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RESUMO 

 

Utilização dos Dados da Missão GOCE para Caracterizações e 

Implicações na Estrutura de Densidade das Bacias Sedimentares do 

Amazonas e do Solimões 

Everton Bomfim, Ph.D 

Universidade de São Paulo e Università Degli Studi di Trieste, São Paulo, 2012 

 

Orientadores: Eder Molina (USP) 

      Carla Braitenberg (UNITS) 

 

A maneira mais direta de detectar as anomalias da densidade é pelo estudo do 

potencial gravitacional e de suas derivadas. A disponibilidade global e a boa resolução 

dos dados do satélite GOCE, aliadas à disponibilidade de dados de gravimetria terrestre, 

são ideais para a comparação e classificação das bacias de larga escala, como as bacias 

sedimentares do Solimões e do Amazonas dentro do Craton amazônico. Foram 

processados um conjunto de dados, produtos GOCE EGG_TRF_2 Level 2, ao longo das 

trajetórias do satélite para remover o ruído (shift/drift) nos gradientes da gravidade a 

partir da técnica crossover (XO).  

Calculamos a redução das massas topográfica a fim de obter os componentes do 

gradiente da gravidade  e anomalia da gravidade usando modelagem direta com prismas 

esféricos a partir do modelo de elevação digital, ETOPO1. Desta maneira, a comparação 

dos dados somente do satélite GOCE com as reduções das massas topográficas referentes 

aos componentes do gradiente da gravidade permitiram estimar quantidades invariantes 

que trouxeram uma melhoria na interpretação dos dados do tensor de gravidade.  Além 

disso, comparamos dados terrestres do campo de gravidade com dados do campo de 
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gravidade dos modelos geopotenciais EGM2008 e GOCE, uma vez que os dados 

terrestres podem ser afectados por erros em longos comprimentos de onda devido a erros 

de nivelamento, diferentes referenciais de altitudes, e aos problemas em interligar 

diferentes campanhas de medidas da gravidade.  

Portanto, estimamos uma melhora e uma nova representação dos mapas das 

anomalias de gravidade e do tensor gradiente da gravidade nas áreas inacessíveis do 

Craton Amazônico. As observações forneceram novas entradas para determinar campos 

regionais a partir dados brutos pre-processados (gradiente de gravidade EGG_TRF_2 

L2), bem como a partir de um modelo geopotencial mais recente até grau e ordem 250 

dos harmonicos esféricos derivados de dados somente do satélite GOCE para a 

representação do campo de gravidade como geóide, anomalias da gravidade e os 

componentes tensor da gravidade, os quais foram quantidades importantes para 

interpretação, modelagem e estudo dessas estruturas. 

Finalmente, obtivemos um modelo isostático considerando a estrutura de 

densidade litosférica estudada através de uma modelagem direta 3D da distribuição de 

densidade por prismas esféricos usando a geometria do embasamento e descontinuidade 

do Moho. Além do que, constatamos através da modelagem direta das soleiras de 

diabásios dentro dos sedimentos mostramos que somente as soleiras dentro da Bacia do 

Amazonas não são as únicas responsáveis pela anomalia de gravidade positiva que 

coincide aproximadamente com as espessuras máximas dos sedimentos da Bacia. Talvéz, 

isso possa ser também um resultado de movimentos relativos do Escudo das Guianas 

situado ao norte da Bacia, e o Escudo Brasileiro situado ao sul. Embora isso seja apenas 

uma evidência adicional preliminar, não podemos comfirmá-las a partir das estimativas 

do campo da gravidade. Portanto, é necessário outros tipos de dados geofísicos, como por 

exemplo, evidências mais claras advidas do paleomagnetismo. 
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Il modo più diretto per rilevare le variazioni di densità è lo studio del campo 

potenziale di gravità e delle sue derivate. La disponibilità globale e buona risoluzione dei 

dati della missione satellitare GOCE, unitamente alla disponibilità dei dati gravimetrici 

terrestri sono l'ideale per intraprendere la comparazione e classificazione dei due grandi 

bacini sedimentari Amazon e Solim»es nellôarea del cratone amazzonico. Il set di dati 

GOCE ottenuti dalle tracce satellitari sono stati elaborati dal prodotti GOCE 

EGG_TRF_2 Level 2 generati con la correzione necessaria per rimuovere il rumore 

GOCE (spostamento/deriva) e così, noi abbiamo anche processato (da rimuovere la 

tendenza lineare)  per recuperare i singoli componenti del tensore gradiente di gravità 

usando la tecnica crossover (XO). 

Sono state calcolate le riduzioni delle masse topografiche al fine di rilevare i 

componenti del tensore gradiente e le anomalie di gravità (componente verticale) usando 

la modellazione dai tesseroidi col Modello di Elevazione digitale, ETOPO1. Di 

conseguenza, la comparazione dei dati satellitari GOCE con le riduzione delle masse 

topografiche per i componenti gradienti ha permesso di stimare le quantità invariate per 
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un miglioramento dellôinterpretazione dei dati dei tensori di gravità. Inoltre, abbiamo 

comparato il campo di gravità dei dati terresti con modellazione gravimetrica del modello 

EGM2008 e del modello gravimetrico fornito da GOCE, in quanto i campi terrestri 

potrebbero essere colpiti da errori nelle lunghezze dôonda grandi, dovuto a errori di 

livellamento, dei diversi sistemi di riferimento impiegati nelle campagne dei diversi paese 

e quindi la difficoltà nel collegamento ed omogeneatà dei dati delle diverse campagne di 

misurazione. 

Tuttavia, è stato riscontrato un miglioramento, e le nuove rappresentazioni nelle 

mappe sulle anomalie di gravità (Bouguer e free-air) e i componenti dei tensori gradienti 

di gravità principalmente in aree inaccessibili, come ad esempio il cratone amazzonico. 

Le osservazioni GOCE forniscono nuovi indizi per determinare i campi regionali dai dati 

grezzi (gradienti di gravità EGG_TRF_2 L2 ). Inoltre, è stato usato il più recente modello 

gravimetrico globale disponibile fino al grado e allôordine 250, sviluppato dalle 

armoniche sferiche, derived solo dai dati del satellite GOCE per rappresentare il campo di 

gravità con le anomalie gravimetriche. Anche, sono stati presi in considerazione il geoide 

e le componenti del tensore gradiente, che sono quantità importanti per la modellazione e 

lo studio di queste strutture. 

Infine, abbiamo ottenuto il modello isostatico considerando la struttura di densità 

della litosfera, studiata attraverso una modellazione 3D diretta della distribuzione di 

densità, usando la geometria del basamento e la discontinuità Moho, conosciuti come 

vincolo iniziale. Inoltre, abbiamo trovato attraverso la modellazione diretta con davanzali 

e sedimenti ha dimostrato che le soglie diabase non sono le sole responsabili per le 

anomalie gravimetriche positive che tagliano il Bacino Amazzonico, grosso modo 

coincidente con lo spessore massimo delle rocce sedimentarie o con il solco del bacino. 

Ciò potrebbe essere il risultato dei movimenti dello scudo della Guiana, situato a nord del 

Bacino Amazzonico, e lo scudo brasiliano, situato a sud. Sebbene questa sia solo una 

prova preliminare, ciò non può essere confermato solo dai dati di gravità. Infatti, sono 

necessari altri tipi di dati geofisici, ad esempio, evidenze più chiare ottenute dal 

paleomagnetismo. 
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The most direct way to detect density anomalies is the study of the gravity 

potential field and its derivatives. The global availability and good resolution of the 

GOCE mission coupled with the availability of terrestrial gravity data are ideal for the 

scope of intercomparison and classification of the two large-scale Amazon and Solimoes 

sedimentary basins into area of the Amazon Craton. The GOCE data set obtained in 

satellite tracks were processed from EGG_TRF_2 Level 2 Products generated with the 

correction needed to remove the noise (shift/drift), and so, to recover the individual 

components of the gravity gradient tensor using the crossover (XO) points technique.  

We calculated the topographic masses reductions in order to obtain the gravity 

gradient components and gravity anomaly (vertical component) using forward modelling 

from tesseroids from Digital Elevation Model, ETOPO1. Thus, the comparison of the 

only-satellite GOCE data with the reductions of the topographic masses for the gradient 

components allowed to estimate invariants quantities for bring an improvement in the 

interpretation of the gravity tensor data. Furthermore, we compared the terrestrial data 

gravity field with EGM2008 and GOCE-deduced gravity field because the terrestrial 
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fields may be affected by errors at long wavelengths due to errors in leveling, different 

height references, and problems in connecting different measurement campaigns.  

However, we have estimated an improvement and new representations of the 

gravity anomalies maps and gravity gradient tensor components primary in inaccessible 

areas of the Amazon Craton. GOCE observations provide new inputs to determine the 

regional fields from the preprocessed raw data (EGG_TRF_2 L2 gravity gradients), as 

well from the most recent global geopotential model available up to degree and order 250 

developed in spherical harmonics derived only-satellite GOCE data for representing of 

geoid and others gravity field as gravity anomaly and gravity gradient tensor components, 

which are important quantities for modelling and studying these structures.the gravity 

field as geoid, gravity anomaly and gravity gradient tensor components. Which were 

important quantities for interpreting, modelling and studying these structures. 

Finally, we obtained the isostatic model considering the lithospheric density 

structure studied through a 3D direct modelling of density distribution using the geometry 

of basement and Moho discontinuity, assumed to be known as initial constraint. In 

addition, we found through direct modeling sills and sediment has shown that the diabase 

sills are not the only ones responsible for positive gravity anomaly map that transects the 

Amazon Basin, roughly coincident with the maximum thickness of sedimentary rocks or 

the trough of the basin. Maybe, this could be the result of the relative movements of the 

Guiana Shield, situated at the north of the Amazon basin, and the Brazilian Shield, 

situated at the south. Although this is only a preliminary additional evidence, we cannot 

confirm it only from the data of gravity. It is necessary others types of geophysical data, 

for example, more clear evidences obtained from paleomagnetism. 
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ñScience does not rest upon solid bedrock. The bold structure of its theories rises, 

as it were, above a swamp. It is like a building erected on piles. The piles are driven 

down from above into the swamp, but not down to any natural or 'given' base; and when 

we cease our attempts to drive our piles into a deeper layer, it is not because we have 

reached firm ground. We simply stop when we are satisfied that they are firm enough to 

carry the structure, at least for the time being. (1959)ò 
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CHAPTER I  

I.  INTRODUCTION  

I.1. Background  

In some cases sedimentary basins appear to have an anomalous isostatic state if the classic 

isostatic hypothesis is considered, which assumes that the topographic and sedimentary loads are 

sustained by crustal thickening or thinning. In some cases, the high density of the material in the 

lower crust or upper mantle has been supposedly an important component in the formation of 

large scale sedimentary basins and in contributing to the isostatic equilibrium. Often, the high 

density anomalous mass can be related to phase changes in lower crust or upper mantle 

following a heating event. 

Normally, the first phase in the formation of the large basins can be viewed from crustal or upper 

mantle loads leading to subsidence ages, presence of volcanism that last for several hundreds of 

million years and their classification according to the geoid, potential field and gravity anomalies 

provide important constraints for determining the geological properties and history of the Earth. 

In general, the gravity anomaly has been widely used in exploration geophysics due to 

technological restrictions and to the simplicity of its measurement and interpretation.  

Historically, the use of the second derivatives of the gravitational potential began to solve 

geological problems in 1896 with the development of the Torsion Balance instrument by Baron 

Loránd von Eötvös, which quickly made the gravity gradiometry possible to oil prospectors 

around the world, becoming the predominant geophysical technique for exploration purposes. 

The use of gravity gradiometry continues to grow, and consequently, its measurements have also 

increased the resolution in the upper geologic section. The Earthôs gravity field together with 

satellite missions has contributed to determine and improve the understanding of the Earth's 

gravity field in the past decade. In the years 1960ôs and 1980ôs, geodetic satellites have provided 

information about medium and long-wavelength components in geopotential models of Earthôs 

gravity field represented in spherical harmonics. Indeed, a variety of global geopotential models 

express the earth's gravity field and therefore the geoid height in terms of spherical harmonics 

and have been computed by various groups, for example, GPM98 A, B and C (Wenzel, 1998), 

EGM96 (Lemoine et al., 1998). Recently, the CHAMP (CHAllenging Minisatellite Payload) 

Mission (Reigber et al., 2002) and the Gravity Recovery And Climate Experiment (GRACE) 

Mission (Tapley et al., 2004), as well as its latest geopotential models, e.g. EGM2008 model 
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(Pavlis et al., 2012), led to significant contributions with respect to knowledge about long 

wavelength and consequently long-wavelength geoid for providing global and high-resolution 

estimates of the Earthôs gravity field and its temporal variations (Keller and Sharifi, 2005; 

Kiamehr and Eshagh, 2008; Rummel et al., 2002; Yi et al., 2010).  

Finally, the GOCE (Gravity field and steady-state Ocean Circulation Explorer) Mission applies 

the principle of Satellite Gravity Gradiometry (SGG) that is being used in space with a tri-

dimensional (3-D) gradiometer on board to measure the gravity gradient components of the 

Earthôs gravity field, providing a new regional aspect for global geopotential models (ESA, 

1999; Keller and Sharifi, 2005; Rummel et al., 2002; Yi et al., 2010). 

The most direct way to detect crustal density anomalies is the study of the earth gravity potential 

field and its derivatives. Thus, the global availability and good resolution of the GOCE satellite 

gravity gradiometry mission, coupled with the availability of data from terrestrial gravity 

surveys, are ideal for the scope of intercomparison and classification of the Amazon and 

Solimões sedimentary basins, which in geological terms are very old and classified as 

intracratonic or Paleozoic basins in an area of almost 1,000,000 km
2
 separated by the Purus 

Arch. 

Although modern gravity measurements have recorded with great precision the Earthôs gravity, 

this field is known to not identify bodyôs edges and to contain no directional information; this is 

the reason why there is a large variety of inversion and interpretation methods using gravity 

gradients. The gravity gradients directly recover sharp signals over the edges of structures, where 

the concept of gravity gradiometry is a 3D gravity and its anomalies reflect the edges and shapes 

of sources rather than just the mass distribution (Bell et al., 1997). Each individual information 

of the gravity tensor can be related to geological attributes (subsurface geology) and are used to 

locate bodies or to map geological contact information (horizontal components: Txx, Txz, Txy, Tyy 

and Txz) whereas the vertical component (Tzz) provides additional constraint and information 

relating to size, depth and isopachs of geological targets.  

The impact of working with these pieces of information of the gravity tensor can be significative 

as an óengineô that facilitates to identify not only the geology of the target but also mapping its 

geological configuration in any survey area in terms of shape, size and orientation of target 

structures (Murphy and Dickinson, 2010).  

The use of invariant analysis with gravitational and magnetic gradients is one of the methods 

studied by Pedersen and Rasmussen (1990) describing a procedure which combines all the 



 

 
3 

horizontal components of the tensor using the invariance to isolate the signature patterns 

emerging from the underlying geology to produce a series of lineament maps that indicate the 

dimensionality of the sources. 

Hence, the lithospheric density structure can be studied through a 3D modelling of density 

distribution using the geometry of basement and Moho discontinuity, assumed to be known as 

initial constraint. Furthermore the Earthôs gravity field in terms of geoid, gravity anomalies and 

gravity gradient tensor components can be studied to allow modelling and studying of these 

structures. 

I.2. Modelling 3D: A Direct Problem 

Suppose that the shape of the earth and the density variations within it are exactly known. With 

this information, a unique value of the actual potential, W, can be found. That is, the 

determination of the actual potential is a well-posed "direct" problem. Thus, due to its simplicity 

and its approximate expressions relating to gravitational potential, the use of rectangular prisms 

has been target of interest in gravity modelling. Here, a three-dimensional density distribution 

can be approximated with desired accuracy using the prisms. This can be represented with the 

discretization within the Earth in regular prisms which are associated with homogeneous density 

contrast values for the calculation of the potential gravitational and gravity gradients 

independently of the other neighbor prism of different density. 

 The formulation of Nagy et al. (2000) gives the field of the rectangular prism, which limits the 

applicability over large areas because it implies an approximation of the flat earth, but even so it 

is a good alternative for describing the density distribution and especially useful in studies for 

gravitational potential modelling.  

