abundância do zinco entre -0.60 < [Fe/H] < +0.15, com várias estrelas tendo [Zn/Fe] < 0.0. O [Zn/Fe] diminui com o aumento da metalicidade. Apresentamos uma comparação do [Zn/Fe] com DLAs, sendo que as abundâncias do Zn e Fe nas DLAs são corrigidas pelo efeito da poeira. Desse modo, [Zn/Fe] vs. [Fe/H] das DLAs encontrase na mesma região que o [Zn/Fe] para as estrelas do bojo e do disco espesso. Finalmente, apresentamos um modelo de evolução química do enriquecimento do zinco para um esferóide massivo, representando a evolução de um bojo clássico. Em relação aos dados do GIRAFFE, determinamos as abundâncias [O/Fe] (356 estrelas), [N/Fe] (403 estrelas) e [Zn/Fe] (331 estrelas). Encontramos valores moderados de [O/Fe] para metalicidades entre -1.6 < [Fe/H] < -0.8, com uma mudança em torno de [Fe/H] ~ -0.4 . O Zn comporta-se como um elemento α , de maneira similar ao O, Si e Ca. O Mg e o Ti parecem mais abundantes que o Zn, mas com o mesmo tipo de comportamento em relação à metalicidade. Os resultados encontrados são comparados com modelos de evolução química de enriquecimento do oxigênio e do zinco em um bojo clássico.

Abstract

Oxygen and zinc in the Galactic bulge are key elements for understanding the bulge chemical evolution. Oxygen is a best indicator of the chemical evolution of the bulge. Zinc is an important reference element because it is a proxy to Fe in studies of DLAs (damped Lyman α). Zinc allows us to compare chemical evolution among different bulge stellar populations and DLAs. In terms of nucleosynthesis, zinc behaves as an alpha element. Metal-poor stars show enhanced zinc, interpreted as being produced in hypernovae.

The aims of this work are the derivation of oxygen, nitrogen and zinc abundances in 56 and 417 bulge K-type giants observed, respectively, using FLAMES-UVES and FLAMES-GIRAFFE on Very Large Telescope (VLT). The results are compared with other bulge samples, as well as with data for the thick disk, thin disk and halo stars, as well as to DLAs, with the aim of understanding how chemical evolution builds up.

The results for UVES data are $[Zn/Fe] = +0.24 \pm 0.02$ in the range -1.3 < [Fe/H] < -0.5 and $[Zn/Fe] = +0.06 \pm 0.02$ in the range -0.5 < [Fe/H] < -0.1. However, for $[Fe/H] \ge -0.1$, there is a spread of zinc abundances of -0.60 < [Fe/H] < +0.15, with most stars having [Zn/Fe] < 0.0. The [Zn/Fe] decreases with increasing metallicities. We show a comparison of [Zn/Fe] in DLAs, where zinc and iron abundances are corrected by dust-depletion. [Zn/Fe] vs. [Fe/H] of the DLAs fall in the same region as the thick disk and bulge stars. Finally, we present a chemical evolution model of zinc enrichment in massive spheroids, representing a classical bulge evolution.

The results from GIRAFFE data include the derivation of oxygen (356 stars), nitrogen (403 stars) and zinc (331 stars) abundances. We find moderate values of [O/Fe] in the range -1.6 < [Fe/H] < -0.8, with a turnover at around [Fe/H] ~ -0.4 . Zinc behaves as an alpha-element, similarly to O, Si and Ca. Mg and Ti appear enhanced relative to Zn, but with the same trend as a function of metallicity. The results are compared with chemical evolution models of oxygen

and zinc enrichment in a classical bulge.

Lista de Figuras

1.1	Figura 1 de Zoccali et al. (2006), comparando as abundâncias do [O/Fe] vs.
	[Fe/H] para as estrelas do bojo (círculos) com outras estrelas do bojo determi-
	nadas por McWilliam & Rich (2003) e Rich & Origlia (2005) (painel superior)
	e com estrelas do disco espesso e do disco fino de Bensby et al. (2004) (painel
	inferior)
1.2	Painel superior da figura 6 de Lecureur et al. (2007), compara as abundâncias
	do [O/Fe] vs. [Fe/H] encontradas por Zoccali et al. (2006) com os resultados
	encontrados para estrelas do disco espesso e do disco fino por Reddy et al. (2006)
	e Bensby et al. (2004, 2005). No painel inferior, mesma análise, comparando os
	resultados das abundâncias do [Mg/Fe] vs. [Fe/H] entre as estrelas do bojo de
	Zoccali et al. (2006) com as estrelas do disco fino e do disco espesso de Reddy
	et al. (2006) e de Bensby et al. (2004, 2005)
2.1	Linhas do ZnI ajustadas ao espectro solar observados com o espectrógrafo FLAMES-
	UVES e aos espectros de Arcturus e μ Leo. Espectros observados (linha trace-
	jada); espectros sintéticos (linha vermelha)
3.1	CNO em B6-b6: ajustes ao sistema Swan C ₂ $(0,1)$ em 5635 Å o sistema ver-
	melho do CN (5,1) em 6332.18 Å, e a linha proibida do oxigênio [OI]6300.311
	Å
3.2	Linhas do ZnI 4810.54 Å e 6362.3 Å para a estrela B6-f1. O espectro sintético
	representado pela cor azul corresponde ao cálculo sem a abundância do zinco.
	Para essa estrela, a linha do ZnI 6362.3 Å foi descartada

3.3	Linhas do ZnI 4810.54 Å e 6362.34 Å para a estrela B6-f8. O espectro sintético
	azul corresponde ao cálculo com ausência de abundância do zinco
3.4	Linhas do ZnI 4810.54 Å e 6362.34 Å para a estrela BW-f8. O espectro sintético
	azul corresponde ao cálculo com ausência de abundância do zinco
3.5	Linhas do ZnI 4810.54 Å e 6362.34 Å para a estrela do red clump BWc-4. O
	espectro sintético azul corresponde ao cálculo com ausência de abundância de
	zinco
3.6	Abundância do [Zn/Fe] vs. [Fe/H] para o estudo atual comparados com às
	abundâncias encontradas na literatura para estrelas do halo e do bojo. Os símbolos
	apresentados nas figuras são: na cor preta as abundâncias dos nossos dados:
	triângulos vazados: campo NGC 6553 (designados como B3); círculo cheio:
	Janela de Baade (BW); quadrado vazado: campo em b = -6° (B6); triângulo
	cheio: campo Blanco (Bl); estrela vazado: estrelas pertencentes ao red clump
	(RC). Abundâncias encontradas na literatura: estrela de três pontas vermelha:
	estrelas extremamente pobres em metais de Cayrel et al. (2004); estrela de três
	pontas verde: estrelas anãs do bojo de Bensby et al. (2013); cruz verde: estrelas
	do disco espesso e do halo de Ishigaki et al. (2013); círculos vazados vermelho:
	estrelas do disco espesso e do halo de Nissen & Schuster (2011). Barra represen-
	tado os erros das medições presente no canto direito inferior do painel superior
	da figura
3.7	Abundâncias do [Zn/Fe] vs. [Fe/H] para os resultados determinados para os
	dados FLAMES-UVES (os símbolos presentes para os nosso resultados são os
	mesmos encontrado na figura 3.6), comparados com as análises feitas por Nis-
	sen & Schuster (2011) para as estrelas do disco espesso (presentes em todos os
	painéis dessa figura), juntamente com os dados do disco espessso de Bensby et
	al. (2014) (figura a), Mishenina et al. (2011) (figura b), Prochaska et al. (2000)
	(figura c), e Reddy et al (2006) (figura d)
3.8	Abundâncias do [Zn/Fe] vs. [Fe/H] para os resultados das estrelas do FLAMES-
	UVES comparados às estrelas do disco fino de Bensby et al. (2014) (figura a),
	de Allende-Prieto et al. (2004) (figura b), e de Pompéia (2003) (figura c). Nas
	figuras a e b são mantidos os resultados das estrelas do disco espesso de Nissen
	& Schuster (2011)

- Os valores das abundâncias do [Zn/H] vs. [Fe/H] para as estrelas do FLAMES-3.9 UVES (triângulo cheio preto) e para as amostras de DLAs: painel superior: Vladilo et al. (2011) representados por quadrado preto vazado; painel inferior: Kulkarni et al. (2007) (quadrado azul vazado), Cooke et al. (2013) (estrela de três pontas verde) e Akerman et al. (2005) (estrela de quatro pontas vermelho). Em relação aos dados de Kulkarni et al. (2007) utilizou-se uma transfomação de metalicidade [Fe/H] vs. redshift de Pei & Fall (1995). Uma relação X=Y é
- 3.10 Abundâncias do [Zn/Fe] vs. [Fe/H] para as estrelas do FLAMES-UVES e valores das abundâncias para as amostras de DLAs de Akerman etl al. (2005) e Cooke et al. (2013). Juntamente a esses dados, são mostrados também as abundâncias das estrelas do halo de Cayrel et al. (2004) e as estrelas do disco espesso e do halo de Nissen & Schuster (2011) e de Ishigaki et al. (2013). Ao mesmo tempo, é inserida na parte superior a direita da figura a curva de correção (ajuste quadrático) devido à depleção da poeira, aplicada às abundâncias observadas do ferro [Fe/H], determinadas para quatro modelos de poeira para as 16
- 3.11 Painel superior: comparação da evolução da abundância do [Zn/Fe] com a metalicidade [Fe/H] para uma população estelar prevista para o modelo de evolução química para um bojo clássico com uma taxa de formação estelar normalizada $v_{SF} = 3 \text{ Gano}^{-1}$ e uma massa total de $1.5 \times 10^{10} M_{\odot}$, com os dados das abundâncias do [Zn/Fe] vs. [Fe/H] da nossa amostra, e com os dados de DLAs de Cooke et al. (2013), Akerman et al. (2005) e Vladilo et al. (2011), e com os dados de Cayrel et al. (2004) para estrelas do halo. As abundâncias do Fe de Akerman et al. (2005) e de Vladilo et al. (2011) foram corrigidos pela depleção de poeira. Os dados de Cooke et al. (2013) não necessitam de correção devido à poeira, pois esses sistemas possuem [Fe/H] < -2. Painel inferior: o mesmo do painel superior, mas utilizando em baixas metalicidades, o processo de nucleossíntese

3.12	Abundâncias de [Zn/Fe] vs. [Fe/H] para o estudo atual (triângulo preto cheio),	
	comparados com as abundâncias dos elementos α oxigênio, magnésio, silício,	
	cálcio e titânio (quadrado vermelho vazado). Os valores do oxigênio apresenta-	
	dos na figura são as abundâncias revisadas presentes na tabela 3.3	65
3.13	Valores de [Zn/O] vs. [Fe/H] e [Zn/O] vs. [O/H] para o estudo atual, onde	
	os valores da abundância do oxigênio são os valores revistos nesse trabalho,	
	presentes na tabela 3.3, caso contrário, são utilizados os valores de Zoccali et al.	
	(2006) e de Lecureur et al. (2007)	66
4.1	Comparação entre os espectros FLAMES-UVES (linha pontilhada) e FLAMES-	
	GIRAFFE (linha sólida azul) para as estrelas observadas ao mesmo tempo, para	
	a linha do ZnI 6362.34 Å	68
4.2	Comparação entre os espectros FLAMES-UVES (linha pontilhada) e FLAMES-	
	GIRAFFE (linha sólida azul) para as estrelas observadas ao mesmo tempo, para	
	a linha do ZnI 6362.34 Å	69
4.3	Comparação entre os espectros FLAMES-UVES (linha sólida preta) e FLAMES-	
	GIRAFFE (linha pontilhada azul) para as estrelas observadas ao mesmo tempo,	
	para a linha proibida do [OI] 6300.3 Å	70
4.4	Ajustes do espectros sinténticos para as linhas do nitrogênio (linha CN 6332.18	
	Å), oxigênio ([OI] 6300.311 Å) e zinco (ZnI 6362.34 Å) para as estrelas BWf010	
	e BWf060	73
4.5	Comparação entre as abundâncias FLAMES-GIRAFFE e FLAMES-UVES para	
	os elementos oxigênio, nitrogênio e zinco para as estrelas em comum (tabela 4.2.	
	Para o zinco: círculo laranja cheio considera a média das duas linhas observadas	
	do zinco (ZnI 4810.54 Å e ZnI 6362.34 Å) pelo FLAMES-UVES e o triângulo	
	magenta cheio compara os resultados para as mesmas linhas	84

- 4.6 Abundâncias do [O/Fe] vs. [Fe/H] para as 351 estrelas gigantes vermelhas, onde foram excluídas algumas estrelas rica em nitrogênio e pobre em oxigênio. Os modelos de evoluções químico-dinâmicos com uma escala de tempo de 2 Ganos, ou taxa de formação de estrela de 0.5 Gano⁻¹ são mostradas na figura. As linhas sólidas corresponde a r < 0.5 kpc; as linhas pontilhadas a 0.5 < r < 1.0 kpc; as linhas tracejadas a 1.0 < r < 2.0 kpc; e as linhas ponto tracejadas a 2.0 < r < 3.0 kpc. Os símbolos são: pentagrama magenta cheia: campo Janela de Baade *bright* (BWb); círculo verde cheio: campo Janela de Baade *faint* (BWf); triângulo vermelho vazado: campo em b = -6° *bright* (B6b); quadrado azul cheio: campo em b = -6° *faint* (B6f); quadrado preto: Friaça & Barbuy (2017); estrela azul: Jonsson et al. (2017); hexâgono magenta vazado: García-Pérez et al. (2013); hexâgono azul vazado: Howes et al. (2016); hexâgono verde vazado: Lamb et al. (2017).
- Abundâncias do [Zn/Fe] vs. [Fe/H] para a presente amostra, 331 estrelas, mos-4.7 tradas no painel superior. No painel inferior, são mostras, juntamente com os resultados do FLAMES-GIRAFFE, os resultados obtidos com os dados FLAMES-UVES (Barbuy et al. 2015, capítulo 3), e estrelas pobres em metais de Howes et al. (2015, 2016) e Casey & Schlaufman (2016). Os modelos de evolução químico-dinâmico com escalas de tempo de formação estelar de 1, 2, 3 Ganos, ou taxas de formações estelares específicas de 1, 0.5, 0.3 Gano⁻¹, respectivamente, são mostradas sobrepostas aos dados das estrelas citadas anteriormente. 90 Abundâncias do [O, Mg, Si, Ca,Ti/Fe] vs. [Fe/H] e do [Zn/Fe] vs. [Fe/H] para 4.8 as 417 estrelas gigantes vermelhas observadas pelo FLAMES-GIRAFFE. 91 4.9 Abundâncias do CNO revisada para a estrela BW-f1, adotando os parâmetros 4.10 Abundâncias do CNO determinadas para a estrela B6-b3, adotando os parâmetros estelares definidos por Jonsson et al. (2017). 96

88

4.11 Abundâncias do CNO determinadas para a estrela B6f8, utilizando os parâmetros estelares definidos por Jonsson et al. (2017).97

- 4.12 Abundâncias do[O/Fe] vs. [Fe/H] de Jonsson et al. (2017) e Friaça & Barbuy (2017) para as 23 estrela em comum. Os modelos de evoluções químicodinâmicos de Friaça & Barbuy (2017) são mostrados sobrepostos às abundâncias das estrelas.
- 4.13 Painel superior: [Zn/Fe] vs. [Fe/H]: mesma representação para as abundâncias mostradas na figura 4.7, incluindo valores de sistemas Damped Lyman-alfa de Rafelski et al. (2012). Painel inferior: [Zn/Fe] vs. [Fe/H]: resultados encontrados por Rafelski et al. (2012), [O/Fe] em DLAs de Cooke et al. (2015) e os valores das abundâncias do [Zn/Fe] e [O/Fe] desse estudo (da mesma forma como mostrada no painel superior da figura 4.8).

98

4.14 Abundâncias do [O/Fe] vs. [Fe/H] e [N/Fe] vs. [Fe/H] para 356 estrelas gigantes vermelhas (círculo verde cheio), identificando as estrelas ricas em nitrogênio e/ou pobres em oxigênio. Símbolos adotados: círculo verde cheio: estrelas com abundâncias normais para o nitrogênio e o oxigênio; cículo azul vazado: estrelas pobres em oxigênio e com abundância normal de nitrogênio; círculo vermelho cheio: estrelas ricas em nitrogênio e com abundância de oxigênio normal. 104

Lista de Tabelas

2.1	Características dos quatro campos do bojo observados pelo FLAMES-UVES e	
	pelo FLAMES-GIRAFFE.	35
2.2	Comprimentos de onda centrais e a intensidade do oscilador. Referências presen-	
	tes na coluna 7: (1) Biémont & Godefroid 1980; (2) Ramírez & Allende-Prieto	
	2011; (3) Nissen & Schuster 2011; (4) valores do log gf astrofísico para os ajus-	
	tes utilizados.	36
2.3	Abundâncias solares de: (1) Anders & Grevesse (1989); (2) Grevesse & Sauval	
	(1998) (valores adotados nos cálculos); (3) Asplund et al. (2009); (4) Lodders	
	et al. (2009); abundâncias de Arcturus de: (5) Ramírez & Allende Prieto (2011)	
	e (6) ajustes atuais, calculados com os parâmetros de Meléndez et al. (2003)	
	(abundâncias adotadas); abundâncias μ Leo de: (7) Lecureur et al. (2007), com	
	a abundância do Zn de [Zn/Fe] = -0.1 , ou ϵ (Zn) = 4.80 determinada aqui	37
3.1	Linhas de CN se sobrepondo parcialmente a linha do ZnI 6362.339 Å, medidas	
	por Davis & Phillips (1963).	40
3.2	Incertezas na determinação dos valores da abundância do [Zn/Fe], aplicando	
	alterações no cálculo dos espectros sintéticos de ΔT_{eff} = +150 K, $\Delta \log g$ = 0.2,	
	Δ [Fe/H] = +0.1 dex, $\Delta v_t = 0.1$ km s ⁻¹ , na coluna (6) o valor total do correspon-	
	dente erro	46

3.3	Parâmetros atmosféricos e abundâncias do C,N,O adotados de Zoccali et al.
	(2006), Lecureur et al. (2007) e Hill et al. (2011). Coluna 11: valores das
	abundâncias revistas para o C,N,O para as estrelas selecionadas, comentadas no
	texto, onde a letra c indica que o valor anterior da abundância do C,N,O é ado-
	tado, caso contrário, o novo valor da abundância é adotado. Colunas 12, 13:
	abundâncias do [Zn/Fe] com Zn1 e Zn2 correspondendo às linhas de 4810.54 Å
	e 6362.34 Å. Coluna 14: abundância média final do zinco
3.4	Sistemas DLAs para o qual às abundâncias de ferro foram corrigidas devido à
	depleção sofrida pela poeira
4.1	Abundâncias dos elementos N, O, Zn, Mg, Si, Ca e Ti
4.2	Amostra de estrelas observadas simultaneamente com o FLAMES-UVES e FLAMES-
	GIRAFFE. Metalicidades [Fe/H] são de Zoccali et al. (2006). Para a amortra
	UVES, as abundâncias são de Friaça & Barbuy (2016), e [Zn/Fe] de Barbuy et
	al. (2015), onde Zn1 e Zn2 referem-se às linhas de ZnI 4810.54Å e 6362.3Å 85
4.3	Valores das incertezas determinadas para as abundâncias do [O/Fe] e do [Zn/Fe],
	com alterações nos modelos de ΔT_{eff} = -200 K, $\Delta \log g$ = +0.4, Δ [Fe/H] = -
	0.1 dex, $\Delta v_t = +0.3$ km s ⁻¹ , com o valor correspondente ao erro total presente
	na coluna (6). Nas últimas colunas são apresentados os erros induzidos por
	Δ[C/Fe]±0.2 para o nitrogênio e o oxigênio, e o efeito sobre o oxigênio com
	Δ[C/Fe]±0.2 juntamente com o nitrogênio ajustado para reproduzir a linha do
	CN
4.4	Amostras de estrelas observadas simultaneamentte com o FLAMES-UVES, e
	reanalisadas por Jonsson et al. (2017). Colunas 8-11: parâmetros estelares de
	Zoccali et al. (2006); Coluna 12: abundâncias de [O/Fe] de Friaça & Barbuy
	(2017)
4.5	Estrelas ricas em nitrogênio e/ou pobres em oxigênio
A.1	Parâmetros estelares
A.2	Parâmetros Atmosféricos das estrelas do campo Blanco de Zoccali et al. (2008) 138
A.3	Abundâncias das estrelas do campo NGC 6553, de Gonzalez et al. (2011) 140

Sumário

1.	Intro	dução	23
	1	Bojo Galáctico e Damped Lyman α	23
	2	Espectros Sintéticos	27
	3	Objetivos do trabalho: Abundâncias de oxigênio e zinco	28
	4	Revisão dos dados espectrais obtidos com FLAMES-UVES e FLAMES-GIRAFFE	29
2.	Dade	os Observacionais FLAMES-UVES e FLAMES-GIRAFFE	33
	1	Observações FLAMES-UVES e FLAMES-GIRAFFE	33
	2	Parâmetros Atômicos das Linhas	36
3.	Anál	ise das Abundâncias dos Dados FLAMES-UVES	39
	1	Cálculo dos espectros sintéticos	39
	2	As abundâncias C, N, O e o <i>blending</i> com as linhas de CN	39
	3	Incertezas na Determinação das Abundâncias do ZnI	43
	4	Resultados dos dados observacionais do FLAMES-UVES	46
	5	Resultados das abundâncias do [Zn/Fe] encontradas na literatura	49
	6	Comparando as abundâncias do [Zn/Fe] estrelas do bojo e do disco espesso	52
	7	Comparação com as abundâncias do [Zn/Fe] para as estrelas do disco fino	53
	8	Comparação com os sistemas <i>damped Lyman</i> - α	55
	9	DLAs selecionadas com medidas de abundância de ferro	58
	10	Modelos de evolução química do zinco em esferóides massivos	60
	11	Zinco e elementos α	64

4.	Anál	ise das Observações dos Dados do FLAMES-GIRAFFE
	1	Comparação entre os espectros FLAMES-UVES e FLAMES-GIRAFFE 67
	2	Análise das Abundâncias
	3	Determinação das abundâncias de C, N, O
	4	Resultados
	5	Determinação dos erros das abundâncias
	6	Modelos de evolução química do oxigênio e do zinco em esferóides massivos 87
	7	Resultados das abundâncias do nitrogênio, oxigênio e zinco
	8	Comparação das abundâncias determinadas com resultados da literatura 89
	9	Comparando os resultados das abundâncias determinadas com sistemas damped
		Lyman- α – DLAs
	10	Estrelas pobres em oxigênio e ricas em nitrogênio
5.	Cond	clusões
	1	Conclusões dos dados FLAMES-UVES
	2	Conclusões dos dados FLAMES-GIRAFFE
Re	ferênc	cias
Ap	êndic	e 119
Α.	Parâ	metros Atmosféricos das Estrelas do Bojo Galáctico
	1	Parâmetros Atmosféricos das Estrelas do Bojo Galáctico

Capítulo

1

Introdução

1 Bojo Galáctico e Damped Lyman α

O Universo e suas estruturas estão em constante evolução. No início, a evolução galáctica era dominada por aglomerações e fusões hierárquicas, processos esses que são violentos e rápidos. No futuro, a evolução será principalmente secular, um rearranjo lento de energia e massa que resulta de interações envolvendo fenômenos tais como barras, discos ovais, estruturas espirais e halos escuros triaxiais. Ambos os processos são importantes hoje.

No chamado bojo clássico, a formação da maioria das estrelas ocorreu durante um período de tempo mais curto, quando o universo tinha alguns bilhões de anos. Por outro lado, o chamado pseudo-bojo, são estruturas similares aos bojos clássicos, originando-se por meio de processos de fusão, de forma lenta, de discos externos ou material do disco.Além disso, a formação de estrelas ocorre lentamente, durante um período de tempo longo, e o bojo resulta da evolução secular ¹do disco dirigido pelo desenvolvimento de uma barra (Kormendy & Kennicutt 2004).

As observações de pseudo-bojos mostram que estes conseguem reter uma memória de seu gás original. Os pseudo-bojos podem possuir algumas características de discos: forma mais plana que bojo clássico; velocidades randômicas maiores; baixa dispersão de velocidade (σ) com relação à correlação de Faber-Jackson²; estrutura espiral ou barras nucleares presentes no

$$L \propto \sigma^4$$
 (1.1)

¹ Efeitos de evolução secular são eventos que ocorrem em escalas de tempo maiores que os processos rápidos de formação, sem ocorrendo fusões ou colisões

 $^{^2}$ Relação Faber-Jackson: é uma relação empírica entre a luminosidade L e a dispersão de velocidade estelar σ

perfil de luz do bojo; perfil de brilho exponencial³; e *starbursts*⁴.

Acredita-se que o pseudo-bojo domina em galáxias espirais *late type* (Sc) e o *starburst* domina em galáxias espirais *early type* (Sa, Sb). A Via-Láctea (Sbc) situa-se na fronteira entre os dois tipos, e para determinar a origem de seu bojo (por *starburst* ou evolução secular do disco), obtem-se observações espectroscópicas para se derivar com precisão as abundâncias dos elementos químicos, em particular [Fe/H]⁵ (Zoccali et al. 2006).

A composição química detalhada das estrelas possui a assinatura dos processos de enriquecimento contidos no meio interestelar até o momento de sua formação. Deste modo, as abundâncias dos elementos químicos dependem da história de formação das estrelas e podem ser utilizadas para inferir se existe uma ligação entre os diferentes grupos estelares. Em particular, as abundâncias relativas de ferro e elementos α desempenham um papel chave porque os elementos α são predominantemente produzidos por supernovas de tipo II (SN II) enquanto supernovas do tipo Ia (SN Ia) dominam a produção de ferro. As SN IIs são produzidas por estrelas massivas, ao passo que SN Ias resultam de evolução binária e são caracterizadas por uma ampla distribuição no tempo (de 10⁷ a 10¹⁰ anos) entre o evento de formação estelar e a explosão de SN (Greggio 2005). Como uma consequência, a razão [α /Fe] depende da contribuição relativa de SN IIs e SN Ias e, portanto, é dependente da escala de tempo de formação da estrela e a produção de metais (Matteucci & Greggio 1986).

$$log\left(\frac{I}{I_e}\right) \propto r^{1/4}$$
 (1.2)

⁴ Starburst é um evento astrofísico que ocorre em regiões onde a taxa de formação estelar é maior que a observada normalmente.

⁵ Adotamos a notação para abundância relativa dos elementos como sendo

$$[X/H] = log(X/H) - log(X/H)_{\odot}.$$
(1.3)

e a abundância absoluta como sendo

$$\epsilon(X) = \log\left(\frac{N_X}{N_H}\right) + 12 \tag{1.4}$$

onde X é referente a um certo elemento químico e H refere-se ao átomo de hidrogênio.

³ A distribuição de brilho superficial mostra como varia o fluxo por unidade de área ao longo da galáxia. Como os bojos são parecidas com galáxias elípticas, o perfil de brilho tem a forma

A relação redshift ⁶ – metalicidade de sistemas de absorção de quasares (QSOs) é uma ferramenta fundamental para se compreender a evolução química do Universo. O estudo de tal relação em sistemas *damped Lyman* α – DLAs auxilia na investigação, em particular, do enriquecimento de metais nas galáxias distantes que se encontram na linha de visada dos quasares. Os sistemas de linhas de absorção de quasares (DLAs) com densidade de coluna de hidrogênio nêutro $N(\text{HI}) \gtrsim 10^{20.3}$ atomos cm⁻², originam-se no meio interestelar de galáxias de fundo (Wolfe et al. 1986, 2005) e auxiliam no estudo e conhecimento da poeira existente nelas. Os estudos de abundâncias em sistemas DLAs podem, então, ser usados para traçar a evolução química de galáxias no Universo inicial, com os quasares mais longínquos.

As abundâncias para diferentes elementos estão disponíveis para algumas centenas de sistemas DLAs, mas o estudo de sua evolução em função do redshift é dificultada por dois motivos. O primeiro motivo é a incerteza nas medidas das abundâncias dos elementos devido a possíveis efeitos de depleção ⁷ pela poeira. A outra incerteza é o limite de cobertura do redshift, que muitas vezez não é adequado para examinar a sua evolução. Uma aproximação para lidar com a primeira dificuldade é corrigir os valores das abundâncias observadas pelo efeito de depleção pela poeira (Vladilo 1998; Savaglio, Panagia & Stiavelli 2000). Uma outra seria utilizar um elemento que não seja afetado pela poeira, como traçador da evolução da metalicidade (Pettini et al. 1997, 1999).

O zinco é conhecido por ser relativamente pouco absorvido pela poeira (Roth & Blades 1995). A poeira interestelar desempenha um papel importante em vários processos físicos e químicos relevantes à evolução galáctica. A presença de poeira afeta a distribuição de energia

$$\delta_X = \log\left(\frac{X}{H}\right)_{gas} - \log\left(\frac{X}{H}\right)_{ref},\tag{1.5}$$

onde $(X/H)_{gas}$ é razão de átomos no gás, e $(X/H)_{ref}$ um valor de referência para a razão total (gás e poeira). Na prática, a razão no gás é medido das densidades de colunas dos estados de ionização dominantes em regiões *HI*, isto é, $(X/H)_{gas} = N(X_{dom})/N(HI)$. Para o meio interestelar Galáctico, a razão total (gás e poeira) é assumida igual à solar. Deste modo, a expressão acima fica:

$$\delta_X = \log \frac{N(X_{dom})}{N(HI)} - \log \left(\frac{X}{H}\right)_{\odot}.$$
(1.6)

⁶ Redshift, ou desvio para o vermelho, corresponde a um deslocamento no espectro observado de uma fonte astronômica alto para a região espectral vermelha, em função da velocidade relativa entre a fonte observada e o observador

⁷ A depleção de um elemento X é usualmente definido da seguinte maneira:

espectral observada em diversas fontes astronômicas emissoras de energia e na radiação difusiva extragaláctica. Caracterizar as propriedades da poeira em alto redshift é um importante passo para melhorar a nossa compreensão do Universo inicial. Em particular, os modelos de produção e evolução de poeira em galáxias se beneficiariam dos novos limites observacionais e das propriedades das poeiras nos estágios iniciais da evolução química.

A poeira em sistemas DLAs foi encontrada através de análises de indicadores clássicos de poeira, como o *bump* de extinção de 217.5 nm (região espectral do ultravioleta) (Junkkarinen et al. 2004; Wang et al. 2004; Srianand et al. 2008), a absorção de silicato em 9.7 μ m (região espectral do infravermelho) (Kulkarni et al. 2007, 2011) e o avermelhamento de quasares (Vladilo et al. 2006; Jiang et al. 2010). Acredita-se que a maioria da população de DLAs seja pobre em poeira. Vladilo et al. (2008) encontraram algumas evidências sobre essa baixa concentração de poeira em um estudo realizado com dados do SDSS (Sloan Digital Sky Survey), através de sinais extremamente fracos do avermelhamento de amostras de quasares com absorvedores intermediários. Ellison et al. (2001, 2009, 2010) e Jorgenson et al. (2006) realizaram estudos com amostras selecionadas de rádio quasares com baixa extinção de poeira. O baixo nível de poeira é consistente com o baixo enriquecimento de metais nos sistemas DLAs (Pettini et al. 1994).

Nesta tese analisaremos a abundância de Zn em uma amostra de 417 estrelas do bojo. Esta componente da Galáxia está sob holofotes no momento atual, devido a um grande número de questões sobre sua formação e evolução química. Em particular, gostaríamos de saber:

a) se estão confirmadas perfeita similaridades entre estrelas de bojo e disco espesso. Como discutido em Friaça & Barbuy (2017), essa questão ainda está em aberto. Como demonstraremos neste tese, também o Zn apresenta diferenças, sendo que a abundância de Zn descrece com a metalicidade para estrelas ricas em metais, Bensby et al. (2013) encontra que a razão [Zn/Fe]~constante para todas as estrelas ricas em metais.

b) Há controvérsias também sobre a forma da Distribuição de Metalicidades, e as populações estelares encontradas no bojo, como apresentado por Ness et al. (2013), que encontram 5 populações, ou Zoccali et al. (2017), que encontram 3 populações. Esta e outras questões necessitam de muitos mais dados a serem analisados futuramente. Deve haver progresso com levantamentos de grande porte, como o APOGEE-SUL.

2 Espectros Sintéticos

O estudo de populações estelares de espectros integrados de galáxias requer uma vasta biblioteca de espectros estelares, englobando diversos parâmetros atmosféricos, entre os quais a temperatura efetiva, a gravidade, a metalicidade, a velocidade de microturbulência, entre outros parêmetros. Na literatura, encontramos espectros observados e sintéticos que são usados nos cálculos de sínteses de populações (Bruzual & Charlot 1993, 2003). Os principais índices espectrais utilizados são Lick Fe5270 e Fe5335, Mgb e Mg₂ (Burstein et al. 1984; Faber et al. 1985; Worthey et al. 1994).

Barbuy et al. (2003) implementaram um código, PFANT, para sintetizar espectros, que são utilizados para determinar as corretas abundâncias dos elementos químicos presentes na estrela. O código PFANT é uma versão aprimorada do código desenvolvido por Spite (1967), o qual utiliza cálculos de linhas atômicas e, assim, obtendo-se um espectro sintético. No decurso do desenvolvimento do código PFANT, novos parâmetros foram acrescentados para determinar o espectro sintético, entre eles o cálculo de linhas moleculares por Barbuy (1982, tese de doutoramento), com implementação de equilíbrio dissociativo de Tsuji (1973), como descrito em Cayrel et al. (1991), Barbuy et al. (2003), Coelho et al. (2005). Além disso, as linhas de hidrogênio, em um total de 10 linhas, de H₁₀ a H α , foram acrescentadas usando uma versão revisada do código apresentado por Praderie (1967). Este código PFANT está agora atualizado contendo todas as linhas de hidrogênio que se queira, e outras melhorias importantes, em versão on-line (já disponível e a ser publicado). Fornecendo-se os parâmetros de modelos de atmosfera estelar e listas com linhas moleculares e linhas atômicas, o código permite calcular um espectro sintético assumindo equilíbrio termodinâmico local (LTE)⁸.

O código PFANT realiza o cálculo dos espectros sintéticos incluindo as linhas moleculares seguintes na região estudada: sistema azul CN $B^2\Sigma - X^2\Sigma$, sistema vermelho CN $A^2\Pi - X^2\Sigma$, e sistemas C₂ Swan $A^3\Pi - X^3\Pi$, MgH $A^3\Pi - X^3\Sigma^+$, e TiO $A^3\Phi - X^3\Delta \gamma$ e $B^3\Pi - X^3\Delta \gamma$.

As abundâncias solares dos elementos envolvidos nos cálculos dos espectros sintéticos são adotadas de Grevesse & Sauval (1998). As forças de oscilador (log gf) para as linhas atômicas utilizadas no código PFANT estão apresentadas na tabela 2.2.

⁸ Equilíbrio termodinâmico local (ou LTE: local thermodynamical local): processos estelares que ocorrem em regiões onde a pressão e temperatura são consideradas constantes

3 Objetivos do trabalho: Abundâncias de oxigênio e zinco

Compreender como ocorre o enriquecimento químico do bojo galáctico é crucial e os elementos que podem auxiliar nesse conhecimento e utilizados neste trabalho são o oxigênio e o zinco. O oxigênio é o principal elemento indicador do tempo de formação do bojo. Segundo Cavichia et al. (2014) e Friaça & Barbuy (2017), as abundâncias do oxigênio encontradas em estrelas do bojo indicam que a taxa de formação estelar específica da formação do bojo e do seu enriquecimento químico é de $v_{SF} \approx 0.5$ Ganos⁻¹ ou um tempo de 2 Ganos.

O zinco é um elemento interessante para se estudar e compreender os processos de nucleossíntese de sua formação. Outro interesse em se estudar o zinco é este ser observado em sistemas *damped Lyman alpha* (DLAs). O zinco pode ser utilizado com um substituto para o ferro em DLAs e pode ajudar a compreender o enriquecimento químico do Universo em redshift, através de suas abundâncias em DLAs (Pettini et al. 1999; Prochaska et al. 2002).

A produção do zinco acontece em diferentes processos de nucleossíntese. Esses processos são: processo *s* fraco que ocorre em estrelas massivas durante as fases de queima de hélio e de carbono; durante a queima completa e incompleta do silício; durante a queima explosiva do colapso do núcleo de supernovas (SNe); e durante o processo *s* em estrelas com massas baixas e intermediárias (Umeda & Nomoto 2002; Bisterzo et al. 2004).

O zinco é a chave para se compreender a importância da contribuição que as hipernovas possuem em ambientes de baixa metalicidade nos processos de enriquecimento químico do bojo. O zinco pertence ao grupo superior do ferro com massas atômicas entre $57 \le A \le 66$, incluindo até o ⁶⁶Zn (Woosley & Weaver 1995). De acordo com Umeda & Nomoto (2002), os elementos da família do ferro, cromo, manganês, cobalto e zinco são produzidos durante a queima completa do silício com uma temperatura $T > 5 \times 10^9$ K e na queima incompleta do silício com temperaturas entre $4 \times 10^9 < T < 5 \times 10^9$ K, em estrelas massivas. Os autores também encontraram que a abundância [Zn/Fe] aumenta em regiões mais internas da estrela durante o processo de explosão, com baixa concentração de nêutrons e com altíssimas energias de explosão e que a alta abundância de zinco resulta da mistura dos produtos da queima completa do silício em regiões mais internas da estrela. Segundo Umeda & Nomoto (2003, 2005), o ⁶⁴Zn é produzido pela queima completa do silício em estrelas de baixa metalicidade.