The gravitational potential and its derivatives of a spherical prism in spherical coordinates, being 

defined as tesseroid, was obtained by Heck & Seitz (2007). This geometry provides the formulas 

for the topographic-isostatic reduction of the vertical deflections to reveal the advantage using 

tesseroids instead of prism due to its better approximation of the spherical earth. However, the 

representation of the Earth in spherical tesseroids only can be computed numerically because no 

approximated form yet has been found to solve the triple integral analytically due to the 

occurrences of elliptic integrals. Thus, Heck & Seitz (2007) suggested to use an approximated 

integral solution that reduces to a surface integral by numerical integration with respect to the 

radial coordinate. 
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Although the use of gravity gradients data in hydrocarbon and mineral exploration is more 

common, nevertheless interpretation of these data is not as easy as standard gravity data. There is 

a study (Saad, 2006) showing that for a given source, regardless of its simplicity, gravity 

gradients produce a complex pattern of anomalies compared to the simple single-amplitude 

gravity anomalies. The gravity gradients are maximum over the edges, corners and center of 

mass of the causative body, according to the component. This has been observed differently by 

Bell et al. (1997), showing that integration of gravity gradiometry measurements into standard 

gravity (vertical component) significantly changes the power spectrum slope, indicating 

improved resolution of small features by the gradients. The steepness of the power spectrum 

obtained by gradiometry can reflect enhanced curve suggesting that gravity gradients 

significantly improve the capability of gravity to constrain the location of structures. In contrast 

to the flattening of the standard gravity curve indicating a limitation of resolution to constrain the 

anomalous masses using only the traditional gravimetric proceeding.  

I.3. Problem Statement 

This research is part of a greater project that has as the goal to use the GOCE products of the 

gravity potential to study large scale basins of the South American continent (Amazon, 

Solimões, Parnaíba, Paraná), the Tarim Basin and the Michigan Basin for intercomparison, 

which will allow to classify the basins according to their potential field signal. The project is one 

of the GOCE user projects, with ID: 4323, entitled: ñImplications on the density structure below 

large scale basins from GOCE observations. 

In this work, in the first phase a digital database of constraining data was constructed, which 

extended over the study area and included basement depth, sediment densities, sediment depth 

variation, Moho depth, lithospheric thickness (where available). Then the estimation of 

anomalies and derivatives generated by variations in topography and thickness of sediment and 

crust/mantle variations was done, as well as the mapping of the observed gravity anomalies and 

other terrestrial data available. Phase one is a feasibility study to SGG (Satellite Gravity 

Gradiometry) of GOCE to investigate the gravity field signal in Amazon and Solimões 

sedimentary basins. Phase two involves a comparison of the GOCE products data, gravity 

potential and its derivatives, with the available terrestrial gravity data. The final phase involves 

residual fields in order to determine crustal and upper mantle density anomalies.  
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I.4. Feasibility 

First and foremost, the definition of feasibility within the scope of this study follows also a part 

of the Science Goals of the GOCE Mission (e.g. Table 4.1 of GOCE Level 2 Product Data 

Handbook) (Gruber, et al., 2009). Particularly, this research is constrained to a greater project 

described above and which has as principal-investigator my adviser in University of Trieste, 

Carla Braitenberg, who is also the promotor of the International Academic Agreement For Co-

Supervision and Double Diploma between the University of São Paulo (Dept. of Geophysical), 

Brazil, and the University of Trieste (Dept. of Earth Sciences), Italy, making my PhD thesis 

feasible in this frame. 

The gravity field and gradient tensor data have been observed in the GOCE mission and I use the 

geopotential models GOCE and EGM2008. 

This study concerns understanding the density anomalies on Paleozoic Amazon and Solimões 

Basins on the Amazon Craton that cover enormous, partly inaccessible areas; only partially 

terrestrial gravity data, irregularly distributed, are available, wherefore high-resolution global 

satellite gravity gradiometry data produced by GOCE are essential for fulfilling this research. 

I use other data available from open literature, as sediment thickness and Moho depth. 

I compare the terrestrial data gravity field with EGM2008 and GOCE-deduced gravity field 

because the terrestrial fields may be affected by errors at long wavelengths due to errors in 

leveling, different height references, and problems in connecting different measurement 

campaigns. In inaccessible areas the GOCE observations provide new inputs to determine the 

regional fields (See APPENDIX A). 

The GOCE data will improve the representation of the regional field, which is also one of the 

main objectives of the mission. 

Innovation: A systematic screening of the gravity potential field and its derivatives as well as a 

study of the gravity field for these intra-cratonic sedimentary basins has not been made before, 

although the partial screening of geologic properties and gravity modelling are available in 

Milani & Zalán (1999), Tassinari and Macambira (1999) and Nunn & Aires (1988), respectively. 

Indeed, these types of basins have in common the fact that the Moho discontinuity is not shallow 

in correspondence to basin, which implies that the mass deficit in the basin could be 

compensated by high density in the crustal or upper mantle levels. Hypothetically, this fact could 

be essential to the formation of these types of basins and could be related to an eclogite phase 

change. 
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Contribution: The proposed research contributes to the improvement of the understanding of the 

solid Earth processes, in particular to the subject Lithosphere and upper mantle structure 

underlying sedimentary basins here studied by Satellite Gravity Gradiometry GOCE 

measurements. 

I.5. Research Objectives 

The objective of this research is to use the GOCE Level 2 products of the gravity potential and 

its derivatives to improve the understanding of Amazon and Solimões sedimentary basins also 

known as cratonic or intracratonic basins and which bear important natural hydrocarbon 

resources in Brazil. 

Of particular interest in the gravity anomaly map is the chain of gravity highs that transects the 

Amazon Basin, roughly coincident with the maximum thickness of sedimentary rocks or the 

trough of the basin. This can be primarily due to the presumed downward deflection of the 

crust/mantle boundary beneath the basin. 

I.6. Study Area 

This study is concentrated in the gravity observations of the Paleozoic Basins in Amazon Craton, 

Brazil: the Solimões and Amazon Sedimentary intracratonic basins are situated -10Ü Ò ű Ò 5Ü in 

latitude and -75Ü Ò ɚ Ò -45º in longitude and are discussed in the next chapters. 

I.7. Preview structure 

This thesis is divided into eight chapters. The Chapters I through V are dedicated to highlights, 

statements, understanding and objectives of the problem setup, literature review with history of 

gravity gradiometry, the history of gravity satellite missions and global geopotential models for 

the gravity field, methodologies and methods required to collect and enhance data used in this 

research. Among the five subsequent chapters, the Chapter II gives a brief geological description 

of the study area. Chapter III summarizes briefly basic gravity field principles, the methods and 

tools as satellite gradiometry, terrestrial gravity observations and a representation of the 

Geopotential Gravity Model (GGM) in spherical harmonics, a short review of previous gravity 

(geodetic) satellite missions and global geopotential models, as well as methodology for forward 

modelling and topographic reduction. Chapter IV encompasses the history of gravity 

gradiometry and a review of the satellite gravity gradiometer GOCE technology. Furthermore, a 

study was done on the modelling of gravity gradients based on the formulas of Nagy et al. (2000) 

(prism models) and Heck and Seitz (2007) (tesseroid models) . 
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Chapter V covers the processing of the GOCE Level 2 Products data, EGG_TRF_2, which 

requires the extraction and preparation of additional corrections needed in order to remove the 

GOCE GGs noise (shift/drift) on XO points due to different orbit heights. 

In the chapter VI the calculation of the topographic masses reductions is obtained for gravity 

gradient components and gravity anomaly (vertical component) using tesseroids from Digital 

Elevation Model (DEM) such as ETOPO1. Chapter VII also provides the results, analysis and 

discussion of the gravity field serving to report the findings from the feasibility study. 

Furthermore, the Chapter VII provides other data found in the study area as basement depth, 

sediment densities, sediment depth variation, Moho depth. Estimation of anomalies and 

derivatives generated by variations in topography and thickness of sediment and crust/mantle 

thickness and mapping of the gravity anomalies and other available terrestrial data. Also how 

gravity gradient maps were constructed from GOCE and geopotential models in order to 

determine resolution and precision. Finally, the Chapter VIII  is a closing discussion that will 

conclude the thesis with significant contributions and insights. Also, a summary of the research 

and possible challenges and future work recommendations will be discussed. 
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CHAPTER II  

II.  LITERATURE REVIEW: AN OUTLINE OF THE 

GEOLOGY IN AMAZON AND SOLIMÕES BASIN 

It is essential to understand the driving mechanism, when considering the evolution and 

subsidence history of the basins as well as the age from geochronology, which provides the 

duration and magnitude of independent subsidence episodes. The relative subsidence due to 

thermal contraction following a heating event continues, whether or not the basin is exposed to a 

eustatic lowering of sea level suggesting that sequences of sediments between craton-wide 

unconformities reflect separate mechanical episodes of subsidence. However, these reasonable 

eustatic sea level changes could cause the main unconformities observed in rapidly subsiding 

platform basins according to Nunn and Aires (1988). 

As such, we have Paleozoic sedimentation preserved when referring to the remnants of signifi-

cant, mostly undisturbed basins. The large Brazilian basins (Figure II -1), for instance Solimões, 

Amazonas, Parnaíba and Paraná, are named after large rivers that flow along their major axes.  

In particular, the present study is localized on the Amazon and Solimões Basins that follow a E-

W trend overlying the Amazonian Craton (AC) which is considered as one of the largest cratonic 

areas in the world between exposures of two large Precambrian shields, Guiana Shield to the 

north and the Brazilian Shield to the south. It is located in the northern part of South America 

covering about 440,000 km
2
 surrounded to the east by the Neoproterozoic Tocantins province, in 

which the active orogenic systems Araguaia and Paraguay mobile belts generated during the 

Brasiliano Orogenic Cycle. The AC is concealed beneath the Phanerozoic coverage of several 

basins as to the Northeast (Maranhão), South (Xingu and Alto Tapajós), Southwest (Parecis), 

West (Solimões), North (Takutu) and in its center (Amazon basin) (Matos and Brown 1992; 

Milani and Zalán 1999; Bizzi et al. 2004; Cordani et al. 2009).  

II.1.  Introduction  

The Solimões and Amazon Basins comprise an area of almost 1,000,000 km
2
, and were formed 

overlying the central part of the region, starting in the Lower Paleozoic. These structures show 

many tectonic and magmatic features always related to major tectonic events occurring at their 

margins. To the North and West, the Andean belt was the source of the stresses responsible for 

some important tectonic reactivations, mainly related to compressional or transpressional 
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stresses. To the north-east, extensional features are the result of the opening of the North 

Atlantic, starting at about 200 Ma. 

Due to the paleomagnetic and geologic evidences that have been described in Tohver et al. 

(2006), Cordani et al. (2009) and Bipo-Santos et al. (2012), there is practically no doubt about 

the existence of the Pangea at the end of Paleozoic, and also about the position of the different 

cratonic nuclei within the Amazonian Craton, as suggested by Cordani and Teixeira (2007).  

 

Figure II -1: Main Brazilian Phanerozoic interior sedimentary basins and the study area ï the Solimões 

and Amazon Basins. Data: CPRM (after Bizzi et al., 2004). 

The tectonic units in the AC compose a large crustal province known as the South American 

platform, and, in association with the Andean belt and the adjacent sub-andean flats, they 
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constitute the bulk of the South American continent and remained tectonically stable in 

Phanerozoic times (Milani and Zalán 1999; Bizzi et al. 2004; Cordani et al. 2009). 

II.2.  Geochronological Provinces of the Amazonian Craton 

The isotopic studies and the definition of geochronological provinces are useful for providing a 

basis for the understanding of the crustal evolution processes and their tectonic implications on a 

continental scale. Here the geochronological pattern of the AC will be summarized, attempting to 

describe the isotopic and geological data to understand the geological evolutionary history, based 

on the works of Amaral (1974); Cordani et al. (1979); Teixeira et al. (1989); Tassinari et al. 

(1996); Tassinari (1996); Santos et al. (2000); and Bizzi et al. (2004).  

The suggested tectonic evolution controlled by crustal episodes of accretions partially follow the 

principles of Stockweel (1968) obtained in the Canadian Shield study, based on the occurrences 

of the geological similarity between this unit and other cratonic regions in the world. For 

example, Africa and Australia, are major zones within cratonic areas, where a characteristic 

geochronological pattern predominates, and the age determinations obtained by different isotopic 

methodologies for different geological units characterizes the divisions mainly on the basis of the 

ages of the metamorphic basement and the geological characteristics. However, these provinces 

may include one or more orogenic episodes within their respective time-periods, considering 

orogeny as a period of metamorphic episodes accompanied by deformation, partial melting and 

syntectonic granitic intrusions, and not as the broader concept of a complete orogenic cycle, 

involving subsidence, deposition of sediments, metamorphism, syn- and post-tectonic magmatic 

activities and anorogenic episodes. Thus, the provinces mainly differ from each other in the ages 

of metamorphic terranes and their geological history (Tassinari and Macambira, 1999; Coutinho, 

2008).  

According to Tassinari and Macambira (1999), the geographical boundaries between 

geochronological provinces in the AC have been reasonably well-defined mainly according to 

the geochronological and the geophysical-structural models, although some limits are still not 

well characterized due to the overprint of age determinations and/or lack of reliable geological 

information. Therefore some boundaries already defined were questioned regarding the precise 

location of the geochronological boundaries observed in the field that are increasingly being 

established from detailed geological studies since Amaral (1974), passing through Cordani et al. 

(1979), Teixeira et al. (1989), Tassinari et al. (1996), Tassinari and Macambira (1999), Tassinari 

et al. (2000), Santos et al. (2000), Bizzi et al. (2004), Cordani and Teixeira (2007) and Cordani et 

al. (2009).  
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Based on the radiometric data from the Precambrian rocks of the Brazilian Amazon, predominantly Rb-Sr analysis, different authors proposed an 

evolutionary model for the Amazonian Craton.  

Table II -1: Evolution of the main interpretions of subdivisions in the Amazonian Craton (modified from Bizzi et al., 2004). 

Amaral 

(1974) 

Cordani et 

al. (1979) 

Teixeira et al. 

(1989)  

Tassinari et al. 

(1996). 
Tassinari (1996). 

Tassinari and 

Macambira (1999). 
Santos et al. (2000) Bizzi et al. (2004) 

Cordani and Teixeira 

(2007) 

Eastern 

Amazon 

Maroni-

Itacaiúnas 

2100-1800 

Ma (with 

Carajás) 

Maroni-Itacaiúnas 

Mobile Belt 

(including KôMudku 

Belt) 2250-1900 

Ma. 

Maroni-Itacaiúnas 

(including 

KôMudku Belt) 

2200-1900 Ma. 

Maroni-Itacaiúnas 

2200-1950 Ma. 

(including only part 

of the KôMudku Belt) 

Maroni-Itacaiúnas 

2200-1950 Ma. 

(including only part 

of the KôMudku 

Belt) 

Trans-Amazonian 

2250-2000 Ma. 

(including the 

KôMudku Belt) 

Trans-Amazonian 

2250-2000 Ma. 

(including the 

KôMudku Belt) 

Maroni-Itacaiunas 

2.25ï2.05 Ga - 

Paleoproterozoic 

belts. 

Central Amazonian 

Province (including 

Carajás) > 2500 Ma. 

Central Amazonian 

(including Carajás) 

> 2200 Ma. 

Central Amazonian 

(including Carajás) > 

2300 Ma 

Central Amazonian 

(including Carajás) 

> 2300 Ma 

Carajás 2530-3100 

Ma. 

Carajás 2530-3100 

Ma. Central Amazonian > 

2.6 Ga. Archean 

nuclei (including 

Carajás and the 

XinguïIricoumé) 

Central 

Amazon 

Central 

Amazonian 

> 2100 Ma.  

Central Amazon 

1800-1700 Ma. 

Central Amazon 

2600-1700 Ma. 

Tapajós-Parima 

2100-1870 Ma 

Tapajós-Parima 2100-

1870 Ma 

Ventuari-Tapajós 

1.98ï1.81 Ga 

 Tapajós-Ventuari 

1900-1800 Ma. 

Tapajós-Ventuari 

1950-1850 Ma. 

Rio Negro 1860-1520 

Ma. 

Rio Negro 1860-1520 

Ma. 

Rio Negro-Juruena 

1.78ï1.55 Ga - soft-

collision/accretion 

processes 

Western 

Amazon  

Rio Negro-

Juruena 

1700-1450 

Ma. 

Rio Negro-Juruena 

Mobile Belt 1750-

1500 Ma. 

Rio Negro-Juruena 

1800-1550 Ma. 

Rio Negro-Juruena 

1800-1550 Ma. 

Rio Negro-Juruena 

1800-1550 Ma. 

RondôniaïJuruena 

1760-1470 Ma. 

RondôniaïJuruena 

1810-1520 Ma. Rondonian-San 

Ignacio 1.55ï1.30 Ga 

Rondonian 

1400-1100 

Ma. 

Rodonian Mobile 

Belt 1450-1250 Ma. 

Rondonian-San 

Ignacio 1450-1300 

Ma. 

Rondonian-San 

Ignacio 1500-1300 

Ma. 

Rondonian-San 

Ignacio 1500-1300 

Ma. Sunsás 1450-990 Ma. 

Sunsás 1330-990 Ma. Sunsas 1.28ï0.95 Ga 
Sunsás Mobile Belt 

1100-900 Ma. 

Sunsás 1250-1000 

Ma. 

Sunsás 1250-1000 

Ma. 

Sunsás 1300-1000 

Ma. 
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Amaral (1974) divided the craton into three geochronological provinces (i.e.: Eastern, Central and 

Western Amazon Provinces), in a model that was refined by many authors such as Cordani et al. 

(1979), Teixeira et al. (1989), Tassinari et al. (1996), Tassinari et al. (2000), Santos et al. (2000), 

Cordani and Teixeira (2007). The CPRM (Geological Service of Brazil) has developed a broad 

geochronological program in the Amazon region, focusing on Sm-Nd and U-Pb SHRIMP analysis. 

Part of the results of this program, together with contemporaneous works mainly at the Federal 

University of Pará, were incorporated in the work described in Bizzi et al. (2004), which allowed 

some changes and promoted important improvements in the model of Santos et al. (2000). 

These geochronological evolution models can be resumed in Table II -1 with a short synthesis of the 

main geologic features, and to some extent the related geochronological control, for the Archean 

and Proterozoic tectonic units of the AC. Figure II -2 shows the model adopted in Bizzi et al. (2004), 

presented by Santos et al. (2000), who reinterpreted the previously defined AC provinces based on 

U-Pb and Sm-Nd data contained on several regional maps produced by CPRM. 

Major advances have occurred in the period of 2000 to 2002 in the geochronological evolution 

model presented by Bizzi et al. (2004) and Cordani and Teixeira (2007), that can be summarized in 

Table II -1 and Figure II -3. 

According to Bizzi et al., (2004), there are seven AC geological provinces of distinct ages, 

evolution, and structural patterns, namely (Figure II -3): (i) Carajás, with two domains ï Rio Maria 

(Mesoarchean) and Carajás (Neoarchean); (ii) Central Amazônia (Archean-Paleoproterozoic), with 

the Iriri-Xingu and Curuá-Mapuera domains; (iii) Trans-Amazonian (Rhyacian), with the Amapá 

and Bacajá domains; (iv) TapajósïParima (Orosirian), with the Peixoto de Azevedo, Tapajós, 

Uaimiri and Parima domains; (v) RondôniaïJuruena (Statherian), with the Jamari, Juruena and 

Jauru domains; (vi) Rio Negro (Statherian), with the Rio Negro and Imeri domains; and (vii) Sunsás 

(Meso-Neoproterozoic), with the Santa Helena and Nova Brasilândia domains. Despite the 

deficiency of U-Pb and Sm-Nd data over large areas it is possible to state that each of the Provinces 

was generated by a succession of orogenies. Some of the Provinces, such as the Trans-Amazonian 

(2.26ï2.01 Ga) and Tapajós-Parima (2.03ï1.87 Ga) Provinces, are composed by four distinctive 

orogenies; while the Sunsás Province (1.45ï1.10 Ga) was generated by three orogenies (Santa 

Helena, Candeias and Nova Brasilândia). 

According Coutinho (2008), the almost total absence of terrestrial access, the presence of extensive 

vegetation cover, the absence of an appropriate scale geologic maps, the absence of profiles in 

airborne geophysical surveys with spacing of less than 1 km and the lack of a geochronological 

support enabling the understanding of the geological-tectonic evolution of the region are the causes 
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that makes the AC remains in one of the lowest levels in the Archaean geological knowledge, 

especially in the part comprised by the Brazilian territory, despite of the existence of minerals 

resources (iron, gold), oil and gas, in the region. 

 

Figure II -2: Evolution of models for interpretation of the Amazon Craton. Models:1 ï Amaral 

(1974); 2 ï Cordani et al. (1979); 3 ï Teixeira et al (1989); 4 ï Tassinari (1996); 5 ï Santos et al. 

(2000) modified of Bizzi et al. (2004). 

Hence over the time these tectonic provinces have been modified with increasing amount of 

geochronological, geological and geophysical data. Recent works brought new insights in the 

geochronological boundaries of the Amazonian Craton and its tectonic provinces, leaded by 

Cordani and Teixeira (2007) and corroborated by Cordani et al. (2009), who has subdivided the tec- 
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Figure II -3: Amazonian Craton Provinces modified from CPRM data (after Bizzi et al., 2004) 

draped over ETOPO1 digital elevation model, Amante and Eakins (2008). 

tonic provinces modified from Cordani et al. (2000) into two Archean cores and five accretionary 

Paleoproterozoic belts (provinces) (Figure II -4). Two small ancient nuclei of the Central-

Amazonian Province (with ages > 2600 Ma) consisted of the large Carajás graniteïgreenstone 

terrain, and the XinguïIricoumé block, where the extensive Paleoproterozoic cratonic covers of the 
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Roraima Supergroup occurs, overlying gneissic and granitoid rocks. Established Archean crust is 

restricted to the Carajás region, located at southeast of the Amazon basin, whose rocks yielded 

radiometric ages between 2600 and 3200 Ma (Cordani et al. 2009). Proterozoic tectonic provinces 

with radiometric ages in the interval about 2250ï2050 Ma (Maroni-Itacaiunas), 1980ï1810 Ma 

(Ventuari-Tapajós), 1780ï1550 Ma (Rio Negro-Juruena), 1550ï1300 Ma (Rondonian-San Ignacio) 

and 1280ï950 Ma (Sunsás) are described in these works. 

 

Figure II -4: Tectonic framework of South America with emphasis on the Amazonian Craton and its 

tectonic provinces in the northeastern Brazilian region the Borborema province (B) predominates; 

the Tocantins province (T) is present in the Central Brazil region, which includes the Goiás 

Magmatic Arc (GMA) and the Mantiqueira province (M) (extracted from Cordani and Teixeira, 

2007).  

As discussed in Milani and Zalán (1999), it is interesting to notice that the basins had their 

subsidence mechanisms reactivated during additional tectonic events, resulting in a pile of 

sedimentary and volcanic strata that can reach cumulative thickness of more than 7,000 m in the 

Amazon Basin. For instance, rifts are known below the Amazon, Solimões and Parnaíba Paleozoic 

basins, that have in their sediments about 240,000 km
3
 of intruded diabase, mainly in the form of 
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sills. Such igneous rocks are essentially constituted of plagioclase, pyroxene, quartz, biotite and 

hornblende, and were united under the named Penatecaua Episode (Wanderley Filho et al. 2006). 

However, older ages strata and even their restricted areal distribution, contradicted the hypothesis 

that considers them as the direct predecessors of the overlying intracratonic sags (Milani and Zalán 

1999), and several papers have been published as an attempt to understand the intrusion mechanism, 

the age and the variation in the chemical composition of these sills, as well as their influence on the 

oil generation. Francis (1982), for example, studied igneous features in North of England showing 

that when the diabase is still fluid, it can migrate dip down, by gravity, in the direction to the 

structural depocenter and if there is any lithological and/or structural change, it "seeks the easier 

way" to continue its flow towards the structural trough (Milani and Zalán 1999; Wanderley Filho et 

al., 2006).  

Hence, as discussed in Milani and Zalán (1999), there was an initial subsidence mechanism from a 

Proterozoic crustal stretching associated with their formation or Early Paleozoic extensional 

reactivation of the Precambrian structural grain. Subsequent subsidence would have been achieved 

either by different episodes of reactivation by crustal stretching, always using the existing grain, or, 

in addition, by flexural mode due to the cratonward influence of distant, plate-margin collisional 

tectonics. 

According to Milani and Zalán (1999) whatever have been the driving mechanisms of the 

subsidence events, the depressions were filled with essentially siliciclastic sedimentary sections 

with the notable exception of an evaporite-carbonate cycle in the Solimões and Amazon basins, 

corresponding to a large-scale Paleozoic transgressive-regressive cycles. The inital cycles usually 

show marked glacial influences with Devonian age (Solimões and Amazon) with respect to the 

location of the basin over the Gondwana supercontinent, that always wandered close to the South 

Pole. In these basins the last transgressive-regressive cycle is almost uniformly terminated by late 

Permian to Triassic continental red beds that mark the drying out of the interior sags and the 

definitive disappearance of the seas from the cratonic areas of South America. The Mesozoic 

history of these basins is recorded as continental sedimentary packages and large volumes of 

magmatic rocks. 

II.3.  Solimões Basin 

The Solimões Basin (Figure II -1) is situated in the northern Brazil, right in the heart of the Amazon 

forest and comprises an area of over 600,000 km
2
. Only two-thirds of this area corresponds to the 

region of occurrence of Paleozoic strata (400,000 km
2
), the remainder being dominated by a sandy, 
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Cretaceous-to-Recent continental cover that prevents outcrops of the Paleozoic successions in the 

basin. Its sedimentary fill ranges from the Ordovician to the Permian, grouped into three sequences. 

The sedimentary environment of these rocks is in general marine, with brief intervals of continental 

sedimentation (Milani and Zalán, 1999).  

This basin, together with its eastern counterpart, the Amazon Basin, constitutes an impressive E-W 

oriented interior basin, 2,500 km long, 500 km wide and up to 5,000 m deep. The flexural arches of 

Iquitos and Purus separate the Solimões Basin from, respectively, to the west from the Acre Basin, 

which is interpreted as a retroarc foreland basin related to the Andean orogenesis, and the Amazon 

Basin to the east. Inside the Solimões Basin, a prominent NW-SE-striking positive feature, the 

Carauari Arch, divides it internally in two sub-basins: to west and to east of the Carauari high, 

respectively, the Jandiatuba and Juruá sub-basins were placed beneath igneous and metamorphic 

rocks. Southwest of the Solimões Basin, below the sub-basin Jandiatuba, is located the Eirunepé 

sub-basin separated by Jutaí Arch (Alves and Vaz 2006; Bizzi et al. 2004; Eiras 1996). 

Particularly during the pre-Pennsylvanian times, this structural high exerted a decisive control on 

the sedimentary thickness distribution and facies. The easternmost Juruá sub-basin has hydrocarbon 

reserves in the Paleozoic cratonic sequences with a package of sedimentary rocks up to 3,800 m 

thick and Proterozoic rifts (Bizzi et al. 2004). Its axis is marked by the presence of the Solimões 

mega-shear zone, a classic example of an intraplate deformation belt that comprises a fault-and-fold 

system in a N70° ï 80°E direction, with a total length of about 1,000 km, caused by Jurassic to 

Cretaceous right-lateral wrenching constituting the main structural style of hydrocarbon traps in this 

basin, as described by Milani and Zalán (1999). 

Indeed, diabase sills and dykes occurred during late Triassic to early Jurassic ages, which played an 

important role in the hydrocarbon generation from the Devonian source rocks. The diabase sills can 

occur through hundreds of kilometers in this sedimentary basin. Its trajectory can be facilitated by 

fissile materials or diverted by lateral variations of facies and by faults. In cases where the intruded 

rocks are sandstones, they frequently jump abruptly, forming a variety of patterns. These rocks 

strongly influence the exploratory activities in the basin. Diabase sills occur also over Purus Arch, 

although with minor expression, since the natural behavior of these bodies is to follow down dip the 

sedimentary beds (Wanderley Filho et al., 2006). 

The stratigraphic structure of the Solimões Basin is constituted of four Paleozoic supersequences 

covered by two units, one of Cretaceous age and the other of Early Cenozoic to Recent ages, 

passing through the Ordovician, Silurian-Devonian and Devonian-Carboniferous Sequences. The 

Paleozoic sedimentary units were intruded by igneous rocks, which have a maximum thickness 
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drilled by the well in the Solimões Basin of 1038 m, during the Late Triassic and Early Jurassic, an 

event known as the Penatecaua magmatism (200 Ma). Such igneous rocks are essentially 

constituted of plagioclase, pyroxene, quartz, biotite and hornblende, and they present a dominant 

subofític texture. Finally, as described in Milani and Zalán (1999), a partial continentalization of the 

Solimões Basin took place during the initial stages of the Carboniferous-Permian Sequence 

sediments, until it completely surpass the Purus arch linking the Solimões and Amazon Basins into 

a single depositional site (Milani and Zalán 1999; Wanderley Filho et al. 2006). 

II.4.  Amazon Basin 

This basin may be classified as produced by extensional stresses and Interior Sag, caused by vertical 

movements covering about 515,000 km
2
 of the northern Brazilian region, lying completely under 

the Amazon jungle (Figure II -1). Its main axis trends East-West and its sedimentary and intrusive 

rocks are between the two main Precambrian provinces, Guyanas shield and Central Brazil shield, 

cropping out along both sides of the northern and southern basins, respectively (Bizzi et al. 2004; 

Milani and Zalán 1999; Nunn and Aires 1988).  

The basement of the Amazon Basin is dominantly constituted and filled by igneous (maximum 

thickness of 915 m drilled by a well in the Amazon Basin) and metamorphic rocks ranging from 

Ordovician to Cretaceous ages in marine to deltaic, alluvial, fluvial and lacustrine sedimentary 

environment in some Proterozoic rift successions occured in its western portion, composing the 

Purus Group. The northernmost basin of the province is the Tacutu Basin. To the east, the Amazon 

Basin is separated from the Mesozoic Marajó rift by the Gurupá arch. To the west, the Amazon 

Basin is separated from the Solimões Basin by the roughly N-S-trending Purus arch. In its 

depocenter, the basin holds a stratigraphic record up to 5,000 meters thick including three Paleozoic 

supersequences covered by Cretaceous to Recent continental clastics. The oldest Paleozoic age 

sedimentary rocks drilled in Amazon Basin are from the Middle Ordovician (Bizzi et al. 2004; 

Milani and Zalán 1999; Nunn and Aires 1988; Wanderley Filho et al. 2006). 

The existence of strong, positive gravity anomalies, coincident with the trough (major axis) of the 

Amazon Basin, suggested the presence of shallow ultrabasic bodies (Milani and Zalán, 1999), later 

confirmed with the observation of diabase sills and dikes as showed in seismic lines and wells 

(Wanderley Filho et al., 2006), together with the underlying aulacogenic strata. This led to the 

classic interpretation of a rifting mechanism as the initial driving mechanism for the basin 

subsidence although igneous activity can occur substantially before and/or after the continental 

rifting. As described in Nunn and Aires (1988), the rifting or intrusion of magmatic bodies beneath 

the Amazon Basin is assumed to have occured in the Cambrian or the Early Ordovician age, as a 
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large pyroxenite body beneath of the basin has been dated as Early Cambrian (565 + 70 Ma) using 

the Nd/Sm method. 

According to Nunn and Aires (1988) the preliminary interpretation analysis of the tectonic 

subsidence curves from deep wells in the basin indicated that the Ordovician/Silurian and 

Devonian/early Carboniferous sequences are consistent with thermal subsidence following rifting or 

intrusion of the lithosphere, in close agreement with the results from studies of the Illinois, 

Michigan and Williston basins. However, the Late Silurian/Early Devonian unconformity can be 

explained by a eustatic sea level fall of less than 100 m. Smaller deviations from the exponential 

subsidence expected from the thermal contraction of the lithosphere are probably owing to 

sedimentological effects or errors in the time scale.  

Milani and Zalán (1999) suggested a second transgressive-regressive cycle recorded by the 

sedimentary rocks composing the Devonian-Carboniferous Sequence, which was considered as the 

record of maximum paleobathymetric conditions during the history of the basin. In the upper units 

this sequence recorded the regressive portion of the cycle. During the final stages of the 

Mississipian age, a regional erosive process affected the Amazon Basin. 

Therefore, possible explanations as suggested in Nunn and Aires (1988) for rapid subsidence late in 

the evolution of a sedimentary basin include a second rifting or intrusion event, thermal and/or 

stress relaxation of the lithosphere, and buckling by horizontal compression. According to Milani 

and Zalán (1999), a renewed cycle of subsidence and sediment accommodation took place from the 

Pennsylvanian onwards. The lowermost package of the Carboniferous-Permian Sequence is a 

blanket of eolian sandstones covered by a section of carbonates and evaporites, with subordinated 

sandstones and shales that may reach 1,600 meters in thickness. The cycle is closed by continental 

red beds of Permian age. East-West regional extension allowed a pervasive intrusion of magmatic 

bodies during the early stages of the Penatecaua Event. 