De acordo com Umeda & Nomoto (2002) e Nomoto et al. (2013), as hipernovas, que são supernovas com liberação de energias extremamente altas, com energia $E \gtrsim 2 \times 10^{51}$ erg para

estrelas com massa $M \sim 13 \ M_{\odot}$ e com energia $E \gtrsim 20 \times 10^{51}$ erg para estrelas com massa $M \sim 20 \ M_{\odot}$. Isso implica em uma elevação na abundância de [Zn/Fe] de até ~ 0.5. Kobayashi et al. (2006) utilizam hipernovas para conseguir explicar as altas abundâncias do [Zn/Fe] encontradas em estrelas pobres em metais, algo que não é possível ser explicado quando se utiliza os cálculos de Woosley & Weaver (1995).

A maioria dos elementos da família do ferro apresenta razões de abundâncias em torno do valor solar para estrelas com as mais variadas metalicidades. Entretanto, em estudos realizados por alguns autores, entre eles Sneden et al. (1991), Nissen et al. (2000), Ishigaki et al. (2013) e Barbuy et al. (2013), escândio, manganês, cobre e zinco, possuem comportamentos diferentes.

Estudar diferentes populações estelares pode auxiliar na compreensão de como os processos de nucleossíntese ocorrem para os elementos da família do ferro, através da determinação de suas abundâncias.

4 Revisão dos dados espectrais obtidos com FLAMES-UVES e FLAMES-GIRAFFE

O conjunto de dados obtidos com o FLAMES-UVES e FLAMES-GIRAFFE foram analisados por diversos autores, resultando em informações importantes e interessantes sobre as estrelas do bojo.

Zoccali et al. (2006) realizou o primeiro estudo com os dados obtidos com FLAMES-UVES. Os autores determinaram os parâmetros atmosféricos dessas estrelas e as abundâncias do carbono, nitrogênio e oxigênio. A figura 1.1, de Zoccali et al. (2006), apresenta as abundâncias do oxigênio [O/Fe] em função da metalicidade [Fe/H] para as estrelas do bojo. As estrelas se apresentam mais ricas em oxigênio que as estrelas do disco fino ⁹ e do disco espesso ¹⁰ de Bensby et al. (2004). Além disso, as estrelas do bojo são estrelas velhas, com algumas estrelas possuindo idade superior a 10 Ganos. Uma interpretação para essa evidência é que a formação das estrelas do bojo galáctico ocorreu de forma mais rápida do que com as estrelas do disco.

Lecureur et al. (2007) realizaram outra análise com esses dados do FLAMES-UVES, determinando as abundâncias do oxigênio, magnésio, alumínio, sódio, carbono e nitrogênio. A figura

 $^{^{9}}$ Disco fino: composta por gás, poeira, estrelas jovens, com escala de altura entre 300 pc - 400 pc e no eixo horizontal entre 2.5 kpc - 4 kpc

¹⁰ Disco espesso: composto por estrela velhas que se encontram entre 1 kpc – 5 kpc acima do plano galáctico com rotação lenta

Figura 1.1: Figura 1 de Zoccali et al. (2006), comparando as abundâncias do [O/Fe] vs. [Fe/H] para as estrelas do bojo (círculos) com outras estrelas do bojo determinadas por McWilliam & Rich (2003) e Rich & Origlia (2005) (painel superior) e com estrelas do disco espesso e do disco fino de Bensby et al. (2004) (painel inferior).

1.2, parte superior, de Lecureur et al. (2007), mostra as abundâncias do oxigênio em função da metalicidade ([O/Fe] vs. [Fe/H]) para as estrelas do bojo comparadas com as estrelas do disco fino e do disco espesso de Reddy et al. (2006) e Bensby et al. (2004, 2005). Nota-se uma clara separação entre essas estrelas do disco e as estrelas do bojo.

Hill et al. (2011) realizaram um estudo com parte da amostra observada com o FLAMES-GIRAFFE, contendo um total de 228 estrelas observadas, sendo que 13 dessas estrelas, pertencentes ao *red clump*, foram observadas simultaneamente com o FLAMES-UVES. Essas 13 estrelas foram analisadas nesse trabalho e seus resultados publicados por Barbuy et al. (2013, 2015). As estrelas que Hill et al. (2011) utilizaram nessa análise são estrelas gigantes do bojo do *red clump*, pertencentes à Janela de Baade. Essas estrelas foram designadas como BWc (*Baade's Window red clump*). Eles determinaram os parâmetros estelares e as abundâncias do ferro

Figura 1.2: Painel superior da figura 6 de Lecureur et al. (2007), compara as abundâncias do [O/Fe] vs. [Fe/H] encontradas por Zoccali et al. (2006) com os resultados encontrados para estrelas do disco espesso e do disco fino por Reddy et al. (2006) e Bensby et al. (2004, 2005). No painel inferior, mesma análise, comparando os resultados das abundâncias do [Mg/Fe] vs. [Fe/H] entre as estrelas do bojo de Zoccali et al. (2006) com as estrelas do disco fino e do disco espesso de Reddy et al. (2006) e de Bensby et al. (2004, 2005).

e do magnésio para essas estrelas. Os autores encontraram duas populações, uma componente de estrelas pobres em metais com propriedades cinemáticas compatíveis ao um esferóide velho, formada rapidamente (bojo antigo), e uma componente de estrelas ricas em metais, consistente com uma população desenvolvida via barra, com formação mais lenta pela evolução da barra (pseudo-bojo).

Barbuy et al. (2013) analisaram os dados do FLAMES-UVES em relação ao manganês. Os resultados encontrados, pelos autores para a abundância do manganês, [Mn/Fe] vs. [Fe/H], ajustam-se bem com o modelo de evolução química de Cescutti et al. (2008). Além disso, para valores de metalicidade [Fe/H] $\gtrsim 0.7$, as abundâncias do manganês possuem um bom ajuste com as estrelas do disco fino e do disco espesso.

Capítulo 2_____

Dados Observacionais FLAMES-UVES e FLAMES-GIRAFFE

1 Observações FLAMES-UVES e FLAMES-GIRAFFE

Os espectros para uma amostra composta por ~ 800 estrelas gigantes vermelhas tipo K foram obtidos com o espectrógrafo FLAMES, montado no telescópio ESO-VLT-UT2 de 8.2m. Esses espectros foram observados em quatro campos do bojo galáctico, incluindo o campo Janela de Baade. Além disso, as observações dessas estrelas foram realizadas simultaneamente, para todas as estrelas, com os intrumentos FLAMES-GIRAFFE, com resolução R ~ 20000, e FLAMES-UVES, com resolução R ~ 45000, com uma escala de pixels de 0.0147 Å/pixel. Elas fazem parte do programa de observações do European Southern Observatory (ESO), projetos 071.B-067, 071B-0014; PI: A. Renzini (corrigir).

As observações realizadas com o espectrógrafo FLAMES-UVES compreendem uma faixa espectral entre 4800 Å – 6800Å, com um gap entre 5775Å – 5825Å. A parte vermelha do espectro, 5800Å – 6800Å, foi obtida com o detector ESO CCD#20, um MIT iluminado por trás, de 4096 × 2048 pixels, sendo que cada pixel possui um tamanho de 15 × 15 μ m. A parte azul do espectro, 4800Å – 5800Å, utiliza o detector ESO Marlene EEv CCD-4, iluminado por trás, de 4102 × 2048 pixels, com um tamanho de pixel de 15 × 15 μ m.

A tabela 2.1 apresenta as características sobre os quatro campos do bojo observados. A quantidade de estrelas observadas pelo FLAMES-UVES e FLAMES-GIRAFFE é apresentada para cada um dos campos do bojo, bem como o total de estrelas, 56 e 722 respectivamente, para cada um dos espectrógrafos. Em relação às estrelas do FLAMES-UVES, 13 delas são pertencentes ao *red clump*¹, que estão localizadas no campo Janela de Baade, e 43 estrelas

¹ O red clump é uma formação no diagrama Hertzsprung-Russell (HR) das estrelas com uma magnitude absoluta

do ramo das gigantes vermelhas, distribuídas pelos quatro campos do bojo observados, com magnitudes ~ 0.5 acima do *red clump*. Excluindo as 13 estrelas do *red clump*, as outras 43 estrelas foram observadas simultaneamente com o FLAMES-GIRAFFE.

As observações realizadas com o espectrógrafo FLAMES-GIRAFFE compreendem uma faixa espectral de ~ 760Å. Esses objetos fazem parte de um programa de observações, sendo que as estrelas dos campos 1 e 2 (tabela 2.1) pertencem ao projeto 071.B-0617 (FLAMES-UVES e FLAMES-GIRAFFE). Essas estrelas foram observadas nas seguintes regiões do espectrógrafo FLAMES-GIRAFFE: setup HR-13, com cobertura espectral de 6120Å – 6405Å e resolução R ~ 26000; setup HR-14, com cobertura 6300Å – 6700Å e com resolução R ~ 18000; e setup HR-15, com cobertura espectral 6600Å – 6965Å e resolução R ~ 21000. As estrelas dos campos 3 e 4 (tabela 2.1) pertencem ao projeto 073.B-0074 (FLAMES-UVES e FLAMES-GIRAFFE), com observações nas regiões do espectrógrafo FLAMES-GIRAFFE: setup HR-11, com cobertura espectral, 5597Å – 5840Å e resolução R ~ 29500, HR-13 e HR-15, sendo que esses dois últimos setup são os mesmos utilizados nas observações dos campos 1 e 2, comentados acima. O tempo de exposição varia entre 1h e 5h, dependendo do setup observacional e da luminosidade da estrela. Os objetos foram divididos em dois grupos: *bright (b) e faint (f)*.

Os espectros das estrelas pertencentes aos campos 3 (campo Blanco, b = -12°) e 4 (NGC 6553), observados nos setups HR-11, HR-13 e HR-15, foram analisados por Johnson et al. (2014). Os autores determinaram as abundâncias de vários elementos químicos. Esses campos foram escolhidos por Johnson et al. (2014) por conterem as linhas de cobre, presentes no setup HR-11. Em suas análises, os autores determinaram as abundâncias dos elementos sódio, alumínio, e dos elementos α oxigênio, magnésio, silício e cálcio, e ainda elementos da família do ferro, cromo, ferro, cobalto, níquel, cobre, para 156 estrelas gigantes presentes nesses dois campos.

No presente trabalho, analisamos dados UVES de 56 estrelas dos 4 campos da amostra de Zoccali et al. (2006) e Hill et al. (2011), e dados GIRAFFE para os campos da Janela de Baade, e do campo em $b = -6^{\circ}$.

A amostra de dados GIRAFFE analisados neste trabalho (campos 1 e 2 da tabela 2.1) possui 417 estrelas, sendo que, desse total, há 65 estrelas com metalicidade $[Fe/H] \le -0.50$ e 14 com metalicidade $[Fe/H] \le -1.0$. Johnson et al. (2014) analisaram as estrelas pertencentes aos campos 3 e 4, com um total de 205 estrelas. Desse total de estrelas, eles conseguiram analisar 162

 $M_V \sim +0.5$ acima das estrelas da sequência principal
Nr.	Identificação	l	b R_{GC}		E(B-V)	N _{stars}	N _{stars}
				(pc)		UVES	GIRAFFE
1	Janela de Baade (BW)	1°.14	-4°.18	604	0.55	26	204
2	$b = -6^{\circ}$ Field (B6)	0°.21	$-6^{\circ}.02$	850	0.48	11	213
3	$b = -12^{\circ}$ Field (Bl)	$0^{\circ}.00$	$-12^{\circ}.00$	1663	0.20	05	104
4	NGC 6553 Field (B3)	5°.25	-3°.02	844	0.70	14	201
	Total de estrelas					56	722

Tabela 2.1 - Características dos quatro campos do bojo observados pelo FLAMES-UVES e pelo FLAMES-GIRAFFE.

estrelas com espectros aceitáveis, sendo que somente 42 estrelas possuem metalicidade [Fe/H] ≤ -0.50 , e que apenas 4 dessas estrelas apresentam [Fe/H] ≤ -1.0 . As duas estrelas mais pobres em metais são OGLE ²:63850 (ou BWb101, nome GIRAFFE), com metalicidade [Fe/H] = -1.61, presente em nossa amostra, e OGLE:608C1 (campo Blanco b = -12°, bl053) com [Fe/H] = -1.74 (Zoccali et al. 2008; Johnson et al. 2014).

Os nomes adotados para as estrelas obedecem a seguinte lógica: para os dados observacionais do FLAMES-UVES, o termo *bright* diz respeito às estrelas observadas com o FLAMES-UVES, enquanto o termo *faint* refere-se àquelas observadas simultaneamente com o FLAMES-GIRAFFE, com o mesmo tempo de exposição. Em seguida, uma troca foi realizada, sendo observada às chamadas *bright* com o FLAMES-GIRAFFE e as *faint* com o FLAMES-UVES. Deste modo, os nomes de referências são: Janela de Baade bright (BW-b) e faint (BW-f); com o campo b = -6° com as estrelas *bright* (B6-b) e as *faint* (B6-f); o campo b = -12° (campo Blanco – Bl) somente sendo observadas em um dos campos; campo NGC 6553 *bright* (B3-b) e *faint* (B3-f). As 13 estrelas do *red clump*, da Janela de Baade, foram designadas como sendo BWc. Essas são estrelas pertencentes ao *red clump*, que foram analisadas por Hill et al. (2011). Os nomes das estrelas FLAMES-GIRAFFE estão invertidas com o nome das estrelas FLAMES-UVES.

Os dados observacionais, obtidos com o FLAMES-UVES, foram reduzidos com o *pipeline* padrão FLAMES-UVES, incluindo bias, flatfield, subtração do background, extração, calibração de comprimento de onda e ordem de merging. Detalhes sobre a redução dos dados encontram-se em Zoccali et al. (2006), Lecureur et al. (2007) e Hill et al. (2011).

Os espectros individuais, obtidos com o FLAMES-GIRAFFE, foram reduzidos com o pipe-

² OGLE, the Optical Gravitational Lensing Experiment, é um cátalogo de estrelas variáveis (Udalski et al. 1992)

Elementos	λ (Å)	$\chi_{ex} ({ m eV})$	\loggf_{Kurucz}	log gf _{NIST}	log gf _{VALD2/VALD3}	$\loggf_{literature}$	log gf _{adopted}
ZnI	4810.529	4.078159	-0.137		-0.137	$-0.17^1, -0.16^2, -0.31^3$	-0.25
	6362.339	5.796083	0.150	0.158	0.150	$+0.14^{1,2}$	+0.05
CaI	6361.786	4.450947	0.954		0.317	-0.2^{4}	-0.20
CrI	4810.509	2.9870	—		-3.142/-2.899	-2.90^{4}	-2.90
TiI	4810.705	2.4870	_	_	-2.576/-2.563	-1.00^{4}	-1.00
V1	4810.730	3.1310	—		-1.246/-2.534	-1.25^4	-1.25
CrI	4810.732	3.0790	—	-1.30	-1.300/-0.644	-1.90^{4}	-1.90

Tabela 2.2 - Comprimentos de onda centrais e a intensidade do oscilador. Referências presentes na coluna 7: (1) Biémont & Godefroid 1980; (2) Ramírez & Allende-Prieto 2011; (3) Nissen & Schuster 2011; (4) valores do log gf astrofísico para os ajustes utilizados.

line GIRBLDRS, incluindo bias, flatfield, extração e calibração de comprimento de onda. Os espectros das estrelas foram corrigidos pela velocidade radial heliocêntrica. Zoccali et al. (2008) apresentam maiores detalhes sobre a redução dos espectros desta amostra.

2 Parâmetros Atômicos das Linhas

Neste trabalho analisaremos as abundâncias dos elementos C, N, O e Zn.

Na tabela 2.2 apresentamos os comprimentos de ondas centrais, o potencial de excitação e a força do oscilador log gf encontrados na literatura, utilizando as bases de dados de Kurúcz (1995)³, NIST⁴ e VALD (Piskunov et al. 1995), bem como o valor do log gf adotado nesse trabalho. Esses parâmetros são utilizados tanto para a análise dos dados FLAMES-UVES como para os dados FLAMES-GIRAFFE.

A figura 2.1 apresenta as linhas do ZnI 4810.54 Å e 6362.34 Å ajustadas às observações de alta resolução solar obtidas com o mesmo espectrógrafo FLAMES-UVES das nossas observações, ao espectro de Arcturus (Hinkle et al. 2000) e da estrela gigante rica em metal μ Leo, com o espectro obtido com o espectrógrafo ESPaDOns/CFHT, que possui uma resolução de R ~ 80000 e um sinal-ruído S/N ~ 500 (Lecureur et al. 2007).

A tabela 2.3 apresenta uma comparação de alguns valores encontrados na literatura para as

³ http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html

⁴ http://physics.nist.gov/PhysRefData/ASD/lines_form.html

abundâncias do Fe e do Zn para o Sol, Arcturus e μ Leo. Neste trabalho, adotamos os valores das abundâncias solares de Grevesse & Sauval (1998) e os parâmetros estelares de Meléndez et al. (2003), que apresentam os melhores ajustes aos espectros sintéticos para Arcturus (parâmetros estelares: $T_{eff} = 4300$ K, log g = 1.50 dex, [Fe/H] = -0.52 dex $v_t = 1.5$ km s⁻¹). Para a estrela rica em metais μ Leo, os parâmetros estrelares e as abundâncias do carbono, nitrogênio e oxigênio são de Lecureur et al. (2007), com: $T_{eff} = 4540$ K, log g = 2.3 dex, [Fe/H] = +0.3 dex, $v_t = 1.3$ km s⁻¹.

Tabela 2.3 - Abundâncias solares de: (1) Anders & Grevesse (1989); (2) Grevesse & Sauval (1998) (valores adotados nos cálculos); (3) Asplund et al. (2009); (4) Lodders et al. (2009); abundâncias de Arcturus de: (5) Ramírez & Allende Prieto (2011) e (6) ajustes atuais, calculados com os parâmetros de Meléndez et al. (2003) (abundâncias adotadas); abundâncias μ Leo de: (7) Lecureur et al. (2007), com a abundância do Zn de [Zn/Fe] = -0.1, ou ϵ (Zn) = 4.80 determinada aqui.

El.	Ζ	$\log \epsilon(X)$										
			Su	in	Arct	turus	μ Leo					
		(1)	(2)	(3)	(4)	(5)	(6)	(7)				
Fe	26	7.67	7.50	7.50	7.46	6.98	6.95	7.80				
Zn	30	4.60	4.60	4.56	4.65	4.26	4.06	4.80				

Figura 2.1: Linhas do ZnI ajustadas ao espectro solar observados com o espectrógrafo FLAMES-UVES e aos espectros de Arcturus e μ Leo. Espectros observados (linha tracejada); espectros sintéticos (linha vermelha).

Capítulo 3_____

Análise das Abundâncias dos Dados FLAMES-UVES

1 Cálculo dos espectros sintéticos

As abundâncias dos elementos químicos em uma estrela podem ser obtidos comparando o espectro da estrela com um espectro sintético. Em nosso estudo, realizamos tal procedimento comparativo com todas as estrelas observadas pelo FLAMES-UVES. O código utilizado para determinarmos as abundâncias dos elementos foi o código PFANT, descrito por Barbuy et al. (2003) e Coelho et al. (2005), e mencionado na seção 1.2. Desse modo, as abundâncias do nitrogênio, oxigênio e zinco foram obtidas através do cálculo dos espectros sintéticos linha a linha. As linhas moleculares presentes nas regiões espectrais observadas são consideradas nesse cálculo. Essas linhas moleculares são as seguintes: sistema azul CN B² Σ -X² Σ , sistema vermelho CN A² Π -X² Σ , e sistemas C₂ Swan A³ Π -X³ Π , MgH A³ Π -X³ Σ ⁺, e TiO A³ Φ -X³ $\Delta \gamma$ e B³ Π -X³ $\Delta \gamma$ são levadas em conta.

Os modelos atmosféricos foram obtidos por interpolação com a utilização de uma grade de modelos MARCS esférica e baixo grau de mistura em CN ([C/Fe] = 0.13, [N/Fe] = +0.31) de Gustafsson et al. (2008). Esses modelos consideram [α /Fe] = +0.20¹. Os parâmetros estelares são adotados de Zoccali et al. (2006) e de Lecureur et al. (2007) para as 43 estrelas gigantes vermelhas do *red clump* possuem os parâmetros estelares determinadas por Hill et al. (2011).

2 As abundâncias C, N, O e o blending com as linhas de CN

A linha do ZnI 6362.34 Å apresenta um *blend* com as linhas do CN, mostradas na tabela 3.1, determinadas em laboratório por Davis & Phillips (1963). Em nossos cálculos, adotamos

¹ http://marcs.astro.uu.se

primeiramente os valores das abundâncias do carbono, nitrogênio e oxigênio determinados por Lecureur et al. (2007). Entretanto, ao analisar-se o perfil observado da linha de ZnI 6362.34 Å, percebemos que, em alguns casos, o *blend* do CN estava superestimado, produzindo uma assimetria na asa vermelha da linha do ZnI 6362.34 Å. Desse modo, foi necessário recalcular os valores das abundâncias do carbono, nitrogênio e oxigênio para todas as estrelas da amostra. Essa influência do *blend* do CN na linha de zinco ZnI 6362.34 Å interfere na determinação da abundância do ZnI. Duas das estrelas mais pobres em metais, BW-f4 e BW-f8, tiveram os valores do oxigênio determinados nesse trabalho, algo que não havia sido determinado em Zoccali et al. (2006) e Lecureur et al. (2007).

Tabela 3.1 - Linhas de CN se sobrepondo parcialmente a linha do ZnI 6362.339 Å, medidas por Davis & Phillips (1963).

v',v''	$\lambda(\text{\AA})$	branch	J
(4,0)	6362.743	<i>R</i> 1	46
(4,0)	6362.450	Q1	39
(10,5)	6362.765	<i>P</i> 2	21
(10,5)	6362.548	<i>P</i> 2	10

Com relação às determinações das abundâncias do carbono, nitrogênio e oxigênio, consideramos os seguintes ajustes: sistema Swan C₂ (0,1) $A^3\Pi$ -X³ Π em 5635 Å, o sistema vermelho do CN (5,1) $A^2\Pi$ -X² Σ em 6332.18 Å, e a linha do oxigênio proibido [OI] 6300.311 Å. Na figura 3.1, mostramos os ajustes feitos para as abundâncias do CNO para a estrela B6-b6. O cálculo dessas abundâncias é realizado iterativamente, visto que qualquer alteração no valor da abundância de um desses elementos produz um impacto nas abundâncias dos outros dois, por causa do equilíbrio dissociativo molecular.

Os ajustes dos espectros sintéticos para as linhas do ZnI 4810.54 Å e 6362.34 Å são cruciais para a correta determinação de suas abundâncias. Em relação à linha ZnI 4810.54 Å, foram adotadas três regiões de pseudo-contínuos: 4808.25 Å, 4811.55 Å e 4812.6 Å, com uma maior importância para a região 4811.55 Å, a qual possui um melhor ajuste para esse pseudo-contínuo. Quanto à linha do ZnI 6362.34 Å, o contínuo local, região entre 6361.5 Å – 6362.1 Å no lado azul da linha do ZnI 6362.34 Å, adotado para o seu ajuste é afetado pela auto-ionização da linha do cálcio (CaI) e, mesmo com essas considerações, algumas depressões ainda permanecem.

Figura 3.1: CNO em B6-b6: ajustes ao sistema Swan C₂ (0,1) em 5635 Å o sistema vermelho do CN (5,1) em 6332.18 Å, e a linha proibida do oxigênio [OI]6300.311 Å.

Exemplos desses ajustes para as linhas do ZnI 4810.54 Å e 6362.34 Å são mostrados nas figuras 3.2, 3.3, 3.4 e 3.5 para as estrelas B6-f1, B6-f8, BW-f8 e BWc-4. Nessas figuras apresentamos também os ajustes sem a abundância do ZnI (espectro sintético azul), o que nos mostra que a linha do ZnI 4810.54 Å não apresenta blend com a linha do CN, ao contrário da linha do ZnI 6362.34 Å, que possui esse blend com a linha do CN.

Essas quatro estrelas, por exemplo, apresentam um comportamento distinto do blend do CN com a linha do ZnI 6362.34 Å. A estrela BW-f8 não sofre influência das linhas do CN. A estrela

Figura 3.2: Linhas do ZnI 4810.54 Å e 6362.3 Å para a estrela B6-f1. O espectro sintético representado pela cor azul corresponde ao cálculo sem a abundância do zinco. Para essa estrela, a linha do ZnI 6362.3 Å foi descartada.

BWc-4 é fracamente influenciada pela linha do CN, podendo até mesmo ser desprezada essa influência. As estrelas B6-f1 e B6-f8 são fortemente contaminadas pela linha do CN, levandonos a descartar as linhas dessas estrelas. Além disso, percebemos que, mesmo havendo um bom auste no lado vermelho da linha ZnI 6362.34 Å para a estrela B6-f8, esta foi descartada.

Takeda et al. (2005) levaram em consideração efeitos não-LTE 2 na determinação das abundâncias das linhas do ZnI 4810.54 Å e 6362.34 Å. Essa correção tem um efeito pequeno na

² LTE: Local Thermodynamical Equilibrium

Figura 3.3: Linhas do ZnI 4810.54 Å e 6362.34 Å para a estrela B6-f8. O espectro sintético azul corresponde ao cálculo com ausência de abundância do zinco.

determinação da abundância do ZnI, de 0.10 dex para as estrelas pobres em metais e de 0.05 dex para estrelas com [Fe/H] > -1.0. Desse modo, não consideramos esse efeito em nosso trabalho.

3 Incertezas na Determinação das Abundâncias do ZnI

As determinações nas incertezas das abundâncias das linhas do ZnI 4810.54 e 6362.34 Å foram realizadas adotando pequenas variações nos seguintes parâmetros atmosféricos: \pm 150K na temperatura efetiva, \pm 0.20 na gravidade superficial, \pm 0.10 na metalicidade ([Fe/H]) e \pm 0.10

Figura 3.4: Linhas do ZnI 4810.54 Å e 6362.34 Å para a estrela BW-f8. O espectro sintético azul corresponde ao cálculo com ausência de abundância do zinco.

km s⁻¹ para a velocidade microturbulência, como realizado no artigo de Barbuy et al. (2013).

As determinações dos erros das abundâncias do [Zn/Fe] foram realizadas utilizando os modelos atmosféricos com variações nos parâmetros atmosféricos para as estrelas B6-f1 e BW-f8. Esses erros nas abundâncias do [Zn/Fe] foram calculados fazendo a diferença entre os valores atmosféricos modificados com o modelo atmosférico adotado para as duas estrelas. Como possuimos duas linhas do ZnI, 4810.54 Å e 6362.34 Å, utilizamos uma média das incertezas dessas linhas, erros esses que estão na tabela 3.2. A estrela B6-f1, que possui uma forte influência na

Figura 3.5: Linhas do ZnI 4810.54 Å e 6362.34 Å para a estrela do *red clump* BWc-4. O espectro sintético azul corresponde ao cálculo com ausência de abundância de zinco.

linha do ZnI 6362.34 Å devido ao blend com a linha do CN, apresenta uma grande sensibilidade com a temperatura efetiva. Essa sensibilidade se deve ao fato de que as linhas do CN são extremamente sensíveis à temperatura. Por outro lado, para a estrela BW-f8 o blend do CN com a linha do ZnI 6362.34 Å é desprezível. Ela não apresenta uma variação apreciável com a temperatura efetiva. A soma desses erros nos fornece o limite superior para a incerteza nas abundâncias. Por outro lado, a correta localização do contínuo para a determinação da abundância para as duas linhas do ZnI analizadas apresenta uma incerteza em [Zn/Fe]=±0.1.

<i>Tabela 3.2</i> - Incertezas na determinação dos valores da abundância do [Zn/Fe], aplicando alterações no cálculo dos
espectros sintéticos de ΔT_{eff} = +150 K, $\Delta \log g$ = 0.2, $\Delta [Fe/H]$ = +0.1 dex, Δv_t = 0.1 km s ⁻¹ , na coluna (6) o valor
total do correspondente erro.

Star	ΔT_{eff}	$\Delta \log g$	Δ [Fe/H]	Δv_t	$(\sum x^2)^{1/2}$
	(+150 K)	(+0.2)	(+0.1)	$(+0.1 \text{ kms}^{-1})$	
B6-f1	-0.17	+0.05	-0.06	-0.01	0.19
BW-f8	0.00	-0.05	+0.10	-0.02	0.11

4 Resultados dos dados observacionais do FLAMES-UVES

Os resultados obtidos para a nossa amostra de 56 estrelas são apresentados na tabela 3.3. Nas colunas 1 e 2 temos os nomes das estrelas e seu nome OGLE. Nas colunas 3 a 6 temos os parâmetros atmosféricos das estrelas. Nas colunas 7 a 10, temos a metalicidade [Fe/H] e as abundâncias para o [C/Fe], [N/Fe] e [O/Fe], determinadas por Zoccali et al. (2006), Lecureur et al. (2007) e Hill et al. (2011). Na coluna 11, são dados os valores do [C,N,O/Fe] revisados nesse trabalho. Nas colunas 12 e 13 são dadas as abundâncias do [Zn1/Fe] (linha 4810.54 Å) e do [Zn2/Fe] (linha 6362.34 Å) e na coluna 14, a abundância média do [Zn/Fe].

Na tabela 3.3 mostramos, além dos parâmetros atmosféricos das estrelas, as abundâncias do carbono, nitrogênio e oxigênio e do zinco para as linhas do ZnI 4810.54 Å e 6362.34 Å, bem como a abundância média para a linha do ZnI. A última coluna da tabela 3.3 apresenta alguns comentários para algumas estrelas da nossa amostra: telúrica: linhas telúricas que se sobrepõe às do [OI]6300 Å e [OI]6363 Å, mascarando-as, impossibilitando a determinação das abundâncias do oxigênio, como por exemplo na estrela BL-7; CN-forte: as linhas do CN são fortes, o que inviabiliza a determinação da abundância do zinco pela linha do ZnI 6362.34 Å, devido ao blend do CN com o ZnI, desse modo, descartarmos a abundância do zinco para essa linha para 15 estrelas: B6-b2, B6-f1, B6-f8, BW-b5, BW-f1, BW-f7, B3-b3, B3-b5, B3-b7, B3-f5, BWc-2, BWc-3, BWc-5, BWc-6 e BWc-8. Portanto, a abundância do zinco, para essas 15 estrelas citadas, foi determinada utilizando somente a linha do ZnI 4810.54 Å.

Em nossa amostra somente foi impossível determinar a abundância do zinco para as estrelas B3-b3, B3-f5 e BWc-2. Nenhuma das duas linhas do ZnI, 4810.54 Å e 6362.34 Å, estavam aceitáveis. Entretanto, essas mesmas estrelas foram mantidas na tabela 3.3, pois os valores das abundâncias do carbono, nitrogênio e oxigênio delas foram recalculados. Utilizamos esses

novos valores do carbono, nitrogênio e oxigênio para determinarmos os valores das abundâncias do zinco, especialmente à da linha do ZnI 6362.34 Å, devido ao blend com a linha do CN. Esses novos valores do carbono, nitrogênio e oxigênio são mostrados na tabela 3.3, bem como os valores anteriores determinados por Zoccali et al. (2006), Lecureur et al. (2007) e Hill et al. (2011). Esses resultados estão presentes também em nosso artigo (Barbuy et al. 2015). As colunas de 8 a 10 da tabela 3.3 apresentam os valores do carbono, nitrogênio e oxigênio determinados por Zoccali et al. (2006), Lecureur et al. (2011) e, na coluna 11, os valores recalculados das abundâncias do carbono, nitrogênio e oxigênio de Barbuy et al. (2015).

Nas colunas 7 a 10, temos a metalicidade [Fe/H] e as abundâncias para o [C/Fe], [N/Fe] e [O/Fe], determinadas por Zoccali et al. (2006), Lecureur et al. (2007) e Hill et al. (2011). Na coluna 11, são dados os valores do [C,N,O/Fe] revisados nesse trabalho. Nas colunas 12 e 13 são dadas as abundâncias do [Zn1/Fe] (linha 4810.54 Å) e do [Zn2/Fe] (linha 6362.34 Å) e na coluna 14, a abundância média do [Zn/Fe].

Bensby et al. (2013) analisaram estrelas anãs observadas por efeito de microlentes, determinando, assim, a abundância do [Zn/Fe]. Estudos com estrelas do disco espesso e determinações das abundâncias do [Zn/Fe] foram realizados por Prochaska et al. (2000), Reddy et al. (2006), Nissen & Schuster (2011) e Bensby et al. (2014). Outros autores, entre eles Allende-Prieto et al. (2004), Bensby et al. (2014) e Pompéia (2003), realizaram observações com estrelas do disco fino, determinando as abundâncias para o zinco. Nas seções seguintes apresentamos um estudo comparativo entre nossos resultados e dos autores citados acima.

Em outra seção, apresentamos um estudo comparativo entre os nossos resultados e com valores de abundâncias do Zn para os sistemas damped Lyman α encontrados na literatura. Nesses sistemas, o zinco é um substituto para o ferro. Utilizamos para essa análise, os resultados de Akerman et al. (2005), Cooke et al. (2011, 2013), Kulkarni et al. (2007) e Vladilo et al. (2011).

A figura 3.6 mostra o comportamento do [Zn/Fe] vs. [Fe/H] para a nossa amostra, onde os diferentes símbolos representam os quatro diferentes campos observados bem como as estrelas do *red clump*. Na figura 3.6a apresentamos, juntamente com nossos dados, as abundâncias do [Zn/Fe] determinadas por Bensby et al. (2013). Percebe-se um bom acordo entre nossos dados e o de Bensby et al. (2013) entre as metalicidades de -1.4 < [Fe/H] < 0.0. Por outro lado, analisando a figura para as estrelas ricas em metais com metalicidade [Fe/H] > 0.0, encontramos

Tabela 3.3 - Parâmetros atmosféricos e abundâncias do C,N,O adotados de Zoccali et al. (2006), Lecureur et al. (2007) e Hill et al. (2011). Coluna 11: valores das abundâncias revistas para o C,N,O para as estrelas selecionadas, comentadas no texto, onde a letra **c** indica que o valor anterior da abundância do C,N,O é adotado, caso contrário, o novo valor da abundância é adotado. Colunas 12, 13: abundâncias do [Zn/Fe] com Zn1 e Zn2 correspondendo às linhas de 4810.54 Å e 6362.34 Å. Coluna 14: abundância média final do zinco.