According Nunn and Aires (1988), during the Permian there is a rapid subsidence not compatible 

with a rifting or intrusion event occurred in Penatecaua magmatism. There is another inconsistency 

in the magnitude of the late Carboniferous/Permian subsidence (maximum thickness of 

approximately 2.5 km) with a single thermal event in the Cambrian. If one assumes that only the 

vertical heat flow is important, it is known that the thermal subsidence of a sedimentary basin 

cannot overcome for more than about 150 My. 

In summary, Nunn and Aires (1988) suggested the simplest explanation for the Paleozoic 

subsidence in the Amazon Basin from the (1) initial rifting or intrusion event during the Cambrian 
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or Early Ordovician followed by (2) an eustatic sea level fall in the Early Devonian temporarily that 

exposed the basin to erosion, and (3), a rifting or intrusion event, lithospheric relaxation, or 

horizontal buckling, that produce a rapid subsidence in the late Carboniferous/Permian, and finally 

in (4) The Paleozoic sediments are uplifted, eroded, and intruded by basaltic rocks during the 

Mesozoic. 

Milani and Zalán (1999) point out a great similarity with the Solimões Basin in terms of source 

rocks and cap rocks. The most probable ones are extensional fault-blocks, salt tectonics and 

transcurrent movements during the Cenozoic. Significant differences with respect to the Solimões 

Basin may also have occured by an early maturation of the organic matter by normal subsidence 

since the Late Carboniferous with a peak in the Late Permian. The thermal effects of the Mesozoic 

magmatism accelerated rates of maturation or promoted jumps in certain areas into higher thermal 

levels. 
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CHAPTER III  

III.  METHODOLOGY   

This chapter describes in a simple way the main gravity field principles, the methods and the tools 

used to the development this work, as the satellite gradiometry method, the terrestrial gravity data 

uses and the Geopotential Gravity Models (GGM). First, the GGM to be used for evaluating the 

gravity anomalies was analyzed, and then a topographic correction was calculated to the gravity 

data for removing the significant high- and mid-frequency components caused by the attraction of 

the Earthôs topographic and isostatic masses. The geopotential models comission errors were then 

analyzed by the comparison with the available terrestrial gravity data. The gravity gradient tensor 

values caused by a prism and a tesseroid model was then calculated in order to help in the forward 

gravity modelling. 

For the described approach, the density distribution in the mantle/crust in the region of the Amazon 

and Solimões sedimentary Basins was chosen as a study case, mainly because their large size, and 

by the lack of terrestrial data and the difficulty in the access of the area, the use of satellite mission 

derived fields is essential. 

III.1.  Gravitational Potential 

According to Heiskanen & Moritz (1967), to calculate the gravitational potential V of a body in a 

point P in the configuration shown in Figure III -1, it is necessary to consider the dimensions and the 

density distribution of the body, so a body of mass m can be divided into infinitesimal pieces of 

volume dv' with density ɟ.  

The gravitational potential V originated by a body of mass m at the point P also defines the work 

realized by the attractive force of gravity per unit mass, to move a body from that point to infinity. 

The potential is a scalar or a tensor of zero order. From the theory of potential the gravitational 

potential at a point P in the Cartesian coordinate system (x, y, z) due to the attraction of a mass 

distribution at point Q(x', y', z') with a density function ɟ(x', y', z') and volume v' can be written 

generically by the following volumetric integral  

ὠ Ὃ
”

ὶ
 Ὠὺᴂ III -1 
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where ὶ ὼ ὼᴂ ώ ώᴂ ᾀ ᾀᴂ  denotes the distance between the computation point 

P(x, y, z) and the element point (integration point) Q(xô, yô, zô), known as the Euclidian distance, 

defined in the local Cartesian coordinate system with axes pointing in the east, north, and up, where 

ɟ is the density, Ὠὺ ὨὼᴂὨώᴂὨᾀᴂ is the element of volume, and G is Newtonôs gravitational 

constant. The gravitational force vector Ὂᴆ is defined as the gravitational potential gradient.  

 

Figure III -1: Gravitational potential of a solid body. 
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The gravitational potential V(x, y, z) is continuous throughout the space and vanishes at the infinity, 

decaying with 1/r. This is due to the fact that for very large values of r, the body acts approximately 

as a point mass. Therefore, in celestial mechanics, the planets are generally considered as point 

masses (Heiskanen & Moritz, 1967). 

The theoretical fundament of the gravity gradiometry follows Rummel (1986). The gravity 

gradients are the second order derivatives of the gravitational potential V, (µ
2
V/µxiµxj = Vij), which 

form the nine components of the tensor (also known as components of the symetric Marussi tensor):  

P(x,y,z) 

 

z 

x 

r 

y 

m 

ὊᴆὨὺ ὊᴆὨὼὨώὨᾀ 

Ὠᾀᴂ 
Ὠὼᴂ 

Ὠώᴂ 

Ὠὺᴂ 

Q(xô,yô,zô) 



 

 
23 

ὠ ᴆɳὊ Ўὠ

ở

Ở
Ở
Ở
ờ

‬ὠ

‬ὼ

‬ὠ

‬ὼ‬ώ

‬ὠ

‬ὼ‬ᾀ

‬ὠ

‬ώ‬ὼ

‬ὠ

‬ώ

‬ὠ

‬ώ‬ᾀ

‬ὠ

‬ᾀ‬ὼ

‬ὠ

‬ᾀ‬ώ

‬ὠ

‬ᾀỢ

ỡ
ỡ
ỡ
Ỡ

ὠ ὠ ὠ
ὠ ὠ ὠ
ὠ ὠ ὠ

ὠ ὠ ὠ

ὠ ὠ ὠ

ὠ ὠ ὠ
Ȣ III -3 

The symbol ȹ, called Laplacian Operator, is represented by  with i, j ⱦ {1,2,3} or i, j 

ⱦ { x,y,z} for the three axes of the adopted coordinate system.  

The first derivatives of the gravitational potential V generate the gravitational force components, 

which are also continuous in the whole space, but this is not true for the second derivatives. At the 

points where the density changes discontinuously (i.e., inside of the source masses), some second 

derivatives present discontinuity, and so, the gravitational potential V (i.e., the trace of the tensor) 

satisfies Poissonôs equation Ўὠ τ“Ὃ” (Heiskanen & Moritz, 1967). 

The gradient tensor ȹV (a 3 x 3 matrix) is symmetrical. Also, ȹV is a rotational vector field and in 

the empty space (vacuum), as the density is zero (ɟ = 0), V satisfies Laplaceôs equation, and hence, 

the trace of the tensor is zero: Vxx + Vyy + Vzz = 0. Thus, due to the symmetry confirmed by Laplace 

equation, the gradient tensor only contains five independent components, because ὠ

ὠ ὠ . 

According to Equation III -1, the potential linearly decreases when the distance r increases. 

Consequently, the gravitational force and gravitational potential gradients attenuate as a function of 

r
2
 and r

3
, respectively. 

Gravity is a more familiar term, and with regard to a body at rest on the Earth's surface, the term 

expresses the resultant gravitational plus centrifugal (due to Earthôs rotation) force vector. These 

combined forces acting on a unit mass denote the gravity vector g. Gravity is the magnitude of the 

vector g and has acceleration units. 

The gravitational acceleration vector g is given by 

▌ ▌●ȟ▌◐ȟ▌◑
╣

╦
‬ὡ
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‬ᾀ
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and the gravitational gradient (second derivate of the potential) is a tensor derived from these 

values. 
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The potential of the Earth (or geopotential), W, may be split into a gravitational part V and a 

rotational part ū 

╦ ╥ ♠ III -5 

where the rotational potential is given by 

 
ρ

ς
‫ὶ III -6 

and ɤ is the velocity of rotation (in units of sec
-1

) (Heiskanen & Moritz, 1967). 

In geophysical applications, an ellipsoid of revolution is chosen to approximate the Earthôs figure 

which is assumed to have an equipotential surface and defines a normal gravity potential U. The 

difference between the geopotential (W) and the normal potential (U) is defined as the disturbing 

potential T, such that 

4 7 5Ȣ III -7 

In the same way we get for the potential gradients: 
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where Txx is the rate of change of gravity in the x direction while a reference mass moves a known 

distance in the x direction, and the same apply for the rest of the tensor; for example, Txy expresses 

how the x component of the gravity changes in the y direction.  

The disturbing potential, such as the gravitational potential tensor, satisfies Laplaceôs equation 

outside of the masses and is symmetric relative to the main diagonal, and so, only five independent 

tensor components (Txx, Txy, Txz, Tyy and Tyz) remain. 

III.2.  The gravitational potential and its second derivatives for the prism 

According to Nagy et al. (2000), we can define a rectangular prism as a solid body given by X1, X2, 

Y1, Y2, Z1 and Z2 coordinates (Figure III -2). The first simplification is to define the point P where 

one wants to calculate the gravitational potential located at the origin of the coordinate system. In 
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practice, the coordinates defining the prism should be transformed if the orientation of the 

coordinate system has not been changed. This result in coordinates of integration as follow:  

ὼ ὢ ὢ
ὼ ὢ ὢ
ώ ὣ ὣ
ώ ὣ ὣ
ᾀ ὤ ὤ
ᾀ ὤ ὤ

 III -9 

This simplification can be done without any loss of generality. Thus, all the computed values are 

valid at O(0, 0, 0) ſ P(X,Y,Z) (i.e., at x = 0, y = 0 and z = 0) (Nagy et al., 2000). 

The disturbing potential at a point P(x, y, z) in the ד  space due to the prism is given by Eq.III -1 

and may be rewritten as  

Ὕὖ ὋЎ”
ὨὼᴂὨώᴂὨᾀᴂ

ὶ
 III -10 

where ὶ ὼ ώ ᾀ is Euclidian distance between the point P(x, y, z) and the mass element 

localized in the center of the prism (at point Q), ȹɟ is the density and G is the gravitational constant. 

The disturbing gravitational potential T(P) at P is evaluated as a volumetric integration on the body 

of volume vô represented by the ABCDEFGH prism with contrast of density constant shown in 

Figure III -2.  

Figure III -2 shows the notation used for the rectangular prism in Nagy et al. (2000). Note that the 

coordinate system used here is north-east-down (NED), where the positive x axis points to north, 

the positive y axis points to east and positive z downwards. 
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Figure III -2: Right rectangular prism and Cartesian coordinate system of the computation point P and the 

element point Q (modified after Nagy et al., 2000). 

The integral in the Eq.III -10 can be solved using the volume element of the prism (Montana et al. 

1992; Nagy et al. 2000, 2002), resulting in formulae due to the potential T(x, y, z): 
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Replacing all the limits of the gravitational potential equation for the rectangular prism results in an 

expression with 48 terms. 

Although the potential T exists and is continuous in the whole  space, Eq.III -1 when applied to 

the rectangular prism model as an analytical solution is not defined at all the points of , because 

it can generate problems due to numerical estimation. At points where these terms are undefined 

they should be assumed to be zero since they have a finite limit (Nagy et al., 2000). 

The gradient of T is also continuous in the  space. Thus, the vertical component may be 

estimated by differentiating the Eq.III -11 with respect to z,  
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╣◑╟ ὋЎ”ȿȿȿ ●ἴἶ◐ ► ◐ἴἶ● ► ◑ἼἩἶ
●◐

◑►
ȿ●
●
ȿ◐
◐
ȿ◑
◑
Ȣ III -12 

The other two remaining derivatives, Tx and Ty, can be obtained from Tz by cyclic permutation, i.e., 

╣●╟ ὋЎ”ȿȿȿ ◐ἴἶ◑ ► ◑ἴἶ◐ ► ●ἼἩἶ
◐◑

●►
ȿ●
●
ȿ◐
◐
ȿ◑
◑

 III -13 

and 

 

╣◐╟ ὋЎ”ȿȿȿ ◑ἴἶ● ► ●ἴἶ◑ ► ◐ἼἩἶ
◑●

◐►
ȿ●
●
ȿ◐
◐
ȿ◑
◑
Ȣ III -14 

In the case where the second derivatives of the gravitational potential exist, we can obtain the 

following expressions: 

╣●◑╟ ὋЎ”ȿȿȿἴἶ◐ ►ȿ●
●
ȿ◐
◐
ȿ◑
◑

 III -15 

╣◐◑╟ ὋЎ”ȿȿȿἴἶ● ►ȿ●
●
ȿ◐
◐
ȿ◑
◑

 III -16 

╣●◐╟ ὋЎ”ȿȿȿἴἶ◑ ►ȿ●
●
ȿ◐
◐
ȿ◑
◑

 III -17 

╣●●╟ ὋЎ”ȿȿȿ ἼἩἶ
◐◑

●►
ȿ●
●
ȿ◐
◐
ȿ◑
◑

 III -18 

╣◐◐╟ ὋЎ”ȿȿȿ ἼἩἶ
◑●

◐►
ȿ●
●
ȿ◐
◐
ȿ◑
◑

 III -19 

╣◑◑╟ ὋЎ”ȿȿȿ ἼἩἶ
●◐

◑►
ȿ●
●
ȿ◐
◐
ȿ◑
◑

 III -20 

Discretizing the Earth in m prisms, the disturbing potential T(P) generated for this forward model 

composed of prisms is given by 

Ὕὖ Ὕὖ  III -21 

Now, considering n computation points on the Earth's surface and M prisms, once the parameter ȹɟ 

is constant within each prism (i.e., constant density contrast), we can rewrite the potential equation 

and/or the gravity tensor as a linear system of equations of the type 
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Ὕ ╖Ў”  III -22 

which is equivalent to 
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 III -23 

where G or Gnm is a matrix (n x m) usually called the sensitivity matrix of the system. In the 

forward method, the variables G and ȹɟ are supposedly known. 

Figure III -3 represents a subdivision (discretization) within the Earth in regular prisms which are 

associated with density contrast values for the calculation of the potential gravitational and gravity 

gradients.  

 

Figure III -3: Schematic model of discretizing of the Earth's interior in M regular prisms (j = 1, 2... 

M) for N computation points on the surface (i = 1, 2 ... N) of the gravitational potential. 

III.3.  Gravitational potential and its second derivatives for the tesseroid 

Based in the geometry of a spherical prism, we can define the tesseroid (Figure III -4) with its spatial 

arrangement of six faces bounded by geographical lines on the spherical reference surface and 

constant spherical height (i.e., bounded by a pair of meridional planes of ɚ1 and ɚ2 constants, a pair 

parallels planes of ű1 and ű2 constants, and a pair spherical curved surfaces of r1 and r2 constants) 

(Smith et al., 2001; Heck and Seitz, 2007).  

j-th prism 
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Figure III -4: Geometry of a spherical tesseroid and spherical coordinate system of the computation 

point P and the element point Q (modified after Heck and Seitz, 2007). 

The gravitational potential v at point P(x, y, z) due to the ñspherical prismò (tesseroid) with 

homogeneous mass density ɟ can be equally described by Newtonôs integral as in Eqs. (III -1) and 

(III -10) for example; however in this case the expression must be rewritten in spherical coordinates 

for the spherical tesseroid given by Figure III -4: 
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 III -24 

where  

■ ► ►ᴂ ►►ᴂἫἷἻⱶ III -25 

is the Euclidian distance in spherical coordinates between the computation point P(r,ű,ɚ) and the 

observation point Q(rô, űô, ɚô), and ɣ is the angle between the position vectors of P and Q, 
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ἫἷἻⱶ ἻἱἶⱴἻἱἶⱴᴂ ἫἷἻⱴἫἷἻⱴᴂἫἷἻⱦᴂ ⱦ III -26 

Unlike the gravitational potential of the rectangular prism given by Eq. (III -10), no approximated 

form has yet been found for the solution to the triple integral given in Eq. (III -24), since an elliptic 

integral occurs; thus, the potential of the tesseroid cannot be solved exactly. However, this integral 

with respect to the radial coordinate rô can be reworked approximating the solution by numerical 

integration, using the formula (Martinec, 1998): 

○►ȟⱴȟⱦ ╖ⱬ ἫἷἻⱴᴂ■► ►ἫἷἻⱶ

ⱴ

ⱴ

ⱦ

ⱦ

► ἫἷἻⱶ ἴἶ■ ► ►ἫἷἻⱶ
► ►

► ►
▀ⱴᴂ▀ⱦȟ 

III -27 

Eq. (III -24) is rather complex and time-consuming due to the decrease of the gravitational effect 

with increasing distance, so Heck & Seitz (2007) used MacMillanôs expansion, based on a Taylor 

expansion, in its integrand, obtaining the maximum efficiency when the Taylor point is fixed at the 

geometrical center of the tesseroid,  

►▫ ► ► ϳ ȟ

ⱴ▫ ⱴ ⱴ ϳ ȟ

ⱦ▫ ⱦ ⱦ  Ȣϳ
 III -28 

Formally, the Taylor expansion of the integral kernel ►ᴂἫἷἻⱴᴂ■ϳ expressed in Heck & Seitz 

(2007) is given by 

╚►ᴂȟⱴᴂȟⱦᴂ
►ᴂἫἷἻⱴᴂ

■
╚░▒▓► ►▫

░ⱴ ⱴ▫
▒ⱦ ⱦ▫

▓

░ȟ▒ȟ▓

 III -29 

where 

╚░▒▓ ░ ▒ ▓Ȧ

⸗░▒▓╚►ᴂȟⱴᴂȟⱦᴂ

⸗►░⸗ⱴ▒⸗ⱦ▓ ► ►▫
ⱴ ⱴ▫
ⱦ ⱦ▫

 Ȣ 
III -30 

Inserting Eq. (III -29) into Eq. (III -24) yields integrals with respect to each coordinate to be reduced 

in the form 
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○►ȟⱴȟⱦ ╖ⱬ ╚░▒▓► ►▫
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░ȟ▒ȟ▓
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 III -31 

 

► ►▫
░▀►

►

►

► ░▀►

Ў►ϳ

Ў►ϳ

░

░ ░
Ў►░

                                ░█ ░ ▫▀▀

Ў►░ ░ ░  ░█ ░ ▄○▄▪ȟϳ
 

III -32 

  

where ȹr = r2 ï r1 = h2 ï h1 (and similarly ȹű = ű2 - ű1, ȹɚ = ɚ2 ï ɚ1) denote the dimensions of the 

tesseroid, and, consequently, only terms for i, j, and k even will remain in the power series, while all 

other terms cancel out due to choice of the Taylor point Po(ro, űo, ɚo) in the tesseroidôs center (Heck 

& Seitz, 2007). 

The gravitational potential of the homogeneous spherical tesseroid has its terms of order four and 

higher (represented in Landau symbol of order four O(ȹ
4
)), in ȹr, ȹű, ȹɚ omitted. 

○►ȟⱴȟⱦ ╖ⱬЎ►ЎⱴЎⱦ╚ ╚ ► ╚ ⱴ ╚ ⱦ ╞Ў  III -33 

the second-order coefficients Kijk in Eq. (III -33) are according to MacMillanôs formula given by 

Heck & Seitz (2007) 

╚
►▫ἫἷἻⱴ▫
■▫

ȟ    III -34 

where ■▫ ► ►▫ ►►▫ἫἷἻⱶ▫ denotes the Euclidean distance between the computation 

point P and the geometrical centre Po of the tesseroid 

╚
►ἫἷἻⱴ▫

■▫
■▫ ►▫Ἳἱἶⱶ▫  III -35 

╚
►▫

■▫
ἫἷἻⱴ▫ ► ►▫ ► ►▫ ►►▫ἻἱἶⱴἻἱἶⱴ▫

►►▫ἫἷἻⱴ▫Ἳἱἶⱴ Ἳἱἶⱴ▫ ἫἷἻⱴ Ἳἱἶⱴ▫ ἫἷἻ♯ⱦ

►►▫ἫἷἻⱴ Ἳἱἶⱴ▫ ► ►▫ ►►▫ἻἱἶⱴἻἱἶⱴ▫ἫἷἻ♯ⱦ 

III -36 
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╚
►►▫ἫἷἻⱴἫἷἻⱴ▫

■▫
■▫ἫἷἻ♯ⱦ ►►▫ἫἷἻⱴἫἷἻⱴ▫Ἳἱἶ♯ⱦ III -37 

With ŭɚ = ɚo ï ɚ and ɣo is the angle between the position vector P and Po. 

Considering the total mass of the tesseroid and the series expansion at Po(ro, űo, ɚo), respectively 

□ ⱬ ►ᴂἫἷἻⱴᴂ▀►ᴂ▀ⱴᴂ▀ⱦᴂ

►

►

ⱬ
► ►

ⱴ

ⱴ

ⱦ

ⱦ

Ἳἱἶⱴ Ἳἱἶⱴ ⱦ III -38 

□ ⱬ►▫ἫἷἻⱴ▫ Ἲ ⱦ
►

►▫
ⱴ Ễ  III -39 

The closed zero-order term in Eq. (III -33), is essentially identical to the potential of a point-mass m 

at Po when the total mass of the tesseroid □ ⱬἺ ⱦ╚  is concentred in the geometrical 

centre Po: 

○►ȟⱴȟⱦ
╖□

■▫
╞Ў ╖ⱬЎ►ЎⱴЎⱦ╚ ╞Ў  III -40 

The residual terms in Eq. (III -33) take into account the deviations from a point-mass. 

The first order derivative of the potential generates the effect of the tesseroid mass on the gravity 

vector at P(r, ű, ɚ), and can be found by differentiation of the integral kernel 1/lo in Eq. (24) or (27) 

with respect to r, ű and ɚ.  
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ⱴ

ⱴ

ⱦ

ⱦ

 Ȣ III -41 

Once again, no approximated form has been found yet for solving analytically the triple integral 

given in Eq. (III -41) due to the occurrences of the elliptic integrals. However, Heck & Seitz (2007) 

used an approximated integral solution that reduces Eq. (III -41) to a surface integral by numerical 

integration with respect to radial coordinate rô using the formula given by Martinec (1998): 
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III -42 
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Equations (III -41) and (III -42) can be computed numerically. Alternatively, the gravitational effect 

for tesseroids at distances from the computation point P can be computed by fixing the point of the 

Taylor expansion at the geometrical centre of the integral kernel of Eq. (III -41) at Po(ro, űo, ɚo). 

╛►ᴂȟⱴᴂȟⱦᴂ
►ᴂ► ►ᴂ╬▫▼ⱶ ╬▫▼ⱴᴂᴂ

■
╛░▒▓► ►▫

░ⱴ ⱴ▫
▒ⱦ ⱦ▫

▓

░ȟ▒ȟ▓

 III -43 

where 

╛░▒▓ ░ ▒ ▓Ȧ

⸗░▒▓╛►ᴂȟⱴᴂȟⱦᴂ

⸗►░⸗ⱴ▒⸗ⱦ▓ ► ►▫
ⱴ ⱴ▫
ⱦ ⱦ▫

 Ȣ 
III -44 

Only terms with even power i, j, and k will remain in the resulting series, while all the other terms 

cancel out due to the choice of the Taylor point Po(ro, űo, ɚo) from inserting Eq. (III -43) into Eq. 

(III -41) (Heck & Seitz, 2007). 

♯▌►ȟⱴȟⱦ ╖ⱬЎ►ЎⱴЎⱦ╛ ╛ ◕► ╛ ◕ⱴ ╛ ◕ⱦ ╞Ў  Ȣ III -45 

Thus, the coefficients Lijk in Eq. (III -45) for zero-order is 

╛
►▫ ► ►▫ἫἷἻⱶ▫ἫἷἻⱴ▫

■▫

⸗╚

⸗►
 III -46 

The second-order coefficients L200, L020 and L002 of Eq. (III -45) are computed with MacMillanôs 

formulaes given by Heck & Seitz (2007) 
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╛
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III -49 

Again, the zero-order approximation in Eq. (III -45) is formally identical to the potential of a point-

mass m at Po on the gravitational field on P. In this case m represent the total mass of the tesseroid 

located in geometrical centre Po and residual terms represent the deviations of the tesseroid from a 

point-mass geometry. 

♯▌►ȟⱴȟⱦ
╖□

■▫
► ►▫ἫἷἻⱶ▫ ╞Ў ╖ⱬЎ►ЎⱴЎⱦ╛ ╞Ў   III -50 

Similarly, the second gravitational potential derivatives in v(r, ű, ɚ) with respect to ű and ɚ will 

provide the formulas for the (topographic-isostatic) reduction of the vertical deflections at P. This 

section follows the methodology based on the calculation of the gravitational potential from 
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tesseroids defined by Heck & Seitz (2007). Notice that all the formulas obtained here are valid only 

for computation points located outside the tesseroid. 

Based on Newtonôs formula, the effect of a tesseroid on Marussi tensor components (III -3) can be 

estimated as given in Grombein et al. (2010) by optimizing the non-singular tesseroid formulas: 
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►ᴂἫἷἻⱴᴂ▀►ᴂ▀ⱴᴂ▀ⱦᴂ III -51 

where  

ὭȟὮ ɴ ρȟςȟσ; 

Ў● ►ᴂἫἷἻⱴἻἱἶⱴᴂ ἻἱἶⱴἫἷἻⱴᴂἫἷἻⱦᴂ ⱦ; 

Ў● ►ᴂἫἷἻⱴᴂἻἱἶⱦᴂ ⱦ; and 

Ў● ►ᴂἫἷἻⱶ ►. 

Once again, the integrals for gravity gradients from tesseroids cannot be solved analytically, i.e., 

they should be obtained numerically. 

III.4.  Gravity field representation in spherical harmonics  

The recovery of the gravity field from airborne and satellite data are based on the fundamental ideas 

of the global gravity field determination based on spherical harmonics expansion and differential 

(satellite) orbit improvement. In the following sections we review the contribution of the global 

geopotential models to improve the understanding of the Earthôs gravity field and the basic theories 

of the gravity anomalies and gradient components in spherical harmonic representations from global 

geopotential models.  

The spherical harmonics allow to derive the elements of the gravity field from the global 

geopotential models as the geoid, gradient tensor, Bouguer and free-air gravity anomaly, gravity 

disturbance (the radial derivative of the disturbing potential), the deflection of the vertical 

components (the first meridian and vertical) from the most recent geopotential models available. In 

this section we will give a brief description of this methodology and its use for the interpretation of 

possible geophysical patterns and strong correlations present on the various elements of the gravity 

field, as the geoid model and the diagonal elements of the gradient tensor in the Amazon and 

Solimões Paleozoic basins of Brazil. 
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Only with satellites it is possible to cover the entire Earth's gravity field with measurements of 

uniform quality within a short period of time, resulting in a global geopotential model (GGM) in 

terms of the representation in spherical harmonic coefficients. However, the determination of the 

gravity gradient components from global geopotential models is a new regional approach that was 

expected to be fulfilled with the GOCE satellite mission, which uses measures of the gravity 

gradiometry to obtain the geopotential models and the second derivatives of the Earthôs 

gravitational potential. 

III.4.1.  Applications of global geopotential models in Geodesy and Geophysics 

The global geopotential models is used in different branches of geodesy. The determination of 

precise regional geoids are usually performed from a global geopotential model together with a set 

of points or mean terrestrial gravity anomalies and topographic information. In order to determine 

the most appropriate geopotential model for this combination it is necessary to check the statistical 

fit of several high degree models for the gravity field. This includes setting the geopotential model 

for obtain the geoid height geometrically in the study region (Kiamehr & Eshagh, 2008). The best 

geopotential model can be estimated by combining of the gravity data using the Stokes' formula 

method. The theoretical foundations for the representation of the geoid were developed by Stokes 

(1819 - 1903) in his work "On the Variation of Gravity and the Surface of the Earth", which 

expresses geoid heights as a function of the gravity anomalies with the basic assumption of the 

existence of topography only below the geoid. 

Still in the area of the geodesy, the conventional levelling is being replaced by the determination of 

altitudes by using the global positioning system (GPS). The GPS technique is used for levelling 

projects, for example, to monitor the subsidence of the dam due to the removal of water or natural 

gas, crustal movements and for control heights in connection with the bridge construction and other 

engineering projects. The altitude obtained directly from the GPS measurement is the geometric 

altitude, a quantity that is referred to the reference ellipsoid. Figure III -5 shows the basic 

relationship between the geometric altitude h, the orthometric altitude H and the geoid height N. In 

a first approximation, the altitudes are related by: 

▐ḟ╗ ╝ III -52 

The main problem of transforming the geometric height obtained by GPS to orthometric height is to 

determine a reliable geoid height quantity. This geoid height can be obtained using a gravimetric 

method or a geopotential global model. In countries where there are no precise gravimetric geoid 

models, the geoid height obtained from global geopotential models plays an important role in this 
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transformation. Furthermore, the geoid height and the gravity anomalies have geophysical 

applications to study the properties within the Earth. 

The deflection of the vertical is the angle between the normal of the reference ellipsoid and the 

plumb line (vertical) passing through the same point. This deflection is usually used to reduce the 

observations, transforming the astronomical coordinates in geodesic coordinates and vice versa. 

Since the deflection of the vertical may represent variations in density within the earth it can be 

used in geophysical exploration. Studies of the horizontal and vertical components of the gravity 

tensor and the deflection of the vertical components made by Kiamehr et al. (2008) showed a good 

correlation between these quantities of the gravity field. Kiamehr (2006) found a good correlation 

between tectonic structure and deflection of the vertical. Therefore, the general pattern of deflection 

of the vertical computed by a global geopotential model can help in getting the information about 

the lateral variation in density of the Earth. 

 

Figure III -5: Terrestrial surface for description of the external gravity field at P point involving 

three surfaces in geodesy and gravity field: the physical surface of the Earth, the geoid surface and 

the ellipsoidal surface, where n and v are the normal and vertical directions at the P point. 

III.4.1.1. Parameters of the gravity field from the global geopotential models 

According to Kiamehr & Eshagh (2008), from the 1960's to 1980's geodetic satellites provided the 

components of medium and long wavelength of the gravity field, which are represented in spherical 

harmonics. Additionally, in 2000's with satellite gravimetry missions CHAMP (Reigber et al. 

2002), GRACE (Tapley et al. 2005) and more recently the satellite gradiometry mission GOCE 
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(Pail et al. 2011), the quality of GGMs have significantly improved, especially in the long 

wavelengths associated with the Earth's gravity field. These missions have provided a homogeneous 

coverage of the gravity field and at almost throughout all the globe, insofar as their orbits are nearly 

polar. 

There are many areas in the Earth that are still with no significant gravity data measurements. In the 

oceans the gravity anomalies are mostly determined from satellite altimetry, but the effects of the 

ocean circulation currents and bias deteriorate these data. One important aspect about the solutions 

of the gravity field derived from satellite-only data is that they are not contaminated by systemetic 

errors (see Appendix A for details).  

However, a variety of the Global Geopotential Models (GGMs) which represented the Earth's 

gravity field in terms of the spherical harmonic functions have been computed for many groups, for 

instance, GPM98 A, B, C (Wenzel, 1998), EGM96 (Lemoine et al. 1998) and more recent GGMs 

obtained from satellite gravimetry/gradiometry missions as CHAMP (Reigber et al. 2002), GRACE 

(Förste et al. 2008) and GOCE (Pail et al. 2011) (Table III -1). This GGMs can be divided in three 

different classes (Amos and Featherstone, 2008): 

 Satellite-only GGMs: are computed solely from the analysis of the orbits of artificial Earth 

satellites (see examples in GGMs listed in the Table III -1); 

 Combined GGMs: are obtained from the combination of satellite data, land and ship track 

gravity observations, and marine gravity anomalies derived from radar altimetry, and airborne 

and/or gradiometer gravity data ; and 

 Tailored GGMS: are derived from an adjust of a GGM (only-satellite or combined) using 

gravity data that may not necessarily have been used before (in this case, the GGM can be often 

extended to higher degrees). 

Table III -1: Some examples of three different types GGMs. 