Star	OGLE n°	V	T_{eff}	log g	\mathbf{v}_{t}	[Fe/H]	[C/Fe]	[N/Fe]	[O/Fe]	[C,N,O/Fe] _{corr}	[Zn1/Fe]	[Zn2/Fe]	[Zn/Fe]C	Comentários
B6-b1	29280c3 16	6.14	4400	1.8	1.6	0.07	-0.16	0.39	0.04	c,c,c	0.00	-0.40	-0.20	
B6-b2	83500c6 16	5.40	4200	1.5	1.4	-0.01				-0.2,0.6,-0.1	-0.15		-0.15	CN forte
B6-b3	31220c2 16	5.09	4700	2.0	1.6	0.10	-0.16	0.11	0.19	c,0.3,-0.15	-0.25	-0.30	-0.27	
B6-b4	60208c7 16	5.12	4400	1.9	1.7	-0.41	-0.14	0.53	0.53	c,c,0.3	0.00	0.00	0.00	
B6-b5	31090c2 16	.09	4600	1.9	1.8	-0.37	-0.11	0.56	0.33	c,0.3,0.15	+0.20	0.00	+0.10	
B6-b6	77743c7 16	5.09	4600	1.9	1.8	0.11	-0.03	0.57	0.01	≤-0.1,0.7,0.0	-0.30	-0.50	-0.40	
B6-b8	108051c7 16	5.29	4100	1.6	1.3	0.03	0.08	0.05	0.10	0,c,0	-0.15	0.00	-0.08	CN forte
B6-f1	23017c3 15	.96	4200	1.6	1.5	-0.01	0.05	0.55	0.18	0.0,0.35,0.07	-0.30	_	-0.30	
B6-f2	90337c7 15	.91	4700	1.7	1.5	-0.51	-0.04	0.56	0.39	0,0.05,0.18	+0.05	+0.05	+0.05	
B6-f3	21259c2 15	5.71	4800	1.9	1.3	-0.29	-0.09	0.53	0.18	c,0.3,0.05	+0.20	0.00	+0.10	
B6-f5	33058c2 15	.90	4500	1.8	1.4	-0.37	0.37	0.53		-0.1,0.15,0.0	0.00	+0.2	+0.10	
B6-f7	100047c6 15	.95	4300	1.7	1.6	-0.42	0.42	0.57	_	0,0.3,0.1	-0.30	0.00	-0.15	
B6-f8	11653c3 15	.65	4900	1.8	1.6	0.04	-0.11	0.51	-0.17	c,0.35,-0.3	-0.60	_	-0.60	CN forte
BW-b2	214192 16	5.58	4300	1.9	1.5	0.22	0.05	0.25	0.23	-0.1,0.1,-0.1	-0.30	0.00	-0.15	
BW-b4	545277 16	.95	4300	1.4	1.4	0.07		_		-0.1,0,-0.1	_	0.00	0.00	
BW-b5	82760 16	6.64	4000	1.6	1.2	0.17	0.06	0.56	0.09	c,0,0	-0.30	—	-0.30	CN forte
BW-b6	392931 16	6.42	4200	1.7	1.3	-0.25	0.05	0.56	0.09	-0.3,0.9,0.25	0.00	0.00	0.00	
BW-b7	554694 16	6.69	4200	1.4	1.2	0.10				-0.23,-0.1,-0.2	-0.30	-0.30	-0.30	
BW-f1	433669 16	.14	4400	1.8	1.6	0.32	-0.26	0.24	-0.02	-0.2,0.5,-0.15	-0.35	—	-0.35	CN forte
BW-f4	537070 16	6.07	4800	1.9	1.7	-1.21	0.04	0.54		c,c,0.3	+0.30	+0.30	+0.30	
BW-f5	240260 15	.88	4800	1.9	1.3	-0.59	0.03	0.53	0.31	c,0.2,0.1	+0.30	0.00	+0.15	
BW-f6	392918 16	.37	4100	1.7	1.5	-0.21	0.08	0.58	0.46	c,0.4,0.18	0.00	+0.30	+0.15	
BW-f7	357480 16	.31	4400	1.9	1.7	0.11	-0.10	0.30	0.03	-0.2,0.6,-0.1	-0.20	—	-0.20	CN forte
BW-f8	244598 16	6.00	5000	2.2	1.8	-1.27	0.03	0.53		0,+0.2,+0.5	+0.30	+0.30	+0.30	
BL-1	1458c3 15	.37	4500	2.1	1.5	-0.16	0.03	0.18	0.26	0.15,0.4,0.3	+0.10	0.00	+0.05	
BL-3	1859c2 15	5.3	4500	2.3	1.4	-0.03	-0.07	0.18	0.22	c,0.3,0.1	+0.20	0.00	+0.10	
BL-4	3328c6 14	.98	4700	2.0	1.5	0.13	-0.04	0.41	0.02	-0.1,0.3,-0.2	-0.30	-0.30	-0.30	
BL-5	1932c2 15	.39	4500	2.1	1.6	0.16	0.04	0.33	0.07	-0.02, c, -0.05	-0.25	-0.30	-0.27	
BL-7	6336c7 15	.33	4700	2.4	1.4	-0.47	-0.17	0.38	0.46	c,c,0.3 ^t	+0.30	+0.30	+0.30	telúrica
B3-b1	132160C416	5.35	4300	1.7	1.5	-0.78	-0.10	0.45	0.55	0.1,0.6,0.4	—	+0.30	+0.30	
B3-b2	262018C7 16	6.63	4500	2.0	1.5	0.18	-0.13	0.42	0.12	c,0,-0.1	-0.30	+0.10	-0.10	
B3-b3	90065C3 16	5.59	4400	2.0	1.5	0.18	-0.09	0.46	-0.19	0,0,-0.15	—		_	CN forte
B3-b4	215681C616	5.36	4500	2.1	1.7	0.17	-0.16	0.39	-0.06	c,c,c	0.00	_	0.00	
B3-b5	286252C7 16	5.23	4600	2.0	1.5	0.11	-0.15	0.40	0.00	-0.2,0,-0.3	0.00	_	0.00	CN forte
B3-b7	282804C7 16	5.36	4400	1.9	1.3	0.20	-0.16	0.39	-0.06	c,0,-0.25	-0.50	_	-0.50	CN forte
B3-b8	240083C616	6.49	4400	1.8	1.4	-0.62	-0.16	0.39	0.52	c,0.3,0.25	+0.30	+0.30	+0.30	
B3-f1	129499C4 16	6.32	4500	1.9	1.6	0.04	0.09	0.44	0.19	0,0.4,0.1	0.00	0.00	0.00	
B3-f2	259922C7 16	5.4	4600	1.9	1.8	-0.25	-0.15	0.40	—	c,c,(0.2)	0.00	0.00	0.00	telúrica
B3-f3	95424C3 16	0.32	4400	1.9	1.7	0.06	-0.08	0.47	-0.08	0,0,c	+0.2	-0.15	0.03	
B3-f4	208959C616	.51	4400	2.1	1.5	0.09	0.10	0.45	0.43	c,0.1,0.1	0.00	+0.30	+0.15	
B3-f5	49289C2 16	0.61	4200	2.0	1.8	0.16	-0.06	0.49	0.09	c,c,-0.05				CN forte
B3-f7	279577C7 16	0.28	4800	2.1	1.7	0.16	-0.02	0.33	0.05	c,c,c	-0.60	-0.60	-0.60	
B3-18	193190C516	0.26	4800	1.9	1.5	0.20	-0.17	0.38	0.00	c,0.28,-0.25	-0.30	-0.60	-0.45	
BWc-1	393125 16	0.84	44/6	2.1	1.5	0.09	0.12	0.50	0.19	0.05,0.3,0.1	-0.30	-0.10	-0.20	C 1
BWc-2	545749 17	.19	4558	2.2	1.2	0.18	-0.09	0.52	0.07	-0.2,0.2,-0.15				CN forte
BWc-3	564840 16	0.91	4513	2.1	1.3	0.28	0.04	0.51	0.19	-0.1,0.4,0	-0.30		-0.30	CN forte
BWc-4	564857 16	0.76	4866	2.2	1.3	0.06	0.36	0.28	0.05	-0.1,0.05,-0.05	-0.30	-0.40	-0.35	C 1
BWc-5	575542 16	.98	4535	2.1	1.5	0.42	-0.01	0.59	0.04	-0.05,0.4,-0.1	0.00		0.00	CN forte
BWc-6	575585 16	0.74	4769	2.2	1.3	-0.25	-0.20	0.69	0.43	c,c,0.25	0.00		0.00	CN forte
BWc-7	6/5// 1/	.01	4590	2.2	1.1	-0.25	-0.20	0.50	0.44	c,0.3,0.25	0.00	0.00	0.00	C 1
BWc-8	78255 16	.97	4610	2.2	1.3	0.37	-0.22	0.47	-0.07	c,0.1,-0.35	0.00		0.00	CN forte
BWc-9	78271 16	.90	4539	2.1	1.5	0.15	-0.13	0.77	0.11	-0.1,0.2,-0.05	0.00	-0.10	-0.05	
BWc-10	89589 16	0.70	4/93	2.2	1.3	0.07	-0.15	0.54	0.15	-0.2,0.3,0	0.00	0.00	0.00	
BWc-11	89735 16	0.69	4576	2.1	1.0	0.17	-0.14	0.56		-0.2,0,-0.2	-0.10	0.00	-0.05	
BWc-12	89832 16	.92	4547	2.1	1.3	0.23	0.19	0.29	0.24	-0.1,0.1,-0.05	-0.30	-0.60	-0.45	
- BWc-13	89848 16	13	4584	21	11	0.36	0.12	0.51	0.13	0 - 015 - 01	-0.10	-0.30	-0.20	

um grande espalhamento em nossos dados, entre -0.6 < [Zn/Fe] < +0.15, e um decréscimo da abundância do [Zn/Fe] em função da metalicidade [Fe/H], contrariamente a Bensby et al. (2013). Na figura 3.6b, apresentamos os mesmos resultados para nossa amostra com as das abundâncias do [Zn/Fe] obtidos por Cayrel et al. (2004), para estrelas do halo e disco espesso pobres em metais, por Ishigaki et al. (2013) e Nissen & Schuster (2011), que contém estrelas do halo e do disco espesso. Os dados de Bensby et al. (2013) também estão presentes na figura 3.6. Os resultados encontrados por Ishigaki et al. (2013) apresentam valores menores para as abundâncias do [Zn/Fe] entre as metalicidades -3.0 < [Fe/H] < -1.0 em relação aos resultados encontrados por Cayrel et al. (2014).

5 Resultados das abundâncias do [Zn/Fe] encontradas na literatura

Analisamos vários trabalhos que tratam sobre as abundâncias do [Zn/Fe] encontrados na literatura.

Prochaska et al. (2000) realizaram um estudo com 10 estrelas do disco espesso. Os autores utilizaram as linhas do ZnI 4722.1 Å e ZnI 4810.54 Å, encontrando uma abundância média do [Zn/Fe] ~ 0.1, superior à abundância solar. Segundo esses autores, a abundância do [Zn/Fe] em relação à linha ZnI 4722.1 Å é maior que a determinada através da linha ZnI 4810.54 Å.

Bensby et al. (2013) realizaram observações espectroscópicas de estrelas em uma faixa de metalicidade de -2.0 < [Fe/H] < +0.6. Esses autores determinaram as abundâncias do [Zn/Fe] para essa amostra realizando observações espectrais que englobam as linhas do ZnI 4722.1 Å, 4810.54 Å e 6362.34 Å. As abundâncias médias encontradas são [Zn/Fe] ~ 0.1, não aparentando haver um declínio do [Zn/Fe] em função do aumento da metalicidade. As estrelas pobres em metais com [Fe/H] < -0.4 são as estrelas mais velhas dessa amostra, com idades superiores a 10 Ganos, ao passo que as estrelas ricas em metais possuem uma idade em torno de 5 a 6 Ganos. Nota-se que as estrelas mais velhas que apresentam valores de abundâncias do [Zn/Fe] maiores, com um ligeiro declínio da abundância do [Zn/Fe] em função da metalicidade [Fe/H].

Bensby et al. (2014) utilizaram também as linhas do ZnI 4722.1 Å, 4810.54 Å e 6362.34 Å, obtendo as abundâncias do [Zn/Fe] para 714 estrelas anãs e sub-gigantes do tipo F e G na vizinhança solar. Os autores dividiram essa amostra em estrelas do disco espesso e disco fino, baseado em um critério cinemático, segundo o qual a razão entre a probabilidade da estrela pertencer ao disco fino (D) é

Figura 3.6: Abundância do [Zn/Fe] vs. [Fe/H] para o estudo atual comparados com às abundâncias encontradas na literatura para estrelas do halo e do bojo. Os símbolos apresentados nas figuras são: na cor preta as abundâncias dos nossos dados: triângulos vazados: campo NGC 6553 (designados como B3); círculo cheio: Janela de Baade (BW); quadrado vazado: campo em b = -6° (B6); triângulo cheio: campo Blanco (B1); estrela vazado: estrelas pertencentes ao *red clump* (RC). Abundâncias encontradas na literatura: estrela de três pontas vermelha: estrelas extremamente pobres em metais de Cayrel et al. (2004); estrela de três pontas verde: estrelas anãs do bojo de Bensby et al. (2013); cruz verde: estrelas do disco espesso e do halo de Ishigaki et al. (2013); círculos vazados vermelho: estrelas do disco espesso e do halo de Nissen & Schuster (2011). Barra representado os erros das medições presente no canto direito inferior do painel superior da figura.

TD/D > 2.0, a estrela pode ser pertencente ao disco espesso, e se essa razão entre as probabilidades for TD/D < 0.5, ele provavelmente pertence ao disco fino. Esse método de certa estrela pertencer ao disco fino ou disco espesso está definido em Bensby et al. (2003). Seguindo esse método de Bensby et al. (2003), as estrelas de Bensby et al. (2014) foram agrupadas em estrelas do disco espesso e do disco fino e utilizamo-as para comparar com nossos resultados.

Cayrel et al. (2004) observaram estrelas anãs e gigantes extremamente pobres em metais, com metalicidade entre -4.1 < [Fe/H] < -2.0. As abundâncias do [Zn/Fe] foram medidas em relação às linhas do ZnI 4722.1 Å e 4810.54 Å. Esses autores analisaram a abundância do [Zn/Fe] e encontraram que ela decresce com a metalicidade da estrela.

Nissen & Schuster (2010, 2011) realizaram um estudo com estrelas anãs e sub-gigantes pobres em metais, com metalicidade na faixa entre -1.6 < [Fe/H] < -0.4. Nessa amostra constituída por 94 estrelas, a maioria pertence à população do halo e somente 16 estrelas pertencem ao disco espesso. Nissen & Schuster (2011) determinaram as abundâncias do [Zn/Fe] em função das linhas do ZnI 4722.1 Å e 4810.54 Å. Os autores classificam a população do halo em duas classes de estrelas: estrelas com α alto e estrelas com α baixo. As estrelas do halo com α alto e as estrelas do disco espesso apresentam uma abundância do [Zn/Fe] com um valor aproximadamente constate de [Zn/Fe] ~ 0.15. As estrelas do halo com α baixo possuem um declínio da abundância do [Zn/Fe] com a metalicidade, além de apresentarem valores do [Zn/Fe] menores que as determinadas para a outra classe.

Ishigaki et al. (2013) observaram 97 estrelas anãs e gigantes com metalicidades entre -3.3 < [Fe/H] < -0.5 pertencentes ao disco espesso, halo interno e halo externo, com um intervalo de comprimento de onda de 4000 – 6800 Å. As abundâncias do [Zn/Fe] determinadas por esses autores, para as linhas do ZnI 4722.1 Å e 4810.54 Å, mostram comportamentos interessantes entre as amostras. As estrelas do disco espesso apresentam valores do [Zn/Fe] superiores ao solar, com um pequeno espalhamento. Ainda segundo Ishigaki et al., as estrelas do halo interno apresentam uma abundância do [Zn/Fe] menor para as estrelas com metalicidade [Fe/H] > -1.0, com um espalhamento maior em função da metalicidade, ao passo que as estrelas do halo externo possuem um valor menor para o [Zn/Fe] em relação às outras duas subamostras, com um espalhamento considerável.

Mishenina et al. (2011) analisaram os dados de estrelas anãs com metalicidades entre -1.0 < [Fe/H] < 0.3 pertencentes ao disco espesso, disco fino e ao grupo de Hércules. As observações foram realizadas em uma faixa espectral de 4400 Å– 6800 Å, onde as abundâncias do [Zn/Fe]

foram determinadas utilizando as linhas do ZnI 4722.1 Å, 4810.54 Å e 6362.34 Å. As estrelas do disco espesso apresentam um aumento no valor da abundância do [Zn/Fe] com a diminuição da metalicidade, compatível com resultados encontrados por outros autores. Nota-se, ainda, que as abundâncias do [Zn/Fe] para as estrelas do disco espesso são maiores que as determinadas para as estrelas do disco fino.

Reddy et al. (2006) realizaram um estudo com estrelas anãs do disco espesso com metalicidades entre -1.2 < [Fe/H] < -0.3. À medida que a metalicidade diminui a abundância do [Zn/Fe] para essas estrelas aumenta, notando-se, ainda, um certo espalhamento da abundância em função da metalicidade. Esses autores não informan quais linhas do ZnI foram utilizadas para a determinação das abundâncias do [Zn/Fe].

Allende-Prieto et al. (2004) observaram estrelas na vizinhança solar com uma cobertura espectral entre ~ 3600 Å – 9200 Å. Mesmo sendo possível analisar a abundância do [Zn/Fe] para as linhas do ZnI 4722.10 Å, 4810.54 Å e 6362.34 Å, pois essas três linhas do ZnI estão presentes na cobertura espectral da observação, os autores adotaram somente a linha do ZnI 4810.54 Å para determinar a abundância do [Zn/Fe]. A linha do ZnI 4722.1 Å leva a uma determinação da abundância do [Zn/Fe] maior do que se espera para estrelas ricas em metais. De acordo com os autores, o zinco apresenta abundâncias similares para estrelas pobres em metais, mas uma discrepância para as estrelas mais ricas em metais. Ainda encontraram que a abundância do [Zn/Fe] decresce com o aumento da metalicidade [Fe/H] nas estrelas.

Pompéia (2003) observou estrelas anãs velhas do tipo G e K do bojo com metalicidade entre $-0.80 \le [Fe/H] \le +0.40$. As abundâncias do [Zn/Fe] foram medidas por meio das linhas do ZnI 4722.1 Å e 4810.54 Å. Segundo Pompéia, as abundâncias do [Zn/Fe] são compatíveis com estrelas do disco, apresentando um aumento na abundância do [Zn/Fe] com a diminuição da metalicidade e que, para estrelas ricas em metais, a abundância do [Zn/Fe] é similar à solar.

6 Comparando as abundâncias do [Zn/Fe] estrelas do bojo e do disco espesso

Na figura 3.7 apresentamos uma comparação dos nossos resultados para as abundâncias do [Zn/Fe] das estrelas do bojo com os resultados obtidos para as estrelas do disco espesso. Nas figuras 3.7 a–d, mantivemos os resultados de Nissen & Schuster (2011) para as estrelas do disco espesso. Nissen & Schuster separaram seus resultados para estrelas do disco espesso e estrelas do halo, sendo que as estrelas do halo foram subdivididas em duas populações: população com

 α alto e com α baixo. Os dados de Nissen & Schuster possuem um pequeno espalhamento do [Zn/Fe] em função da metalicidade [Fe/H]. Além desses dados, acrescentamos os resultados das abundâncias do [Zn/Fe] de Bensby et al. (2014) (figura 3.7a), Mishenina et al. (2011) (figura 3.7b), Prochaska et al. (2000) (figura 3.7c) e Reddy et al. (2006) (figura 3.7d). Notamos que todas as amostras para as estrelas do disco espesso apresentam um bom acordo com os nossos dados, na faixa de metalicidade entre -1.5 < [Fe/H] < 0.0.

As estrelas que Bensby et al. (2014) classificaram em estrelas do disco espesso, estrelas do disco fino e estrelas em uma classe intermediária entre as do disco espesso e do disco fino. As estrelas do disco espesso observadas por Bensby et al. (2014), mostradas na figura 3.7a, incluem as estrelas velhas pobres em metais e estrelas jovens (<8 Ganos) ricas em metais. As estrelas velhas pobres em metais, observadas por Bensby et al., atingem uma metalicidade de [Fe/H] ≈ -2.0 , com um ligeiro aumento na abundância do [Zn/Fe] \approx +0.15, que está compatível com as abundâncias do [Zn/Fe] encontradas para as nossas estrelas pobres em metais. Para as estrelas do disco espesso ricas em metais ([Fe/H] > -0.3), os resultados do [Zn/Fe] obtidos por Bensby et al. apresentam valores das abundâncias do [Zn/Fe] essencialmente solar, enquanto os nossos resultados nessa faixa de metalicidade possuem valores das abundâncias do [Zn/Fe] menor que o valor solar.

Os resultados das abundâncias do [Zn/Fe] para nossas estrelas do bojo são compatíveis com as abundâncias do [Zn/Fe] para as amostras de Bensby et al. (2014), Mishenina et al. (2011), Prochaska et al. (2000) e Reddy et al. (2006), para as estrelas pobres em metais. Em relação às estrelas ricas em metais, há uma distinção entre os nossos resultados e as estrelas do disco espesso, sendo que a maioria apresenta valores sub-solares, enquanto os valores obtidos por Bensby et al. (2014) possuem [Zn/Fe] ~ 0.0.

7 Comparação com as abundâncias do [Zn/Fe] para as estrelas do disco fino

Na figura 3.8 comparamos os resultados das abundâncias do [Zn/Fe] com as abundâncias do [Zn/Fe] determinadas por Allende-Prieto et al. (2004) e Bensby et al. (2014) para as estrelas do disco fino, e com os resultados obtidos por Pompéia (2003) para estrelas anãs ricas em metais. Além disso, mantivemos na figura os resultados obtidos por Nissen & Schuster (2011), como referência para estrelas do disco espesso, comentadas na seção 3.6.

Bensby et al. (2014) obtiveram uma abundância média do [Zn/Fe] ~ 0.0 para as estrelas

Figura 3.7: Abundâncias do [Zn/Fe] vs. [Fe/H] para os resultados determinados para os dados FLAMES-UVES (os símbolos presentes para os nosso resultados são os mesmos encontrado na figura 3.6), comparados com as análises feitas por Nissen & Schuster (2011) para as estrelas do disco espesso (presentes em todos os painéis dessa figura), juntamente com os dados do disco espesso de Bensby et al. (2014) (figura a), Mishenina et al. (2011) (figura b), Prochaska et al. (2000) (figura c), e Reddy et al (2006) (figura d).

do disco fino, com uma certa fração delas com valores de [Zn/Fe] de até +0.4, como mostrado na figura 3.8a. As abundâncias do [Zn/Fe] obtidas por Allende-Prieto et al. (2004) apresentam valores do [Zn/Fe] > 0, mostrando uma tendência do aumento da abundância do [Zn/Fe] com a metalicidade (figura 3.8b). Na figura 3.8c são apresentados os resultados das abundâncias do [Zn/Fe] de estrelas anãs ricas em metais obtidos por Pompéia (2003). Essas estrelas são do tipo G e K e com idades entre 10 – 11 Ganos. De acordo com a autora, não há uma sub-abundância do [Zn/Fe] com a metalicidade, como observada nas abundâncias determinadas em nosso trabalho bem como para as obtidas em estrelas do disco espesso. De acordo com Trevisan et al. (2011) e Trevisan & Barbuy (2014), provavelmente as estrelas de Pompéia (2003) são estrelas do disco fino velho e não estrelas de tipo bojo.

8 Comparação com os sistemas damped Lyman- α

Há uma grande variedade de dados sobre DLAs na literatura. De posse deles, podemos comparar os resultados das abundâncias do zinco de nossas estrelas do bojo com os dados das DLAs, para uma grande faixa de metalicidades. Essas comparações podem auxiliar a entender tanto a natureza das DLAs como o processo de formação de bojos.

As figuras 3.9a,b apresentam uma comparação da abundância de zinco ([Zn/H]) em função da metalicidade ([Fe/H]) entre a presente amostra e várias amostras de DLAs de Akerman et al. (2005), Cooke et al. (2011, 2013), Kulkarni et al. (2007) e Vladilo et al. (2011). Em relação aos dados de Akerman et al. (2005), não consideramos os casos que são limites superiores. Para as amostras de DLAs de Kulkarni et al. (2007) e Vladilo et al. (2011), foi necessário adotar uma transformação de [Fe/H] em função do redshift (Pei & Fall 1995). Outras relações similares são dadas por Cen & Ostriker (1999) e Madau & Pozzetti (2000), por exemplo. Estas figuras apresentam uma comparação do zinco [Zn/H] em DLAs e em estrelas do bojo, com ambos os dados sobrepostos entre metalicidades -1.5 < [Fe/H] < -0.1, sendo a que maioria das estrelas do bojo dessa amostra são mais ricas em metais que as DLAs.

Figura 3.8: Abundâncias do [Zn/Fe] vs. [Fe/H] para os resultados das estrelas do FLAMES-UVES comparados às estrelas do disco fino de Bensby et al. (2014) (figura a), de Allende-Prieto et al. (2004) (figura b), e de Pompéia (2003) (figura c). Nas figuras **a** e **b** são mantidos os resultados das estrelas do disco espesso de Nissen & Schuster (2011).

Figura 3.9: Os valores das abundâncias do [Zn/H] vs. [Fe/H] para as estrelas do FLAMES-UVES (triângulo cheio preto) e para as amostras de DLAs: painel superior: Vladilo et al. (2011) representados por quadrado preto vazado; painel inferior: Kulkarni et al. (2007) (quadrado azul vazado), Cooke et al. (2013) (estrela de três pontas verde) e Akerman et al. (2005) (estrela de quatro pontas vermelho). Em relação aos dados de Kulkarni et al. (2007) utilizou-se uma transfomação de metalicidade [Fe/H] vs. redshift de Pei & Fall (1995). Uma relação X=Y é desenhada sobre os dados.

QSO	Z _{abs}	[Zn/H]	[Fe/H]	[Fe/H] _c	[Zn/Fe]	[Zn/Fe] _c				
Akerman et al. (2005)										
B0438-436	2.43736	-0.68	-0.68 -1.30 -0.87 0.62							
B0458-020	2.03950	-1.15	-1.61	-1.34	0.46	0.21				
B0528-250	2.14100	-1.45	-1.57	-1.34	0.12	-0.09				
B0528-250	2.81100	-0.47	-1.11	-0.57	0.64	0.18				
B1055-301	1.90350	-1.26	-1.57	-1.32	0.31	0.08				
B1230-101	1.93136	-0.17	-0.63	0.10	0.46	-0.15				
B2314-409	1.85730	-1.01	-1.29	-1.01	0.28	0.02				
Vladilo et al. (2011)										
0216+080	2.2930	-0.63	-1.12	-0.67	0.49	0.10				
2206-199A	1.9200	-0.33	-0.87	-0.25	0.54	0.02				
	1 (17)		(17) 1	1	1					

Tabela 3.4 - Sistemas DLAs para o qual às abundâncias de ferro foram corrigidas devido à depleção sofrida pela poeira.

Notes. Colunas [Fe/H]_c e [Zn/Fe]_c correspondem os valores das

abundâncias do ferro corrigidas pela depleção da poeira.

Na figura 3.10 mostramos uma comparação dos resultados das abundâncias de [Zn/Fe] determinadas nesse trabalho com os resultados das abundâncias de [Zn/Fe] de Cayrel et al. (2004), Nissen & Schuster (2011) e Ishigaki et al. (2013), para as estrelas do halo e do disco espesso, bem como os resultados encontrados para as DLAs (Akerman et al. 2005, Cooke et al. 2013 e Vladilo et al. 2011). Para as DLAs foi realizado uma correção para a depleção da poeira em função da metalicidade.

O enriquecimento do zinco em função da metalicidade indicada pelos dados das DLAs mostra uma sobreposição com os resultados tanto em relação às estrelas do halo e do disco espesso, bem como em relação às estrelas do bojo.

9 DLAs selecionadas com medidas de abundância de ferro

Dentre as DLAs estudadas por Akerman et al. (2005) e Cooke et al. (2013), que possuem medições de abundâncias de ferro ([Fe/H]), algumas apresentavam medidas das abundâncias do

zinco. Esses objetos foram selecionados para analisarmos a relação entre as abundâncias do ferro e do zinco nas DLAs. Vladilo et al. (2011) somente publicaram os valores de [Zn/H] para a maioria das DLAs. Em nossa lista de DLAs com medidas de abundâncias de ferro, incluimos duas DLAs de Vladilo et al. (2011), presentes na tabela 3.4, 0216+080 em $z_{abs} = 2.2930$ e 2206-199A em $z_{abs} = 1.9200$, em que os autores conseguiram determinar as densidades de coluna de FeII.

O ferro é um elemento refratário, sofrendo depleção em poeira. Portanto, há a necessidade de se aplicar uma correção às observações dos valores do [Fe/H] para os dados de Akerman et al. (2005) e Vladilo et al. (2011), devido à poeira. Em contrapartida, os dados de Cooke et al. (2013) não requerem tal correção, pois como são sistemas com baixa metalicidade, [Fe/H] < -2, a depleção em poeira em sistemas com baixa metalicidade é desprezível (Pettini et al. 1997a). A tabela 3.4 apresenta os valores da metalicidade dos sistemas DLAs onde aplicamos a correção devido à depleção pela poeira.

Aplicar correções de poeira às abundâncias químicas de sistema gasoso, DLAs ou meio interestelar galáctico, é uma tarefa muito complexa. Existem vários modelos de correção de poeira para se obter a depleção do elemento químico da DLA em questão. Seguimos Lanfranchi & Friaça (2003), para obter a depleção δ_X do elemento X, restaurando, dessa forma, a abundância intrínseca [X/H]_i desse elemento observado em função da abundância observada [X/H]:

$$\delta_{\mathbf{X}} = [X/H] - [X/H]_i \tag{3.1}$$

No meio interestelar galáctico, as razões suprasolares de [Zn/Fe], [Zn/Cr] e [Zn/Si] fornecem evidências de depleção por poeira para os elementos refratários ferro, cromo e silício. Além disso, o modelo de depleção de poeira depende do local pelo qual a linha de visada atravessa. Segundo Savage & Sembach (1996), há quatro formas diferentes de se corrigir o efeito da depleção de poeira, dependendo do tipo de meio interestelar galáctico: (1) nuvens de gás fria no disco galáctico (CD); (2) nuvens de gás quente no disco (WD); (3) nuvens de gás quente do halo e do disco (WHD); (4) nuvens de gás do halo quente (WH). Por outro lado, deve-se considerar a contribuição da nucleossíntese para o enriquecimento do zinco em função do ferro.

Para realizarmos uma comparação entre os resultados dos dados da nossa amostra com as DLAs, foi necessário aplicar correções nas observações do ferro devido à poeira. Para tal fato, utilizamos os mesmos procedimentos de Lanfranchi & Friaça (2003). Aplicamos quatro modelos de correção de poeira de Lanfranchi & Friaça (2003) com pequenas incertezas para as abundâncias do zinco, ferro e a um dos outros elementos refratários (cromo, silício ou magnésio). Assumimos uma faixa de abundância intrínseca para o [Zn/Fe] de 0.0 (valor solar), 0.1, 0.2 e 0.3. Abundâncias de valores de [Zn/Fe] superiores ao valor solar são indicados para determinações de objetos de baixa metalicidade. Utilizamos como referência média, as nuvens de gás quente, WD e WH. As nuvens de gás frias não são consideradas como uma referência para uma DLA, visto que nuvens frias apresentam depleção de poeira ([Zn/Fe], [Cr/ZN], [Si/Zn]) maiores que os observados em DLAs. Frações de hidrogênio molecular são menores em DLAs, em contraste ao elevado número de moléculas nas nuvens frias. Vladilo et al. (2011) mostrou que a depleção do ferro, para a maioria das DLAs de sua amostra, encontra-se na região delimitada pelos valores típicos de nuvens galácticas de WD e de WH, de acordo com os modelos de evolução química.

O grau da depleção deveria aumentar com a metalicidade. Desse modo, não podemos utilizar diretamente [Fe/H] para obter a metalicidade, visto que a intensidade da abundância do ferro é altamente diminuida pela poeira. Portanto, o valor [Zn/H] é utilizado como um indicador da metalicidade pois é um elemento volátil. Determinamos uma correção para a depleção pela poeira como uma função da metalicidade. Para tal, utilizamos quatro modelos distintos para determinarmos o quanto a poeira diminuia os valores observados de [Zn/H], para 16 DLAs. Então, um ajuste quadrático para os 64 pontos resultantes fornece a correção da poeira como uma função de [Zn/H].

Na figura 3.10 inserimos um retângulo mostrando o ajuste utilizado para corrigir a depleção da poeira para a abundância do ferro com o valor observado de [Zn/H], determinado após aplicarmos nossos modelos de poeira para as DLAs selecionadas de Lanfranchi & Friaça (2003). O ajuste empregado para a correção da poeira é um ajuste quadrático.

Podemos notar, ainda analisando a figura 3.10, a qual mostra o enriquecimento do zinco em função do ferro, que os dados das estrelas do halo e do disco espesso de Nissen & Schuster (2011) e de Ishigaki et al. (2013), juntamente com os dados das estrelas do bojo do presente trabalho, o qual inclui alguns valores de [Zn/Fe] subsolar, se sobrepõe aos dados das DLAs de Akerman et al. (2005) e de Vladilo et al. (2011).

10 Modelos de evolução química do zinco em esferóides massivos

As estrelas do bojo ajudam na investigação sobre a evolução e formação do bojo galáctico. A figura 3.11 mostra a comparação de [Zn/Fe] vs. [Fe/H] para as estrelas do bojo presente

Figura 3.10: Abundâncias do [Zn/Fe] vs. [Fe/H] para as estrelas do FLAMES-UVES e valores das abundâncias para as amostras de DLAs de Akerman etl al. (2005) e Cooke et al. (2013). Juntamente a esses dados, são mostrados também as abundâncias das estrelas do halo de Cayrel et al. (2004) e as estrelas do disco espesso e do halo de Nissen & Schuster (2011) e de Ishigaki et al. (2013). Ao mesmo tempo, é inserida na parte superior a direita da figura a curva de correção (ajuste quadrático) devido à depleção da poeira, aplicada às abundâncias observadas do ferro [Fe/H], determinadas para quatro modelos de poeira para as 16 DLAs.

com um modelo de evolução químico-dinâmico descrevendo um bojo clássico. Os modelos computacionais assumem uma taxa de formação estelar específica de $v_{\rm SF} = 3 \text{ Gano}^{-1}$, uma massa bariônica de $2 \times 10^9 M_{\odot}$ e uma massa de halo escura $M_H = 1.3 \times 10^{10} M_{\odot}$. A massa total é de $1.5 \times 10^{10} M_{\odot}$, representando uma razão cosmológica de massa bariônica de $\Omega_{\rm b} = 0.04$, e da matéria total de $\Omega_{\rm m} = 0.3$. Adotamos, em nossos cálculos, os seguintes parâmetros cosmológicos: $\Omega_{\rm m} = 0.3$, $\Omega_{\Lambda} = 0.7$, $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, que correspondem a uma idade do universo de 13.47 Ganos. A idade mais recente para o universo, segundo os dados do satélite Planck é de 13.799 ± 0.038 Ganos (Planck collaboration 2015).

O modelo de evolução desenvolve-se até 13 Ganos, e fornece a evolução da abundância química média do zinco das populações estelares para vários raios galácticos. Conforme podemos ver na figura 3.11, o ponto final do modelo localiza-se no local dos dados para a presente amostra do bojo da galáxia. O modelo reproduz bem os dados, com diminuição da abundância do zinco [Zn/Fe] com o aumento da metalicidade [Fe/H]. Isso ocorre porque embora o bojo seja formado rapidamente no cenário clássico, o enriquecimento químico continua durante aproximadamente \approx 3 Ganos, permitindo que a contribuição de supernovas tipo Ia (SN Ia) seja relevante, o que produz um aumento na abundância do ferro. As SN Ia ejetam pouco [Zn/Fe]. O modelo atual utiliza os produtos de SN Ia de Iwamoto et al. (1999), com [Zn/Fe] \approx -1.2 para uma metalicidade inicial zero, e [Zn/Fe] \approx -1.6 para uma metalicidade inicial solar. Portanto, como um resultado da formação estelar contínua, o modelo de bojo clássico prevê abundâncias do [Zn/Fe] subsolar para altas metalicidades, como observado na presente amostra de estrelas do bojo.

A natureza da nucleossíntese do zinco é complexa. Zn não é nem um elemento α nem um elemento do pico do ferro. Vários trabalhos sobre a nucleossíntese do zinco preveem que ele se origina em estrelas massivas. Woosley & Weaver (1995), utilizando modelos envolvendo supernovas tipo II (SN II), encontraram valores subestimados para a abundância do zinco. Por outro lado, Umeda & Nomoto (2002) conseguiram realizar cálculos de nucleossínteses em explosões de colapso de núcleos de estrelas massivas de baixa metalicidade que apresentaram valores elevados de [Zn/Fe] em regiões mais internas da estrela, com baixa concentração de neutrinos e liberação altíssima de energias no colapso da estrela. Esse tipo de supernova é classificada como hipernova (Umeda & Nomoto 2002, 2003, 2005; Nomoto et al. 2006, 2013). Por isso, em nossos cálculos de nucleossíntese, consideramos modelos de colapso de núcleos de SN II de Woosley & Weaver (1995), e, para metalicidades baixas, utilizamos explosões de hipernova de altas energias (Umeda & Nomoto 2002, 2003, 2005; Nomoto et al. 2006, 2013).

Figura 3.11: Painel superior: comparação da evolução da abundância do [Zn/Fe] com a metalicidade [Fe/H] para uma população estelar prevista para o modelo de evolução química para um bojo clássico com uma taxa de formação estelar normalizada $v_{SF} = 3$ Gano⁻¹ e uma massa total de $1.5 \times 10^{10} M_{\odot}$, com os dados das abundâncias do [Zn/Fe] vs. [Fe/H] da nossa amostra, e com os dados de DLAs de Cooke et al. (2013), Akerman et al. (2005) e Vladilo et al. (2011), e com os dados de Cayrel et al. (2004) para estrelas do halo. As abundâncias do Fe de Akerman et al. (2005) e de Vladilo et al. (2011) foram corrigidos pela depleção de poeira. Os dados de Cooke et al. (2013) não necessitam de correção devido à poeira, pois esses sistemas possuem [Fe/H] < -2. Painel inferior: o mesmo do painel superior, mas utilizando em baixas metalicidades, o processo de nucleossíntese descrito por Woosley & Weaver (1995) ao invés de hipernovas.

11 Zinco e elementos α

O enriquecimento do zinco em estrelas pobres em metais sugere que [Zn/Fe] comporta-se como um elemento α . Por este motivo, na figura 3.12 comparamos as abundâncias do zinco (Zn³⁰) com as abundâncias dos elementos α : O⁸, Mg¹², Si¹⁴, Ca²⁰, Ti²² (oxigênio, magnésio, silício, cálcio e titânio), determinadas por Lecureur et al. (2007), Zoccali et al. (2006) e Gonzalez et al. (2011). Os valores das abundâncias do oxigênio foram revisadas, conforme consta na tabela 3.3, sendo esses novos valores mostrados na figura 3.12. O comportamento apresentado pelo zinco parece similar aos dos elementos α , mais precisamente, com os elementos oxigênio e cálcio. O baixo valor da abundância do zinco em estrelas de alta metalicidade é compatível ao observado com as abundâncias do oxigênio.

A correlação do zinco com elementos α é também mostrada na figura 3.13, em relação ao oxigênio, onde [Zn/O] não mostra correlação nem com [Fe/H] ou com [O/H].

Figura 3.12: Abundâncias de [Zn/Fe] vs. [Fe/H] para o estudo atual (triângulo preto cheio), comparados com as abundâncias dos elementos α oxigênio, magnésio, silício, cálcio e titânio (quadrado vermelho vazado). Os valores do oxigênio apresentados na figura são as abundâncias revisadas presentes na tabela 3.3.

Figura 3.13: Valores de [Zn/O] vs. [Fe/H] e [Zn/O] vs. [O/H] para o estudo atual, onde os valores da abundância do oxigênio são os valores revistos nesse trabalho, presentes na tabela 3.3, caso contrário, são utilizados os valores de Zoccali et al. (2006) e de Lecureur et al. (2007).