Model Degree Class author 

JGM-3 70 combined Tapley et al. (1996) 

EGM96S 70 satellite-only Lemoine et al. (1998) 

GEM5 12 satellite-only Lerch et al (1974) 

GRIM5-S1 99 satellite-only Biancale et al. (2000) 

EIGEN-1S 119 satellite-only Reigber et al. (2002) 

GGM03C 360 combined Tapley et al (2007) 

GRIM5-S1 120 combined Gruber et al. (2000) 

TEG-4 200 combined Tapley et al. (1997) 

EGM96 360 combined Lemoine et al. (1998) 

PGM2000A 360 combined Pavlis et al. (2000) 

EGM2008 2156 combined Pavlis et al. (2012) 
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EIGEN-5S 360 satellite-only Förste et al. (2008) 

GO_CONS_GCF_2_TIM_R3 250 satellite-only Pail et al (2011) 

GO_CONS_GCF_2_DIR_R3 240 satellite-only Bruinsma et al (2010) 

EIGEN-6C 1420 combined Förste et al (2011) 

GPM98C 1800 Tailored Wenzel et al. (1998) 

III.4.1.2. Geoid height, gravity anomalies and deflection of the vertical 

components 

The gravity field may be subdivided into two main spatial components, the long wavelengths (~ 400 

km) and short wavelengths (~ 25-100 km). The information of the long wavelength can be obtained 

by analysis of disturbing of the satellite orbits and from terrestrial gravimetric data or satellite 

altimetry. The result of this computation can be simplified in terms of a global geopotential model. 

In Geodesy, the gravity data is used to define the figure of the Earth. In Geophysics, the gravity data 

is used to estimate the density variations in subsurface and to help to solve problems related to 

tectonic and geophysical exploration.  

In this context, the geodesists seek to use the differences between the difficulty of measuring the 

potential of the real Earth (or geopotential) and the potential of the normal Earth (or 

spheropotential). Such normal potential is obtained from a mathematical model and the residual 

potential is called the disturbing potential. The disturbing potential can be used to obtain very 

important quantities, which show how much the geopotential differs of the spheropotential. Also, it 

can be considered as the potential produced by the terrestrial anomalous masses. Quantities of the 

gravity field such as the geoid height, the gravity anomaly and the deflection of the vertical 

components are the main elements that can express the departure of the real gravity field in relation 

to the normal gravity field and can be interpreted geophysically. 

Another useful quantity of the gravity field is the gravity tensor (second derivatives of the 

gravitational potential) that is again referred to the disturbing potential. Generally the gravity 

gradient components are referenced in a reference system oriented to the north. The origin of this 

system can be considered in the terrestrial surface or even in the satellite orbit. The z-axis is pointed 

in the geocentric radial direction and upward, the x-axis points to north and, consequently, the y-

axis takes the west direction. 

For the analysis of the gravity field, the disturbing potential (T) at any point can be represented by a 

spherical harmonic series (Heiskanen & Moritz, 1967): 
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where r, ű, ɚ are the geocentric distance, geodesics latitude and longitude respectively, GM is the 

product of the gravitational constant and of the mass of the Earth, a is the major semi-axis of the 

reference ellipsoid, L is the maximum degree of the expansion, l, m are the degree and order of the 

spherical harmonic expansion, ╒■□ and ╢■□ are the fully normalized geopotential coefficients and 

╟■□ἫἷἻⱴ  are the normalized associated Legendre functions. According to Brunsô formula 

(Heiskanen & Moritz, 1967), it follows that 
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where ♬ is the normal gravity at the sea level at the latitude point estimated by Somigliana's 

formula. So, according to Heiskanen & Moritz (1967), the gravity anomaly can be written as a 

function of the geopotential coefficients: 
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The deflection of the vertical is the angle between the gravity vector or the plumb line (the vertical 

line passing through a point) and the corresponding vector of the normal gravity on the ellipsoid at 

the same point. The deflection of the vertical is typically given as north/south and east/west 

components in seconds of arc, denoting the slope of the geoid with respect to the ellipsoid 

(Heiskanen & Moritz, 1967). The deflection of the vertical components are also called the prime 

vertical or north/south (ɝ) and the meridian or east/west (ɖ) components. Thus, the deflection of the 

vertical components can be represented as: 
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where,  

▀♬
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▄Ἳἱἶⱴ

▓ ▄ ▓Ἳἱἶⱴ ȟ III -58 

and ♬ is the normal gravity at equator, ▄ is the first eccentricity of the reference ellipsoid and k is 

a constant based on the Somigliana's formula with k = 0.00193185353. ŭ is the Kronecker delta. 

III.4.1.3. Gravimetric Reductions 

The gravity anomaly is subject to different types of reductions depending on the purpose for which 

it is being determined. The gravity anomaly is the difference between the gravity acceleration 

measured at the physical (or terrestrial) surface (▌ ) (corrected the periodic variations and 

topography) and the acceleration of gravity produced by a model of normal Earth (♬). The gravity 

anomalies are the values of the greatest interest in the applications of the gravimetry.  

It is known that the Stokes' formula assumes the knowledge of gravity over the whole surface of the 

geoid, i.e. reduced the gravity at sea level, and it also assumes the absence of topographical masses 

(mass outside the geoid). However, it is necessary the application of methods of gravimetric 

reductions to eliminate or transfer to other positions the masses above the geoid (Heiskanen & 

Moritz, 1967). 

The gravity anomaly so far described as a function of geopotential coefficients can also be rewritten 

as  

Ἧ ▌ ♬ȟ III -59 

when the gravity observed in the physical surface is reduced at sea level using the free-air 

correction (CFA), it generates the free-air anomaly  
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◕▌╕ ▌ ╒╕═ ♬ III -60 

Since the gravity is reduced to the sea level (geoid), for using the Stokes' integral it is necessary to 

remove the masses above the geoid (topographic masses), as well as the isostatic balance masses 

(i.e., the topographic-isostatic reduction of gravity) which accounts for an additional correction 

called Bouguer correction (CB), being the corresponding gravity anomaly the Bouguer anomaly 

(Heiskanen & Moritz, 1967) 

ἯἌ ▌ ╒╕═ ╒║ ♬ III -61 

The isostasy postulates the existence of an equilibrium state in the lithosphere, where the 

topographic masses are floating in the mantle. There are two main types of isostatic compensation 

models of topographic masses: the first assumes that the topography is locally compensated and 

such compensation (local compensation) occurs directly below the topography by thickening of the 

crust with constant density (Airy model) or by a lateral change in the crustal density (Pratt model). 

In the second type, the flexure model, loads are partially supported by elastic stresses in a thin 

lithospheric plate lying on a fluid and the compensation occurs on a regional base (Vening-Meinesz 

model). In this model, the most important assumption is that the lithosphere behaves like a perfectly 

elastic plate. 

The flexural model is similar to the Airy model, where the compensation of the topographic loads 

occurs due to the flexure down and a correspondent crustal thickening. The Airy model corresponds 

to a flexural rigidity of zero. A common approach to understand the form of the isostatic 

compensation is to study the relationship between the topography and the gravity anomaly created 

by the mass anomalies in subsurface that compensate the topography. 

In the areas where the crust is in isostatic equilibrium, it is appropriate to calculate the isostatic 

correction and therefore the isostatic anomaly corresponding can be given by: 

Ἧἓ ▌ ╒╕═ ╒║ ╒╘ ♬ III -62. 

III.4.1.4. Gradiometry: gravity  gradient components 

The expansions for gravity gradients in the local north-oriented reference frame have a complicated 

form depending on the first and second derivatives of the associated Legendre functions with 

respect to the latitude, which contain, generally, factors tending to infinity when it approaches the 

poles. Here were used non-singular expressions for gravity gradients as presented by Petrovskaya & 

Vershkov (2006). The first and second order derivatives of the disturbing potential T in the local 
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north-oriented reference frame {x, y, z} are considered by proceeding from a known relationship 

(Reed, 1973), but presented in terms of latitude rather than co-latitude. Thus, the ratio between the 

components in the Cartesian coordinate in the local frame and in the geocentric spherical 

coordinates becomes: 
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The parameters of the gravity gradient are presented in an alternative form of Petrovskaya & 

Vershkov (2006) and their relations follow in Kiamehr et al. (2008): 
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and 
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The coefficients of the Legendre functions are numerical constants given by Petrovskaya & 

Vershkov (2006). Using these formulae, the gravity gradient components from GOCE mission data 

can be used to construct a global geopotential model (Petrovskaya Vershkov, op. cit.). In addition, 
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some components, such as Tzz, can have a geophysical meaning most easily related to the subsurface 

geology. 

III.4.1.5. Methods for Error Estimation  

III.4.1.5.1. Errors GOCE: From Degree Amplitude to Gravity Anomaly errors 

in Spherical Harmonic 

Wahr et al. (1998) supposed that the geoid is averaged over a time interval, and defined the error of 

this averaged geoid in terms of the GGM estimate as: 

‰ὔ—ȟ‏ ὥ ὖ ÃÏÓ— ὅ‏ ÃÏÓά‰ Ὓ‏ ÓÉÎά‰  III -66 

where ŭClm and ŭSlm are the errors of the geopotential models coefficients. Then the spatial variance 

of the geoid error, taken over the entire globe, is 
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The degree amplitude or degree variances from the geopotential model error is defined as 

ὔ‏ ὥ ὅ‏ Ὓ‏  III -68 

The error estimate of the gravity anomaly is obtained similarly. Therefore the RMS (Root Mean 

Square) anomaly errors per degree were computed by: 
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ὔ‏  and ‏Ὣ are the total contributions to the variance of the geopotential model to the geoid and 

gravity anomaly error from all terms up to degree l. The degree l is a measure of the spatial scale of 

a spherical harmonic. The half-wavelength of a (l, m) spherical harmonic serves as an approximate 

representation of the spatial scale and is roughly given by 20,000 km/l. So ‏ὔ  and ‏Ὣ are a 

measure of the contribution to the variances from all the terms up to a given spatial scale. 
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Wahr et al. (1998) assumed that uncertainties in the estimates of ŭClm and ŭSlm depend on l but not 

on m (i.e., that the geoid error depends on wavelength but not on spatial orientation) and that the 

errors in coefficients with different values of l and m are uncorrelated (equivalent to assuming that, 

on average, this geopotential models will determine the geoid and gravity anomaly equally well 

over all regions of the globe). The geoid and gravity anomaly uncertainties can then be summarized 

by providing estimates of the expected ŭNl and ŭgl as a function of l, and this is the form in which 

the uncertainties were provided by the geopotential models. Since each ŭNl and ŭgl involve the sum 

over (2l + 1) coefficients (note that Sl0 = 0 for each l), then an individual uncertainty ŭClm or ŭSlm is 

equal to ŭNl or ŭgl divided by Ѝςὰ ρ. 

 

Figure III -6: RMS errors in the gravity anomaly from the geopotential models and degree 

amplitudes for GOCE and EGM08 in the gravity anomaly (free-air), signal, error and difference 

between EGM08 and GOCE. 

The cumulative error in gravity anomaly for spherical harmonics coefficients of the GGMs up to 

degree and order 250 is about 0.75 mGal for EGM2008 (Pavlis et al., 2008) and 1.39 mGal for the 

GOCE GGM (Pail et al., 2011). 
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III.4.1.5.2. Systematic errors of low spherical harmonic degrees in the surface 

gravity anomalies 

The systematic errors of the low spherical harmonic degrees in the terrestrial gravity anomalies 

were studied by Huang et al. (2008) supposing that the Earth gravity field determined by GGMs can 

be modeled by spherical harmonics as follows 

ɝὫ Ὣ ‭  III -70 

where ȹg
GGM

 is the gravity anomaly, L is the maximum degree of the global geopotential model 

(GGM) in spherical harmonics; gn is the spherical harmonic component of degree n and ‭  is the 

commission error associated with the GGM. 

Similarly, the terrestrial gravity anomaly ȹg
TG

 described in spherical harmonics can be expressed by 

ɝὫ Ὣ ‭ ‭ ‭Ȣ III -71 

The second and third terms on the right hand side are the low and high-degree systematic errors, 

respectively. The last term ᷾n is the random error. By subtracting eq. (III -70) from eq. (III -71), we 

obtain 

ɝὫ ɝὫ Ὣ ‭‏ ‭ ‭ III -72 

where 

‭‏ ‭ ‭  III -73 

Huang et al. (2008) assumed that if the error of the satellite models is much smaller than the 

systematic error in the surface gravity data, ‭ is approximately the low-degree systematic error in‏ 

the terrestrial data below degree L. Thus, we can rewrite eq. (III -72) as 

ɿצ ɝὫ Ὣ ‭ ‭ ɝὫ Ȣ III -74 

In order to estimate ɿצ, Huang et al. (2008) smoothed ȹg
TG

 in order to remove the high degree 

components and the high degree systematic and random errors. 
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III.4.1.5.3. Spatial Averaging 

There are many mathematical tools developed for smoothing the gravity field (Jekeli, 1981). In our 

case we have calculated a grid of gravity anomaly values obtained from the GGMs, GOCE and 

EGM2008, with the standard spherical approximation that follows the series representation of 

Heiskanen and Moritz (1967) and terrestrial gravity anomaly values which we must reduce in a 

mean gravity anomaly through smoothing that correspond only to the long-wavelength part of the 

terrestrial gravity anomaly.  

In general, the global geopotential model approach uses the idea of constructing spatial averages to 

compensate for poorly known, short-wavelength spherical harmonic coefficients to improve 

estimates of the Earthôs gravity field. The terrestrial gravity anomalies encompass gravity 

components with higher spherical harmonic degrees than those from the satellite data. However 

these higher degree components require that an effective filtering or smoothing process to be 

performed to the terrestrial data to make them comparable with the satellite data. Here, we will use 

the Gaussian averaging function (Jekeli, 1981) to average the terrestrial data.  

The terrestrial data have more detailed and accurate information with regard to short-wavelengths, 

which will be used to obtain a mean gravity anomaly corresponding to long-wavelengths. The idea 

is to get the mean gravity anomaly from the terrestrial data with a Gaussian smoothing in at 

corresponding grid point of the gravity anomalies calculated from the geopotential global models 

(for example: EGM08 and GOCE up to degree and order 250). So that we can make comparisons 

between the gravity anomalies at long wavelengths obtained from the global geopotential models 

and the terrestrial data, and so estimate the errors of the geopotential models when compared to the 

terrestrial data, or vice-versa, to estimate the errors of the terrestrial data. Below, we follow Jekeliôs 

Gaussian averaging function (Jekeli, 1981) normalized so that the global integral of W is 1 as in 

Wahr et al. (1998): 
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r is the averaging radius (i.e., the distance on the Earthôs surface at which W has dropped to half its 

value at origin (Ŭ =0); distance on the Earthôs surface = aŬ) and a is the mean radius or mean Earth 
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radius (~6371 km). In terms of the spherical harmonic development, Jekeli (1981) showed that the 

Gaussian weighting function can be obtained following the recursion formula to regard to 

coefficients Wl: 
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Figure III -7 shows the Gaussian weighting function W(Ŭ) and the spherical harmonic coefficients 

Wl up to degree and order 250 corresponding to the averaging radius r = 80 km that was used for 

smoothing the terrestrial data. 

 

Figure III -7: (a) Spatial averaging: Gaussian averaging function W(Ŭ) (continuous line) for the 

averaging radius r = 80 km, (vertical stippled line); (b) Spherical harmonic coefficients of Gaussian 

averaging function for the same averaging radius r = 80 km. Modified from Wahr et al. (1998). 
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CHAPTER IV  

IV.  UNDERSTANDING AND INTERPR ETING THE 

GRADIENTS OF GRAVITY  WITH A PRISM APPROACH FOR 

GRAVITY FIELD MODELL ING 

ñRed October's captain is a man named Marko Ramius. That is a Lithuanian name, although we 

believe his internal passport designates his nationality as Great Russian. He is the son of a high 

party official and as good a submarine commander as they have. He's taken out the lead ship of 

every Soviet submarine class for the past ten years... Ramius inspected his status board. The Red 

October was heading southwest on track eight, the westernmost surveyed route on what Northern 

Fleet submariners called Gorshkov's Railroad. His speed was thirteen knots. It never occurred to 

him that this was an unlucky number, an Anglo-Saxon superstition. They would hold this course 

and speed for another twenty hours. Immediately behind him, Kamarov was seated at the 

submarine's gravitometer board, a large rolled chart behind him. The young lieutenant was chain-

smoking, and looked tense as he ticked off their position on the chart. Ramius did not disturb him. 

Kamarov knew this job, and Borodin would relieve him in another two hours.  

Installed in the Red October's keel was a highly sensitive device called a gradiometer, essentially 

two large lead weights separated by a space of one hundred yards. A laser-computer system 

measured the space between the weights down to a fraction of an angstrom. Distortions of that 

distance or lateral movement of the weights indicated variations in the local gravitational field. The 

navigator compared these highly precise local values to the values on his chart. With careful use of 

gravimeters in the ship's inertial navigation system, he could plot the vessel's location to within a 

hundred meters, half the length of the ship.  

The mass-sensing system was being added to all the submarines that could accommodate it. 

Younger attack boat commanders, Ramius knew, had used it to run the Railroad at high speed. 

Good for the commander's ego, Ramius judged, but a little hard on the navigator. He felt no need 

for recklessness. Perhaps the letter had been a mistake. No, it prevented second thoughts. And the 

sensor suites on attack submarines simply were not good enough to detect the Red October so long 

as he maintained his silent routine. Ramius was certain of this; he had used them all. He would get 

where he wanted to go, do what he wanted to do, and nobody, not his own countrymen, not even the 

Americans, would be able to do a thing about it. That's why earlier he had listened to the passage of 

an Alfa thirty miles to his east and smiled.ò     
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Tom Clancy in ñThe Hunt for Red Octoberò 

IV.1. Introduction  

This section describes a brief history of the gravity gradiometry history and its uses in the 

interpretation from gravity gradients (GGs) based in the formulas of Nagy et al. (2000) and Heck 

and Seitz (2007) 

In order to analyze the feasibility of using rectangular prisms or tesseroids to calculate and to model 

the geological structures, two simple models were constructed using the tesseroid and the prism 

approaches for calculation of the gravitational quantities: the first derivative of gravitational 

potential (vertical component of gravity) and the GG components. The quantities in gravity fields 

were simulated at ground and at a height up to 250 km for analyze the gravity fields in the same 

height of the GOCE satellite.  

IV.2. Literature Review: History of Gravity Gradiometry  

The cited passage at the beginning of this chapter is a fragments from the submarine novel The 

Hunt for submarine Red October, (Clancy, 1984), written twenty eight years ago, which was also 

readapted to the theater in 1990 by a movie of the same name receiving highly positive reviews and 

making it one of the top grossing films of the year. As pointed by Bell et al. (1997), in the 

geophysical viewpoint, the tripulation of the Red October has gone as close to their goal as any 

exploration geophysicist would like to go using gravity gradiometry. 

During the cold war, as an effort to devise more stealthy aids to the underwater navigation, the 

United States (U.S.) and the Soviet Union defense department designed sensitive instruments that 

could measure tiny variations in the pull of the gravity field caused by underwater ridges or 

mountains. This system is somewhat more complex than the one installed on the fictional 

submarine Red October, but the main ideia is quite the same. With the end of the Cold War, the 

introduction of military technology for exploration geophysics and other fields has started. Three 

years earlier, the U.S. Navy had already started the technological application of the gravity gradient 

in the underwater exploration industry (Bell et al. 1997; Bell, 1998). 

However, the history of gravity gradiometry began early in 1896 with the development of an 

instrument known as the Eötvös Torsion Balance, essentially a gravity gradiometer, by Baron 

Loránd von Eötvös, a Hungarian physicist, to measure the minute variations in gravity over a short 

distance. Thus, his instrument was the first geophysical device capable of delineating underground 

geological structures. (Bell et al. 1997; Szabo, 1998; Nabighian et al. 2005; Rogers, 2009). 
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Initially, the torsion balance was developed to measure the basic physical constants. Indeed, this 

ñgradiometerò, or instrument for the measurement of the spatial derivatives or gradients of the 

Earthôs gravity field measured the local distortion of the gravity field rather than its intensity. It was 

a large instrument mounted on a tripod assembly (Figure IV-1), made of a metal beam that recorded 

the gradient of the gravity suspended by a wire, with weights present at each end. If the gravity 

varied with the position along the axis, the weights were placed on, and the force exerted on each 

weight would be different, thus causing a rotational force on the beam and in turn causing the wire 

to twist. So, Eötvös measured the amount of twist to determine the gravity gradient (Hopkins, 1975; 

Jekeli & Zhu, 2006; Rogers, 2009). 

 

 

Figure IV-1: Single Eºtvºsô Torsion Balance designed for field work. The first Gravity 

Gradiometer. Courtesy of the Loránd Eötvös Geophysical Institute (Szabo, 1998). 

As described in Rogers (2009), in 1901 the head of the Hungarian geologic survey convinced 

Eötvös to test the real-world usefulness of the torsion balance (i.e., the first investigations of the 

Earth's gravity field) to map the shape of a frozen lake basin, which had been already well mapped 

from previous summertime measurements made from a line and a sinker. The test was a success 

because the contour map so obtained matched the previously made maps. Eötvös and Hugo de 

Boeckh then performed more difficult geological surveys in the region. 
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Thereafter, Eötvös presented his results and demonstrated the operation of his torsion balance at the 

1906 World Congress of Geodesy (then the International Erdmessung). As a result, the Congress 

petitioned the Hungarian government requesting that an increased financial help should be given for 

Eºtvºsô gravitational research. The Hungarian government agreed with the suggestion and from 

1907 onwards a separate fund was allocated for Eötvös' gravitational studies (Szabo, 1998). Based 

on the governmental support Eötvös established the first applied geophysical Institute of the world 

in Budapest, which is now named the Eötvös Loránd Geophysical Institute (ELGI). 

On a global scale, understanding the details of the gravity field as well as developing the technology 

in general are critical in military applications. Despite the World War I has not introduced the use of 

the gravity gradiometer technique, since World War II the research and the development in the 

areas of gravity instrumentation and building of global data bases were greatly encouraged. On an 

exploration scale, gravity has been widely used for both mining and oil exploration (particularly in 

the U.S. Gulf Coast), and even at the reservoir scale for the hydrocarbon exploration development. 

However, the use of this technique began in U.S. only after the World War I, in 1922 and 1924, 

when American geologists of the Amerada Hess Corporation and Gulf identified the first salt domes 

(i.e., mushroom shaped underground diapiric salt geologic structures that often have oil and gas 

deposits along their sides; since the salt is less dense than most rocks, it exerts a weaker 

gravitational force relative to the sediments surrounding it due to the large density contrast). As 

such, the gravity gradients can highlight a buried salt dome (Bell et al., 1997; Nabighian et al. 2005; 

Rogers, 2009). 

Suddenly the Eºtvºsô torsion balance success quickly spread to the oil prospectors around the world 

and the gravity method became the first geophysical technique to be used in oil and gas exploration. 

Thus, officially the gravity gradiometry was born (Bell, 1998; Nabighian et al. 2005; Rogers, 2009). 

Historically, hundreds of oil fields were discovered throughout the world with the help of Eºtvºsô 

ingenious instrument from the end of the 1910ôs and up to about 1940. The first geophysics 

gradiometer efforts occurred in Europe in 1915, in the upper Rhine Valey, and in northern Germany 

over a salt dome in 1918 which led to the mapping of the Czechoslovakian Egbell Oil Field 

(Schweydar, 1918 apud Nabighian et al. 2005; Bell et al. 1997). In U.S. other salt domes and oil 

fields were initially identified with gravity gradiometer, including the Lovell Lake field in Jefferson 

Country, Texas and the South Houston Oil Field. When these salt domes were confirmed by others 

techniques, drilling and seismic, the use of the gravity gradiometer had a boom, making this 

technique the most useful and routinely used technique in exploration technology for subsurface 

surveys, particularly to oil exploration (Nabighian et al. 2005; Jekeli & Zhu, 2006; Rogers, 2009). 
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On the other hand, despite the great success of the torsion balance, primarily in oil exploration to 

locate salt domes, the difficulty to use it in the field caused it to be abandoned soon. The history 

reported that geoscientists could no longer afford the expense and the time required to obtain a 

reliable measurement (Nabighian et al. 2005).  

Rogers (2009) told that explorationists had to first clear a 100 meter long swath in eight directions, 

in a star pattern, from the location of the torsion balance to prevent the mass of the trees and rocks 

from corrupting the measurements; additionally, a small building had to be erected in order to 

protect the instrument from the wind and from temperature changes. This in turn generated data 

often misinterpreted which led to erroneous survey because of the sensitivity of the device that 

could corrupt its measurements even by the large belt buckles often worn by geoscientists. So, these 

issues led to the explosion of the use of the simpler gravimeters. 

The gradiometers were quickly replaced in the 1930ôs and 1940ôs with the development of modern 

portable relative gravimeters that achieved sufficient accuracy for geophysical exploration as a 

consequence of being inherently less sensitive than gradiometers, what required no extensive 

measurement site preparation and permitted the surveys to be carried on in only a fraction of the 

time, about 10 times faster (Jekeli & Zhu, 2006; Rogers, 2009). 

Another important point is that the data from gravimeters was easiest interpreted. Firstly in the 

1930ôs, spring gravimeters came into their own and quickly displaced the torsion balance 

gradiometer. After that the first compact gravimeters proved to be portable, rugged and robust 

instruments, capable of taking dozens of measurements on a daily basis. This led to increased 

investments in gravimeters and by the 1950's, gravimeters had replaced gradiometers in most of the 

gravity field measurement applications. So, the Eötvös gravity gradiometer was dismissed, leaving 

a brief passage on the historical sections of the gravity gradiometry (Nabighian et al. 2005; Jekeli & 

Zhu 2006; Rogers, 2009).  

With the advent of robust and practical field instruments, the use of gravity rapidly expanded in 

both mining and hydrocarbon exploration for any targets for which there were a density contrast at 

depth, such as salt domes, ore bodies, buried structures, and regional geology. However, even with 

the success of the gravimeters, at that moment, the gravity gradiometer was temporarily gone, but 

certainly it was not forgotten (Nabighian et al. 2005; Rogers, 2009). 

In the 1970ôs, there was a new wave of research about the importance of gravity gradiometers 

developed into moving based systems, which basic physical principles are identical to the case of 
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the satellite, capable of conducting a gravity survey over large areas with minimum expenditure of 

time (Hopkins, 1975).  

At the same time, the U.S. Air Force had abandoned their gravity systems for Airborne surveys due 

to the problem of sensitivity to the aircraft accelerations, which was the main cause of the inertial 

and kinematic acceleration afflicting any gravimeter (or accelerometer) on a moving base, 

according to Einsteinôs well known equivalence principle, and then overwhelmed the anomalous 

gravimetric signal on the aircraft in flight. However, gravity gradiometers are not affected by this 

inability of separating inertial from attractional effects (due to the pure local validity of Einsteinôs 

aforementioned principle) and gradiometers approximate the (infinitesimal) gradients by finite 

difference observations. Modern three-dimensional gravity gradiometers have meanwhile been 

developed, which can successfully measure the second derivatives of the potential in satellites. 

So, airborne gradiometry tecnology was considered the only way to solve the problem of moving-

base gravimetry. With the advent of the modern Global Positioning System (GPS), positioning 

quickly upgraded to a high level of precision, and kinematic accelerations could be determined 

independently with sufficient accuracy to be used in aerogravimetry in general. Furthermore, 

gradiometers devices equipped with this GPS technology could flown on surveys with very closely-

spaced lines (Groten, 1989; Nabighian et al. 2005; Jekeli & Zhu 2006; Rogers, 2009). 

In 1973, Bell Aerospace Textron, nowadays owned by Lockheed Martin, developed the first 

modern gravity gradiometer FTG (Full Tensor Gradient) system for the U.S. defense department, 

commissioned by the U.S. Navy. The device was deployed on board ships and housed in a 

recreational vehicle. Its applications were to assist navigation in stealth mode for U.S. submarines 

using inertial navigation systems, as the data provided the most accurate mapping of the 

bathymetry, and also to the Air Force Geophysics Laboratory (AFGL) for its regional airborne 

gravity survey system. The FTG configuration consisted of 12 individual accelerometers mounted 

on 3 rotating disks (gravity gradiometers). All the five independent tensor components of the 

gravity field were successfully measured by this configuration (Nabighian et al. 2005; Zuidweg and 

Mumaw, 2007; Rogers, 2009). 

Although the submarine fiction mentioned in the beginning of this chapter had described that both 

U.S. and Russian navies had the technology of submarine launched ballistic missiles, which 

depended greatly upon a precise knowledge of gravity at the time of missile launch, it is known that 

at that time no Soviet vessel actually carried such elaborate gear of ballistic-missiles. In that 

occasion, only the U.S. Navy had invested hundreds of millions of dollars in developing a FTG 
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system driven by the requirements for navigation and launching of missiles (Bell et al. 1998, 

Nabighian et al. 2005; Jekeli & Zhu 2006; Rogers, 2009).  

In the mid 1980's, part of this technology was declassified and eventually used in 1987 by the 

Defense Mapping Agency (DMA) flight tests of the Gravity Gradiometer Survey System (GGSS). 

In the 1994, the Bell Geospace commercialized it in offshore surveys on smaller ocean-going 

vessels, in the region of the Gulf of Mexico, for the marine oil exploration, as the Marine-FTGÊ 

system. Later, this test was accomplished by AFGL and the system was successfully tested on a 

single engine aircraft in 2001, constituting the first airborne gravity gradiometer survey published in 

the open literature (Nabighian et al. 2005; Rogers, 2009). Thus, in 2002, the Airborne FTG system 

has been migrated operationally from marine to airborne use, and the Air-FTG
®
 was quickly 

adopted by the mineral industry as a promising exploration tool (Hammond and Murphy, 2003; 

Murphy, 2004; Nabighian et al. 2005; Zuidweg and Mumaw, 2007; Rogers, 2009). 

Since those initial marine trials from 1994, several systems have been deployed up to date; there are 

basically two types of gravity gradiometers designed by Lockheed Martin that are operational: the 

FTG and the BHP Falcon. This latter was the first airborne gravity gradiometer, FALCON
®
, 

designed 1999 by BHP Billiton, primarily for shallow targets of interest to mineral exploration. It 

consists of four accelerometers configured to measure the horizontal curvature, from which the 

vertical gradient and vertical component of the gravity field are computed (Lee, 2001). 

Nevertheless, Nabighian et al. (2005) commented that there were three teams that were designing 

new systems to add to the suite of airborne gravity gradiometers: Stanford University, ArkEx and 

University of Western Australia. 

By the early 2000's, gradiometers experienced also a resurgence, at least on paper initially, with the 

advent of satellites since only the curvature of the gravitational potential field can be sensed on a 

freely falling body (such as a satellite), and so the gravity field missions have given they 

contribution to determine the Earth's gravity field in the past decade. However, the gradiometer 

technology continued with the promise of the eventual deployment of such a system in space, and, 

after two potential missions were abandoned, the CHAMP (CHA llenging M inisatellite Payload) 

Mission (Reigber et al. 2002) was launched in July 2000, as the first mission that combined 

satellite-to-satellite tracking in mode high-low (SST-hl) with 3-D accelerometry (ESA, 1999; 

Rummel et al. 2002; Nabighian et al. 2005). 

In March of 2002 Gravity Recovery And Climate Experiment (GRACE) Mission was launched, 

based on the pioneer lowïlow satellite-to-satellite tracking (LL-SST) concept. The mission consists 

of two identical satellites following each other in the same orbit, at the height of 500 km, and a 
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distance between the satellites of about 220 ± 50km, providing global and high-resolution estimates 

of the Earthôs gravity field and its temporal variations (Tapley et al., 2004). Hence, both GRACE 

satellites carried on board a 3-D accelerometer, and although in practice they are not satellites using 

gravity gradiometry (SGG), the configuration itself can be viewed as a huge one-component 

gradiometer with an arm length of 250 km. Consequently, the GRACE mission can be considered 

potentially a precise one dimensional (1-D) virtual gradiometer (Rummel et al. 2002; Keller and 

Sharifi, 2005; Yi et al. 2010).  

Finally, in March of 2009, the GOCE (Gravity field and steady-state Ocean Circulation Explorer) 

Mission was launched by the European Space Agencyôs (ESA), being the first core explorer 

mission in the Living Planet program, putting in practice by the first time in history the principle of 

SGG used in space with a tri-dimensional gradiometer on board to measure the GGs of the Earth 

(ESA, 1999; Rummel et al. 2002; Keller and Sharifi, 2005; Yi et al. 2010).  

Today, airborne gravity gradiometry systems are used mainly for geological surveys in the search 

for valuable natural resources as oil, gas, copper, iron, ore, diamond mineral deposits to mining 

exploration, and also to better understand the Earth's gravity field and the overall structure in a 

regional and global geologic scale (Nabighian et al. 2005; Rogers, 2009). 

The use of gravity gradiometry for exploration purposes continues to grow. The most promising 

results so obtained are the instrument drift reduction, the common cancellation of the platform 

accelerations, and the fact that several independent channels (tensor components and standard 

gravity) are recorded simultaneously. All this facts probably play a major role in assessing the 

added value of tensor gravity data over using the gravity data alone. According with Jorgensen et al. 

(2001), a key value of the tensor data lies in the ability to achieve a high level of enhancement of 

the signal-to-noise ratio for each of the tensor channels and the gravity channel. This enhancement 

is achieved by operating on all the channels simultaneously, using techniques that remove noise 

sources from all the input channels. 