Capítulo 4_____

Análise das Observações dos Dados do FLAMES-GIRAFFE

1 Comparação entre os espectros FLAMES-UVES e FLAMES-GIRAFFE

As observações dos espectros das estrelas com o FLAMES-GIRAFFE ocorreram simultaneamente com o FLAMES-UVES. Entretanto, a cobertura espectral dos dois espectrógrafos são diferentes, conforme descrito no capítulo 2. Enquanto no FLAMES-UVES havia duas linhas do zinco observadas, ZnI 4810.54 Å e 6362.34 Å, no FLAMES-GIRAFFE temos somente uma, a ZnI 6362.34 Å. As observações com o FLAMES-UVES possuem resolução espectral superior à do FLAMES-GIRAFFE, portanto, utilizamos a linha do zinco ZnI 6362.34 Å, obtida pelo FLAMES-UVES para entender como ajustar corretamente essa linha.

As figuras 4.1 e 4.2 comparam as linhas do ZnI 6362.34 Å observadas tanto com o FLAMES-UVES e FLAMES-GIRAFFE para estrelas em comum. Essas comparações são importantes, pois os espectros obtidos com o FLAMES-GIRAFFE possuem resolução mais baixa que o FLAMES-UVES (R~ 20000). Frequentemente, a linha do ZnI tem asa do lado direito e do lado esquerdo, mas a região central da linha não é profunda. Essa característica da linha do ZnI 6362.34 Å pode ser notada na figura 4.1, estrela BWf102-BWb6. O mesmo comportamento é visto em outras estrelas. Uma comparação similar à realizada com a linha do ZnI 6362.34 Å foi feita com a linha proibida do oxigênio [OI] 6300.3 Å, conforme visto na figura 4.3. Três espectros, que mostram a comparação para entre as linhas do oxigênio observadas com o FLAMES-GIRAFFE e FLAMES-UVES, possuem um defeito sobre essa linha, possivelmente devido à contaminação por raios cósmicos, não foram incluídos na Fig. 4.3.

Figura 4.1: Comparação entre os espectros FLAMES-UVES (linha pontilhada) e FLAMES-GIRAFFE (linha sólida azul) para as estrelas observadas ao mesmo tempo, para a linha do ZnI 6362.34 Å.

Figura 4.2: Comparação entre os espectros FLAMES-UVES (linha pontilhada) e FLAMES-GIRAFFE (linha sólida azul) para as estrelas observadas ao mesmo tempo, para a linha do ZnI 6362.34 Å.

Figura 4.3: Comparação entre os espectros FLAMES-UVES (linha sólida preta) e FLAMES-GIRAFFE (linha pontilhada azul) para as estrelas observadas ao mesmo tempo, para a linha proibida do [OI] 6300.3 Å.
2 Análise das Abundâncias

Em Barbuy et al. (2015) (capítulo 3 desse trabalho), determinamos as abundâncias do zinco para 56 estrelas do ramo das gigantes vermelhas observadas pelo espectrógrafo FLAMES-UVES. As abundâncias do [Zn/Fe] foram determinadas a partir das linhas do ZnI 4810.54 Å e 6362.34 Å.

Neste capítulo trataremos os espectros obtidos com o FLAMES-GIRAFFE, que somente possuem a linha do ZnI 6362.34 Å. O potencial de excitação, bem como a força do oscilador encontrados na literatura e o valor adotado e o *blending* das linhas com o CN estão presentes na tabela 2.2. Esses valores são os mesmos adotados por Barbuy et al. (2015). Além disso, o efeito devido à autoionização do CaI 6361.94 Å foi levado em conta, diminuindo o valor do contínuo entre 6360.8 Å – 6363.1 Å.

A amostra analisada possui 417 estrelas, e somente foi possível determinar a abundância do [Zn/Fe] para 331 estrelas, que apresentam a linha do ZnI 6362.34Å adequada.

Os parâmetros estelares adotados são de Zoccali et al. (2008), apresentados na tabela 3 desses autores. Esses parâmetros estelares também foram adotados por Gonzalez et al. (2011), para a determinação das abundâncias do elementos alfa. Para as estrelas que são comuns com os dados FLAMES-UVES, os parâmetros estelares determinados por Zoccali et al. (2006) foram utilizados. Esses parâmetros estelares são mostrados na tabela 3.3.

A abundância do oxigênio para as 56 estrelas observadas pelo FLAMES-UVES foram determinadas em Zoccali et al. (2006) e Lecureur et al. (2007). Barbuy et al. (2015) revisou esses valores, devido à forte influência do CN na determinação da abundância do oxigênio. Essas abundâncias do oxigênio foram totalmente revisadas por Friaça & Barbuy (2017), levando em conta as abundâncias do carbono. Recentemente, Jonsson et al. (2017) revisou os parâmetros estelares de 23 estrelas da amostra dos dados FLAMES-UVES.

3 Determinação das abundâncias de C, N, O

A correta determinação da abundância do zinco ([Zn/Fe]) é dependente das abundâncias do carbono, nitrogênio e oxigênio, por causa da contaminação da linha de Zn com CN. Para tanto, realizamos a determinação das abundâncias desses elementos da seguinte maneira. Primeiramente, procedemos à determinação da abundância do carbono. Entretanto, como nos espectros observados não há a presença da linha de Swan C₂ (0,1) A³Π-X³Π em 5635 Å, e sem um indi-

cador confiável da abundância do carbono, adotamos um valor de [C/Fe] = -0.2 para todas as estrelas, com exceção das estrelas observadas também com o FLAMES-UVES, analisadas por Zoccali et al. (2006), Barbuy et al. (2015) e Friaça & Barbuy (2017).

Em relação ao nitrogênio, utilizamos a linha do CN (5,1) $A^2\Pi$ -X² Σ em 6332.18 Å, para a determinação da abundância do nitrogênio. Para tal, adotamos a lista de linhas de laboratório de Davis & Philips (1963). A abundância correta do nitrogênio é de vital importância devido ao equilíbrio dissociativo do C,N,O. Em gigantes vermelhas, as abundâncias do nitrogênio informam mais sobre o ciclo CN do que sobre evolução química.

Com respeito à determinação da abundância do oxigênio, utilizamos a linha proibida do oxigênio [OI] 6300.311 Å, adotando-se log gf = -9.716. Levamos em consideração na determinação da abundância do oxigênio os *blend* com as linhas de NiI 6300.300 Å e 6300.350 Å. A abundância solar adotada para o oxigênio é A(O) = 8.76 (Steffen et al. 2015).

As abundâncias do nitrogênio, oxigênio e zinco são determinados iterativamente nesta ordem. Uma complicação na determinação das abundâncias do nitrogênio e do oxigênio é que elas são interdependentes, devido ao equilíbrio molecular dissociativo. O lado direito da linha do ZnI 6362.34 Å apresenta uma assimetria devido ao efeito da linha do CN, o qual também utilizamos para analisar as abundâncias do nitrogênio e do oxigênio.

Ajustes ilustrando as abundâncias do nitrogênio, do oxigênio e do zinco são mostradas na figura 4.4 para as estrelas BWf-010, na qual há contaminação das linhas do CN no lado direito, e BWf-060, livre do *blending* da linha do CN.

A figura 4.5 apresenta uma comparação das abundâncias do nitrogênio, oxigênio e zinco determinadas a partir dos dados do FLAMES-GIRAFFE com as abundâncias dos mesmos elementos obtidos dos espectros do FLAMES-UVES. As abundâncias do oxigênio apresentam um ajuste muito bom. Por outro lado, as abundâncias do nitrogênio parecem ser maiores para os espectros do FLAMES-GIRAFFE em relação aos do FLAMES-UVES. Como a abundância do carbono não pode ser determinada corretamente nos espectros FLAMES-GIRAFFE, por não haver nenhuma linha atômica ou molecular do carbono, e com o nitrogênio sendo ajustado pela linha do CN 6332.18 Å, essa poderia ser a causa da discrepância observada para a abundândia do nitrogênio entre os espectros. O zinco apresenta uma abundância menor para os espectros do FLAMES-GIRAFFE em relação aos do FLAMES-UVES. Ainda em relação à abundância do zinco, mostramos a diferença da abundância do FLAMES-GIRAFFE com o valor médio do zinco (linhas ZnI 4810.54 Å e 6362.34 Å), representado pelo símbolo laranja cheio e somente

Figura 4.4: Ajustes do espectros sinténticos para as linhas do nitrogênio (linha CN 6332.18 Å), oxigênio ([OI] 6300.311 Å) e zinco (ZnI 6362.34 Å) para as estrelas BWf010 e BWf060.

com a linha do ZnI 6362.34 Å, que é comum para ambos os espectros, representado pelo símbolo triângulo magenta cheio. Quando realizamos a comparação com a abundância média do zinco do FLAMES-UVES, há uma discrepância maior entre os dados, diferente de quando realizamos a mesma comparação referente somente à abundância da linha ZnI 6362.34 Å, que possui uma menor variação com os dados do FLAMES-GIRAFFE.

4 Resultados

A tabela 4.1 fornece os parâmetros atmosféricos adotados de Zoccali et al. (2008), resultando nas abundâncias dos elementos [N/Fe], [O/Fe] e [Zn/Fe] para as 417 estrelas dos campos Janela de Baade e $b = -6^{\circ}$.

Tabela 4.1 - Colunas 1 e 2: Nome OGLE e nome GIRAFFE das estrelas observadas. Colunas 3 a 6: Parâmetros atmosféricos adotados de Zoccali et al. (2006). Colunas 7 e 8: apvalores das abudâncias do [N/Fe] e [O/Fe] determinados. Coluna 9: valores da abundância de [Zn/Fe], determinadas para a linha ZnI 6362.3Å. Colunas 10 a 13: abundâncias de [Mg/Fe], [Si/Fe], [Ca/Fe] e [Ti/Fe], determinadas por Gonzalez et al. (2011).

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
				В	aade's	Window b	oright: BV	V-b				
423342	bwb002	4650	1.99	0.46	1.3	-0.05	-0.35	-0.30	-0.04	0.13	0.03	-0.08
423323	bwb003	4200	1.59	-0.48	1.5	0.00	0.10	0.22	0.43	0.15	0.23	0.26
412779	bwb004	4850	1.93	-0.37	1.5	0.20		0.13	0.23	0.29	0.48	0.22
412803	bwb005	4000	1.52	0.51	1.3	-0.20	-0.35	-0.40				
423359	bwb006	4650	1.92	-1.23	1.4			0.30	0.34	0.30	0.48	0.43
433669	bwb007	4300	1.67	0.32	1.5	0.30	-0.25	-0.40	-0.02	0.01	-0.04	-0.10
412752	bwb008	4900	1.98	-0.80	1.5	1.00			0.15	0.34	0.51	0.30
412794	bwb009	4600	1.94	0.13	1.3	0.00	-0.25	0.00	-0.04	0.28	0.30	-0.08
402327	bwb011	4800	2.00	0.15	1.2	0.00		-0.03	0.08	0.36	0.20	-0.17
412924	bwb014	4800	2.05	0.48	1.5	0.00	-0.40	-0.33	-0.04	0.07	0.17	-0.13
575317	bwb015	4550	1.78	0.22	1.4	-0.10	-0.35	-0.05	0.14	0.16	0.07	0.03
92600	bwb016	4250	1.70	0.05	1.0	0.50	-0.20	-0.05	0.20	0.15	0.29	0.08
412759	bwb017	4900	1.98	-0.39	1.4	0.30	0.30	0.20	0.24	0.26	0.31	0.16
575356	bwb021	4050	1.56	0.39	1.4	0.05	-0.30					
423331	bwb022	4500	1.88	0.18	1.5	0.10	-0.30	-0.25	-0.02	-0.06	-0.14	-0.02
564797	bwb024	4200	1.69	0.24	1.5	-0.25	-0.30		0.02	-0.01	0.08	-0.11
564792	bwb025	5000	2.09	-0.68	1.4			0.10	0.28	0.32	0.36	0.30
412931	bwb026	4450	1.87	-0.15	1.3	0.20	0.04	0.05	0.25	0.25	0.31	0.11
564988	bwb027	4750	2.04	-0.24	1.4	0.30	0.15		0.32	0.19	0.43	0.14
412792	bwb030	4450	1.83	-0.26	1.4	0.10		0.12	0.29	0.20	0.43	0.18
564762	bwb031	4700	1.87	-0.63	1.6	0.25	0.30	0.15	0.35	0.19	0.49	0.36

Seção 4	4.	Resul	tados
---------	----	-------	-------

Tabela 4.1 -	Continuaç	ão
--------------	-----------	----

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
564757	bwb033	4800	2.01	0.38	1.3	-0.25	-0.30	-0.15	0.04	0.17	-0.07	-0.08
564807	bwb035	4850	2.00	-0.67	1.5	0.30	0.35	0.15	0.34	0.26	0.34	0.32
575293	bwb037	4450	1.79	0.41	1.3	0.20	-0.25	0.00	0.09	0.34	0.11	-0.02
92537	bwb038	4500	1.81	-0.56	1.3	0.30	0.25	0.15	0.40	0.37	0.51	0.31
575303	bwb039	4850	2.02	-0.27	1.5			0.10	0.35	-0.03	0.33	0.26
240260	bwb040	5150	2.07	-0.59	1.4	0.45	0.20	0.30	0.29	0.27	0.35	0.09
82762	bwb041	4450	1.81	0.31	1.4	0.05	-0.30	-0.20	0.09	0.30	-0.06	0.01
92565	bwb042	4400	1.84	-0.05	1.5	0.40		0.15	0.06	0.06	0.16	0.01
240210	bwb043	4800	2.00	-0.04	1.2	0.30	0.00	0.00	0.23	0.31	0.28	0.22
554722	bwb044	4600	1.67	-0.44	1.6	0.40	0.10		0.20	0.12	0.36	0.26
82725	bwb045	4750	1.98	-0.70	1.3			0.30	0.30	0.16	0.37	0.41
231262	bwb046	4930	2.04	-0.10	1.4	0.30			0.16	0.07	0.30	0.10
231099	bwb047	5100	2.06	-0.22	1.6	0.30	-0.17		0.09	0.16	0.34	0.09
82747	bwb048	5000	2.06	-0.26	1.3	0.00	0.05		0.14	0.27	0.44	0.20
63856	bwb049	4700	2.01	0.33	1.3	0.00	-0.25	0.00	0.03	0.01	-0.06	0.00
231144	bwb050	4700	1.94	-0.20	1.5	0.45	0.05	0.10	0.24	0.22	0.47	0.01
231364	bwb053	4800	1.99	0.27	1.5	-0.10	-0.30		0.01	0.10	0.04	-0.11
82742	bwb054	4400	1.68	0.17	1.5	0.20	-0.30	-0.30	0.09	0.03	-0.11	0.04
73506	bwb055	4200	1.67	-0.24	1.5	0.50	0.10		0.30	0.10	0.29	0.09
222451	bwb056	4750	1.94	-0.33	1.3	-0.10	0.18	0.17	0.22	0.08	0.32	0.24
73504	bwb057	4550	1.92	-0.16	1.4	0.50	0.15	0.10	0.25	0.20	0.38	0.10
82761	bwb058	4800	2.01	-0.21	1.5	0.30	0.25	0.17	0.20	0.32	0.41	0.13
73490	bwb059	4300	1.74	0.49	1.2	-0.40	-0.35	-0.45	0.08	0.04	0.00	-0.04
222618	bwb060	4800	2.03	-0.33	1.4	0.30	0.15	0.10	0.28	0.31	0.44	0.17
357480	bwb061	4800	2.06	0.11	1.4	0.20	-0.25	-0.15	-0.12	0.08	0.00	-0.10
554664	bwb062	4600	1.91	-0.48	1.5		0.10		0.33	0.29	0.54	0.31
73514	bwb064	4900	2.04	-0.41	1.5	0.50	0.25	0.22	0.35	0.29	0.50	-0.04
205243	bwb065	4900	2.13	0.31	1.4	0.35	-0.30	0.00	0.16	0.28	0.30	-0.13
82705	bwb066	4500	1.80	-0.19	1.4	0.40	0.15	0.17	0.24	0.32	0.42	0.23
205257	bwb068	4600	1.94	-1.10	1.5	0.10		0.40	0.29	0.00	0.19	0.42
82831	bwb069	4750	1.99	0.33	1.4	-0.05	-0.35	0.00	0.09	0.22	0.16	0.07
205436	bwb071	5200	2.27	0.16	1.4	0.30	-0.10	-0.20	0.05	0.10	0.28	-0.10
82798	bwb072	5050	2.17	-0.06	1.1	0.40		0.15	0.21	0.26	0.29	0.03
73515	bwb073	4550	1.81	-0.45	1.4	0.00	0.10	0.15	0.30	0.38	0.45	0.18
214035	bwb074	4650	1.92	0.26	1.4	0.25		-0.30	0.08	0.20	0.10	-0.01
63794	bwb076	4750	2.00	-0.31	1.3	0.50	0.23	0.07	0.16	0.39	0.31	0.29
63792	bwb077	4450	1.82	-0.15	1.3	0.20	0.10	0.10	0.39	0.25	0.34	0.17
54167	bwb078	4800	2.06	-0.38	1.4	0.50	0.10	0.10	0.25	0.14	0.30	0.41
54104	bwb079	4550	1.95	-0.28	1.5	0.60	0.10	0.00	0.28	0.00	0.20	0.00
54132	bwb080	4950	2.06	-0.11	1.4	0.50	0.18	0.00	0.27	0.11	0.35	0.18
54273	bwb081	4850	2.12	0.45	1.3	0.20	-0.35	0.00				
44560	bwb082	4550	1.93	-0.23	1.4	0.20	0.13	0.00	0.14	0.16	0.21	0.12
205356	bwb083	4950	2.16	-0.19	1.5	0.65	0.15	0.10	0.11	0.01	0.01	0.17
63800	bwb085	4850	1.96	0.31	1.5	0.10	-0.40	-0.20	0.16	0.25	0.12	-0.14
63849	bwb086	4750	1.97	-0.92	1.4	0.30	0.30	0.15	0.35	0.33	0.48	0.41

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
537070	bwb087	5150	2.14	-1.21	1.1	0.54	0.30		0.38	0.35	0.49	0.30
63823	bwb088	4550	1.87	-0.04	1.4	0.20		0.15	0.16	0.07	0.23	0.03
545401	bwb090	5150	2.22	0.01	1.4		-0.10	-0.05	0.11	0.18	0.14	0.02
545440	bwb091	4500	1.91	-0.60	1.5	0.50	0.40	0.40	0.43	0.31	0.30	0.34
54311	bwb092	4900	2.15	0.26	1.5	-0.05	-0.30	0.00	0.06	0.09	0.22	-0.03
537101	bwb093	4800	2.07	-0.67	1.3	0.80	0.30	0.15	0.14	0.28	0.23	0.31
554655	bwb095	4900	2.03	-0.34	1.5	0.40		0.08	0.13	0.11	0.24	0.17
392918	bwb096	4600	1.97	-0.21	1.4	0.30	0.08	0.22	0.11	0.24	0.32	0.10
63839	bwb097	4300	1.74	-0.22	1.4	0.30	0.20	0.10	0.24	0.21	0.25	0.09
554700	bwb098	4900	2.02	-0.17	1.4	0.20		0.05	0.11	0.14	0.31	0.15
554787	bwb099	4700	2.04	-0.58	1.2	0.00	0.15	0.18	0.31	0.39	0.36	0.31
63855	bwb100	4200	1.67	0.40	1.4	-0.45	-0.35	-0.40	0.14	-0.04	-0.04	0.10
63850	bwb101	4600	1.78	-1.61	1.6	0.00	0.35	0.40				
402294	bwb102	4800	2.05	-0.50	1.2	0.50	0.20	0.15	0.43	0.38	0.53	0.31
63820	bwb103	5100	2.19	-0.14	1.2	0.20	-0.10	0.08	0.11	0.31	0.27	0.10
393015	bwb104	4850	2.09	-0.06	1.3	0.20	0.02	0.02	0.41	0.36	0.35	0.02
554663	bwb105	4700	1.86	-0.72	1.3	0.40	0.35	0.22	0.40	0.36	0.33	0.44
63834	bwb106	4950	2.08	0.16	1.4	0.20	-0.30	-0.20	0.21	0.19	0.25	0.01
402361	bwb107	4950	2.00	-1.05	1.4	0.00	0.28	0.22	0.24	0.30	0.40	0.41
402307	bwb109	4600	1.93	0.40	1.5	-0.05	-0.40	-0.30	0.05	0.17	0.10	-0.11
402414	bwb110	4650	1.99	-0.21	1.4	0.20	-0.10	-0.20	0.39	0.11	0.49	0.29
545288	bwb111	4600	1.94	0.13	1.3	0.20	-0.30	-0.20	0.19	0.20	0.15	0.11
554889	bwb112	5000	2.18	-0.10	1.3	0.30	-0.10	-0.10	0.12	0.33	0.30	0.13
402315	bwb113	4750	1.97	-0.17	1.4	0.20	0.00	0.14	0.25	0.31	0.41	0.08
554811	bwb114	4900	2.11	0.17	1.3	0.15	-0.25	-0.15	0.04	0.30	0.05	0.00
234671	bwb115	4500	1.86	0.06	1.4	-0.15	-0.10	-0.10	0.04	0.05	0.05	-0.03
402332	bwb117	4500	1.82	-0.31	1.4	0.30	0.10	0.25	0.26	0.19	0.41	0.28
402322	bwb118	4800	1.94	-0.94	1.5	0.00		0.32	0.36	0.36	0.35	0.32
564743	bwb119	4250	1.70	0.21	1.4	0.20	-0.20		0.12	0.03	0.06	-0.04
402311	bwb120	4500	1.89	0.08	1.5	0.00	-0.20	0.10	0.12	0.15	0.26	0.00
244582	bwb122	4950	2.01	-0.81	1.3	0.70		0.30	0.21	0.33	0.30	0.20
244504	bwb123	4550	1.83	-0.25	1.4	0.30	0.15	0.10	0.26	0.22	0.35	0.27
402607	bwb128	4800	2.04	-0.82	1.3			0.35	0.23	0.28	0.40	0.39
402531	bwb130	5100	2.21	-0.85	1.2	0.70		0.12	0.26	0.28	0.51	0.36
402325	bwb132	4500	1.87	-0.32	1.4	0.50	0.15	0.05	0.23	0.13	0.36	0.29
256308	bwb135	4800	1.95	-1.69	1.4							
				I	Baade's	s Window	faint: BW	/-f				
585982	bwf003	4600	1.99	-0.08	1.4	0.20	-0.05	0.03	0.41	0.15	0.28	0.09
575308	bwf004	4350	1.84	0.27	1.4	0.10	-0.25		0.16	0.26	0.27	0.08
575289	bwf005	4450	1.92	-0.50	1.5	0.20			0.49	0.29	0.45	0.21
423298	bwf007	4400	1.91	-0.08	1.2	0.50	-0.05	0.05	0.12	0.28	0.24	0.20
433830	bwf008	4200	1.87	0.18	1.5	0.20	-0.25	-0.25	0.25	-0.08	0.00	-0.04
564963	bwf009	4250	1.83	0.34	1.0	0.30	-0.30	-0.35	0.19	0.14	0.14	-0.05
554980	bwf010	4600	1.99	0.31	1.5	0.00	-0.40	-0.40	0.03	0.03	0.08	-0.18
423304	bwf013	4350	2.03	0.22	1.4	0.15	-0.30	-0.10	0.02	0.06	0.24	-0.09

Tabela 4.1 - Continuação

Seção 4.	Resultados
----------	------------

Tabela 4.1 - Continuação

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
102833	bwf014	4500	2.05	0.29	1.5	-0.10	-0.40	-0.15	0.11	0.24	0.17	-0.15
102853	bwf015	4400	1.86	0.15	1.2	0.45	-0.20		0.14	0.27	0.27	0.00
564768	bwf016	4150	1.74	-0.30	1.3	0.50	0.15	0.13	0.06	0.28	0.42	0.28
586077	bwf017	4500	2.02	0.21	1.3	-0.05	-0.30	-0.22	0.07	0.04	0.08	-0.16
586005	bwf018	4400	1.91	0.29	1.3	0.10	-0.30		0.00	0.08	0.09	-0.18
564789	bwf019	4100	1.70	-0.15	1.2	0.30	0.10	0.05	0.03	0.10	0.42	0.04
596502	bwf020	4150	1.87	0.28	1.1	0.35	-0.25		0.19	0.03	0.10	0.10
575360	bwf021	4500	1.96	-0.05	1.2	0.60	-0.10					
564991	bwf022	4400	1.98	0.19	1.4	0.25	-0.30		0.05	0.09	0.19	0.00
82760	bwf026	4300	1.87	0.17	1.5	0.00	0.00		-0.06	-0.05	0.03	-0.20
82727	bwf028	4200	1.78	0.17	1.3	0.55	-0.15	-0.05	0.05	0.15	0.11	-0.16
92557	bwf029	4700	2.05	-0.07	1.4	0.15	0.10	0.00	0.18	0.18	0.46	-0.05
231128	bwf033	4200	1.76	0.17	1.4	-0.10	-0.30	-0.05	-0.03	0.03	0.10	-0.08
82717	bwf034	4150	1.77	0.28	1.1	-0.10	-0.35		0.15	-0.03	0.18	-0.18
240216	bwf035	4400	1.86	0.19	1.2	0.35	-0.20	-0.15	0.11	0.31	0.21	0.04
240459	bwf036	4550	2.02	-0.39	1.2	0.20	0.15		0.31	0.28	0.54	0.41
240394	bwf037	4600	2.04	0.14	1.6	0.40	-0.20		0.16	0.04	0.01	-0.08
231369	bwf038	4200	1.82	0.29	1.5	0.40	-0.20		0.07	0.01	-0.01	-0.16
231367	bwf040	4600	2.00	-0.01	1.4	0.00	-0.10	-0.15	0.11	0.12	0.27	0.01
231310	bwf041	4500	1.95	0.30	1.1	-0.05	-0.30	-0.25	0.11	0.31	0.08	-0.10
374186	bwf042	4350	1.96	0.20	1.2	0.35	-0.25		0.05	0.08	0.17	0.04
231325	bwf043	4200	1.81	0.34	1.5	-0.15	-0.35		-0.11	-0.09	0.05	0.00
222627	bwf046	4100	1.78	0.13	1.1	0.45	-0.20		0.13	0.13	0.08	0.03
231185	bwf049	4500	1.98	0.19	1.3	0.15	-0.20	-0.15	-0.04	0.21	0.15	-0.10
231233	bwf051	4550	1.97	-0.16	1.3	0.30	0.00	-0.05	0.26	0.13	0.08	0.12
365797	bwf053	4550	1.95	-0.19	1.3	0.60		0.12	0.34	0.26	0.56	0.17
222412	bwf054	4400	1.86	-0.11	1.3	0.30	0.13	0.20	0.20	0.28	0.46	0.17
222408	bwf055	4100	1.72	0.31	1.5	0.20	-0.30		0.25	0.04	0.03	0.00
357466	bwf056	4300	1.98	0.43	1.3	-0.50	-0.35	-0.50	0.07	-0.09	0.27	0.01
350527	bwf057	4600	2.04	-0.65	1.4	0.40			0.37	0.33	0.56	0.30
222523	bwf059	4250	1.88	0.01	1.4	0.15	-0.08	0.05	0.24	-0.03	0.09	0.30
222543	bwf060	4350	1.99	0.34	1.1	0.00	-0.32	-0.40	-0.12	0.14	0.18	-0.04
357436	bwf061	4500	1.95	0.44	1.3	-0.30	-0.40		-0.10	0.13	0.01	-0.09
357459	bwf062	4600	2.08	-0.01	1.5	0.35	0.00		0.06	0.10	0.29	0.04
73607	bwf064	4600	2.00	0.28	1.2	0.20	-0.30	-0.15	0.07	0.03	0.13	-0.01
73483	bwf065	4300	1.87	0.16	1.4	0.30	-0.20		0.01	0.04	0.08	0.02
73609	bwf066	4300	1.91	0.28	1.5	0.25	-0.20		0.03	-0.10	0.08	-0.09
214192	bwf067	4450	1.96	0.22	1.3	0.15	-0.10	-0.20	0.22	0.18	0.24	-0.02
73472	bwf069	4400	1.98	0.49	1.5	-0.20	-0.32		-0.17	0.01	0.02	-0.25
64005	bwf070	4500	1.99	-0.25	1.4	0.35	0.18	0.15	0.36	0.17	0.39	0.16
205265	bwt071	4500	1.94	0.02	1.3	0.20	-0.10		0.03	0.16	0.33	0.03
214042	bwf0/2	4150	1.76	0.38	1.3	-0.25	-0.35	-0.40	0.14	0.08	-0.01	-0.06
350483	bwf0/3	4200	1.87	0.14	1.3	0.45	-0.15	-0.05	0.13	0.09	0.13	0.03
64018	bwf0/4	4500	1.92	0.15	1.5	0.20	-0.28	-0.15	0.12	0.08	0.01	0.22
03839	bw10/5	4400	1.86	0.25	1.5	0.30	-0.25		0.23	0.11	0.13	0.00

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
545445	bwf076	4550	2.01	0.13	1.5	0.00	-0.20	-0.18	-0.01	0.02	0.05	0.01
63840	bwf077	4500	1.99	0.31	1.1	0.15	-0.35	-0.60	0.15	0.22	0.19	-0.01
54108	bwf078	4400	1.91	0.46	1.5	-0.30	-0.30	-0.55	-0.09	-0.02	0.03	-0.26
54125	bwf079	4400	2.00	0.07	1.3	0.35	-0.15		0.18	0.19	0.28	0.22
73467	bwf080	4250	2.00	0.12	1.4	-0.30	-0.23	-0.20	0.08	0.01	0.19	-0.02
54133	bwf081	4050	1.67	0.35	1.0	-0.10	-0.33	-0.45				
54078	bwf082	4350	1.89	0.09	1.5	0.30	-0.20	-0.15	0.01	0.26	0.08	-0.01
63829	bwf083	4400	2.01	-0.01	1.5	0.80	-0.10		0.17	0.06	0.09	0.01
537095	bwf085	4500	1.93	0.31	1.2	0.00	-0.40	-0.40	0.05	0.17	0.04	0.00
545222	bwf086	4300	1.78	0.16	1.4	0.20	-0.20	-0.10	0.12	0.12	0.19	0.02
545438	bwf087	4350	1.97	0.12	1.5	0.30	-0.12	-0.15	0.16	0.05	0.19	-0.04
545233	bwf088	4350	1.88	0.31	1.3	-0.10	-0.35		0.07	0.09	0.17	-0.03
545313	bwf091	4400	2.05	0.16	1.4	-0.20	-0.13	-0.20	0.16	-0.08	0.30	-0.05
537092	bwf092	4600	2.03	-0.25	1.0	0.20	0.15	0.10	0.39	0.33	0.46	0.00
545277	bwf093	4100	1.84	0.07	1.2	-0.10	-0.20					
402415	bwf095	4600	2.08	0.01	1.2	0.10	-0.10		0.18	0.00	0.31	-0.05
554670	bwf096	4150	1.75	-0.26	1.3	0.35	0.13	0.25	0.25	0.18	0.48	0.26
554748	bwf097	4600	1.99	0.39	1.3	0.15	-0.40		0.07	0.01	0.09	-0.08
392952	bwf098	4200	1.79	0.13	1.5	0.40	-0.15		0.16	0.12	0.09	-0.14
392896	bwf099	4200	1.80	-0.12	1.3	0.70	0.15	0.05	0.20	0.06	0.38	0.16
393083	bwf100	4450	1.98	0.03	1.5	0.10	-0.05	0.00	0.19	0.02	0.22	-0.02
393053	bwf101	4250	1.83	0.49	1.2	-0.45	-0.38	-0.25	0.09	0.04	0.03	-0.15
392931	bwf102	4450	1.89	-0.25	1.5	0.70	0.10	0.20	0.19	0.03	0.09	-0.03
545269	bwf103	4250	1.83	0.45	1.1	-0.50	-0.35		0.09	0.04	0.06	-0.09
554683	bwf104	4500	2.00	-0.20	1.2	0.30	0.20	0.17	0.21	0.31	0.49	0.11
554668	bwf105	4300	1.85	0.08	1.3	0.30	-0.20		0.17	0.04	0.17	0.03
78106	bwf107	4300	1.98	-0.17	1.2	0.50	0.20	0.05	0.40	0.19	0.49	0.11
402498	bwf108	4450	1.90	0.55	1.2	-0.40	-0.40		0.06	0.05	-0.05	-0.18
234704	bwf109	4500	1.93	-0.18	1.4	0.10	0.20	0.17	0.26	0.21	0.36	0.09
67494	bwf110	4650	2.02	-0.05	1.1	-0.10	0.05					
234701	bwf111	4500	1.98	0.12	1.2	0.45	-0.20	-0.05	0.24	0.27	0.26	-0.05
234888	bwf112	4200	1.94	0.28	1.5	-0.10	-0.35		-0.60	0.03	0.00	-0.17
554713	bwf113	4250	1.90	0.20	1.4	0.20	-0.25		0.16	0.09	0.13	0.05
554956	bwf114	4600	1.99	-0.01	1.1	0.40	0.05	-0.12	0.19	0.30	0.49	0.03
392951	bwf115	4650	2.10	0.10	1.3	0.45	-0.30		0.11	0.04	0.32	-0.17
412750	bwf116	4350	1.83	0.11	1.1	0.25	-0.10	-0.05	0.14	0.25	0.29	-0.04
411479	bwf117	5200	2.32	-0.30	1.2		0.00	0.00	0.09	0.34	0.39	0.23
402656	bwf118	4750	2.08	-0.32	1.2	0.50	0.20	0.15	0.31	0.33	0.54	0.10
554694	bwf119	4300	1.89	0.10	1.2	0.10	-0.20	-0.10	0.07	0.04	0.31	0.05
402375	bwf120	4200	1.80	0.05	1.4	0.40	-0.15		0.22	0.20	0.25	0.02
244829	bwf121	4800	2.09	-1.09	1.4	0.30	0.23	0.35	0.43	0.36	0.50	0.47
402353	bwf122	4800	2.27	0.01	1.5	0.55	-0.15					
244738	bwf123	4800	2.12	-0.25	1.3	0.30	0.23	0.10	0.27	0.34	0.48	0.08
402347	bwf124	4200	1.82	0.19	1.2	0.05	-0.25		0.06	0.03	0.39	-0.04
564772	bwf126	4300	1.92	-0.07	1.5	0.50	-0.10	0.00	0.21	0.06	0.33	0.15

Tabela 4.1 - Continuação

												-
OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
423286	bwf128	4350	1.90	0.05	1.2	0.35	-0.15		0.11	0.18	0.29	0.04
267974	bwf129	4400	1.94	0.31	1.2	0.05	-0.30		-0.04	0.07	0.18	-0.19
412753	bwf133	4300	1.84	0.33	1.1	-0.30	-0.35		0.09	0.09	0.21	-0.17
256345	bwf134	4250	1.78	0.33	1.5	-0.05	-0.30		0.06	0.04	0.02	0.00
					Field	at -6° bri	ght: B6-b					
41958c3	b6b002	5100	2.04	0.05	1.5	0.45	-0.35	-0.10	0.20	0.11	0.32	-0.10
157820c3	b6b003	4800	2.04	-0.73	1.6	0.40	0.25	0.20	0.40	0.25	0.37	0.27
32799c3	b6b004	4850	2.04	-1.25	1.5	0.00		0.55	0.44	0.22	0.29	0.40
76187c3	b6b005	4550	1.79	-0.42	1.6	0.35	0.15	0.15	0.44	0.26	0.48	0.26
38354c3	b6b006	4700	1.83	-0.61	1.7	0.40	0.20	0.25	0.33	0.29	0.43	0.22
203158c3	b6b007	4800	1.86	-0.04	1.6	0.30	-0.12	0.05	0.29	0.09	0.38	0.01
39802c3	b6b008	5200	2.17	-0.50	1.6			0.10	0.17	0.22	0.26	0.18
43054c3	b6b009	4800	2.01	-1.03	1.5	0.50	0.35	0.35	0.32	0.29	0.33	0.44
46885c3	b6b010	4350	1.70	0.00	1.5	0.50		0.04	0.15	0.17	0.04	0.10
1604c2	b6b011	4700	1.92	-1.13	1.4	1.00		0.45	0.38	0.39	0.47	0.46
36989c3	b6b012	4700	1.88	0.05	1.5	0.15		0.05	0.23	0.10	0.12	0.09
36067c3	b6b013	4550	1.78	0.08	1.4	0.15	-0.15	0.05	0.19	0.09	0.15	0.12
77454c2	b6b015	4950	1.95	-0.38	1.6	0.50	0.25	0.20	0.30	0.20	0.31	0.10
43562c2	b6b016	4600	1.84	-0.81	1.7	0.70		0.45	0.37	0.18	0.34	0.40
32832c2	b6b017	4350	1.71	-0.03	1.5	0.50			0.17	0.09	0.19	-0.01
62009c2	b6b018	4350	1.73	-0.39	1.5	0.30	0.05	0.10	0.37	0.21	0.36	0.37
38565c2	b6b019	4600	1.87	-0.26	1.7	0.35	0.05	0.12	0.27	0.13	0.42	0.08
204270c3	b6b020	4900	2.05	0.02	1.3	0.15		-0.05	0.25	0.28	0.20	-0.02
69429c3	b6b021	4500	1.79	-0.76	1.5	0.70	0.30		0.41	0.24	0.36	0.39
56671c3	b6b022	4900	1.98	-0.20	1.3	0.30	0.05	0.17	0.24	0.30	0.14	0.11
25213c2	b6b023	4600	1.87	0.09	1.5	0.30	-0.15	-0.10	0.14	0.05	0.03	0.06
35428c2	b6b024	4800	1.92	-1.16	1.6	0.50	0.30	0.26	0.13	0.24	0.40	0.35
31338c2	b6b026	4700	1.89	-0.55	1.6	0.15	0.25		0.28	0.10	0.49	0.20
53477c2	b6b028	4650	1.85	-0.55	1.6	0.30	0.25	0.22	0.30	0.28	0.40	0.22
56410c2	b6b029	4600	1.81	-1.10	1.5	0.30		0.35	0.41	0.26	0.30	0.30
4799c2	b6b030	4950	2.10	-0.12	1.2	0.30	-0.15	0.05	0.26	0.41	0.42	0.26
43239c2	b6b031	5200	2.19	-1.26	1.6	0.00		0.28	0.31	0.20	0.46	0.30
14297c2	b6b033	4900	2.01	-0.66	1.8	0.40	0.30	0.30	0.51	0.11	0.41	0.29
17437c2	b6b034	4800	1.97	-0.50	1.6	0.70	0.25	0.33	0.39	0.29	0.53	0.25
41995c2	b6b035	4800	1.98	-1.58	2.0							
30173c2	b6b036	4900	2.05	-0.90	1.7	0.40		0.38	0.21	0.23	0.44	0.38
45160c2	b6b037	4700	1.91	-0.56	1.5	0.40	0.28	0.20	0.41	0.32	0.47	0.09
13661c2	b6b038	4850	1.98	-0.09	1.5	0.30	-0.05	0.02	0.20	0.14	0.25	0.04
212324c6	b6b039	4800	1.88	-0.32	1.2	0.40	0.10	0.10	0.35	0.39	0.41	0.10
10381c2	b6b040	4700	1.90	-0.14	1.3	0.30		0.08	0.11	0.23	0.25	0.30
14893c2	b6b041	4050	1.51	-0.47	1.5	0.40	0.15	0.35	0.34	0.05	0.16	0.36
204828c2	b6b042	5000	2.10	-0.22	1.5	0.20	0.00	0.00	0.27	0.27	0.38	0.11
203913c2	b6b043	4900	1.93	-0.24	1.5	0.40	0.15	0.12	0.35	0.29	0.30	0.08
33058c2	b6b044	4550	1.84	-0.37	1.7	0.40	0.00	0.08	0.41	0.26	0.40	0.09
212175c6	b6b045	4650	1.90	-0.47	1.5	0.40	0.27	0.08	0.38	0.33	0.55	0.26

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
213150c6	b6b046	4300	1.67	-0.02	1.5	0.25	-0.12	0.00	0.06	-0.04	0.16	0.07
1678c2	b6b048	4900	1.98	-0.95	1.8	0.50	0.33	0.25	-0.03	0.22	0.40	0.30
874c2	b6b049	4550	1.84	-0.32	1.5	0.60	0.20	0.17	0.32	0.24	0.42	0.00
7694c2	b6b050	5100	2.11	0.15	1.9	0.40	-0.35	-0.10	0.09	0.06	0.19	-0.04
8312c2	b6b051	5000	2.07	-0.32	2.0	0.40	-0.05	0.08	0.17	0.11	0.25	0.22
19402c1	b6b052	4550	1.83	-0.61	1.5	0.45	0.25	0.40	0.32	0.29	0.38	0.20
23483c1	b6b053	5150	2.01	-0.52	1.4	0.30		0.17	0.33	0.38	0.31	0.24
98692c6	b6b054	5000	2.22	0.07	1.4	0.25		0.05	0.17	0.23	0.30	-0.03
94324c6	b6b055	4700	1.90	-0.39	1.6	0.20	0.20	0.18	0.38	0.28	0.51	0.19
99147c5	b6b056	4550	1.86	-0.60	1.6	0.25		0.25	0.29	0.13	0.38	0.29
96158c6	b6b058	5000	2.10	-0.37	1.4	0.30		0.15	0.35	0.31	0.54	0.16
100047c6	b6b060	4350	1.72	-0.42	1.5	0.55	0.25	0.15	0.31	0.14	0.43	0.14
102180c6	b6b061	4550	1.86	-0.39	1.4	0.30	0.18	0.32	0.26	0.15	0.38	0.23
211484c6	b6b062	4800	1.92	-0.60	1.4	0.60	0.33	0.17	0.31	0.35	0.48	0.24
106969c6	b6b064	4950	1.98	-1.00	1.5	0.00			0.30	0.33	0.52	0.33
91438c6	b6b065	5150	2.10	-0.62	1.4	0.00		0.15	0.33	0.37	0.10	0.30
74262c6	b6b066	4950	2.08	-0.32	1.2	0.50		0.28	0.29	0.33	0.30	0.22
79869c6	b6b067	5300	2.23	-0.48	1.4	0.00	0.13	0.15	0.22	0.29	0.50	0.24
98974c6	b6b069	5200	2.12	-0.39	1.3	0.30		0.15	0.22	0.24	0.43	0.08
99069c6	b6b070	5400	2.27	-0.26	1.6	0.30		0.00	0.14	0.14	0.24	0.08
100384c6	b6b072	4550	1.83	-0.57	1.6	0.60	0.25	0.27	0.45	0.30	0.40	0.10
108928c6	b6b073	4850	1.96	-0.88	1.5	0.30		0.40	0.28	0.36	0.42	0.35
101274c6	b6b074	5150	2.14	-0.06	1.5	0.40	-0.10		0.14	0.20	0.48	0.00
71769c6	b6b075	5300	2.13	-0.22	1.5	0.60	0.20	0.08	0.22	0.23	0.23	0.11
62520c6	b6b077	4950	2.09	-0.84	1.5	0.50	0.30	0.10	0.25	0.25	0.32	0.30
60577c6	b6b078	4900	1.97	-0.18	1.5	0.10	0.10		0.30	0.18	0.44	-0.05
43679c6	b6b079	4950	2.10	-0.59	1.4			0.25	0.28	0.23	0.44	0.20
55804c6	b6b080	4100	1.54	0.19	1.5	0.00	-0.30	-0.10				
54561c6	b6b081	4900	1.97	-0.25	1.4	0.30	0.13	0.07	0.27	0.29	0.37	0.23
80281c6	b6b082	5050	2.15	-0.08	1.5	0.30	0.03	0.02	0.16	0.24	0.34	0.03
68782c6	b6b083	4750	1.93	-0.50	1.5	0.50	0.30	0.18				
66376c6	b6b084	4650	1.87	0.19	1.5	0.30		-0.10	0.28	0.26	0.17	0.04
205837c7	b6b085	4750	1.95	-0.36	1.6	0.40	0.30	0.14	0.38	0.28	0.54	0.23
75097c7	b6b087	4550	1.82	-0.09	1.5	0.25	-0.10	0.07	0.16	0.06	0.36	-0.02
63747c7	b6b088	4950	2.02	-0.09	1.5	0.40	-0.07	0.10	0.23	0.10	0.39	0.15
46642c7	b6b090	4650	1.91	0.21	1.5	0.30	-0.28		0.06	0.07	0.14	-0.06
57883c7	b6b091	4550	1.81	-0.25	1.5	0.40	0.15	0.13	0.23	0.33	0.38	0.13
51688c6	b6b092	4700	1.95	-0.42	1.5	0.40	0.27	0.12	0.37	0.33	0.59	0.19
209695c7	b6b093	4900	2.07	-0.11	1.4	0.40	0.03	-0.05	0.39	0.14	0.49	0.16
90337c7	b6b095	4850	2.02	-0.51	1.5	0.50	0.18	0.08	0.20	0.33	0.30	0.07
87232c7	b6b099	4950	2.03	-0.21	1.5	0.50	0.18	0.05	0.29	0.21	0.42	0.09
54480c7	b6b100	5100	2.08	-0.40	1.5	0.50		0.17	0.36	0.31	0.40	0.11
64860c7	b6b102	4500	1.80	0.09	1.5	0.40	-0.23	-0.15	0.18	0.08	0.19	-0.07
79003c7	b6b103	5200	2.08	-0.40	1.5	0.00		0.10	0.20	0.22	0.46	0.17
50439c7	b6b104	5100	2.16	-0.08	1.4	0.30	-0.20	0.10	0.34	0.28	0.46	-0.01

Tabela 4.1 - Continuação

Seção 4.	Resultados
----------	------------

Tabela 4.1 - Continuação

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
80144c7	b6b105	4750	1.83	-0.05	1.5	0.40	0.00		0.22	0.10	0.14	-0.01
97618c7	b6b107	4900	1.88	-0.91	1.5			0.30	0.21	0.20	0.47	0.41
102010c7	b6b108	4750	1.90	-0.56	1.4	0.40	0.25	0.22	0.38	0.34	0.56	0.14
87242c8	b6b109	4300	1.67	0.00	1.5	0.55	-0.08		0.24	0.26	0.10	0.13
88768c7	b6b111	4400	1.72	-0.25	1.5	0.40	-0.05	0.07	0.27	0.20	0.50	0.15
36105c7	b6b112	4900	2.06	-0.14	1.4	0.35	0.13	0.12	0.25	0.35	0.51	-0.01
7209c7	b6b113	4800	1.98	-0.43	1.3	0.40	0.35	0.23	0.35	0.33	0.50	0.31
98458c7	b6b114	4300	1.68	-0.02	1.5	0.60	0.00	0.00	0.26	0.06	0.07	0.30
5685c3	b6b116	4900	1.98	-1.15	1.5	0.00		0.28	0.20	0.20	0.50	0.44
04943c6	b6b117	5300	2.10	-1.20	1.5			0.40				
5118c4	b6b118	4750	1.95	0.06	1.6	0.30	-0.08	-0.05	0.16	0.05	0.25	-0.05
10465c7	b6b119	4600	1.90	0.00	1.4	0.30	-0.02	0.00	0.20	0.01	0.33	0.02
212654c8	b6b120	4850	2.01	0.39	1.4	0.10	-0.35	0.05	0.04	0.25	0.02	-0.10
08191c7	b6b121	5050	2.11	-0.77	1.5	0.00			0.32	0.35	0.55	0.30
23017c3	b6b122	4250	1.65	-0.01	1.5	0.35	0.07	0.00	0.15	-0.02	0.17	0.01
101167c8	b6b123	5100	2.16	0.05	1.5	0.45	0.10	-0.15	0.22	0.16	0.30	-0.02
03539c7	b6b124	4850	1.99	-0.31	1.5	0.50		0.14				
202633c3	b6b126	4500	1.73	0.31	1.5	0.30	-0.30		0.14	0.01	0.11	0.05
32080c3	b6b127	5000	1.99	-0.17	1.6	0.50	0.10	0.05	0.28	0.06	0.39	0.06
3791c3	b6b128	4950	2.20	0.00	1.3	0.20	-0.15	0.03	0.07	0.06	0.18	0.04
204664c4	b6b129	5400	2.22	0.18	1.5	0.00	-0.30	-0.20				
1653c3	b6b132	4850	1.91	0.04	1.5	0.35	-0.30	-0.20	0.18	0.38	0.41	-0.14
1259c2	b6b134	5000	2.02	-0.29	1.5	0.30	0.05	0.13	0.29	0.25	0.54	-0.10
					Fiel	d at -6° fa	int: B6-f					
200810c3	b6f003	4100	1.66	0.11	1.5	0.45	-0.20	-0.40				
34058c3	b6f005	4400	1.84	0.21	1.6	0.50	-0.15	-0.10	0.13	0.00	0.09	0.02
47752c3	b6f006	3900	1.47	0.20	1.5	0.10	-0.30	0.00				
40528c3	b6f008	4450	1.88	-0.48	1.7	0.10	0.10	0.22	0.39	0.08	0.40	0.30
9280c3	b6f010	4350	1.80	0.07	1.5	0.50	0.04		0.08	0.01	0.00	0.00
2982c3	b6f011	4300	1.95	0.01	1.5	0.70	-0.10		0.09	0.10	0.35	0.11
108051c7	b6f013	4250	1.79	0.03	1.6	0.30	0.00	-0.05	0.24	0.15	0.36	0.13
20863c2	b6f015	4200	1.75	0.08	1.5	1.10			0.20	0.12	0.09	0.02
31220c2	b6f016	4400	1.81	0.10	1.7	0.40	-0.15	-0.05	0.20	-0.07	0.03	0.20
50086c2	b6f017	4350	1.80	0.32	1.5	0.30	-0.30	-0.30	0.08	0.18	0.11	-0.04
208608c3	b6f018	4750	2.06	-0.56	1.5	0.40		0.25	0.25	0.16	0.38	0.28
58159c3	b6f020	4400	1.93	-0.09	1.5	0.30	-0.02	0.00	0.15	0.10	0.23	0.06
70770c3	b6f021	4050	1.61	-0.04	1.5	0.40	0.00	0.00				
205096c2	b6f023	4800	2.10	-0.15	1.4	0.40	0.00	0.02	0.14	0.12	0.07	0.07
48090c2	b6f024	4700	2.05	-0.28	1.5	0.30						
42348c2	b6f025	4400	1.84	-0.09	1.5	0.30		-0.15	0.19	0.09	0.07	0.10
149531c2	b6f027	4500	1.91	-0.38	1.5	0.40	0.25	0.15	0.20	0.03	0.09	0.24
31090c2	b6f028	4700	1.98	-0.37	1.5	0.10	0.05	0.14	0.35	0.12	0.39	0.09
4261c2	b6f029	4200	1.72	0.40	1.4	0.00	-0.30	0.00				
59986c2	b6f030	4650	2.01	-0.27	1.5	0.35	0.13	0.05	0.38	0.19	0.53	0.14
	h6f021	4500	2.05	0.00	15	0.40	0.05	0.15				

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
139560c2	b6f034	4300	1.87	0.26	1.5	0.20	-0.30		0.05	0.04	0.07	-0.08
145595c2	b6f035	4300	1.81	0.44	1.5	-0.15	-0.30	-0.10	-0.06	0.07	0.09	-0.08
22905c2	b6f036	4500	1.89	-0.45	1.4	0.35	0.28	0.25	0.37	0.19	0.32	0.24
47298c2	b6f037	4350	1.79	-0.51	1.7	0.50	0.18	0.20	0.48	0.25	0.41	0.27
33601c1	b6f038	4400	1.94	0.29	1.6	0.20	-0.20	-0.20	-0.02	0.07	0.03	-0.16
43023c2	b6f039	4600	1.95	-0.46	1.4	0.40			0.30	0.32	0.30	0.20
107527c6	b6f042	3750	1.20	-0.96	1.5	0.40						
31176c2	b6f043	4400	1.76	-0.22	1.5	0.50	0.05	0.05	0.29	0.19	0.29	0.06
17038c2	b6f044	4300	1.76	0.29	1.4	0.10	-0.35	-0.45	0.08	0.09	-0.13	0.05
103742c5	b6f045	4100	1.69	0.31	1.5	0.20	-0.30					
959c2	b6f049	4650	2.00	-0.58	1.4	0.00	0.30	0.30	0.37	0.24	0.33	0.25
10584c2	b6f051	4500	1.91	-0.38	1.4	0.30	0.30	0.20	0.29	0.13	0.35	0.10
15094c1	b6f052	4600	2.01	-0.19	1.4	0.20	0.13	0.12	0.20	0.23	0.51	0.02
95371c6	b6f054	4500	1.92	-0.27	1.4	0.15	0.05	0.12	0.29	0.25	0.46	0.01
98734c6	b6f055	4700	1.99	-0.06	1.1	0.70		-0.20				
103413c6	b6f056	4150	1.65	0.24	1.4	0.30		-0.20	0.11	0.08	-0.16	0.13
85625c5	b6f057	4250	1.82	0.15	1.5	0.40	-0.20	-0.15	0.08	0.09	0.05	0.03
91631c6	b6f058	4800	2.05	-0.28	1.5	0.45	0.13	0.03	0.32	0.21	0.49	0.26
95545c6	b6f059	4250	1.77	-0.45	1.3	0.55	0.40	0.30	0.44	0.25	0.42	0.42
96460c6	b6f061	4650	1.94	0.25	1.4	0.35	-0.25	-0.10	0.07	0.21	0.17	-0.06
83500c6	b6f062	4400	2.00	-0.01	1.4	0.60	-0.10		0.12	0.08	0.46	-0.06
72513c6	b6f064	4700	1.98	-0.48	1.7	0.35	0.28	0.15	0.34	0.20	0.39	0.12
69731c6	b6f065	4450	1.95	-0.19	1.5	0.20			0.28	0.19	0.39	0.07
73072c6	b6f066	4050	1.60	0.12	1.5	0.35	-0.25	-0.30	0.27	0.04	-0.10	0.14
56641c6	b6f068	4450	1.81	0.17	1.5	0.30	-0.25	-0.05	0.08	0.10	-0.04	0.04
208907c6	b6f069	4900	2.09	-0.17	1.5	0.30	0.10		0.30	0.16	0.25	0.08
99166c6	b6f070	4300	1.81	0.04	1.4	0.60	-0.15	-0.10	0.24	0.29	0.26	0.16
71832c6	b6f071	4300	1.80	-0.09	1.4	0.60	0.04	0.10	0.20	0.14	0.19	0.18
77481c6	b6f072	4950	2.13	-0.28	1.5	0.50	0.10	0.08	0.33	0.19	0.46	0.19
91776c6	b6f073	4800	2.11	0.23	1.5	0.20	-0.30	-0.35	0.11	0.14	0.15	-0.09
93621c6	b6f074	4550	1.92	-0.22	1.5	0.50	0.12	0.05	0.21	0.29	0.38	0.19
99940c6	b6f075	4200	1.69	-0.25	1.6	0.50	0.00	0.05	0.33	0.08	0.16	0.24
53554c6	b6f078	4350	1.78	0.08	1.4	0.45	-0.15	-0.05	0.26	0.23	0.26	-0.02
63690c6	b6f079	4800	2.06	0.03	1.5	0.40	-0.20	-0.02	0.07	0.12	0.37	-0.10
205097c6	b6f080	4700	2.18	0.26	1.4	0.20	-0.20	-0.20	-0.04	0.03	0.00	-0.13
52922c6	b6f081	4500	1.94	-0.30	1.5	0.40	0.18	0.05	0.33	0.16	0.27	0.09
51954c6	b6f082	4300	1.76	0.03	1.5	0.20	-0.20	0.02	0.12	0.08	0.03	0.15
56533c6	b6f083	4300	1.72	0.13	1.5	0.50	-0.20	-0.20	0.16	0.03	-0.11	0.14
94909c7	b6f084	4250	1.73	-0.11	1.4	0.80	-0.10	-0.55	0.17	0.26	0.28	0.19
73484c7	b6f085	4600	2.07	0.31	1.2	0.15	-0.35	-0.40	-0.22	0.30	0.55	-0.17
90995c7	b6f086	4800	2.07	-0.03	1.4	0.40			0.21	0.24	0.20	-0.08
41505c7	b6f087	4800	2.06	-0.48	1.6	0.30	0.10	0.20	0.36	0.19	0.46	0.18
34034c7	b6f088	4350	1.87	0.04	1.5	0.65	-0.10	-0.05	0.16	0.29	0.37	0.10
205852c7	b6f089	4350	1.86	0.06	1.5	0.50	-0.20		0.22	0.08	0.22	0.03
64944c7	b6f090	4350	1.79	0.08	1.5	0.35	-0.25	-0.20	0.11	0.28	0.19	0.02

Tabela 4.1 - Continuação

Seção 4.	Resultados
----------	------------

Tabela 4.1 - Continuação

OGLE	GIRAFFE	Teff	logg	[Fe/H]	[vt]	[N/Fe]	[O/Fe]	[Zn/Fe]	[Mg/Fe]	[Si/F2]	[Ca/Fe]	[Ti/Fe]
75601c7	b6f091	4400	1.79	-0.08	1.5	0.55	-0.05		0.18	0.22	0.20	0.18
60208c7	b6f092	4400	1.83	-0.41	1.6	0.53	0.30	0.12	0.27	-0.02	0.13	0.25
46088c7	b6f093	4500	1.90	-0.20	1.4	0.40	0.10	0.05	0.20	0.26	0.35	0.05
77743c7	b6f095	4350	1.78	0.11	1.5	0.60	0.00	-0.15	0.04	-0.10	-0.05	0.05
85832c7	b6f096	4250	1.77	0.01	1.5	0.40	-0.20		0.23	0.11	0.05	0.09
211927c7	b6f097	4850	2.06	-0.81	1.0	0.00						
93881c7	b6f098	4400	1.83	0.03	1.5	0.40	-0.10	-0.08	0.14	0.29	0.19	0.00
82739c7	b6f099	4600	1.99	-0.45	1.5	0.20	0.23	0.10	0.35	0.09	0.43	0.10
88860c7	b6f100	4450	1.85	-0.06	1.5	0.35	-0.15	-0.20	0.22	0.31	0.33	0.01
62874c7	b6f101	4600	1.92	-0.48	1.5	0.40	0.40	0.10	0.36	0.19	0.31	0.19
73636c7	b6f102	4450	1.86	-0.22	1.5	0.35	0.05	0.10	0.29	0.17	0.27	0.17
56730c7	b6f103	4300	1.83	0.00	1.3	0.30	-0.20	0.15	0.29	0.22	0.27	0.10
48678c7	b6f104	4750	2.00	0.17	1.6	0.40	-0.30	-0.15	0.22	0.10	0.18	0.01
58592c7	b6f105	4550	1.95	0.17	1.6	0.35	-0.25		0.01	0.17	0.27	-0.20
77419c7	b6f106	4600	1.93	0.18	1.5	0.30	-0.25	-0.15	0.05	0.14	0.10	0.00
96001c8	b6f107	4550	1.89	0.21	1.5	0.30	-0.30	-0.35	0.15	0.13	0.15	0.06
97453c7	b6f108	4700	2.00	0.02	1.5	0.45	-0.15	0.00	0.03	0.07	0.23	0.10
105594c7	b6f109	4900	2.10	-0.25	1.6	0.20	0.10	0.10	0.27	0.18	0.32	0.23
80262c8	b6f110	4700	2.06	0.23	1.5	0.25	-0.25	0.00	0.11	0.21	0.22	-0.08
80419c8	b6f111	4400	1.81	0.18	1.5	0.45	-0.20	-0.20	0.07	0.08	0.04	0.29
98090c7	b6f112	4550	1.88	-0.05	1.6	0.30		-0.15	0.00	0.04	0.26	0.03
75382c8	b6f113	4450	1.88	0.20	1.5	0.05	-0.30	-0.10	0.07	0.04	0.15	0.01
94445c7	b6f114	4550	1.93	-0.29	1.5	0.40	0.15	0.05	0.35	0.30	0.39	0.08
97069c7	b6f115	4100	1.61	0.25	1.5	0.35	-0.25	-0.50				
132843c3	b6f116	4650	2.00	-0.05	1.5	0.00						
8683c4	b6f117	4250	1.69	0.02	1.4	0.35	-0.05	0.00	0.11	0.13	0.18	0.01
215027c7	b6f118	4100	1.68	0.20	1.5	0.30	-0.30	-0.20	0.29	0.05	0.03	0.23
213817c7	b6f119	4450	1.86	0.27	1.5	0.05	-0.40	-0.40	0.08	0.09	0.17	-0.04
110776c7	b6f120	4600	1.84	-0.85	1.5	0.15	0.35	0.32	0.32	0.26	0.27	0.38
111007c8	b6f121	4300	1.81	0.01	1.4	0.45	-0.10	-0.20	0.14	0.10	0.16	0.02
108627c7	b6f123	4600	2.03	0.02	1.4	0.45			0.19	0.10	0.39	-0.02
97461c8	b6f124	4700	1.97	0.31	1.5	0.50	-0.10	-0.10	0.03	0.11	0.26	-0.05
35429c3	b6f126	4400	2.01	0.30	1.5	0.00	-0.30	-0.45				
19346c3	b6f128	4900	2.09	0.27	1.5	0.20	-0.25	-0.17	0.02	0.08	0.03	-0.09
41112c4	b6f129	4500	1.89	-0.31	1.5	0.60		0.00	0.36	0.24	0.35	0.14
9081c3	b6f130	4500	1.93	-0.25	1.5	0.40	0.00	-0.05	0.39	0.16	0.51	0.09
35643c4	b6f131	5050	2.17	0.22	1.6	0.30	-0.35	-0.28	0.15	0.35	0.48	-0.10
27350c4	b6f134	4850	2.08	-0.36	1.3	0.00	0.00	0.20	0.25	0.37	0.41	0.15
6693c3	b6f135	4650	2.01	-0.03	1.5	0.50	-0.10		0.19	0.23	0.33	0.03

Na tabela 4.2 são mostradas as abundâncias determinadas para o nitrogênio, oxigênio e zinco dos espectros obtidos com o FLAMES-GIRAFFE, comparados com as abundâncias determinadas para os mesmos elementos dos espectros do FLAMES-UVES. Adotamos os valores dos

Figura 4.5: Comparação entre as abundâncias FLAMES-GIRAFFE e FLAMES-UVES para os elementos oxigênio, nitrogênio e zinco para as estrelas em comum (tabela 4.2. Para o zinco: círculo laranja cheio considera a média das duas linhas observadas do zinco (ZnI 4810.54 Å e ZnI 6362.34 Å) pelo FLAMES-UVES e o triângulo magenta cheio compara os resultados para as mesmas linhas.

parâmetros atmosféricos da análise dos dados FLAMES-UVES (Zoccali et al. 2006; Lecureur et al. 2007), para essas estrelas observadas simultaneamente pelo FLAMES-UVES e FLAMES-GIRAFFE.

Tabela 4.2 - Amostra de estrelas observadas simultaneamente com o FLAMES-UVES e FLAMES-GIRAFFE. Metalicidades [Fe/H] são de Zoccali et al. (2006). Para a amortra UVES, as abundâncias são de Friaça & Barbuy (2016), e [Zn/Fe] de Barbuy et al. (2015), onde Zn1 e Zn2 referem-se às linhas de ZnI 4810.54Å e 6362.3Å.

GIRAFFE	[Fe/H]	[N/Fe]	[O/Fe]	[Zn/Fe]	UVES	[Fe/H]	[N/Fe]	[O/Fe]	[Zn1/Fe]	[Zn2/Fe]
bwb007	+0.32	+0.30	-0.25	-0.40	Bw-f1	+0.32	+0.50	-0.15	-0.35	
bwb040	-0.59	+0.45	+0.20	+0.30	Bw-f5	-0.59	+0.20	+0.10	+0.15	+0.00
bwb061	+0.11	+0.20	-0.25	-0.15	Bw-f7	+0.11	+0.60	-0.10	-0.20	
bwb087	-1.21	+0.54	+0.30		Bw-f4	-1.21	+0.54	+0.30	+0.30	+0.30
bwb096	-0.21	+0.30	+0.08	+0.22	Bw-f6	-0.21	+0.40	+0.18	+0.15	+0.30
bwf026	+0.17	+0.00	+0.00		Bw-b5	+0.17	+0.00	+0.00	-0.30	+9.99
bwf067	+0.22	+0.15	-0.10	-0.20	Bw-b2	+0.22	+0.10	-0.10	-0.15	+0.00
bwf093	+0.07	-0.10	-0.20		Bw-b4	+0.07	+0.00	-0.10	+0.00	+0.00
bwf102	-0.25	+0.70	+0.10	+0.20	Bw-b6	-0.25	+0.90	+0.25	+0.00	+0.00
bwf119	+0.10	+0.10	-0.20	-0.10	Bw-b7	+0.10	+0.60	-0.10	-0.20	
b6b044	-0.37	+0.40	+0.00	+0.08	B6-f5	-0.37	+0.15	+0.00	+0.10	+0.20
b6b060	-0.42	+0.55	+0.25	+0.15	B6-f7	-0.42	+0.30	+0.10	-0.15	+0.00
b6b095	-0.51	+0.50	+0.18	+0.08	B6-f2	-0.51	+0.05	+0.18	+0.05	+0.05
b6b122	-0.01	+0.35	+0.07	+0.00	B6-f1	-0.01	+0.35	+0.07	-0.30	
b6b132	+0.04	+0.35	-0.30	-0.20	B6-f8	+0.04	+0.35	-0.30	-0.60	
b6b134	-0.29	+0.30	+0.05	+0.13	B6-f3	-0.29	+0.30	+0.05	+0.10	+0.00
b6f010	+0.07	+0.50	+0.04		B6-b1	+0.07	+0.39	+0.04	-0.20	-0.40
b6f013	+0.03	+0.30	+0.00	-0.05	B6-b8	+0.03	+0.05	+0.00	-0.08	+0.00
b6f016	+0.10	+0.40	-0.15	-0.05	B6-b3	+0.10	+0.30	-0.15	-0.27	-0.30
b6f028	-0.37	+0.10	+0.05	+0.14	B6-b5	-0.37	+0.30	+0.15	+0.10	+0.00
b6f062	-0.01	+0.60	-0.10		B6-b2	-0.01	+0.60	-0.10	-0.15	+0.00
b6f092	-0.41	+0.53	+0.30	+0.12	B6-b4	-0.41	+0.53	+0.30	+0.00	+0.00
b6f095	+0.11	+0.60		-0.15	B6-b6	+0.11	+0.70	+0.00	-0.40	-0.50

As abundâncias do carbono, nitrogênio e oxigênio foram primeiramente determinados por Zoccali et al. (2006) e Lecureur et al. (2007), sendo parcialmente revisados por Barbuy et al. (2015) e uma completa revisão desses valores por Friaça & Barbuy (2017). Esta revisão cuidadosa dos dados FLAMES-UVES é importantíssima para a determinação correta da abundância do carbono da linha CI 5380.3 Å e da *bandhead* C_2 (0,1) 5635,2 Å, pois as abundâncias do Tabela 4.3 - Valores das incertezas determinadas para as abundâncias do [O/Fe] e do [Zn/Fe], com alterações nos modelos de $\Delta T_{eff} = -200$ K, $\Delta \log g = +0.4$, Δ [Fe/H] = -0.1 dex, $\Delta v_t = +0.3$ km s⁻¹, com o valor correspondente ao erro total presente na coluna (6). Nas últimas colunas são apresentados os erros induzidos por Δ [C/Fe]±0.2 para o nitrogênio e o oxigênio, e o efeito sobre o oxigênio com Δ [C/Fe]±0.2 juntamente com o nitrogênio ajustado para reproduzir a linha do CN.

Star	ΔT _{eff} (+150 K)	Δlog g (+0.2)	Δ[Fe/H] (+0.1)	$\Delta v_t $ (+0.1 kms ⁻¹)	$(\sum x^2)^{1/2}$	ΔC=-0.2 [C/Fe]=-0.2dex	ΔC=+0.2 [C/Fe]=0.2dex	[C,N/Fe]=-0.2,0.32 [C,N/Fe]=-0.2,0.77	[C,N/Fe]=0.2,-0.35 [C,N/Fe]=0.2,0.0
[C/Fe](CI)	+0.03	+0.02	+0.02	+0.00	0.04	-0.2	0.2		
[C/Fe](CH)	+0.00	+0.01	+0.02	+0.00	0.02	-0.2	0.2		
[N/Fe]	+0.04	+0.05	+0.06	+0.00	0.09	+0.30	-0.35		
[O/Fe]	+0.01	+0.05	+0.05	+0.00	0.07	-0.05	-0.12	-0.08	+0.07
[Zn/Fe]	-0.01	-0.15	+0.01	+0.05	0.16	0.0	0.0		

oxigênio dependem dos valores corretos da abundância do carbono e do nitrogênio, devido ao equilíbrio molecular dissociativo.

5 Determinação dos erros das abundâncias

Em Barbuy et al. (2013, 2015) (e respectiva seção 3.3), determinamos as incertezas nos dados para as estrelas observadas pelo FLAMES-UVES. Agora, realizamos uma análise mais refinada referente a essas incertezas do que anteriormente. Os parâmetros atmosféricos foram variados da seguinte forma: ± 200 K para a temperatura efetiva, ± 0.40 para a gravidade superficial (log g), ± 0.10 para a metalicidade [Fe/H] e ± 0.30 kms⁻¹ para a velocidade de microturbulência. Além disso, também levamos em conta o erro devido à ausência da abundância do carbono quanto à determinação da abundância do oxigênio. com uma variação de ± 0.20 dex em [C/Fe].

As incertezas nos valores de [O/Fe] e [Zn/Fe] são calculadas usando os modelos atmosféricos com a alteração dos parâmetros por essas incertezas, aplicadas à estrela BW-f1, que possuem valores conflitantes da abundância do [O/Fe] entre Jonsson et al. (2017) e Friaça & Barbuy (2017).

A tabela 4.3 apresenta os valores das incertezas relacionadas aos parâmetros atmosféricos e à abundância do carbono. A soma desses erros é o limite superior, visto que os parâmetros estelares são covariantes. Por outro lado, a incerteza na localização correta do contínuo introduz uma incerteza em $[O/Fe] \sim \pm 0.05$ e em $[Zn/Fe] \sim \pm 0.1$.

6 Modelos de evolução química do oxigênio e do zinco em esferóides massivos

A figuras 4.6 apresenta os dados da abundância do oxigênio em função da metalicidade ([O/Fe] vs. [Fe/H]) das estrelas observadas com o espectrógrafo FLAMES-GIRAFFE, e os modelos de evolução química do oxigênio em um bojo clássico, conforme descrito em Friaça & Barbuy (2017). A evolução do modelo segue até 13 Ganos, e embora o bojo tenha se formado rapidamente, a formação de estrelas continua, a massa estelar é acumulada durante pelo menos \approx 3 Ganos, permitindo uma contribuição de supernovas tipo Ia (SN Ia). O melhor modelo de ajuste para o oxigênio, baseado em dados anteriores, foi assumido tendo uma taxa de formação estelar específica de $v_{SF} = 0.5$ Gano⁻¹, seguindo conclusões de Friaça & Barbuy (2017) e Cavichia et al. (2014).

Afim de realizar um melhor ajuste às abundâncias dos dados observados, [Zn/Fe] vs. [Fe/H], entre as metalicidades -2.0 < [Fe/H] < -0.8, foi necessário revisar os cálculos, visto que em nossa amostra existe uma quantidade considerável de estrelas nessa faixa de metalicidade. Em Barbuy et al. (2015), discutimos sobre esse ponto, i.e., os resultados de colapso do núcleo de SN II por Woosley & Weaver (1995) subestima a abundância de zinco em baixas metalicidades. Por outro lado, hipernovas, como definidas por Nomoto et al. (2006, 2013), Umeda & Nomoto (2002, 2003, 2005) e Kobayashi et al. (2006), reproduzem melhor o enriquecimento das abundâncias de zinco em relação ao ferro em estrelas pobres em metais.

Em Barbuy et al. (2015) discutimos a contribuição de hipernovas para metalicidades $Z/Z_{\odot} \le 0.0001$, reproduzindo bem as abundâncias de DLAs em baixa metalicidades. Em nossos cálculos de evolução química, levamos em consideração os modelos de colapso de núcleo de SN II de Woosley & Weaver (1995) para metalicidades $Z/Z_{\odot} > 0.01$, e para metalicidades com $Z/Z_{\odot} < 0.01$, utilizamos modelos de hipernovas de Kobayashi et al. (2006), que se ajustam muito bem aos dados com [Fe/H] $\lesssim -1.6$. Ainda há um gap para metalicidades intermediárias entre -1.6 < [Fe/H] < -0.9, questão ainda não resolvida.

7 Resultados das abundâncias do nitrogênio, oxigênio e zinco

A tabela 4.1 apresenta as abundâncias calculadas do nitrogênio, oxigênio e zinco, juntamente com as abundâncias dos elementos alfa magnésio, silício, cálcio e titânio de Gonzalez et al.

Figura 4.6: Abundâncias do [O/Fe] vs. [Fe/H] para as 351 estrelas gigantes vermelhas, onde foram excluídas algumas estrelas rica em nitrogênio e pobre em oxigênio. Os modelos de evoluções químico-dinâmicos com uma escala de tempo de 2 Ganos, ou taxa de formação de estrela de 0.5 Gano⁻¹ são mostradas na figura. As linhas sólidas corresponde a r < 0.5 kpc; as linhas pontilhadas a 0.5 < r < 1.0 kpc; as linhas tracejadas a 1.0 < r < 2.0 kpc; e as linhas ponto tracejadas a 2.0 < r < 3.0 kpc. Os símbolos são: pentagrama magenta cheia: campo Janela de Baade *bright* (BWb); círculo verde cheio: campo Janela de Baade *faint* (BWf); triângulo vermelho vazado: campo em b = -6° *bright* (B6b); quadrado azul cheio: campo em b = -6° *faint* (B6f); quadrado preto: Friaça & Barbuy (2017); estrela azul: Jonsson et al. (2017); hexâgono magenta vazado: García-Pérez et al. (2013); hexâgono azul vazado: Howes et al. (2016); hexâgono verde vazado: Lamb et al. (2017).

(2011).

A figura 4.6a apresenta os resultados das abundâncias do oxigênio em função da metalicidade, [O/Fe] vs. [Fe/H], para os dados observacionais do FLAMES-GIRAFFE, onde cada área observada está representada por símbolos distintos: pentágono cheio magenta: campo Janela de Baade *bright* (BWb); círculo cheio verde: campo Janela de Baade *faint* (BWf); triângulo vazado vermelho: campo em -6° *bright* (B6b); quadrado cheio azul: campo em -6° *faint* (B6f).

A figura 4.6b apresenta os resultados da abundância do oxigênio dos dados FLAMES-GIRAFFE juntamente com as abundâncias dos dados FLAMES-UVES para as estrelas em comum, com os novos resultados de Friaça & Barbuy (2017) (quadrado preto vazado) e Jonsson et al. (2017) (estrela azul). Juntamente com esses resultados, são incluídas abundâncias recentes do oxigênio para estrelas pobres em metais localizadas em campos do bojo externo: cinco estrelas de García-Perez et al. (2013), duas estrelas de Howes et al. (2016) e três estrelas de Lamb et al. (2017).

A figura 4.7 apresenta os dados das abundâncias do zinco em função da metalicidade, [Zn/Fe] vs. [Fe/H] para as estrelas da nossa amostra FLAMES-GIRAFFE, juntamente com os dados do FLAMES-UVES de Barbuy et al. (2015) e estrelas pobres em metais analisadas por Howes (2015a), Howes et al. (2015b, 2016) e Casey & Schlaufman (2016).

A figura 4.8 apresenta as abundâncias do zinco, comparadas com as abundâncias dos elementos alfa do oxigênio, determinadas neste trabalho, e do magnésio, silício, cálcio e titânio de Gonzalez et al. (2011). O comportamento mostrado pelo zinco parece similar ao dos elementos alfa, sendo muito próximas ao comportamento do oxigênio, silício e cálcio. Para as estrelas de alta metalicidade, os baixos valores da abundância do zinco encontrados são compatíveis com as abundâncias do oxigênio. Entretanto, em relação às abundâncias do magnésio, silício, cálcio e titânio determinadas por Gonzalez et al. (2011), estas tendem a apresentar um valor constante com o aumento da metalicidade.

8 Comparação das abundâncias determinadas com resultados da literatura

Friaça & Barbuy (2017) discutem sobre amostras de bojo disponíveis na literatura que possuem abundâncias de oxigênio determinadas. Essas amostras incluem anãs do bojo de Bensby et al. (2013), estrelas gigantes vermelhas de Alves-Brito et al. (2010), que foram observadas no óptico para as mesmas estrelas em Meléndez et al. (2008), Cunha & Smith (2006), Ryde et al. (2010), Rich et al. (2012), Johnson et al. (2014), Rich & Origlia (2005) e Fulbright et al. (2006,

Figura 4.7: Abundâncias do [Zn/Fe] vs. [Fe/H] para a presente amostra, 331 estrelas, mostradas no painel superior. No painel inferior, são mostras, juntamente com os resultados do FLAMES-GIRAFFE, os resultados obtidos com os dados FLAMES-UVES (Barbuy et al. 2015, capítulo 3), e estrelas pobres em metais de Howes et al. (2015, 2016) e Casey & Schlaufman (2016). Os modelos de evolução químico-dinâmico com escalas de tempo de formação estelar de 1, 2, 3 Ganos, ou taxas de formações estelares específicas de 1, 0.5, 0.3 Gano⁻¹, respectivamente, são mostradas sobrepostas aos dados das estrelas citadas anteriormente.

Figura 4.8: Abundâncias do [O, Mg, Si, Ca,Ti/Fe] vs. [Fe/H] e do [Zn/Fe] vs. [Fe/H] para as 417 estrelas gigantes vermelhas observadas pelo FLAMES-GIRAFFE.

2007).

Friaça & Barbuy (2017) compararam as abundâncias do oxigênio, obtidas com o FLAMES-UVES com os parâmetros estelares reanalisados por Jonsson et al. (2017) para 23 estrelas presentes nos dados FLAMES-UVES, para as quais determinaram as abundâncias do oxigênio, com exceção da estrela B3-f1 que Friaça & Barbuy (2017) não incluiram nesse estudo. Na tabela 4.4 são mostrados os parâmetros estelares redefinidos por Jonsson et al. (2017). A abundância do oxigênio é dado em ϵ (O)¹, sendo que a abundância do oxigênio [O/Fe] = ϵ (O)_{*}² – ϵ (O)₀ – [Fe/H], assumindo o valor ϵ (O)₀ = 8.76 (Steffen et al. (2015). Nessa mesma tabela 4.4, ainda apresentamos uma comparação entre os parâmetros estelares adotados de Zoccali et al. (2006), utilizados nesse trabalho, e em Friaça & Barbuy (2017), com a última coluna contendo a abundância do oxigênio, [O/Fe], determinada por Friaça & Barbuy (2017).

Restringimos essas comparações às amostras dos campo Janela de Baade (BW) e o campo -6° (B6), desse trabalho, mais o campo Blanco (BL). Para quatro estrelas, B6-b3, B6-f3, B6-f8, BL-4, as temperaturas efetivas diferem de $\Delta T_{eff} \sim 230 \text{K}$ ($\Delta T_{eff-Zoccali+06} - \Delta T_{eff-Jonsson+17}$). Para três estrelas, os valores das abundâncias [O/Fe] de Jonsson et al. (2017) diferem em mais de 0.2 dex das abundâncias [O/Fe] de Friaça & Barbuy (2017): BW-f1: +0.45, -0.18; B6-b3: +0.13, -0.12; B6-f8: +0.03, -0.20. Essas estrelas serão analisados com mais atenção.

Para essas três estrelas ricas em metais, BW-f1, B6-b3 e B6-f8, utilizamos os parâmetros estelares determinados por Jonsson et al. (2017), sendo revisados os valores das abundâncias do carbono, nitrogênio e oxigênio, da mesma maneira que descritos por Friaça & Barbuy (2017). Os resultados são mostrados na tabela 4.4. Os ajustes com esses novos parâmetros são mostrados nas figuras 4.9, 4.10 e 4.11. A abundância do oxigênio para a estrela BW-f1 difere do valor encontrado por Jonsson et al. (2017). Entretanto, para as outras duas estrelas, os valores das abundâncias do oxigênio são similares.

Parece-nos que os parâmetros estelares tanto de Jonsson et al. (2017) quanto de Zoccali et al. (2006) possuem incertezas. Por um lado, algumas estrelas de Jonsson et al. (2007) podem estar com valores superestimados da gravidade, valores maiores do que realmente são, para estrelas que possuem uma magnitude acima do ramo horizontal. E por outro lado, as metalicidades de Zoccali et al. (2006), para algumas das estrelas ricas em metais, podem estar superestimadas, embora a diferença média entre os valores de Zoccali et al. (2006) e de Jonsson et al. (2017) seja

 $^{^{1} \}epsilon(X) = n(X)/n(H) + 12$, onde n = número de átomos, notação padrão

 $^{^{2} \}epsilon(O)_{*}$: valor da abundância da estrela sem correção do valor solar, determinado para log $\epsilon(O)$

Figura 4.9: Abundâncias do CNO revisada para a estrela BW-f1, adotando os parâmetros estelares determinados por Jonsson et al. (2017).

de Δ [Fe/H] ~0.05 dex.

Uma comparação entre as 23 estrelas em comum entre Jonsson et al. (2017) e Friaça & Barbuy (2017), podem ser vistos na figura 4.12, onde a incerteza nos parâmetros estelares é vista comparando os parâmetros de Jonsson et al. (2017) e Schulteis et al. (2017), em relação aos parâmetros de Zoccali et al. (2006, 2008): ΔT_{eff} (Jonsson+17 – Zoccali+06) = -94 K e ΔT_{eff} (Schultheis+17 – Zoccali+08) = +250 K; $\Delta \log g$ (Jonsson+17 – Zoccali+06) = +0.46 e $\Delta \log g$ (Schultheis+17 – Zoccali+08) = +0.10, com a exclusão da estrela mais discrepante 2MASS 18042724-3001108. Schultheis et al. (2017) também encontraram Δ [Fe/H] = 0.1 dex, enquanto que estrelas com metalicidades [M/H] < 0 são sistematicamente mais pobres em metais em Zoccali et al. (2008), com relação às medidas do APOGEE.

Em Barbuy et al. (2015) discutimos sobre as comparações das abundâncias do zinco em relação às estrelas anãs do bojo por efeito de microlentes de Bensby et al. (2013) (capítulo 3.5). Os resultados das abundâncias do FLAMES-GIRAFFE concordam muito bem com os resultados de Barbuy et al. (2015) e com os de Bensby et al. (2013) para metalicidades entre -1.4 < [Fe/H] < 0.0, ao passo que o comportamento para as estrelas gigantes ricas em metais com [Fe/H] > 0.0 são distintos. As estrelas anãs observadas por microlente apresentam um comportamento constante para a abundância do [Zn/Fe], enquanto que as estrelas gigantes vermelhas mostram um decaimento da abundância do zinco em relação à metalicidade. Elas apresentam um grande espalhamento entre -0.6 < [Zn/Fe] < +0.15.

9 Comparando os resultados das abundâncias determinadas com sistemas damped Lyman-α – DLAs

Em Barbuy et al. (2015) comparamos as abundâncias do zinco obtidas pelo FLAMES-UVES com os dados de Akerman et al. (2005), Cooke et al. (2013) e Vladilo et al. (2011). Realizamos correções nas observações das DLAs devido à poeira, concluindo que as DLAs encontram-se na mesma região do gráfico de [Zn/Fe] vs. [Fe/H] que as estrelas do bojo e do disco fino. Por outro lado, uma comparação da metalicidade de DLAs com estrelas do disco espesso por Rafelski et al. (2012), mostrou que mesmo havendo uma sobreposição dos dados, a população média de DLAs é mais pobre em metais que as estrelas do disco espesso. Rafelski et al. (2012) determinaram as metalicidades das DLAs utilizando medidas de [Si/H] e [S/H], que são menos sensíveis à poeira interestelar do que [Zn/H]. Rafelski et al. (2012) não realizaram correções devido ao efeito da

	Jonsson+17						new C,N,O	Zoccali+06			FB17	
Star	T _{eff}	log g	[Fe/H]	v _t	$\epsilon_*(0)$	[O/Fe]	C,N,O	T _{eff}	log g	[Fe/H]	v _t	[O/Fe]
B3-b1	4414	1.35	-0.92	1.41	8.22	+0.38	—	4300	1.7	-0.78	1.5	+0.35
B3-b5	4425	2.70	0.22	1.43	8.87	-0.11	_	4600	2.0	0.11	1.5	-0.30
B3-b7	4303	2.36	0.05	1.58	8.80	-0.01	_	4400	1.9	0.20	1.3	-0.20
B3-b8	4287	1.79	-0.70	1.46	8.47	+0.41	_	4400	1.8	-0.62	1.4	0.30
B3-f1	4485	2.25	-0.18	1.88	8.74	+0.16	_	4500	1.9	0.04	1.6	0.10
B3-f3	4637	2.96	0.21	1.89	8.98	+0.01	_	4400	1.9	0.06	1.7	-0.10
B3-f4	4319	2.60	-0.15	1.50	8.77	+0.16	_	4400	2.1	0.09	1.5	0.10
B3-f8	4436	2.88	0.21	1.54	8.79	-0.18	—	4800	1.9	0.20	1.5	-0.30
BW-b6	4262	1.98	-0.35	1.44	8.60	+0.19	_	4200	1.7	-0.25	1.3	0.15
BW-f1	4359	2.51	0.25	1.93	8.96	+0.45	-0.10,0.75,0.00	4400	1.8	0.32	1.6	-0.18
BW-f6	4117	1.43	-0.46	1.69	8.55	+0.25	—	4100	1.7	-0.21	1.5	0.20
BW-f7	4592	2.96	0.53	1.50	9.10	-0.19	—	4400	1.9	0.11	1.7	-0.25
B6-b3	4468	2.48	0.02	1.67	8.91	+0.13	0.15,0.45,0.20	4700	2.0	0.10	1.6	-0.12
B6-b4	4215	1.38	-0.65	1.68	8.43	+0.32	—	4400	1.9	-0.41	1.7	0.30
B6-b5	4340	2.02	-0.51	1.34	8.49	+0.24	—	4600	1.9	-0.37	1.8	0.15
B6-b6	4396	2.37	0.16	1.77	8.86	-0.15	—	4600	1.9	0.11	1.8	-0.10
B6-b8	4021	1.90	0.03	1.45	8.68	-0.11	—	4100	1.6	0.03	1.3	-0.03
B6-f1	4149	2.01	0.07	1.65	8.84	+0.01	—	4200	1.6	-0.01	1.5	0.03
B6-f3	4565	2.60	-0.38	1.28	8.63	+0.23	—	4800	1.9	-0.29	1.3	0.15
B6-f8	4470	2.78	0.10	1.30	8.89	+0.03	0.10,0.25,0.10	4900	1.8	0.04	1.6	-0.20
BL-3	4555	2.48	-0.12	1.53	8.74	+0.10	—	4500	2.3	-0.03	1.4	0.05
BL-4	4476	2.94	0.24	1.41	8.93	-0.08	—	4700	2.0	0.13	1.5	-0.20
BL-5	4425	2.65	0.25	1.68	8.91	-0.10	_	4500	2.1	0.16	1.6	-0.05

Tabela 4.4 - Amostras de estrelas observadas simultaneamentte com o FLAMES-UVES, e reanalisadas por Jonsson et al. (2017). Colunas 8-11: parâmetros estelares de Zoccali et al. (2006); Coluna 12: abundâncias de [O/Fe] de Friaça & Barbuy (2017).

Figura 4.10: Abundâncias do CNO determinadas para a estrela B6-b3, adotando os parâmetros estelares definidos por Jonsson et al. (2017).

Figura 4.11: Abundâncias do CNO determinadas para a estrela B6f8, utilizando os parâmetros estelares definidos por Jonsson et al. (2017).

Figura 4.12: Abundâncias do[O/Fe] vs. [Fe/H] de Jonsson et al. (2017) e Friaça & Barbuy (2017) para as 23 estrela em comum. Os modelos de evoluções químico-dinâmicos de Friaça & Barbuy (2017) são mostrados sobrepostos às abundâncias das estrelas.

poeira. Nós comparamos as medidas das nossas abundâncias do zinco [Zn/Fe] com os dados de Rafelski et al. (2012), para uma melhor compreensão desses resultados.

Na figura 4.13 apresentamos uma comparação dos nossos resultados de [Zn/Fe] vs. [Fe/H] com os dados de DLAs de Rafelski et al. (2012). Esses dados incluem uma compilação de sistemas de DLAs selecionados com estimativas de suas metalicidades, incluindo aquelas de Akerman et al. (2005) e um subconjunto de Vladilo et al. (2011). Notamos que a comparação das abundâncias do zinco da nossa amostra com as de DLAs deve ser analisada com cautela, pois há erros sistemáticos nos valores de [Zn/Fe] que são difíceis de controlar. Na região de alta metalicidade, a abundância do zinco é afetada pelo efeito da poeira, sofrendo uma diminuição em seu valor. Por outro lado, na região de baixa metalicidade, a força do oscilador do zinco resulta em linhas de absorção muito fracas para serem detectadas nesses sistemas. Limitamos a comparação entre nossos dados na figura 4.13 com sistemas DLAs entre $-2.5 < [\alpha/H] < -1.0$. Empregamos esse procedimento para minimizar os erros sistemáticos de depleção devido à poeira e as linhas de absorção do zinco não detectadas.

A parte superior da figura 4.13 apresenta uma sobreabundância em [Zn/Fe] para os dados de DLAs. Nota-se que na figura 4.13 há uma remoção de sistemas de DLAs de alta metalicidade, evitando-se, dessa forma, os erros causados pela depleção do zinco e ferro em poeira. Outros dados de DLAs encontrados na literatura, e discutidos em Barbuy et al. (2015), apresentam um espalhamento em [Zn/Fe], similar aos dados de Rafelski et al. (2012), mas também são compatíveis com um excesso em [Zn/Fe].

Segundo Cooke et al. (2015), os valores de [Zn/Fe] em DLAs decrescem para o valor solar em metalicidade [Fe/H] < -2.5. Esses autores se basearam na compilação dos dados de Saito et al. (2009). Analisando a figura 4.13a, podemos notar o excesso nas abundâncias do [Zn/Fe] para a nossa amostra e para as DLAs entre -2.5 < [alfa/H] < -1.0.

A razão [Zn/Fe] possui uma natureza complexa, apresentando um espalhamento grande em suas medidas e em sua evolução para baixas metalicidades (Saito et al. 2009, Cooke et al. 2015). Isso acontece, pois enquanto o ferro é produzido em SNe Ia, o zinco deve sua produção às estrelas massivas (Woosley & Weaver 1995; Umeda & Nomoto 2002). Os valores das abundâncias do [Zn/Fe] nas DLAs dependem, possivelmente, da história de formação estelar da galáxia hospedeira (Fenner et al. 2004) e da depleção do ferro pela poeira na linha de visada. Portanto, uma investigação mais detalhada é necessária para um entendimento do enriquecimento do Zn em relação aos elementos alfa ([alfa/Fe]) em [alfa/H] < -1.0.

Figura 4.13: Painel superior: [Zn/Fe] vs. [Fe/H]: mesma representação para as abundâncias mostradas na figura 4.7, incluindo valores de sistemas Damped Lyman-alfa de Rafelski et al. (2012). Painel inferior: [Zn/Fe] vs. [Fe/H]: resultados encontrados por Rafelski et al. (2012), [O/Fe] em DLAs de Cooke et al. (2015) e os valores das abundâncias do [Zn/Fe] e [O/Fe] desse estudo (da mesma forma como mostrada no painel superior da figura 4.8).

A parte inferior da figura 4.13 apresenta um enriquecimento de elementos alfa para DLAs com [Fe/H] < -1.0 comparado com os valores de [Zn/Fe] e [O/Fe] de nossa amostra. Além disso, também incluimos nessa parte da figura 4.13 valores de [O/Fe] das DLAs pobres em metais de Cooke et al. (2015). Há um enriquecimento de [alfa/Fe] para [Fe/H] < -0.6, sendo consistente com o enriquecimento de elementos alfa em DLAs.

10 Estrelas pobres em oxigênio e ricas em nitrogênio

Espera-se haver enriquecimento de nitrogênio em estrelas gigantes vermelhas, ocorrendo no ciclo CN (Iben 1967) e mistura extra (Smiljanic et al. 2009), conforme revisado por Karakas & Lattanzio (2014). Schiavon et al. (2017) analisaram estrelas gigantes vermelhas do bojo ricas em nitrogênio, com um pico em metalicidade em [Fe/H] ~ -1.0. Eles incluiram, nesse estudo, estrelas com [N/Fe] \gtrsim + 0.5, encontrando 58 estrelas em um total de 5140 estrelas gigantes do bojo, o que corresponde a 1.1% da amostra total. Segundo a interpretação dada por Schiavon et al. (2017), essas estrelas podem ser membros de segunda geração evaporadas de aglomerados globulares. Carretta et al. (2009) mostraram que estrelas de segunda geração possuem baixa abundância de oxigênio e alta abundância de nitrogênio e de sódio.

Em nossa amostra, há estrelas ricas em nitrogênio. Por esse motivo, reinserimos as abundâncias do oxigênio de algumas dessas estrelas ricas em nitrogênio na tabela 4.1 que são pobres em oxigênio. A linha do [OI] 6300.3 Å é pouco profunda para essas estrelas e, portanto, esses valores são incertos, possivelmente sendo limites superiores para a abundância do oxigênio. Além disso, também realizamos medições, para essas estrelas, da abundância do sódio, utilizando as linhas de NaI 6154.23 Å e 6160.75 Å, adotando a estrutura hiperfina para os valores totais de log gf = -1.56 e -1.26, respectivamente. As estrelas ricas em nitrogênio dividem-se em diferentes casos, em função do nitrogênio e do oxigênio: i) ricas em N, e pobres em O, mas para algumas dessas estrelas, não foi possível determinar o valor de [O/Fe] devido ao *blend* com linhas telúricas, e somente conseguimos determinar os valores do nitrogênio; ii) outras estrelas são ricas em nitrogênio e com abundância normal de oxigênio, com metalicidade [Fe/H] ≤ -0.5 ; iii) uma estrela extremamente rica em nitrogênio com [Fe/H] = +0.08, mas a linha [OI] possui um *blend* com a linha telúrica para este caso.

Na tabela 4.5 são apresentados os valores das abundâncias do nitrogênio e do oxigênio para essas estrelas, bem como os valores das abundâncias do sódio determinadas ([Na/Fe]). Além

disso, o valor da abundância do magnésio ([Mg/Fe]) é fornecido. Esse elemento é um indicador de enriquecimento de elementos alfa para essas estrelas, e portanto pode ser comparado com as abundâncias do oxigênio, provavelmente mais baixas, por transformação de N em O.

Star	[Fe/H]	[N/Fe]	[O/Fe]	[Mg/Fe]	[Na/Fe]							
Estrelas ricas em nitrogênio e pobres em oxigênio												
bwb008	-0.80	1.00	0.00	0.15	+0.30							
bwb122	-0.81	0.70	-0.05	0.21	+0.10							
bwb128	-0.82	0.70	0.00	0.23	+0.00							
bwb130	-0.85	0.70	0.10	0.26	+0.20							
b6b100	-0.40	0.50	0.00	0.36	-0.05							
b6b011	-1.13	1.00		0.38	+0.05							
b6b016	-0.81	0.70		0.37	+0.05							
Estrelas ricas em nitrogênio e com abundância normal de oxigênio												
bwb087	-1.21	0.54	0.30		-0.30							
bwb091	-0.60	0.50	0.40	0.40	-0.10							
bwb093	-0.67	0.80	0.30	0.15	-0.25							
bwb102	-0.50	0.50	0.20	0.15	-0.05							
b6b009	-1.03	0.50	0.35	0.35	+0.00							
b6b021	-0.76	0.70	0.30	0.41	+0.00							
b6b024	-1.16	0.50	0.30	0.26	+0.00							
b6b048	-0.95	0.50	0.33	0.25	-0.30							
b6b062	-0.60	0.60	0.33	0.17	+0.00							
b6b072	-0.57	0.60	0.25	0.27	+0.10							
b6b077	-0.84	0.50	0.30	0.10	-0.10							
b6b083	-0.50	0.50	0.30	0.18	+0.08							
b6b095	-0.51	0.50	0.18	0.08	+0.10							
b6f037	-0.51	0.50	0.18	0.20	+0.20							

Tabela 4.5 - Estrelas ricas em nitrogênio e/ou pobres em oxigênio.

Estrelas ricas em metais e ricas em nitrogênio

Tabela 4.5 - Continuação

Star	[Fe/H]	[N/Fe]	[O/Fe]	[Mg/Fe]	[Na/Fe]
b6f015	+0.08	1.10			+0.10

As estrelas descritas na tabela 4.5 estão identificadas na figura 4.14. Se adotarmos o critério de $[N/Fe] \ge 0.5$ para estrelas com $[Fe/H] \le -0.5$ ou $[N/Fe] \ge 0.5$ para [Fe/H] > -0.5, encontramos 22 estrelas em um total de 417 estrelas, que corresponde a aproximadamente 5.3% da amostra. Se considerarmos as estrelas ricas em nitrogênio juntamente com as que possuem [Na/Fe] > 0.00, então temos 3.5% dessas estrelas. Finalmente, se descartamos as estrelas ricas em N, mas com abundância normal de oxigênio, então somente permanecerá 5 estrelas, correspondendo a aproximadamente 1% da amostra total, em bom acordo com o resultado encontrado por Schiavon et al. (2017).

Um ponto interessante de ser realizado futuramente é determinar a abundância do alumínio para essas estrelas, o que poderia ajudar a verificar uma possível anticorrelação entre magnésio– alumínio, que também é detectado em estrelas de segunda geração em aglomerados globulares. A causa dessas anomalidades ainda é incerta e frequentemente debatida na literatura, com estre-las massivas do ramo assintótico das gigantes (AGB) com baixa metalicidade como prováveis responsáveis pela produção dessa nucleossíntese (Renzini et al. 2015).

Figura 4.14: Abundâncias do [O/Fe] vs. [Fe/H] e [N/Fe] vs. [Fe/H] para 356 estrelas gigantes vermelhas (círculo verde cheio), identificando as estrelas ricas em nitrogênio e/ou pobres em oxigênio. Símbolos adotados: círculo verde cheio: estrelas com abundâncias normais para o nitrogênio e o oxigênio; cículo azul vazado: estrelas pobres em oxigênio e com abundância normal de nitrogênio; círculo vermelho cheio: estrelas ricas em nitrogênio e com abundância de oxigênio normal.

Capítulo 5_____

Conclusões

1 Conclusões dos dados FLAMES-UVES

As abundâncias das estrelas do bojo analisadas neste trabalho podem ser explicadas por meio de um cenário clássico de formação de bojo. O comportamento do zinco ([Zn/Fe]) apresenta um decaimento em função do aumento da metalicidade ([Fe/H]). O modelo proposto para o zinco consegue reprozudir bem os dados. Além disso, o modelo explica as abundâncias encontradas em estrelas do halo, que podem ser relíquias do mesmo evento de formação da galáxia que deu origem ao bojo. Os valores elevados de [Zn/Fe] que encontramos em nossos resultados são devidos à inclusão de hipernovas. Nossos resultados são sensíveis aos processos de nucleossíntese, conforme podemos notar na painel inferior da figura 3.11, onde utilizamos os produtos de nucleossíntese de Woosley & Weaver (1995) para baixas metalicidades. O resultado para o [Zn/Fe] é muito baixo. Comparado com o painel superior da figura 3.11, podemos compreender que em baixa metalicidade, a inclusão de hipernovas é favorável. Por outro lado, a diminuição do [Zn/Fe] em metalicidade alta é devido ao enriquecimento por SN Ia.

Os elementos do pico do ferro, escândio, manganês, cobre e zinco, apresentam um enriquecimento químico diferente dos elementos do pico ferro com número atômico par, ferro e níquel. Barbuy et al. (2013) confirmou que o manganês comporta-se como um elemento secundário com [Mn/Fe] baixo em estrelas pobres em metais, aumentando com o aumento da metalicidade. Nesse estudo, mostramos que, para as estrelas do bojo ricas em metais, a abundância do zinco, [Zn/Fe], diminui com o aumento da metalicidade, [Fe/H], complementando trabalhos anteriores em estrelas pobres em metais, que apresentam abundâncias de zinco elevada (Sneden et al. 1991; Cayrel et al. 2004; Nissen & Schuster 2011).

Os principais pontos destacado, com a comparação entre os resultados dos dados e os mode-

los são os seguintes:

- O excesso de [Zn/Fe] em estrelas pobres em metais deve ser favorecida por hipernovas, como definido por Nomoto et al. (2013 e nas referências citdas por eles), agindo nessas estrelas de baixa metalicidade. As hipernovas, como definidas por Nomoto et al. (2013) podem estar relacionadas às estrelas com rotação definidas por Frischknecht et al. (2012) e Meynet et al. (2006) e discutida por Chiappini et al. (2011) sobre o enriquecimento inicial do bojo.
- 2. A maioria das estrelas do bojo ricas em metais de Bensby et al. (2013) apresenta valor de [Zn/Fe] constante, o que indica que não há contribuição de SNe tipo I no bojo, na nucleossíntese do zinco. Por outro lado, a diminuição na abundância do [Zn/Fe] nas estrelas gigantes observada com o FLAMES-UVES, encontrado em nossos resultados, sugere que há enriquecimento de SNe tipo I como previsto pelos modelos. As estrelas do bojo são uma combinação complexa de populações estelares de idades diferentes e de processos de formação.

Para os sistemas DLAs com as abundâncias de ferro determinadas, foi extremamente importante realizar correção devido à depleção da poeira. As abundâncias de zinco também foram corrigidas pela depleção pela poeira, apesar dessas correções para o zinco serem pequenas. Os modelos de evolução química prevêem valores subsolares para [Zn/Fe] para metalicidades relativamente altas, [Fe/H] $\gtrsim -1.0$, como foi confirmado para poucos sistemas.

2 Conclusões dos dados FLAMES-GIRAFFE

Realizamos um estudo determinando as abundâncias do oxigênio e do zinco para 417 estrelas gigantes vermelhas pertencentes ao nosso bojo galáctico. Fomos capazes de calcular as abundâncias do nitrogênio, do oxigênio e do zinco para 403, 346 e 331 estrelas da amostra, respectivamente.

Identificamos de 1% a 3% de estrelas ricas em nitrogênio, pobres em oxigênio e ricas em sódio que apresentam características de estrelas de segunda geração de aglomerados globulares, como sugerido por Schiavon et al. (2017).

As amostras contém um número considerável de estrelas pobres em metais, -1.7 < [Fe/H]< -0.5, que ajudam a traçar o comportamento do [O/Fe] e do [Zn/Fe] nessa faixa de metalicida-
des. O modelo de evolução quimico dinâmico de um bojo clássico de Friaça & Barbuy (2017) é capaz de reproduzir o comportamento das abundâncias do oxigênio e do zinco no bojo galáctico. A alta abundância de [Zn/Fe] observada em estrelas muito pobres em metais favorece um enriquecimento em zinco por hipernovas, como definido por Nomoto et al. (2013 e referências citadas pelos mesmos) agindo nessas estrelas de metalicidades baixíssimas. É interessante notar que há novos resultados sobre o zinco em estrelas do bojo pobres em metais, que se ajustam bem com os resultados de hipernovas. Em sistemas Damped Lyman- α (DLAs), uma abundância elevada de [Zn/Fe] em DLAs pobres em metais também são explicadas razoavelmente bem por modelos de hipernovas. O zinco parece se comportar de forma similar aos elementos alfa em DLAs, e possui um enriquecimento de [α /Fe] similar às estrelas pobres em metais de nossa amostra.

Concluindo, estudos do bojo galáctico com espectroscopia de alta resolução para centenas de estrelas, como a nossa amostra de dados do FLAMES-GIRAFFE, bem como os trabalhos com os dados do APOGEE de Schiavon et al. (2017) e Schultheis et al. (2017), são cruciais para uma melhor compreensão da evolução química e da formação do bojo galáctico.

Capítulo 5. Conclusões

Referências Bibliográficas

- Allen, D.M., Porto de Mello, G.F. 2011, A&A, 525, A63
- Akerman, C.J., Ellison, S.L., Pettini, M., Steidel, C.C. 2005, A&A, 440, 499
- Allende Prieto, C., Barklem, P.S., Lambert, D.L., Cunha, K. 2004, A&A, 420, 183
- Alves-Brito, A., Meléndez, J., Asplund, M. et al. 2010, A&A, 513, A35
- Anders, E., Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
- Arnett, W. D., Truran, J. W., Woosley, S. E. 1971, ApJ, 165, 87
- Asplund, M., Grevesse, N., Sauval, A.J., Scott, P. 2009, ARA&A, 47, 481
- Babusiaux, C., Gómez, A., Hill, V., Zoccali, M., Arenou, F., Fux, L., Lecureur, A., Schulteis,M., Barbuy, B., Minniti, D., Ortolani, S.: 2010, A&A, 519, 77-86
- Ballester, P., Modigliani, A., Boitquin, O., Cristiani, S., Hanuschik, R., Kaufer, A., Wolf, S. 2000, in The Messenger, 101, 31
- Barbuy, B. 1982, PhD Thesis, Observatoire de Paris
- Barbuy, B., Perrin, M.-N., Katz, D., Coelho, P., Cayrel, R., Spite, M., van't Veer-Menneret, C. 2003, A&A, 404, 661
- Barbuy, B., Hill, V., Zoccali, M. et al. 2013, A&A, 559, A5
- Barbuy, B., Friaça, A., da Silveira, C. R. et al. 2015, A&A, 580, A40
- Bensby, T., Feltzing, S., Lundström, I. 2003, A&A, 410, 527

- Bensby, T., Feltzing, S., & Lundström, I. 2004, 415, 155
- Bensby, T., Feltzing, S., Lundström, I., & Ilyin, I. 2005, 433, 185
- Bensby, T., Adén, D., Meléndez, J. et al. 2011, A&A, 533, A134
- Bensby, T., Yee, J.C., Feltzing, S. et al. 2013, A&A, 549, A147
- Bensby, T., Feltzing, S., Oey, M. S. 2014, A&A, 562, 71
- Biémont, E., Godefroid, M. 1980, A&A, 84, 361
- Bisterzo, S., Gallino, R., Pignatari, M. et al. 2004, Mem. S. A. It., 75, 741
- Bruzual, A. G. & Charlot, S. 1993, ApJ, 405, 538
- Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000
- Burstein, D., Faber, S. M., Gaskell, C. M., & Krumm, N. 1984, ApJ, 287, 56
- Carretta, E., Bragaglia, A., Gratton, R. G. et al. 2009, A&A, 505, 117
- Cavichia, O., Mollá, M., Costa, R. D. D., Maciel, W. J. 2014, MNRAS, 437, 3688
- Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117
- Cen, R., Ostriker, J.P. 1999, ApJ, 519, L109
- Cescutti, G., Matteucci, F., Lanfranchi, G. A., & McWilliam, A. 2008, 491, 401
- Chiappini, C., Frischknecht, U., Meynet, G. et al. 20111, Nature, 472, 454
- Coelho, P., Barbuy, B., Meléndez, J., Schiavon, R.P., Castilho, B.V. 2005, A&A, 443, 735
- Cooke, R., Pettini, M., Steidel, C.C., Rudie, G.C., Nissen, P.E. 2011, MNRAS, 417, 1534
- Cooke, R., Pettini, M., Jorgenson, R.A., Murphy, M.T., Rudie, G.C., Steidel, C.C., 2013, MN-RAS, 431, 1625
- Cooke, R. J., Pettini, M., Jorgenson, R. A. 2015, ApJ, 800, 12
- Cunha, K., Smith, V. V. 2006, ApJ, 652, 491

Davis, S.P., Phillips, J.G. 1963, The Red System $(A^2\Pi - X^2\Sigma)$ of the CN molecule (Berkeley: University of California Press)

- Ellison, S. L., Yan, L., Hook, I. M. et al. 2001, A&A, 379, 393
- Ellison, S. L. & Lopez, S. 2009, MNRAS, 397, 467
- Ellison, S. L., Prochaska, X., Hennawi, J. et al. 2010, MNRAS, 406, 1435
- Faber, S. M., Friel, E. D., Burstein, D., & Gaskell, C. M. 1985, ApJS, 36, 573
- Fenner, Y., Prochaska, J. X., Gibson, B. K. 2004, ApJ, 606, 116
- Friaça, A. C. S., Barbuy, B. 2017, A&A, in press
- Frischknecht, U., Hirschi, R., & Thielemann, F.-K. 2012, A&A, 538, L2
- Fulbright, J. P., McWilliam, A., Rich, R. M. 2006, ApJ, 636, 821
- Fulbright, J. P., McWilliam, A., Rich, R. M. 2007, ApJ, 661, 1152
- Gallino, R., Arlandini, C., Busso, M., Lugaro, M., Travaglio, C., Straniero, O., Chieffi, A., Limongi, M. 1998, ApJ, 497, 388
- García-Pérez, A. E., Cunha, K., Shetrone, M. et al. 2013, ApJ, 767, L9
- Gonzalez, O.A., Zoccali, M., Monaco, L., Hill, V., Cassisi, S., Minniti, D. Renzini, A., Barbuy, B., Ortolani, S., Gómez, A. 2009, A&A, 508, 289-295
- Gonzalez, O.A., Rejkuba, M., Zoccali, M., Hill, V., Battaglia, G., Minniti, D., Barbuy, B., Renzini, A., Gómez, A., Ortolani, S. 2011, A&A, 530, A54-65
- Greggio, L. 2005, A&A, 441, 1055
- Grevesse, N. & Sauval, J.N. 1998, SSRev, 35, 161
- Gustafsson, B., Edvardsson, B., Eriksson, K., J ϕ rgensen, U. G., Nordlund, Å & Plez, B. 2008, A&A, 486, 951
- Hawkins, K., Jofré, P., Masseron, T., Gilmore, G. 2015, MNRAS, 453, 758

Hill, V., Lecureur, A., Gómez, A., Zoccali, M., Schultheis, M., Babusiaux, C., Royer, F., Barbuy,B., Arenou, F., Minniti, D., Ortolani, S.: 2011, A&A, 534, A80 (1-20)

Hinkle, K., Wallace, L., Valenti, J., Harmer, D. 2000, Visible and Near Infrared Atlas of the Arcturus Spectrum 3727-9300 A, ed. K. Hinkle, L. Wallace, J. Valenti, and D. Harmer (San Francisco: ASP)

- Honda, S., Aoki, W., Beers, T.C. et al. 2011, ApJ, 730, 77
- Howes, L. M., Asplund, A., Gómez, A. et al. 2011, A&A, 534, A80
- Howes, L. M. 2015a, PhD Thesis, Astralian National University
- Howes, L. M., Casey, A. R., Asplund, M. et al. 2015b, Nature, 527, 484
- Howes, L. M., Asplund, M., Keller, S. C. et al. 2016, MNRAS, 460, 884
- Iben, I. Jr, 1967, ARA&A, 5, 571
- Ishigaki, M.N., Aoki, W., Chiba, M. 2013, ApJ, 771, 67
- Iwamoto, K., Brachwitz, F., Nomoto, K., Kishimoto, N., Umeda, H., Hix, W. R., Thielemann, F. 1999, ApJS, 125, 439
- Jiang, P., Ge, J., Prochaska, J. X. et al. 2010, ApJ, 720, 328
- Johnson, C. I., Rich, R. M., Kobayashi, C., Kunder, A., Kock, A., 2014, ApJ, 148, 67
- Jonsson, H., Ryde, N., Schultheis, M., Zoccali, M. 2017, A&A, in press
- Jorgenson, R. A., Wolfe, A. M., Prochaska, J. X. et al. 2006, ApJ, 646, 730
- Junkkarinen, V. T., Cohen, R. D., Beaver, E. A. et al. 2004, ApJ, 614, 658
- Karakas, A. I., Lattanzio, J. C., 2014, PASA, 31, 30
- Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., Ohkubo, T. 2006, ApJ, 653, 1145
- Kormendy, J. & Kennicutt, R. C. Jr. 2004, ARA&A, 42, 603
- Kulkarni, V. P., York, D. G. Vladilo, G. & Welty D. E. 2007, ApJ, 663, L81
- Kulkarni, V. P., Torres, L., Som, D. et al. 2011, ApJ, 726, 14

Kurúcz, R. 1995, Atomic Line Data (R.L. Kurucz and B. Bell) Kurucz CD-ROM No. 23. Cambridge, Mass.: Smithsonian Astrophysical Observatory

Lamb, M., Venn, K., Andersen, D. et al. 2017, MNRAS, 465, 3536

Lanfranchi, G., Friaça, A. 2003, MNRAS, 343, 481

- Lecureur, A., Hill, V., Zoccali, M., Barbuy, B., Gómez, A., Minniti, D., Ortolani, S., Renzini, A. 2007, A&A, 465, 799
- Lodders, K., Palme, H., Gail, H.-P. 2009, Landolt-Börnstein Group VI Astronomy and Astrophysics Numerical Data and Functional Relationships in Science and Technology Volume 4B: Solar System. Edited by J.E. Trümper, 2009, 4.4., 44
- Madau, P., Pozzetti, L. 2000, MNRAS, 312, L9
- Matteucci, F. & Greggio, L. 1986, A&A, 154, 279
- McWilliam, A. 1997, ARA&A, 35, 503
- McWilliam, A., Rich, R. M., Smecker-Hane, T. A. 2003a, ApJ, 592L, 21
- McWilliam, A., Rich, R. M., Smecker-Hane, T. A. 2003b, ApJ, 593L, 145
- McWilliam, A., Smecker-Hane, T. A. 2005, ApJ, 622L, 29
- McWilliam, A. 2016, PASA, 33, 40
- Meléndez, J., Barbuy, B., Bica, E. et al. 2003, A&A, 411, 417
- Meléndez, J., Asplund, M., Alves-Brito, A. et al. 2008, 484, L21
- Meynet, G., Ekström, S., & Maeder, A. 2004, A&A, 447, 623
- Mishenina, T. V., Kovtyukh, V. V., Soubiran, C., Travaglio, C., Busso, M. 2002, A&A, 396, 189
- Mishenina, T. V., Gorbaneva, T. I., Basak, N. Yu., Soubiran, C., Kovtyukh, V. V. 2011, ARep, 55, 689
- Mitchell, W.E., Mohler, O.C. 1965, ApJ, 141, 1126

Modigliani, A., Mulas, G., Porceddu, I., Wolf, B., Damiani, F., Banse, K. 2004, in The Messenger, 118, 8

- Ness, M., Freeman, K., Athanassoula, E. et al. 2013, MNRAS, 430, 836
- Nissen, P.E., Chen, Y.Q., Schuster, W.J., Zhao, G. 2000, A&A, 353, 722
- Nissen, P.E., Akerman, C., Asplund, M. et al. 2007, A&A, 469, 319
- Nissen, P.E., Schuster, W.J. 2011, A&A, 530, A15
- Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., Maeda, K. 2006, Nuclear Physics A, 777, 424
- Nomoto, K., Kobayashi, C. & Tominaga, N., 2013, ARA&A, 51, 457
- Pei, Y.C., Fall, S.M. 1995, ApJ, 454, 69
- Pettini, M. 1990, Phil. Trans. R. Soc. Lond. A, 358, 2035
- Pettini, M., Smith, L.J., Hunstead, R.W., King, D.L. 1994, ApJ, 426, 79
- Pettini, M. Smith, L. J., King D. L. & Hunstead, R. W. 1997a, ApJ, 486, 665
- Pettini, M., Smith, L.J., King, D.L., Hunstead, R.W. 1997b, ApJ, 486, 665
- Pettini, M., Ellison, S. L., Steidel, C. C. & Bowen, D. V. 1999, ApJ, 510, 576
- Piskunov, N., Kupka, F., Ryabchikova, T., Weiss, W., Jeffery, C., 1995, A&AS, 112, 525
- Planck collaboration: Adam, R. et al. 2015, ArXiV:1502.01582v1
- Plez, B., Brett, J.M., Nordlund, Å. 1992, A&A, 256, 551
- Pompéia, L. 2003, ApSSci, 299, 58
- Praderie, F. 1967, Annales d'Astrophysique, 30, 31
- Prochaska, J. X., McWilliam, A. 1995, 537, L57-L60
- Prochaska, J. S., Naumov, S. O., Carney, B. W., McWilliam, A., Wolfe, A. M. 2000, AJ, 120, 2513

- Prochaska, J. S., Wolfe, A. M. 2002, ApJ, 566, 68
- Prochaska, J. S., Gawiser, E., Wolfe, A. M. et al. 2003, ApJ, 595, L9
- Ramírez, I. & Allende Prieto, C. 2011, ApJ, 743, 135
- Rafelski, M., Wolfe, A. M., Prochaska, J. X. et al. 2012, ApJ, 755, 89
- Rafelski, M., Neeleman, M., Fumagalli, M. et al. 2014, ApJ, 782, L29
- Reddy, B. E., Tomkin, J., Lambert, D. L., Allende Prieto, C. 2003, MNRAS, 340, 304
- Reddy, B. E., Lambert, D. L., Allende Prieto, C. 2006, MNRAS, 367, 1329
- Renzini, A., D'Antona, F., Cassisi, S. et al. 2015, MNRAS, 454, 4197
- Rich, R. M., Origlia, L., Valenti, E. 2012, ApJ, 746, 59
- Roth, K. C. & Blades, J. C. 1995, ApJ, 445, L95
- Ryde, N., Gustafsson, B., Edvardsson, B. et al. 2010, A&A, 509, 20
- Ryde, N., Schultheis, M., Grieco, V. et al. 2016, AJ, 151, 1
- Saito, Y.-J., Takada-Hidai, M., Honda, S., Takeda, Y. 2009, PASJ, 61, 549
- Savage, B. D., & Sembach, K. R. 1996, ARA&A, 34, 279
- Savaglio, S., Panagia, N. & Stiavelli, M. 2000, ASP Conference Series, 215, 2000
- Schiavon, R. P., Zamora, O., Carrera, R. et al. 2017, MNRAS, 465, 501
- Schultheis, M., Rojas-Arriagada, A., García-Pérez, A. E. et al. 2017, A&A, submitted
- Smijanic, R., Gauderon, R., North, P. et al. 2009, A&A, 502, 267
- Sneden, C. & Crocker, D. A. 1988, ApJ, 335, 406
- Sneden, C., Gratton, R. & Crocker, D. A. 1991, A&A, 246, 354
- Spite, M. 1967, Ann. d'AStroph., 30, 211
- Srianand, R., Gupta, N., Petijean, P., Noterdaeme, P. & Saikia, D. J. 2008, MNRAS, 391, L69

- Steffen, M., Prakapavicius, D., Caffau, E. et al. 2015, A&A, 583, 57
- Takeda, Y., Hashimoto, O., Taguchi, H. et al. 2005, PASJ, 57, 751
- Timmes, F.X., Woosley, S.E., Weaver, T.A. 1995, ApJS, 98, 617
- Trevisan, M., Barbuy, B., Eriksson, K., Gustafsson, B., Grenon, M., Pompéia, L. 2011, A&A, 535, A42
- Trevisan, M., Barbuy, B. 2014, A&A, 570, A22
- Tsuji, T. 1973, A&A, 23, 411
- Udalski, A., Szymanski, M., Kaluzny, J., Kubiak, M., Mateo, M. 1992, Acta Astronomica, 42, 253
- Udalski, A., Paczynski, B., Zebrun, K. et al. 2002, Acta Astron., 52, 1
- Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385
- Umeda, H. & Nomoto, K. 2003, Nature, 422, 871
- Umeda, H. & Nomoto, K. 2005, ApJ, 619, 427
- Vladilo, G. 1998, ApJ, 493, 583
- Vladilo, G., Bonifacio, P., Centurión, M., Molaro, P. 2000, ApJ, 543, 24
- Vladilo, G., Centurión, M., Levshakov, S. A. et al. 2006, A&A, 454, 151
- Vladilo, G., Prochaska, J. X. & Wolfe, A. M., 2008, A&A, 478, 701
- Vladilo, G., Abate, C., Yin, J., Cescutti, G., Matteucci, F. 2011, A&A, 530, A33
- Wang, J., Hall, P. B., Ge, J., li, A. & Schneider, D. P. 2004, ApJ, 609, 589
- Wolfe, A. M., Turnshek, D. A., Smith, H. E. & Cohen, R. D. 1986, ApJS, 61, 249
- Wolfe, A. M., Gawiser, E., Prochaska, J. X. 2005, ARA&A, 43, 861
- Woosley, S. E., Hoffman, R. D. 1992, ApJ, 395, 202
- Woosley, S. E., Weaver, T. A. 1995, ApJS, 101, 181

Worthey, G., Faber, S. M., González, J. J., & Burstein, D. 1994, ApJS, 94, 687

Zoccali, M., Lecureur, A., Barbuy, B., Hill, V., Renzini, A., Minniti, D., Gómez, A., Ortolani, S.: 2006, A&A Letters, 457, L1-L4

Zoccali, M., Lecureur, A., Hill, V., Barbuy, B., Renzini, A., Minniti, D., Gómez, A., Ortolani, S.: 2008, A&A, 486, 177-189

Zoccali, M., Vasquez, S., Gonzalez, O. A. et al. 2017, A&A, 599, 12 .

Referências Bibliográficas

Apêndice

Apêndice A_____

Parâmetros Atmosféricos das Estrelas do Bojo Galáctico

1 Parâmetros Atmosféricos das Estrelas do Bojo Galáctico

As tabelas A.1 e A.2 apresentam os parâmetros atmosféricas das estrelas observadas pelo FLAMES-GIRAFFE. Nessa trabalho analisamos as estrelas pertencentes à tabela A.1. Os resultados das abundâncias dos elementos nitrogênio, oxigênio e zinco são mostradas na tabela 4.1.

Tabela A.1 - Parâmetros estelares

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag			
Baade's Window bright: BW-b								
423342	bwb002	18 03 50.00	-29 55 45.20	16.36	1.805			
423323	bwb003	18 03 48.39	-29 56 27.10	16.10	1.846			
412779	bwb004	18 03 43.18	-29 59 40.10	15.91	1.667			
412803	bwb005	18 03 46.14	-29 58 30.00	16.40	2.083			
423359	bwb006	18 03 47.03	-29 54 49.20	16.17	1.768			
433669	bwb007	18 03 37.14	-29 54 22.30	16.14	1.854			
412752	bwb008	18 03 46.04	-30 00 50.90	15.99	1.606			
412794	bwb009	18 03 44.84	-29 58 51.40	16.31	1.823			

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
402327	bwb011	18 03 49.92	-30 03 35.30	16.15	1.691
412924	bwb014	18 03 47.33	-29 59 48.30	16.29	1.660
575317	bwb015	18 04 01.48	-29 56 23.60	15.98	1.677
92600	bwb016	18 04 07.46	-29 54 59.70	16.29	2.050
412759	bwb017	18 03 47.35	-30 00 36.40	15.97	1.649
575356	bwb021	18 03 54.82	-29 55 10.40	16.38	2.065
423331	bwb022	18 03 51.67	-29 56 17.60	16.31	1.854
564797	bwb024	18 04 03.20	-29 58 59.60	16.37	2.025
564792	bwb025	18 04 06.45	-29 59 13.70	16.11	1.631
412931	bwb026	18 03 51.32	-29 59 43.10	16.36	1.867
564988	bwb027	18 03 53.94	-29 59 29.90	16.33	1.751
412792	bwb030	18 03 47.65	-29 58 55.10	16.27	1.859
564762	bwb031	18 03 53.30	-30 00 26.50	15.98	1.728
564757	bwb033	18 04 05.96	-30 00 43.90	16.18	1.627
564807	bwb035	18 04 00.26	-29 58 24.80	16.09	1.690
575293	bwb037	18 04 04.43	-29 57 16.30	16.34	1.842
92537	bwb038	18 04 18.99	-29 57 52.60	16.13	1.864
575303	bwb039	18 04 04.81	-29 56 55.20	16.14	1.580
240260	bwb040	18 04 39.62	-29 55 19.80	15.88	1.601
82762	bwb041	18 04 20.52	-29 58 13.10	16.21	1.769
92565	bwb042	18 04 17.20	-29 56 49.10	16.38	2.081
240210	bwb043	18 04 28.97	-29 57 36.70	16.16	1.782
554722	bwb044	18 04 03.71	-30 01 33.00	16.12	1.811
82725	bwb045	18 04 10.12	-29 59 45.80	16.19	1.673
231262	bwb046	18 04 33.97	-29 59 54.30	16.29	1.636
231099	bwb047	18 04 27.24	-30 01 10.30	15.90	1.527

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
82747	bwb048	18 04 09.88	-29 58 51.80	16.03	1.656
63856	bwb049	18 04 11.16	-30 05 18.70	16.33	1.814
231144	bwb050	18 04 27.23	-29 58 56.50	16.15	1.793
231364	bwb053	18 04 34.47	-29 58 24.70	16.14	1.693
82742	bwb054	18 04 13.80	-29 59 13.40	15.98	1.746
73506	bwb055	18 04 08.81	-30 02 03.30	16.32	2.036
222451	bwb056	18 04 23.77	-30 02 23.50	16.08	1.759
73504	bwb057	18 04 08.02	-30 02 16.40	16.33	1.957
82761	bwb058	18 04 16.23	-29 58 16.30	16.18	1.755
73490	bwb059	18 04 11.50	-30 02 56.10	16.31	1.984
222618	bwb060	18 04 33.22	-30 02 11.70	16.23	1.825
357480	bwb061	18 04 43.92	-30 03 15.20	16.31	1.796
554664	bwb062	18 04 05.38	-30 04 09.30	16.22	1.927
73514	bwb064	18 04 09.99	-30 01 42.40	16.13	1.705
205243	bwb065	18 04 35.02	-30 10 55.30	16.34	1.903
82705	bwb066	18 04 14.25	-30 01 11.20	16.10	1.883
205257	bwb068	18 04 31.86	-30 10 09.90	16.23	1.813
82831	bwb069	18 04 18.85	-30 00 35.80	16.19	1.673
205436	bwb071	18 04 28.84	-30 08 58.10	16.30	1.662
82798	bwb072	18 04 10.78	-30 01 10.00	16.25	1.593
73515	bwb073	18 04 15.53	-30 01 42.60	16.05	1.814
214035	bwb074	18 04 23.37	-30 06 30.60	16.17	1.803
63794	bwb076	18 04 14.65	-30 08 38.50	16.22	1.868
63792	bwb077	18 04 19.86	-30 08 40.80	16.23	1.917
54167	bwb078	18 04 14.82	-30 11 45.40	16.30	1.685
54104	bwb079	18 04 20.20	-30 09 59.00	16.39	1.976

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
54132	bwb080	18 04 21.69	-30 08 55.90	16.11	1.677
54273	bwb081	18 04 14.72	-30 10 15.80	16.39	1.700
44560	bwb082	18 04 23.04	-30 12 45.30	16.35	1.904
205356	bwb083	18 04 24.17	-30 10 35.30	16.36	1.700
63800	bwb085	18 04 09.87	-30 08 21.70	15.99	1.667
63849	bwb086	18 04 07.60	-30 05 42.10	16.16	1.784
537070	bwb087	18 04 01.40	-30 10 20.70	16.07	1.693
63823	bwb088	18 04 14.08	-30 07 31.10	16.19	1.925
545401	bwb090	18 03 54.55	-30 06 35.50	16.23	1.629
545440	bwb091	18 03 59.36	-30 06 02.20	16.38	1.931
54311	bwb092	18 04 12.68	-30 09 40.70	16.39	1.697
537101	bwb093	18 04 05.17	-30 09 53.80	16.34	1.876
554655	bwb095	18 04 02.54	-30 04 31.00	16.10	1.782
392918	bwb096	18 03 36.89	-30 07 04.30	16.37	2.017
63839	bwb097	18 04 11.86	-30 06 20.80	16.29	2.072
554700	bwb098	18 03 58.14	-30 02 33.50	16.07	1.637
554787	bwb099	18 04 00.20	-30 04 06.70	16.39	1.754
63855	bwb100	18 04 16.04	-30 05 25.00	16.33	2.029
63850	bwb101	18 04 18.50	-30 05 40.30	15.91	1.659
402294	bwb102	18 03 51.01	-30 04 48.60	16.29	1.761
63820	bwb103	18 04 07.86	-30 07 35.00	16.22	1.679
393015	bwb104	18 03 52.55	-30 07 31.20	16.31	1.775
554663	bwb105	18 03 57.10	-30 04 13.10	15.95	1.738
63834	bwb106	18 04 14.43	-30 06 46.70	16.14	1.802
402361	bwb107	18 03 36.59	-30 02 16.10	15.98	1.664
402307	bwb109	18 03 42.86	-30 04 06.90	16.28	1.835

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
402414	bwb110	18 03 40.91	-30 04 41.80	16.35	1.858
545288	bwb111	18 04 02.82	-30 05 06.00	16.31	1.791
554889	bwb112	18 04 03.56	-30 02 34.00	16.33	1.638
402315	bwb113	18 03 40.66	-30 03 50.20	16.14	1.862
554811	bwb114	18 03 55.78	-30 03 48.80	16.30	1.659
234671	bwb115	18 03 34.49	-30 07 01.40	16.27	1.976
402332	bwb117	18 03 41.82	-30 03 24.30	16.16	1.886
402322	bwb118	18 03 42.24	-30 03 39.90	16.01	1.701
564743	bwb119	18 04 00.41	-30 01 12.00	16.30	1.955
402311	bwb120	18 03 37.88	-30 03 58.70	16.34	1.888
244582	bwb122	18 03 33.34	-30 01 58.30	16.00	1.720
244504	bwb123	18 03 27.60	-30 04 29.40	16.10	1.877
402607	bwb128	18 03 44.61	-30 02 10.40	16.26	1.707
402531	bwb130	18 03 41.00	-30 03 03.00	16.30	1.660
402325	bwb132	18 03 49.04	-30 03 38.20	16.27	1.876
256308	bwb135	18 03 35.49	-30 00 05.30	16.06	1.623
	Baa	de's Window	faint: BW-f		
585982	bwf003	18 03 53.07	-29 53 30.50	16.43	1.903
575308	bwf004	18 03 56.30	-29 56 40.60	16.47	2.255
575289	bwf005	18 03 56.86	-29 57 26.20	16.48	1.963
423298	bwf007	18 03 51.29	-29 57 27.90	16.54	2.192
433830	bwf008	18 03 41.76	-29 53 17.60	16.82	2.187
564963	bwf009	18 03 59.09	-29 59 46.20	16.62	1.971
554980	bwf010	18 04 02.87	-30 01 29.20	16.42	1.726
423304	bwf013	18 03 43.75	-29 57 15.90	16.95	2.296
102833	bwf014	18 04 14.55	-29 51 36.90	16.75	2.108

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
102853	bwf015	18 04 11.78	-29 51 09.50	16.43	2.028
564768	bwf016	18 04 05.90	-29 59 53.10	16.59	2.186
586077	bwf017	18 04 06.36	-29 53 53.20	16.66	2.002
586005	bwf018	18 04 04.92	-29 52 42.30	16.55	2.133
564789	bwf019	18 04 03.96	-29 59 21.90	16.60	2.255
596502	bwf020	18 03 59.27	-29 49 51.50	16.94	2.520
575360	bwf021	18 04 00.11	-29 55 07.30	16.56	2.077
564991	bwf022	18 04 02.46	-29 59 28.90	16.73	2.117
82760	bwf026	18 04 13.27	-29 58 17.80	16.64	2.192
82727	bwf028	18 04 08.96	-29 59 41.20	16.59	2.234
92557	bwf029	18 04 12.49	-29 57 16.00	16.43	1.888
231128	bwf033	18 04 31.51	-29 59 51.80	16.55	2.338
82717	bwf034	18 04 17.68	-30 00 29.70	16.57	2.286
240216	bwf035	18 04 26.41	-29 57 16.50	16.42	1.968
240459	bwf036	18 04 33.58	-29 54 49.40	16.57	1.880
240394	bwf037	18 04 34.29	-29 55 54.40	16.56	1.960
231369	bwf038	18 04 33.83	-29 58 19.60	16.71	2.112
231367	bwf040	18 04 26.86	-29 58 20.80	16.45	1.849
231310	bwf041	18 04 33.50	-29 59 12.50	16.50	1.924
374186	bwf042	18 04 41.73	-29 55 17.60	16.76	2.142
231325	bwf043	18 04 24.08	-29 59 00.60	16.69	2.078
222627	bwf046	18 04 25.51	-30 02 00.00	16.81	2.270
231185	bwf049	18 04 33.44	-30 01 12.90	16.57	1.997
231233	bwf051	18 04 34.84	-30 00 26.40	16.45	1.819
365797	bwf053	18 04 54.55	-29 58 16.40	16.40	2.017
222412	bwf054	18 04 29.91	-30 04 32.00	16.42	2.074

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
222408	bwf055	18 04 29.73	-30 04 49.60	16.65	2.182
357466	bwf056	18 04 55.47	-30 03 28.00	16.92	2.435
350527	bwf057	18 04 47.62	-30 05 14.10	16.55	2.234
222523	bwf059	18 04 32.75	-30 03 53.10	16.74	2.191
222543	bwf060	18 04 38.20	-30 03 24.50	16.85	2.452
357436	bwf061	18 04 40.16	-30 03 53.10	16.50	1.913
357459	bwf062	18 04 47.78	-30 03 32.10	16.64	2.008
73607	bwf064	18 04 13.37	-30 03 40.10	16.44	1.772
73483	bwf065	18 04 10.39	-30 03 21.30	16.63	2.142
73609	bwf066	18 04 14.37	-30 03 35.30	16.73	2.210
214192	bwf067	18 04 23.95	-30 05 57.80	16.58	1.904
73472	bwf069	18 04 22.33	-30 04 15.50	16.73	2.193
64005	bwf070	18 04 21.76	-30 06 12.00	16.58	1.959
205265	bwf071	18 04 33.17	-30 09 49.70	16.45	2.155
214042	bwf072	18 04 29.19	-30 06 11.80	16.65	2.256
350483	bwf073	18 04 48.98	-30 08 07.20	16.83	2.511
64018	bwf074	18 04 22.49	-30 06 04.50	16.42	1.777
63859	bwf075	18 04 13.08	-30 05 10.80	16.43	1.931
545445	bwf076	18 04 06.17	-30 05 55.20	16.56	1.955
63840	bwf077	18 04 08.08	-30 06 19.40	16.59	1.950
54108	bwf078	18 04 11.63	-30 09 49.10	16.55	2.193
54125	bwf079	18 04 12.91	-30 09 05.60	16.77	2.335
73467	bwf080	18 04 08.39	-30 04 37.80	17.04	2.544
54133	bwf081	18 04 15.65	-30 08 53.50	16.64	2.156
54078	bwf082	18 04 22.03	-30 11 20.90	16.59	2.113
63829	bwf083	18 04 15.01	-30 07 08.60	16.79	2.231

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
537095	bwf085	18 04 03.45	-30 09 57.60	16.45	1.824
545222	bwf086	18 03 57.53	-30 08 21.20	16.41	2.079
545438	bwf087	18 04 02.43	-30 06 05.60	16.80	2.147
545233	bwf088	18 03 59.73	-30 07 46.90	16.56	2.256
545313	bwf091	18 03 56.58	-30 08 06.00	16.90	2.289
537092	bwf092	18 04 06.28	-30 09 59.40	16.53	1.956
545277	bwf093	18 04 05.34	-30 05 52.50	16.95	2.530
402415	bwf095	18 03 49.43	-30 04 39.30	16.65	2.042
554670	bwf096	18 03 56.05	-30 03 54.10	16.62	2.248
554748	bwf097	18 03 55.84	-30 04 35.30	16.42	1.798
392952	bwf098	18 03 49.50	-30 05 28.30	16.61	2.196
392896	bwf099	18 03 41.61	-30 07 54.60	16.64	2.407
393083	bwf100	18 03 49.11	-30 06 13.80	16.65	1.974
393053	bwf101	18 03 48.01	-30 06 51.10	16.63	2.009
392931	bwf102	18 03 51.84	-30 06 27.90	16.42	1.990
545269	bwf103	18 03 53.81	-30 06 15.80	16.63	2.225
554683	bwf104	18 04 04.81	-30 03 00.00	16.61	2.032
554668	bwf105	18 04 00.27	-30 04 00.60	16.58	2.157
78106	bwf107	18 03 19.96	-30 04 27.00	16.89	2.398
402498	bwf108	18 03 40.67	-30 03 27.80	16.46	1.857
234704	bwf109	18 03 25.02	-30 05 01.50	16.42	1.936
67494	bwf110	18 03 16.82	-30 06 10.80	16.43	1.959
234701	bwf111	18 03 33.22	-30 05 08.40	16.56	2.027
234888	bwf112	18 03 32.84	-30 05 44.60	17.00	2.384
554713	bwf113	18 03 56.58	-30 01 55.50	16.81	2.387
554956	bwf114	18 04 01.61	-30 01 49.20	16.43	1.954

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
392951	bwf115	18 03 42.68	-30 05 29.80	16.63	2.010
412750	bwf116	18 03 39.50	-30 00 53.80	16.45	1.946
411479	bwf117	18 03 36.82	-30 01 46.90	16.43	1.919
402656	bwf118	18 03 38.71	-30 01 30.20	16.42	1.805
554694	bwf119	18 04 04.57	-30 02 39.60	16.69	2.446
402375	bwf120	18 03 45.77	-30 02 02.30	16.65	2.228
244829	bwf121	18 03 36.41	-30 02 19.80	16.40	1.724
402353	bwf122	18 03 42.24	-30 02 38.80	16.84	2.624
244738	bwf123	18 03 27.62	-30 03 11.40	16.45	1.788
402347	bwf124	18 03 44.54	-30 02 52.90	16.71	2.395
564772	bwf126	18 03 53.92	-29 59 44.20	16.75	2.542
423286	bwf128	18 03 40.01	-29 57 54.80	16.62	2.130
267974	bwf129	18 03 24.89	-29 55 55.10	16.63	2.057
412753	bwf133	18 03 52.50	-30 00 50.90	16.57	2.136
256345	bwf134	18 03 23.54	-29 58 29.50	16.50	2.057
	F	ield at -6° brig	ght: B6-b		
41958c3	b6b002	18 10 11.78	-31 39 03.30	15.64	1.506
157820c3	b6b003	18 10 04.89	-31 36 45.30	15.63	1.588
32799c3	b6b004	18 10 09.69	-31 40 21.90	15.99	1.546
76187c3	b6b005	18 09 56.25	-31 34 12.70	15.79	1.771
38354c3	b6b006	18 10 04.92	-31 39 34.00	15.67	1.671
203158c3	b6b007	18 10 14.94	-31 40 51.40	15.58	1.578
39802c3	b6b008	18 10 00.70	-31 39 21.50	15.85	1.413
43054c3	b6b009	18 10 01.23	-31 38 53.50	15.98	1.542
46885c3	b6b010	18 09 55.24	-31 38 21.40	15.89	1.843
1604c2	b6b011	18 10 19.01	-31 44 50.60	15.90	1.627

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
36989c3	b6b012	18 09 54.14	-31 39 46.00	15.78	1.658
36067c3	b6b013	18 09 53.51	-31 39 53.70	15.77	1.731
77454c2	b6b015	18 10 24.40	-31 33 39.80	15.60	1.557
43562c2	b6b016	18 10 20.85	-31 38 37.90	15.84	1.702
32832c2	b6b017	18 10 18.07	-31 40 13.80	15.92	1.777
62009c2	b6b018	18 10 16.95	-31 35 55.30	15.96	1.734
38565c2	b6b019	18 10 15.97	-31 39 22.80	15.90	1.723
204270c3	b6b020	18 10 14.79	-31 39 30.30	15.93	1.571
69429c3	b6b021	18 10 10.00	-31 35 09.60	15.86	1.747
56671c3	b6b022	18 10 10.33	-31 36 57.50	15.76	1.576
25213c2	b6b023	18 10 31.18	-31 41 20.60	15.92	1.604
35428c2	b6b024	18 10 33.48	-31 39 51.20	15.76	1.506
31338c2	b6b026	18 10 29.03	-31 40 27.20	15.80	1.669
53477c2	b6b028	18 10 32.42	-31 37 09.60	15.77	1.686
56410c2	b6b029	18 10 30.35	-31 36 44.00	15.77	1.680
4799c2	b6b030	18 10 20.10	-31 44 21.90	15.98	1.521
43239c2	b6b031	18 10 25.53	-31 38 40.80	15.93	1.459
14297c2	b6b033	18 10 50.22	-31 42 57.00	15.84	1.516
17437c2	b6b034	18 10 41.67	-31 42 29.20	15.87	1.616
41995c2	b6b035	18 10 45.45	-31 38 51.60	15.91	1.533
30173c2	b6b036	18 10 35.61	-31 40 37.30	15.93	1.483
45160c2	b6b037	18 10 52.14	-31 38 23.20	15.87	1.722
13661c2	b6b038	18 10 35.13	-31 43 02.70	15.81	1.546
212324c6	b6b039	18 10 26.03	-31 45 13.20	15.65	1.548
10381c2	b6b040	18 10 27.82	-31 43 32.10	15.84	1.552
14893c2	b6b041	18 10 42.48	-31 42 51.80	15.99	1.870

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
204828c2	b6b042	18 10 53.24	-31 38 26.70	15.91	1.539
203913c2	b6b043	18 10 54.62	-31 39 38.00	15.63	1.550
33058c2	b6b044	18 10 41.51	-31 40 11.80	15.90	1.732
212175c6	b6b045	18 10 53.08	-31 45 21.60	15.90	1.779
213150c6	b6b046	18 10 47.52	-31 45 05.30	15.92	1.895
1678c2	b6b048	18 10 40.43	-31 44 49.80	15.76	1.512
874c2	b6b049	18 10 45.83	-31 44 56.60	15.91	1.772
7694c2	b6b050	18 10 50.37	-31 43 55.60	15.80	1.434
8312c2	b6b051	18 10 39.22	-31 43 50.30	15.85	1.511
19402c1	b6b052	18 11 13.14	-31 42 05.50	15.87	1.739
23483c1	b6b053	18 11 08.20	-31 41 28.70	15.51	1.411
98692c6	b6b054	18 10 15.50	-31 46 54.00	15.99	1.498
94324c6	b6b055	18 10 37.62	-31 47 33.00	15.82	1.736
99147c5	b6b056	18 11 07.80	-31 46 29.00	15.96	1.742
96158c6	b6b058	18 10 45.14	-31 47 16.80	15.92	1.610
100047c6	b6b060	18 10 52.30	-31 46 42.10	15.95	1.891
102180c6	b6b061	18 10 36.37	-31 46 23.50	15.95	1.782
211484c6	b6b062	18 10 53.63	-31 46 31.10	15.75	1.683
106969c6	b6b064	18 10 18.03	-31 45 43.50	15.70	1.473
91438c6	b6b065	18 10 17.39	-31 47 58.40	15.73	1.447
74262c6	b6b066	18 10 50.66	-31 50 30.70	15.93	1.542
79869c6	b6b067	18 10 31.64	-31 49 40.90	15.88	1.495
98974c6	b6b069	18 10 36.36	-31 46 51.60	15.72	1.469
99069c6	b6b070	18 10 22.08	-31 46 50.70	15.86	1.418
100384c6	b6b072	18 10 25.39	-31 46 39.10	15.89	1.673
108928c6	b6b073	18 10 21.50	-31 45 26.70	15.79	1.552

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
101274c6	b6b074	18 10 27.26	-31 46 31.50	15.83	1.486
71769c6	b6b075	18 10 32.70	-31 50 52.80	15.62	1.442
62520c6	b6b077	18 10 21.66	-31 52 14.40	15.98	1.491
60577c6	b6b078	18 10 24.24	-31 52 31.50	15.73	1.573
43679c6	b6b079	18 10 28.35	-31 55 00.70	15.99	1.510
55804c6	b6b080	18 10 27.09	-31 53 14.00	15.99	1.854
54561c6	b6b081	18 10 29.53	-31 53 24.70	15.73	1.442
80281c6	b6b082	18 10 22.17	-31 49 37.30	15.98	1.490
68782c6	b6b083	18 10 30.71	-31 51 18.90	15.83	1.718
66376c6	b6b084	18 10 32.44	-31 51 40.50	15.82	1.536
205837c7	b6b085	18 10 15.10	-31 54 11.20	15.89	1.701
75097c7	b6b087	18 10 12.85	-31 50 30.60	15.87	1.722
63747c7	b6b088	18 10 10.96	-31 52 10.40	15.77	1.560
46642c7	b6b090	18 10 01.82	-31 54 39.00	15.94	1.599
57883c7	b6b091	18 10 05.62	-31 53 01.40	15.84	1.815
51688c6	b6b092	18 10 17.72	-31 53 50.10	15.96	1.721
209695c7	b6b093	18 10 14.80	-31 49 31.70	15.97	1.556
90337c7	b6b095	18 10 11.51	-31 48 19.20	15.91	1.824
87232c7	b6b099	18 10 04.39	-31 48 45.80	15.81	1.476
54480c7	b6b100	18 09 46.34	-31 53 30.30	15.74	1.473
64860c7	b6b102	18 09 56.69	-31 52 00.40	15.88	1.715
79003c7	b6b103	18 10 04.43	-31 49 56.80	15.62	1.474
50439c7	b6b104	18 09 56.09	-31 54 06.20	15.93	1.508
80144c7	b6b105	18 10 07.44	-31 49 47.10	15.58	1.556
97618c7	b6b107	18 09 39.57	-31 47 15.80	15.51	1.512
102010c7	b6b108	18 09 54.38	-31 46 37.60	15.77	1.606

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
87242c8	b6b109	18 09 26.69	-31 48 58.50	15.92	1.899
88768c7	b6b111	18 09 43.40	-31 48 32.30	15.86	1.711
86105c7	b6b112	18 09 44.61	-31 48 55.00	15.94	1.621
77209c7	b6b113	18 09 36.36	-31 50 12.00	15.90	1.536
98458c7	b6b114	18 10 01.97	-31 47 08.40	15.93	1.846
5685c3	b6b116	18 09 52.41	-31 44 13.30	15.78	1.554
104943c6	b6b117	18 10 16.42	-31 46 00.50	15.60	1.442
5118c4	b6b118	18 09 25.84	-31 44 15.60	15.89	1.588
110465c7	b6b119	18 10 07.79	-31 45 25.10	15.99	1.716
212654c8	b6b120	18 09 33.44	-31 45 25.00	15.89	1.556
108191c7	b6b121	18 09 45.55	-31 45 44.60	15.90	1.454
23017c3	b6b122	18 10 04.46	-31 41 45.30	15.96	1.941
101167c8	b6b123	18 09 20.54	-31 47 00.20	15.92	1.496
103592c7	b6b124	18 09 50.04	-31 46 23.70	15.85	1.624
202633c3	b6b126	18 10 13.06	-31 41 28.50	15.71	1.655
32080c3	b6b127	18 09 51.13	-31 40 28.00	15.63	1.549
43791c3	b6b128	18 09 37.90	-31 38 46.50	15.71	1.534
204664c4	b6b129	18 09 34.75	-31 38 50.90	15.72	1.478
11653c3	b6b132	18 09 56.84	-31 43 22.50	15.65	1.613
21259c2	b6b134	18 10 17.72	-31 41 55.20	15.71	1.545
]	Field at -6° fai	nt: B6-f		
200810c3	b6f003	18 10 13.35	-31 43 37.70	16.28	2.117
34058c3	b6f005	18 10 04.37	-31 40 10.90	16.16	1.686
47752c3	b6f006	18 09 59.53	-31 38 14.10	16.31	1.940
40528c3	b6f008	18 09 58.10	-31 39 15.20	16.17	1.850
29280c3	b6f010	18 09 50.48	-31 40 51.60	16.15	1.855

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 DEJ 2000 "h:m:s" "d:m:s"		V _{mag} mag	[V-I] mag
12982c3	b6f011	18 10 07.98	-31 43 11.20	16.61	2.426
108051c7	b6f013	18 09 55.95	-31 45 46.30	16.29	2.107
20863c2	b6f015	18 10 22.73	-31 41 58.80	16.30	2.006
31220c2	b6f016	18 10 19.06	-31 40 28.10	16.09	1.615
50086c2	b6f017	18 10 15.56	-31 37 40.00	16.15	1.804
208608c3	b6f018	18 10 14.06	-31 33 52.00	16.17	1.751
58159c3	b6f020	18 10 08.82	-31 36 44.50	16.38	1.895
70770c3	b6f021	18 10 06.95	-31 34 58.40	16.27	1.949
205096c2	b6f023	18 10 39.82	-31 38 06.90	16.18	1.792
148090c2	b6f024	18 10 32.27	-31 39 15.10	16.20	1.767
42348c2	b6f025	18 10 32.46	-31 38 48.90	16.16	1.785
149531c2	b6f027	18 10 27.61	-31 38 49.70	16.15	1.810
31090c2	b6f028	18 10 37.38	-31 40 29.10	16.04	1.671
14261c2	b6f029	18 10 16.93	-31 42 57.50	16.23	1.838
69986c2	b6f030	18 10 28.56	-31 34 46.20	16.19	1.781
73344c2	b6f031	18 10 27.05	-31 34 15.80	16.52	2.252
139560c2	b6f034	18 10 45.15	-31 41 57.90	16.42	2.040
145595c2	b6f035	18 10 39.53	-31 39 58.90	16.27	2.169
22905c2	b6f036	18 10 28.24	-31 41 40.70	16.10	1.673
47298c2	b6f037	18 10 49.67	-31 38 04.10	16.10	1.853
33601c1	b6f038	18 10 56.00	-31 39 56.60	16.42	2.059
43023c2	b6f039	18 10 38.81	-31 38 42.60	16.10	1.718
107527c6	b6f042	18 10 17.65	-31 45 38.90	16.05	1.612
31176c2	b6f043	18 10 44.56	-31 40 28.40	16.01	1.875
17038c2	b6f044	18 10 36.15	-31 42 32.70	16.14	1.748
103742c5	b6f045	18 10 58.15	-31 45 48.00	16.37	1.929

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 DEJ 2000 "h:m:s" "d:m:s"		V _{mag} mag	[V-I] mag
959c2	b6f049	18 10 33.83	-31 44 56.10	16.16	1.686
10584c2	b6f051	18 10 47.85	-31 43 29.80	16.17	1.751
15094c1	b6f052	18 10 55.31	-31 42 44.40	16.25	1.797
95371c6	b6f054	18 10 34.70	-31 47 23.70	16.20	1.817
98734c6	b6f055	18 10 28.14	-31 46 53.60	16.06	1.654
103413c6	b6f056	18 10 52.64	-31 46 13.00	16.16	1.798
85625c5	b6f057	18 10 57.19	-31 48 26.30	16.39	2.224
91631c6	b6f058	18 10 44.26	-31 47 56.80	16.07	1.608
95545c6	b6f059	18 10 49.00	-31 47 22.00	16.25	1.892
96460c6	b6f061	18 10 50.03	-31 47 14.00	16.01	1.685
83500c6	b6f062	18 10 33.98	-31 49 09.10	16.40	2.172
72513c6	b6f064	18 10 43.80	-31 50 46.30	16.04	1.624
69731c6	b6f065	18 10 35.15	-31 51 10.60	16.34	1.913
73072c6	b6f066	18 10 49.86	-31 50 41.50	16.25	2.132
56641c6	b6f068	18 10 38.77	-31 53 06.90	16.00	1.675
208907c6	b6f069	18 10 53.38	-31 50 12.50	16.03	1.581
99166c6	b6f070	18 10 23.01	-31 46 49.60	16.26	1.894
71832c6	b6f071	18 10 29.83	-31 50 52.30	16.24	1.963
77481c6	b6f072	18 10 43.18	-31 50 02.10	16.05	1.555
91776c6	b6f073	18 10 32.31	-31 47 55.50	16.20	1.751
93621c6	b6f074	18 10 24.21	-31 47 39.30	16.11	1.727
99940c6	b6f075	18 10 15.34	-31 46 43.10	16.13	1.771
53554c6	b6f078	18 10 20.77	-31 53 33.40	16.10	1.910
63690c6	b6f079	18 10 22.57	-31 52 04.20	16.08	1.607
205097c6	b6f080	18 10 26.99	-31 54 51.70	16.54	2.279
52922c6	b6f081	18 10 27.94	-31 53 39.10	16.24	1.753

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 DEJ 2000 "h:m:s" "d:m:s"		V _{mag} mag	[V-I] mag
51954c6	b6f082	18 10 29.15	-31 53 47.60	16.14	1.756
56533c6	b6f083	18 10 32.58	-31 53 07.70	16.05	1.670
94909c7	b6f084	18 10 12.67	-31 47 39.80	16.14	2.112
73484c7	b6f085	18 10 12.00	-31 50 44.70	16.40	1.988
90995c7	b6f086	18 10 09.65	-31 48 13.70	16.11	1.619
41505c7	b6f087	18 10 07.59	-31 55 23.30	16.09	1.670
34034c7	b6f088	18 10 03.84	-31 56 28.90	16.33	2.064
205852c7	b6f089	18 10 13.63	-31 54 09.60	16.30	1.797
64944c7	b6f090	18 10 02.47	-31 51 59.80	16.20	2.088
75601c7	b6f091	18 10 09.16	-31 50 26.30	16.03	1.891
60208c7	b6f092	18 10 07.77	-31 52 41.30	16.12	1.722
46088c7	b6f093	18 10 08.96	-31 54 43.70	16.14	1.869
77743c7	b6f095	18 09 49.10	-31 50 07.60	16.09	1.703
85832c7	b6f096	18 09 52.99	-31 48 57.70	16.25	1.884
211927c7	b6f097	18 10 15.21	-31 46 00.60	16.04	1.620
93881c7	b6f098	18 10 02.82	-31 47 48.50	16.13	1.882
82739c7	b6f099	18 09 58.42	-31 49 24.60	16.20	1.781
88860c7	b6f100	18 10 03.71	-31 48 31.80	16.09	1.884
62874c7	b6f101	18 09 51.36	-31 52 17.70	16.03	1.820
73636c7	b6f102	18 09 56.93	-31 50 43.20	16.11	1.686
56730c7	b6f103	18 09 53.17	-31 53 10.80	16.31	1.980
48678c7	b6f104	18 09 52.26	-31 54 21.10	16.02	1.622
58592c7	b6f105	18 09 57.44	-31 52 55.10	16.20	1.908
77419c7	b6f106	18 10 04.15	-31 50 11.00	16.05	1.615
96001c8	b6f107	18 09 28.48	-31 47 44.30	16.05	1.603
97453c7	b6f108	18 09 39.52	-31 47 17.50	16.07	1.580

Tabela A.1 - Continu ação

GIRAFFE	OGLE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} mag	[V-I] mag
105504-7	1.65100	10 10 01 14	21.46.06.00	16.06	1 501
105594c7	001109	18 10 01.14	-31 46 06.90	16.06	1.591
80262c8	661110	18 09 20.06	-31 49 58.20	16.22	1.766
80419c8	b6f111	18 09 26.94	-31 49 57.00	16.08	1.767
98090c7	b6f112	18 09 53.69	-31 47 11.80	16.01	1.766
75382c8	b6f113	18 09 31.58	-31 50 39.60	16.18	1.748
94445c7	b6f114	18 09 57.05	-31 47 43.40	16.14	1.740
97069c7	b6f115	18 10 02.43	-31 47 21.10	16.16	2.120
132843c3	b6f116	18 09 46.60	-31 44 16.00	16.15	2.019
8683c4	b6f117	18 09 19.59	-31 43 43.60	16.05	1.907
215027c7	b6f118	18 10 05.98	-31 44 49.20	16.35	1.872
213817c7	b6f119	18 10 03.06	-31 45 00.90	16.13	1.687
110776c7	b6f120	18 09 45.13	-31 45 22.40	15.82	1.610
111007c8	b6f121	18 09 27.43	-31 45 37.90	16.26	1.835
108627c7	b6f123	18 10 04.95	-31 45 40.80	16.31	2.043
97461c8	b6f124	18 09 21.33	-31 47 31.60	16.01	1.702
35429c3	b6f126	18 09 47.59	-31 39 58.90	16.59	2.230
19346c3	b6f128	18 09 55.66	-31 42 16.50	16.02	1.560
41112c4	b6f129	18 09 31.59	-31 39 07.50	16.10	1.719
9081c3	b6f130	18 10 01.92	-31 43 44.80	16.22	1.782
35643c4	b6f131	18 09 29.06	-31 39 54.20	16.01	1.522
27350c4	b6f134	18 09 23.23	-31 41 03.90	16.07	1.595
6693c3	b6f135	18 09 55.37	-31 44 04.70	16.17	1.675

OGLE	GIRAFFE	RAJ 2000	DEJ 2000	V_{mag}	V–I	T_{eff}	logg	[Fe/H]	V _t
		"h:m:s"	"d:m:s"	(mag)	(mag)	(K)	(cm/s^2)	(sun)	(km/s)
Campo Blanco: Bl									
2002C3	b1003	18 35 06.73	-34 31 59.59	15.57	1.250	5000	2.31	-0.36	1.2
2374C3	b1004	18 35 08.04	-34 31 13.37	15.76	1.244	5000	2.38	-0.58	1.6
3142C3	b1005	18 35 09.48	-34 29 28.15	15.95	1.287	4900	2.41	-0.15	1.4
2947C3	b1006	18 35 00.59	-34 29 55.64	16.02	1.204	5050	2.51	-0.44	1.2
2200C3	b1007	18 34 57.77	-34 31 35.91	16.15	1.315	4800	2.43	-0.17	1.5
3018C3	b1009	18 35 03.59	-34 29 45.23	15.49	1.404	4650	2.08	-0.61	1.4
3515C5	bl010	18 34 50.72	-34 28 37.94	15.18	1.355	4800	2.04	0.00	1.6
2769C3	bl011	18 34 57.52	-34 30 21.29	15.78	1.295	5100	2.45	0.18	1.5
3109C3	bl012	18 34 45.67	-34 29 31.70	15.81	1.341	4900	2.35	-0.58	1.3
201583C3	bl013	18 34 51.39	-34 31 40.37	15.79	1.258	4950	2.36	-1.18	1.4
2470C3	bl015	18 35 21.52	-34 31 01.85	16.25	1.375	4800	2.47	-0.06	1.5
3267C3	bl016	18 35 22.06	-34 29 11.16	15.07	1.349	4850	2.03	0.01	1.2
3161C3	bl017	18 35 19.42	-34 29 26.65	15.46	1.306	5000	2.27	-0.12	1.6
4365C3	bl019	18 35 21.17	-34 26 50.97	16.08	1.148	5050	2.53	-0.66	1.6
6549C6	bl020	18 35 03.43	-34 37 24.28	15.70	1.320	4900	2.31	0.11	1.3
3733C3	bl021	18 35 17.99	-34 28 09.31	15.10	1.423	4750	1.98	-0.19	1.4
4085C3	bl022	18 35 13.57	-34 27 23.97	16.13	1.513	4600	2.31	-0.38	1.3
2525C2	bl024	18 35 46.60	-34 30 20.41	15.99	1.214	5000	2.48	-0.33	1.4
6505C6	bl028	18 35 18.68	-34 37 30.83	16.04	1.232	5000	2.50	-0.37	1.4
867C3	bl029	18 35 09.10	-34 34 34.73	15.76	1.228	5000	2.38	-0.46	1.4
222C3	bl031	18 35 14.90	-34 36 00.45	15.50	1.295	4900	2.23	-0.38	1.6
650C2	b1033	18 35 56.80	-34 34 48.25	15.29	1.530	4350	1.81	-0.67	1.4
2296C2	bl035	18 35 51.98	-34 30 52.18	15.90	1.223	5200	2.54	0.03	1.5
1876C2	b1036	18 35 49.38	-34 31 56.10	15.86	1.106	5250	2.54	-0.86	1.4
2335C2	b1037	18 35 58.85	-34 30 46.05	15.81	1.270	4750	2.26	-0.84	1.2
1814C1	b1038	18 36 11.58	-34 32 05.99	15.85	1.427	4650	2.22	-0.39	1.3
2052C2	b1040	18 35 59.96	-34 31 27.23	15.42	1.145	5050	2.27	-0.94	1.5
1156C2	bl041	18 35 56.02	-34 33 36.40	15.93	1.534	4200	1.95	-0.36	1.1
2407C2	bl042	18 36 01.99	-34 30 36.77	15.49	1.173	4950	2.25	-0.70	1.5
1918C1	bl043	18 36 07.53	-34 31 51.05	15.83	1.248	4900	2.36	-0.36	1.4
1917C1	b1044	18 36 12.50	-34 31 51.47	16.22	1.426	4550	2.31	0.18	1.4
6080C8	bl045	18 36 20.59	-34 38 24.15	15.89	1.358	4800	2.33	0.11	1.4
6426C8	b1046	18 36 10.10	-34 37 32.99	15.79	1.280	4900	2.34	-0.39	1.2
6391C8	bl047	18 36 23.58	-34 37 37.81	15.28	1.140	5050	2.21	-0.59	1.3
6637C8	b1048	18 36 07.58	-34 37 02.88	16.07	1.296	4800	2.40	-0.26	1.5
431C2	b1050	18 35 53.60	-34 35 21.07	15.63	1.175	5150	2.41	-0.02	1.3
455C1	b1051	18 36 17.85	-34 35 21.06	15.67	1.174	4950	2.32	-0.57	1.4
6828C7	b1052	18 35 56.25	-34 36 54.38	16.09	1.360	4550	2.26	0.17	1.4
608C1	b1053	18 36 13.69	-34 34 55.95	15.13	1.133	5100	2.16	-1.66	1.2
5487C8	b1056	18 36 14.63	-34 39 56.70	16.16	1.339	4900	2.49	-0.27	1.5

Tabela A.2 - Parâmetros Atmosféricos das estrelas do campo Blanco de Zoccali et al. (2008).

				,					
OGLE	GIRAFFE	RAJ 2000	DEJ 2000	Vmag	V–I	Teff	logg	[Fe/H]	V _t
		"h:m:s"	"d:m:s"	(mag)	(mag)	(K)	(cm/s^2)	(sun)	(km/s)
					(
4478C8	bl057	18 36 16.70	-34 42 25.80	15.79	1.260	4900	2.34	-0.28	1.4
4740C8	bl059	18 36 19.30	-34 41 47.15	15.80	1.208	5000	2.40	-0.33	1.5
6913C7	b1060	18 35 52.67	-34 36 43.31	15.95	1.244	4950	2.43	-0.21	1.8
5351C8	bl061	18 36 08.00	-34 40 16.01	15.83	1.382	4700	2.25	-0.09	1.3
5400C8	b1062	18 36 12.37	-34 40 07.75	15.96	1.113	5150	2.54	0.14	1.4
2812C8	b1064	18 36 09.28	-34 46 23.50	15.63	1.458	4350	1.95	-0.62	1.2
3805C7	b1065	18 35 28.05	-34 43 52.10	15.70	1.342	5150	2.43	-0.38	1.4
2772C7	b1068	18 35 48.07	-34 46 25.83	15.10	1.258	4900	2.07	-0.22	1.4
3191C7	bl070	18 35 55.61	-34 45 21.91	15.40	1.243	5000	2.24	-0.28	1.4
2476C7	bl071	18 35 59.67	-34 47 07.64	15.96	1.120	5100	2.51	-0.66	1.4
3091C8	bl072	18 36 08.87	-34 45 43.81	15.32	1.236	5000	2.21	-0.36	1.4
3711C7	b1074	18 35 41.05	-34 44 06.11	15.71	1.097	5450	2.58	-0.30	1.4
3035C7	bl075	18 35 51.36	-34 45 45.52	15.68	1.191	4850	2.27	-0.61	1.4
1614C7	bl076	18 35 28.16	-34 49 06.49	15.27	1.142	4850	2.10	-0.73	1.3
1140C7	bl077	18 35 31.64	-34 50 16.35	16.23	1.355	5600	2.42	0.60	1.4
1491C7	b1078	18 35 33.53	-34 49 23.93	15.80	1.419	4700	2.23	-0.19	1.4
2110C7	b1079	18 35 36.10	-34 47 56.62	15.59	1.405	4800	2.21	-0.09	1.4
2220C7	b1080	18 35 30.72	-34 47 42.70	15.62	1.233	5200	2.43	-0.05	1.7
1554C7	bl081	18 35 40.37	-34 49 16.14	15.11	1.166	5200	2.22	-0.39	1.4
2178C7	bl082	18 35 41.56	-34 47 48.85	15.77	1.371	4500	2.10	-0.02	1.5
2422C7	b1083	18 35 48.06	-34 47 15.63	15.89	1.481	4300	2.01	0.26	1.2
3101C7	b1084	18 35 37.13	-34 45 34.59	15.86	1.233	4900	2.37	-0.34	1.1
2580C6	b1086	18 35 15.24	-34 46 41.38	16.06	1.566	3850	1.66	0.42	1.4
3238C6	bl087	18 35 16.99	-34 44 59.64	15.73	1.322	4900	2.32	-0.17	1.1
1417C7	b1089	18 35 26.03	-34 49 34.46	15.58	1.172	5150	2.39	-0.31	1.3
2532C6	b1090	18 35 13.18	-34 46 48.45	15.71	1.345	4650	2.17	-0.13	1.4
2948C7	b1091	18 35 24.53	-34 46 01.16	15.53	1.679	4250	1.83	0.02	1.1
1589C7	b1092	18 35 30.62	-34 49 10.88	15.87	1.164	5250	2.56	0.11	1.4
3690C7	b1093	18 35 28.35	-34 44 08.73	14.97	1.208	4900	2.00	-1.40	1.5
3796C6	b1095	18 34 58.25	-34 43 44.19	15.53	1.454	4500	2.01	-0.83	1.4
3786C6	b1096	18 34 49.35	-34 43 45.09	15.90	1.444	4800	2.33	-0.28	1.5
3201C6	b1097	18 35 03.02	-34 45 05.51	15.47	1.211	5150	2.35	-0.05	1.1
4217C6	b1098	18 34 55.12	-34 42 46.34	15.78	1.461	4500	2.10	-0.39	1.3
4333C6	b1099	18 35 04.91	-34 42 31.72	15.99	1.228	5000	2.48	-0.16	1.4
6164C6	b1100	18 34 58.84	-34 38 17.52	15.25	1.265	5050	2.21	-0.17	1.5
3350C6	bl101	18 35 14.53	-34 44 44.95	15.27	1.120	5200	2.29	-0.19	1.5
4263C6	bl102	18 35 01.81	-34 42 40.62	15.87	1.329	5000	2.43	-0.18	1.3
3558C6	b1103	18 35 12.93	-34 44 17.26	16.03	1.341	4800	2.38	-0.02	1.5
6090C6	b1104	18 35 20.05	-34 38 28.85	16.15	1.479	4300	2.11	0.11	1.2
1419C6	bl105	18 34 59.16	-34 49 29.22	15.82	1.485	4500	2.12	0.02	1.2
5543C6	b1106	18 35 15 85	-34 39 49 56	16.07	1.459	4300	2.08	0.12	1.3
5908C6	b1107	18 34 48 00	-34 38 54 03	15.66	1,151	5150	2.41	-0.67	1.3
4876C6	b1108	18 35 12.29	-34 41 18.14	16.08	1.303	4900	2.46	-0.59	1.3

Tabela A.2 - Continuação

				3					
OGLE	GIRAFFE	RAJ 2000 "h:m:s"	DEJ 2000 "d:m:s"	V _{mag} (mag)	V–I (mag)	T _{eff} (K)	logg (cm/s ²)	[Fe/H] (sun)	v _t (km/s)
5319C6	bl109	18 34 43.24	-34 40 18.83	15.58	1.447	4600	2.09	-0.36	1.3
6263C6	bl110	18 35 14.21	-34 38 05.96	16.01	1.648	4000	1.79	0.64	1.5
5977C6	bl111	18 35 12.22	-34 38 45.31	15.31	1.334	4650	2.01	0.09	1.7
4612C6	bl112	18 35 01.15	-34 41 54.14	16.02	1.264	4950	2.46	-0.82	1.5
5588C6	bl113	18 35 06.42	-34 39 42.10	15.87	1.282	4900	2.37	-0.28	1.1
5664C6	bl114	18 34 52.60	-34 39 31.75	15.43	1.330	4800	2.14	0.15	1.5
3965C6	bl125	18 34 59.18	-34 43 22.14	15.46	1.663	4400	1.91	-0.20	1.5
159C4	bl116	18 34 30.32	-34 36 06.99	15.66	1.435	4700	2.18	-0.14	1.5
6717C6	bl117	18 34 52.39	-34 37 01.77	15.58	1.283	4950	2.29	-0.23	1.4
5980C6	bl118	18 34 43.98	-34 38 44.23	15.93	1.242	5000	2.45	-0.25	1.4
7119C5	bl119	18 34 32.34	-34 37 03.86	15.12	1.381	4700	1.96	-0.33	1.3
6419C5	bl120	18 34 30.96	-34 38 29.97	15.40	1.390	4700	2.07	-0.25	1.2
6230C5	bl121	18 34 33.98	-34 38 53.61	15.06	1.154	5150	2.18	0.09	1.3
6099C5	bl122	18 34 28.47	-34 39 11.53	15.72	1.288	4950	2.34	-0.78	1.3
5750C5	bl123	18 34 27.51	-34 39 55.71	15.56	1.130	5100	2.35	-0.29	1.4
5396C5	bl124	18 34 34.77	-34 40 42.70	15.63	1.282	4750	2.20	-0.16	1.5
2502C3	bl126	18 34 54.42	-34 30 56.51	15.97	1.330	4950	2.44	-0.39	1.4
1754C3	bl128	18 34 48.92	-34 32 32.69	15.43	1.301	4950	2.23	-0.20	1.3
1407C3	bl129	18 34 50.53	-34 33 22.68	15.76	1.155	4950	2.35	-0.82	1
1700C4	bl132	18 34 29.77	-34 32 44.84	15.67	1.288	5000	2.35	0.34	1.4
166C3	bl135	18 34 45.39	-34 36 07.17	15.90	1.267	4750	2.30	-0.86	1.5

Tabela A.2 - Continuação

Tabela A.3 - Abundâncias das estrelas do campo NGC 6553, de Gonzalez et al. (2011).

OGLE	RA (deg)	DE (deg)	[Fe/H] (sun)	[Mg/Fe] (sun)	[Ca/Fe] (sun)	[Ti/Fe] (sun)	[Si/Fe]
		Campo N	IGC6553:	B3b e B3f			
96341C3	272.12179	-25.67103	0.03	0.23	-0.10	0.01	0.42
240059C6	272.13054	-25.81247	-0.66	0.26	0.29	0.52	0.10
77707C3	272.15154	-25.79031	0.09	0.17	0.10	0.03	0.14
77186C3	272.11812	-25.79389	0.15	0.13	-0.02	-0.09	0.05
88522C3	272.14925	-25.72261	0.15	0.05	0.02	0.02	0.13
135108C4	272.06754	-25.68167	-0.39	0.33	0.21	0.51	0.33
83525C3	272.16192	-25.75403	-0.05	0.27	0.29	0.37	0.14
130246C4	272.06021	-25.71636	-0.21	0.39	0.20	0.37	0.38
127018C4	272.06329	-25.73975	-0.14	0.28	0.09	0.23	0.30
95424C3	272.20675	-25.67692	0.17	0.11	0.04	0.10	0.06
98554C3	272.21246	-25.65686	0.09	0.27	0.09	0.23	0.04
101374C3	272.21079	-25.63961	0.29	-0.19	0.15	-0.04	-0.05

<i>Tabela A.3</i> - Continuação

				3			
OGLE	RA	DE	[Fe/H]	[Mg/Fe]	[Ca/Fe]	[Ti/Fe]	[Si/Fe]
	(deg)	(deg)	(sun)	(sun)	(sun)	(sun)	(sun)
	()	()		× ,	. ,		
100606C3	272.19875	-25.64442	-0.83	0.24	0.31	0.47	0.35
82227C3	272.17250	-25.76214	0.08	0.19	0.08	0.13	0.09
83531C3	272.18250	-25.75400	0.19	0.15	0.03	0.08	0.06
242039C6	272.20325	-25.79906	0.20	0.17	-0.02	0.04	0.05
101754C3	272.16217	-25.63711	0.30	0.27	0.12	0.23	0.03
80582C3	272.21621	-25.77256	-0.02	0.18	0.16	0.43	0.10
47188C2	272.27867	-25.74183	-0.48	0.30	0.16	0.43	0.35
51148C2	272.28021	-25.71328	0.11	0.17	-0.17	0.06	0.01
52349C2	272.25754	-25.70439	0.10	0.16	0.07	0.13	0.08
57824C2	272.27029	-25.66378	0.27	0.09	0.07	0.13	0.08
237293C6	272.16646	-25.83100	0.18	0.22	0.06	-0.06	0.00
45452C2	272.27746	-25.75392	-0.64	0.30	0.34	0.30	0.43
46830C2	272.29137	-25.74447	0.19	0.06	0.17	0.19	0.08
48656C2	272.34183	-25.73131	0.31	0.11	0.15	-0.03	0.10
77182C3	272.20687	-25.79406	-0.19	0.21	0.08	-0.04	0.15
49289C2	272.32667	-25.72706	0.24	0.25	0.03	-0.03	-0.03
44556C2	272.32708	-25.75983	-0.07	0.26	0.01	0.10	0.35
278419C7	272.24829	-25.85097	0.03	0.16	0.27	0.34	-0.03
279577C7	272.34871	-25.84392	0.02	0.34	0.12	0.11	-0.04
229507C6	272.23037	-25.88022	0.13	-0.08	-0.01	0.27	-0.21
271021C7	272.27767	-25.89447	-0.18	0.19	0.10	0.29	0.22
230424C6	272.20929	-25.87450	-0.72	0.22	0.23	0.31	0.39
230208C6	272.22621	-25.87592	-0.09	0.17	0.08	0.10	0.09
284675C7	272.37392	-25.81197	0.02	0.21	0.03	0.13	0.09
225847C6	272.23229	-25.90258	-0.13	0.22	0.21	0.37	0.09
266670C7	272.32192	-25.91961	-0.23	0.30	0.33	0.39	0.19
268360C7	272.30800	-25.90983	-0.21	0.30	0.11	0.35	0.11
270316C7	272.31792	-25.89867	-0.25	-0.39	0.38	0.45	0.08
270055C7	272.36279	-25.90011	-0.14	0.23	0.25	0.11	0.12
271400C7	272.30508	-25.89239	-0.09	0.24	0.37	0.46	0.11
270789C7	272.37446	-25.89578	-0.14	0.16	0.36	0.27	0.19
270767C7	272.33158	-25.89594	-0.19	0.35	0.32	0.36	0.10
265795C7	272.33412	-25.92456	-0.19	0.38	0.32	0.27	0.13
255677C7	272.31854	-25.98539	0.02	0.13	0.09	0.05	0.06
268493C7	272.28492	-25.90906	-0.22	0.22	0.28	0.30	0.18
271097C7	272.29062	-25.89408	-0.24	0.32	0.23	0.43	0.23
261672C7	272.32012	-25.94864	-0.11	0.29	0.28	0.30	0.18
259922C7	272.31500	-25.95908	-0.18	0.29	0.09	0.13	0.21
265404C7	272.34225	-25.92661	-0.14	0.18	0.15	0.16	0.16
224951C6	272.21367	-25.90817	-0.02	0.23	0.17	0.12	0.11
260308C7	272.28579	-25.95675	0.10	0.03	0.04	-0.06	0.09
233708C6	272.17175	-25.85397	-0.05	0.16	0.18	0.37	0.03
208605C6	272.22962	-26.00914	-0.10	0.26	0.10	0.26	0.25

				3			
OGLE	RA	DE	[Fe/H]	[Mg/Fe]	[Ca/Fe]	[Ti/Fe]	[Si/Fe]
	(deg)	(deg)	(sun)	(sun)	(sun)	(sun)	(sun)
_							
256560C7	272.25279	-25.98000	0.01	0.13	0.13	-0.03	0.11
258426C7	272.26900	-25.96836	-0.34	0.33	0.19	0.44	0.30
259377C7	272.24696	-25.96247	0.10	0.12	0.09	0.08	0.10
256294C7	272.28271	-25.98164	0.19	0.05	0.14	0.14	-0.02
208959C6	272.18454	-26.00694	-0.12	0.14	0.11	0.34	0.18
209297C6	272.12733	-26.00492	-0.04	0.48	0.08	0.33	0.08
210397C6	272.16367	-25.99811	-0.30	0.40	0.34	0.29	0.25
231618C6	272.18425	-25.86703	0.01	0.16	0.20	0.24	-0.02
228407C6	272.22304	-25.88689	-0.19	0.35	0.27	0.41	0.11
224206C6	272.19542	-25.91283	0.16	0.08	-0.02	-0.13	0.14
211036C6	272.21137	-25.99433	0.24	-0.05	0.21	-0.13	0.07
226450C6	272.14433	-25.89897	0.15	0.20	0.02	0.01	0.13
178348C5	272.06492	-25.92861	-0.08	0.27	0.18	0.13	0.30
227867C6	272.17333	-25.89017	-0.21	0.32	0.15	0.27	0.25
223343C6	272.08862	-25.91803	-0.06	0.26	0.26	0.34	0.01
223621C6	272.21921	-25.91631	-0.02	0.18	0.04	0.32	0.07
219909C6	272.13592	-25.93931	-0.61	0.16	0.38	0.29	0.42
221537C6	272.20837	-25.92942	0.14	0.03	0.10	0.11	-0.04
213114C6	272.12192	-25.98156	-0.02	0.26	0.08	0.10	0.13
237513C6	272.14342	-25.82950	0.24	0.15	0.01	-0.05	0.06
207215C6	272.10604	-26.01761	-0.25	0.22	0.24	0.33	0.16
223113C6	272.16967	-25.91947	-0.17	0.31	0.18	0.26	0.16
183783C5	272.03796	-25.89503	0.12	0.13	0.08	0.16	0.03
184618C5	272.01721	-25.88992	-0.32	0.37	0.23	0.44	0.23
225531C6	272.11996	-25.90464	-0.68	0.27	0.21	0.50	0.38
181349C5	272.01929	-25,90992	0.09	0.18	0.04	-0.17	0.20
180018C5	272.07733	-25.91822	0.02	0.24	0.28	0.28	-0.01
226850C6	272.09754	-25.89650	-0.79	0.29	0.28	0.50	0.48
227379C6	272.11708	-25.89317	-0.10	0.15	0.32	0.44	0.19
197366C5	272.05842	-25.80803	0.01	0.47	0.11	0.11	0.18
193190C5	272.05262	-25.83456	0.05	0.19	0.26	0.15	0.07
232493C6	272.09050	-25.86169	-1.19	0.29	0.31	0.40	0.41
185357C5	272.07408	-25.88525	0.22	0.06	-0.10	-0.10	0.00
187067C5	272.05696	-25.87408	-0.99	0.19	0.22	0.47	0.44
231379C6	272.09542	-25.86844	-0.32	0.37	0.39	0.49	0.12
185541C5	272.04071	-25.88400	0.15	0.13	0.09	0.17	-0.06
129499C4	272.06737	-25.72197	0.01	0.24	0.06	0.17	0.03
228466C6	272.12154	-25.88658	-0.89	0.28	0.09	0.10	0.53
125336C4	272.06017	-25.75178	0.04	0.24	0.06	0.21	0.03
125652C4	272.06821	-25.74950	0.12	0.07	0.07	0.09	0.03
239284C6	272,13442	-25,81761	0.18	0.11	0.05	0.03	-0.09
82866C3	272,22304	-25.75811	0.16	0.33	-0.20	0.10	0.01
24008306	272 10250	-25 81231	-0 57	0.30	0.28	0.49	0.20

Tabela A.3 - Continuação
Tabela A.3 - Continuação

				,			
OGLE	RA	DE	[Fe/H]	[Mg/Fe]	[Ca/Fe]	[Ti/Fe]	[Si/Fe]
	(deg)	(deg)	(sun)	(sun)	(sun)	(sun)	(sun)
					, ,		. ,
90428C3	272.11829	-25.70983	-0.41	0.25	0.01	0.29	0.39
81350C3	272.11608	-25.76767	0.27	-0.60	0.01	0.29	0.39
81644C3	272.22721	-25.76581	0.05	0.18	0.07	0.02	-0.06
86757C3	272.12546	-25.73350	0.00	0.14	-0.14	-0.03	0.08
132160C4	272.06600	-25.70272	-0.58	0.16	0.24	0.51	0.30
85597C3	272.09871	-25.74078	-0.12	0.21	0.21	0.33	0.06
129738C4	272.05329	-25.72017	0.27	0.07	0.09	0.13	-0.17
90065C3	272.19333	-25.71233	0.21	0.11	0.12	0.09	-0.08
238092C6	272.10504	-25.82567	0.47	0.09	0.12	0.09	-0.08
286252C7	272.25217	-25.80186	0.05	0.13	0.17	0.20	-0.01
42031C2	272.25554	-25.77719	-0.09	0.27	0.01	0.13	0.11
52007C2	272.32342	-25.70686	-0.33	0.42	0.22	0.43	0.05
53865C2	272.30533	-25.69314	-0.02	0.51	0.05	0.26	0.09
45512C2	272.26979	-25.75356	-0.31	0.25	0.10	0.34	0.28
277490C7	272.27621	-25.85650	-0.50	0.21	0.12	0.32	0.41
46746C2	272.33217	-25.74489	0.29	0.09	0.12	0.32	0.41
44230C2	272.30392	-25.76208	-0.45	0.27	0.16	0.33	0.30
282804C7	272.31892	-25.82389	-0.07	0.15	0.07	0.03	0.12
50596C2	272.35587	-25.71747	-0.37	0.35	0.28	0.44	0.18
43617C2	272.33517	-25.76628	-0.24	0.44	0.15	0.49	0.23
275623C7	272.26804	-25.86778	0.06	0.16	0.01	0.13	0.06
275181C7	272.29258	-25.87039	-0.04	-0.05	-0.10	0.08	-0.10
277711C7	272.35192	-25.85511	0.02	0.12	0.08	0.19	0.00
284449C7	272.37529	-25.81344	-0.50	0.16	0.10	0.29	0.36
276756C7	272.30317	-25.86092	-0.50	0.24	0.17	0.33	0.36
285690C7	272.39267	-25.80544	-0.61	0.48	0.30	0.42	0.49
286100C7	272.39087	-25.80283	0.25	0.09	0.30	0.42	0.49
267780C7	272.34050	-25.91314	-0.67	0.18	0.35	0.55	0.34
269704C7	272.36862	-25.90203	-0.22	0.14	0.14	0.44	0.11
266367C7	272.33304	-25.92133	-0.44	0.26	0.29	0.49	0.14
274019C7	272.37487	-25.87700	-0.29	0.39	0.29	0.50	0.23
262018C7	272.30858	-25.94647	0.22	0.06	0.03	0.01	-0.02
256709C7	272.30687	-25.97908	-0.18	0.23	0.08	0.24	0.22
261934C7	272.33421	-25.94694	0.08	0.23	0.03	0.21	0.02
268100C7	272.29587	-25.91131	-0.31	0.26	0.21	0.39	0.20
259001C7	272.29058	-25.96483	-0.63	0.16	0.13	0.19	0.41
262994C7	272.35604	-25.94094	0.01	0.33	0.06	0.21	0.01
259050C7	272.30725	-25.96453	-0.39	0.20	0.14	0.23	0.22
266442C7	272.25492	-25.92092	-0.37	0.27	0.29	0.51	0.22
263366C7	272.33533	-25.93869	-0.24	0.31	0.29	0.49	0.13
261361C7	272.35879	-25.95042	-0.21	0.22	0.18	0.33	0.22
224866C6	272.14142	-25.90867	-0.37	0.19	0.10	0.50	0.26
215681C6	272.18529	-25.96578	0.08	0.09	0.03	0.06	0.10

OGLE	RA	DE	[Fe/H]	[Mg/Fe]	[Ca/Fe]	[Ti/Fe]	[Si/Fe]
	(deg)	(deg)	(sun)	(sun)	(sun)	(sun)	(sun)
230483C6	272.10771	-25.87414	-0.33	0.18	0.12	0.43	0.14
216922C6	272.18808	-25.95814	-0.07	0.15	0.13	0.34	0.20
249215C7	272.24462	-26.02486	-0.52	0.02	0.10	0.40	0.32
223722C6	272.18396	-25.91572	-0.65	0.24	0.17	0.45	0.39
252803C7	272.26592	-26.00319	0.04	0.08	0.08	0.36	-0.05
257104C7	272.28529	-25.97658	-0.02	0.09	0.11	0.19	0.18
223310C6	272.15267	-25.91822	-0.27	0.33	0.11	0.20	0.26
223238C6	272.13396	-25.91869	0.15	0.23	0.02	0.09	-0.04
223822C6	272.10892	-25.91511	0.22	0.04	0.05	0.15	-0.10
210487C6	272.12946	-25.99758	0.30	-0.60	0.01	-0.18	-0.07
204733C6	272.19804	-26.03292	-0.39	0.18	0.12	0.31	0.37
175662C5	272.05833	-25.94483	0.12	0.09	0.12	0.31	0.37
172997C5	272.03879	-25.96108	-0.17	0.17	0.22	0.24	0.19
218198C6	272.08833	-25.95003	-0.21	0.12	0.17	0.30	0.21
175328C5	272.07092	-25.94700	-0.12	0.20	0.24	0.38	0.17
169218C5	272.04587	-25.98361	-0.01	0.01	0.13	0.04	0.18
169674C5	272.05850	-25.98092	-0.65	0.11	0.36	0.50	0.34
166540C5	272.06037	-26.00022	0.19	-0.60	-0.10	0.10	-0.07
166720C5	272.06896	-25.99911	-0.43	0.30	0.14	0.41	0.34
220214C6	272.11996	-25.93739	0.36	0.09	0.14	0.41	0.34
230059C6	272.13417	-25.87686	-0.54	0.28	0.20	0.42	0.33
213385C6	272.10358	-25.97983	-0.59	0.22	0.17	0.40	0.45
217943C6	272.11779	-25.95169	-0.12	-0.04	0.09	0.34	0.09
187568C5	272.05633	-25.87089	0.10	0.09	0.09	0.34	0.09
185169C5	272.02171	-25.88639	-0.42	0.23	0.23	0.47	0.23
184088C5	272.03025	-25.89322	-0.54	0.27	0.24	0.55	0.30
181132C5	272.03762	-25.91133	-0.07	0.13	0.08	0.14	0.10
178333C5	272.02700	-25.92867	0.13	0.09	0.08	0.14	0.10
176772C5	272.03942	-25.93803	0.05	0.19	0.01	0.08	0.06
119799C4	272.04271	-25.79317	-0.38	0.21	0.08	0.22	0.26
233121C6	272.12700	-25.85772	-0.41	0.28	0.07	0.31	0.24
233560C6	272.08742	-25.85483	-0.27	0.23	0.00	0.00	0.17
186097C5	272.04921	-25.88036	0.52	0.09	0.00	0.00	0.17
84255C3	272.08958	-25.74928	-0.69	0.21	0.24	0.30	0.38
82485C3	272.08725	-25.76050	0.18	0.30	-0.01	0.03	0.01

Tabela A.3 - Continuação