Many world-renowned exploration companies, such as Bell Geospace, ARKex, Gedex and Fugro 

provide airborne gravity gradiometry surveys to customers who desire such data. This data have 

enormous advantage over the conventional gravity (land, marine and airborne) due to their noise-

reduction capabilities, the speed of acquisition, and the improved accuracy. With appropriate 

processing, the gradiometer sensitivity can be as low as 3 to 8 Eotvos (1 Eotvos = 0.1 mGal/km), 

and it can resolve wavelengths of about 300 to 1000 meters (Nabighian et al. 2005; Rogers, 2009). 
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Of all the applications and purposes described above, gradiometers have been installed and used 

with success on ships, aircraft and now in satellites. This latter are being used primarily to 

understand the Earth's gravity field globally from gravity gradients measurements by GOCE SSG. 

In this context this thesis uses the GOCE gradiometric data for the geophysical proposal presented 

in the previous chapters. 

IV.3. Satellite Gradiometry Technology with GOCE 

The drag free satellite of SST can be viewed as a set of proof masses in free fall, subject only to the 

influence of the gravitational field, with their relative line-of-sight movement being measured. The 

satellite gradiometer senses the gravitational field simultaneously in several directions. In other 

words, the complete curvature structure of the local gravitational field is measured. 

GOCE's system consisting of the sensor and the control elements form one ógravity-measuring 

deviceô orbiting at the height of about 250 km. The satellite itself also acts as a prime sensor, so, in 

contrast to most remote-sensing missions, there is virtually no division between the satellite and the 

instruments.  

GOCE carry an electrostatic gravity gradiometer (EGG), a GPS receiver to allow use of high-low 

Satellite-to-Satellite Tracking Instrument (SSTI), a compensation system for all non-gravitational 

forces acting on the spacecraft (such as air-drag and radiation pressure), a very sophisticated 

propulsion system, a laser retro-reflector to enable tracking by ground-based lasers as well as star 

cameras to control the satellite attitude providing the absolute orientation (i.e., angular 

measurements into rates and angles) and a set of very-low frequency components; the twice-

integrated angular accelerations are deduced from the accelerometer readings of the gradiometer 

(Figure IV-2). Thus, the gradiometer is used as a gyroscope, and its observations are used to 

stabilize the attitude information. (ESA, 1999; Pail, 2005; Bouman et al. 2009). 
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Figure IV-2: Concept of GOCE Gravity Gradiometer Satellite with satellite to satellite tracking 

(SST) (modified after ESA, 1999). 

The GOCE satellite gradiometer consists of three pairs of ultra-sensitive accelerometers which 

measure acceleration differences, ideally in all three spatial dimensions, between the test-masses of 

an ensemble of accelerometers present inside the satellite (Figure IV-3). Every accelerometer has 

two high sensitive axes, and one less sensitive axis (Figure IV-4). The measured signal is the 

difference in the gravitational acceleration at the test-mass locations inside the spacecraft. 
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Figure IV-3: Payload Electrostatic Gravity Gradiometer. Courtesy: European Space Agency 

The spacecraft is kept Earth-oriented with its x-axis pointing along-track, the y-axis cross-track and 

the z-axis radially outwards. The orientation of the satellite is maintained by an active attitude 

control using proportional thrusters and, as control elements, a star tracker and the gradiometer. 

The Satellite-to-Satellite Tracking Instrument (SSTI) consists of an advanced dual-frequency, 12-

channel GPS receiver and an L-band antenna. The SSTI receiver is capable of acquiring signals 

simultaneously broadcasted from up to 12 spacecraft in the GPS constellation. The SSTI delivers, at 

1Hz, pseudo-range and carrier-phase measurements on both GPS frequencies, as well as a realtime 

orbit navigation solution. 
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Figure IV-4: Position of the 6 accelerometers in the GOCE gradiometer in GRF (Gradiometer 

reference Frame) and all ARF (Accelerometer Reference Frame). The axes of the ARF are shown 

by solid arrows ultra-sensitivite aligned with the axes of the accelerometer. The axes of ARF shown 

by the dotted arrows are aligned to the axes of the accelerometer less sensitive. Each colour 

represents a one-axis gradiometer. The shadowed surfaces represent the locations of the lower 

plates (and the sole plates) (Gruber et al., 2009; See ANNEX A). 

The advanced drag compensation and the attitude-control system is a key feature required to keep 

the accelerometer sensor heads in near 'free fall motion' and to maintain the orbit altitude at about 

250 km. The system is based on ion-propulsion technology. The electric ion propulsion system 

comprises two thruster units (one as backup) mounted at the back of the satellite. The thrusters can 

be throttled between 1 and 20 millinewtons (mN), which is set automatically, depending on the 

actual real-time drag that the satellite experiences in orbit. 

A particular feature of the GOCE system design is that the drag-free and attitude-control system use 

the scientific payload as a sensor. The laser retroreflector allows GOCE's precise orbit to be tracked 

by a global network of ground-based stations through the Satellite Laser Ranging Service. This 

provides accurate positioning for orbit determination and data products. 
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Science data are continuously delivered to ground (1 Hz data rate); there are no gaps in the 

gradiometer data stream. 

IV.4. Gradiometry Principle  

The theoretical foundations of the gravity gradiometry is presented by Rummel (1986); the basic 

observable elements of the mission are GGs, the second order derivatives µ
2
V/µxiµxj = Vij of the 

gravitational potential V with nine components, as showed in Chapter III. These GGs can be defined 

in a local north oriented frame (LNOF), i.e., x-axis is pointing North, y-axis towards West and z-

axis pointing radially outward in geocentric radial direction. 

The principle of operation of the gradiometer relies on measuring the forces that maintain a proof 

mass at the centre of a specially engineered cage. Servo-controlled electrostatic suspension provides 

control of the proof masses in terms of linear and rotational motion. Two of the floors support the 

gradiometer, which is mounted at the heart of the satellite close to its centre of mass. Three pairs of 

identical accelerometers, which form three gradiometer arms, are mounted on the ultra-stable 

structure. The difference between accelerations are measured by each of two accelerometers (which 

are about 50 cm apart), in the direction joining them contains the basic gradiometric information. 

The average of the two accelerations is proportional to the externally-induced drag acceleration 

(common mode measurement). The three arms are mounted orthogonally to each another: one 

aligned with the satellite's trajectory, one perpendicular to the trajectory, and one pointing 

approximately towards the centre of Earth. By combining these different acceleration 

measurements, it is possible to derive the gravity-gradient components. 

The gradiometer in GOCE Satellite consists of six 3-axis accelerometers mounted in pairs along 

three orthogonal arms (Figure IV-4). Each accelerometer with three axes i = 1, 2, 3 (or x, y, z) 

senses e.g. the acceleration 

   )0()0(/)0( ijijjkjikjijii bdxdxdxVxVf -W+WW+-µµ-= #  IV -1 

with bi (0) the sum of all non-gravitational accelerations (atmospheric drag for instance) acting on 

the satellite along the i-axis at the centre of mass 0 or so-called common mode (CM).  

In the case of GOCE the gravity gradients are derived from differential mode (DM) observations, 

consisting of the difference of the measured accelerations fi of two accelerometers A and B along 

one arm, e.g. the i-axis, separated by a distance Dxj along the j-axis of the diamond configuration. 

Comparing with Rummel, (1986), one can write 
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One observes that the components Vij are not observable directly but only their combination with 

two other terms. These two express the effect of centrifugal acceleration (WW) and the angular 

acceleration (W#). They are caused by the measurement in a moving frame fixed to the satellite. 

Closer inspection shows that Wik Wkj like Vij is symmetric, whereas ijW
#  is antisymmetric. In detail: 
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Thus, a separation into symmetric and antisymmetric part yields: 
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1
 IV -4 

and 

ijjiij WGG #=- )(
2

1
 IV -5 

In addition, one finds: 

.2)(2 2222
wwwwGGGG -=++-=++= zyxzzyyxxtrace  IV -6 

One should keep in mind that wy, the angular velocity about a vector perpendicular to the orbital 

plane, is much greater than wx and wz. It represents the once-per-revolution rotation of the Earth 

pointing satellite: wy » wx, wz. 

So, one can draw the following conclusions: 

- Ideally, when differencing the accelerations fi, all non-gravitational accelerations bi (0) drop out, 

as well as the gravitational accelerations µV(0)/µxi, see eq. (IV-1 and IV-2). 

- The gravitational gradients cannot be sensed in isolation. They are mixed with centrifugal and 

angular acceleration terms, see eq. (IV-3). 
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- The angular accelerations can be isolated and, after integration, they can be employed for the 

angular control of the spacecraft. 

- One time-integration of the angular accelerations yields to the angular velocities, which are used 

to isolate Vij from Wik Wkj. 

- For GOCE, with one axis of each accelerometer weaker than the two others, the arrangement of 

the six 3-D accelerometers is chosen such as to permit precise determination of wy, whereas wx 

and wz are not determined as well. Consequently, only Vxx, Vyy, Vzz and Vxz can be reproduced 

with highest precision. 

- Below 3 Ö 10
-2

 Hz the component Vxz is less accurate than the three diagonal components. This is 

caused by the uncertainty in the orientation angles, which results in a projection of the large 

diagonal components onto the off-diagonals. Nevertheless Vxz has a positive effect on the overall 

results. 

- The sum, i.e. the common mode accelerations fi (A) + fi (B), are a measure of the non-

gravitational accelerations 

,)0(2)()( iii bBfAf -=+  IV -7 

if the accelerometers are arranged symmetrically with respect to the centre of mass of the 

spacecraft, for then µV(0)/µxi º 0, see eq. (IV-1). They are then employed for drag-free control 

(together with the GPS orbits). 

Three critical areas emerge that deserve careful attention: 

- The accelerometers are "no perfect twins". This is caused by imperfect scale factor matching, 

alignment and positioning along one axis. As a result one needs a comprehensive calibration 

scheme that includes laboratory, on-board and post-mission tests. Another remedy is to keep linear 

and angular disturbances (non-gravitational and apparent forces) low by active drag and angular 

control. 

- Centrifugal and angular accelerations mix inevitably into the gravitational gradients. Separation of 

the anti-symmetric from the symmetric tensor part will help to determine wy and to a lesser extent 

wx and wz. The trace condition will yield the sum of wx
2
 + wy

2
 + wz

2 
as control information. Finally 

star trackers provide absolute orientation at 10 seconds intervals. An additional option is the 

parameterization of misorientation angles in the context of the data processing. Thus an isolation of 

the gravitational tensor alone is feasible. 
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- The third error source is the effect of time variable self-gravitation of the spacecraft. On the one 

hand it can be kept below the required threshold by choosing a very stiff instrument and satellite 

construction (no moving parts). On the other hand thruster fuel consumption is of concern. The 

choice of ion thrusters for the attitude control and cold gas thrusters for the drag control eliminates 

this problem. 

IV.5. Understanding the gravity gradients 

Nowadays, the use of gravity gradients (GGs) data in exploration is relatively common. 

Nevertheless, interpretation of GG data is not as easy as with the familiar vertical gravity data. Saad 

(2006) showed that for a given source, regardless of its simplicity, GGs often produce a complex 

pattern of anomalies (single, doublet, triplet, or quadruplet) as compared to the simple single 

(monopolar) gravity anomalies. The six independent GGs recovered from gravity gradiometry 

provide a powerful tool for delineating the shape of the body. The GGs can detect the edges, 

corners and center of the mass distribution.  

Since 1990ôs, moving-platform gravity gradiometers had become
 
available and played an important 

role in
 
exploration. Data reduction, filtering, and visualization, together with low-cost, 

powerful
 
personal computers and color graphics, have transformed the interpretation of

 
gravity data 

(Nabighian et al. 2005). 

Many authors (e.g.: Montana et al. 1992; Nagy et al. 2000; Saad 2006; Heck and Seitz 2007) have 

demonstrated the complex pattern of anomalies associated to gravity gradient components 

calculated from gravitational potential generated from a basic building block - a rectangular prism. 

In this work a forward modelling using the rectangular prism approach developed by Nagy et al. 

(2000) is used. 

Due to its simplicity and its closed expressions relating to the gravitational potential, the use of the 

rectangular prism is of great interest in gravity modelling. Any three-dimensional density 

distribution can be approximated with the desired accuracy using the prisms. 

Although the geometry of the rectangular prism limit its applicability over large areas because it 

implies an approximation of the flat Earth, it is still a good alternative for describing the density 

distribution and it is especially useful in studies for gravitational potential modelling (Nagy et al. 

2000).  

As discussed by Bell et al. (1997), the Figure IV-5 illustrates an schematic example and shows the 

comparison of the power spectrum of standard gravity data (in dashed lines) against the gravity 

gradients data (solid line). One can observe that the power spectrum of the standard gravity begins 
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to flatten in a hypothetical value given in a certain wavelength indicating the resolution of the data. 

The integration of the gravity gradiometry measurements into gravity data (actually, the vertical 

component) significantly changes the power spectrum slope, indicating an improvement of the 

resolution for small features. The steepness of the power spectrum below the resolution suggests 

that gravity gradients significantly improve the capability of gravity to constrain the location of 

structures. 

  

Figure IV-5: Power spectrum schematic of the first (vertical component, Tz) and second (Tzz 

component) derivatives of gravitational potential. The graphic on left illustrates the theoretical 

curves flattening gravity power spectrum indicating the resolution limit of the data. On the right the 

power spectrum shows a more realistic pattern of the gravity and the gradient gravity data (modified 

after Bell et al. 1997). 

IV.5.1. Rotational Invariants 

Pedersen and Rasmussen (1990) described the use of the invariance to obtain a new representation 

of the gravity and magnetic tensor components. They described two sets of combinations that make 

use simultaneously of all components. The impact of the resultant computation is that the 

anomalous signature pattern is independent of the choice of the axes of the observer. 
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The I1 facilitates the general mapping of the regional stratigraphy on areas of surveys, which 

identify the dominant density contrast. It is used in practice of mapping on a regional scale and 

extract trends in dominant regional density distribution. I2 focuses highlighting the 3D shape of the 

anomalous targets. This makes it useful for mapping the geometry of a fault block, an igneous 

intrusion and salt bodies directly from the gravity gradient data. 

IV.5.1.1. Horizontal invariant Lineaments 

Murphy (2007) described an invariance approach for horizontal components only. These invariants 

can be used to map linear features making it an effective edge mapper. The representations of the 

horizontal components are: 

Ὅὲὠὥὶ Ὕ Ὕ  IV-10 
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Dickinson et al. (2009) showed that the advantage of the anomalous expressionôs independence is 

given in the vertical axis only, increasing the confidence of mapping the geological contact 

information with depth. The result is better obtained by combining the results of both from direct 

comparison with the original Tzz anomaly field (i.e., a positive trend in InVar_TxzTyz is correlated 

with a negative linear trend in InVar_TxyTxxTyy maps in an anomalous edge in Tzz). 

IV.5.1.2. Strike Lineaments  

The impact of these two techniques is an improved method for mapping subsurface geology in a 

qualitative manner. These equations can be solved in different way. The result is a measure of the 

strike angle (or strike direction) to identify linear features from subsurface geology. 

Pedersen and Rasmussen (1990) obtained a formula for the calculation the strike direction from the 

gradient tensor: 

ÔÁÎς— ς
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Observe that the rotating of the coordinate system in the vertical axis aims to minimize the sum of 

the squares of the three tensor components involving a derivative in x-direction. The method 

produces an estimate of ɗs (strike angle) in every observation site. The strike direction is evaluated 

based on its geological importance and continuity along the line which, within a defined tolerance, 

can be chained together to form lineaments. (Dickinson et al. 2009). 

It should be noted that the pattern of anomalies so produced is dependent of the coordinates. 

However, it can only use patterns and shapes of the gravity gradient anomalies with the outline 

designed. 

Various combinations of the gravity gradient components can be used to simplify its complex 

pattern by adding an improvement and helping in the interpretation of the data. For example: 

amplitude of the horizontal gradient of vertical gravity (Tz); amplitude of the total gradient or 

analytic signal of Tz; and the differential curvature, which is also known from the early torsion 

balance literature as the horizontal directive tendency (HDT). The amplitude of the horizontal 

gradient of Tz can be used as an edge-detector or to map body outlines. The analytic signal can be 

used for depth interpretation. The magnitude of the differential curvature emphasizes greatly the 

effects of the shallower sources (Saad, 2006). 

Amplitude of the horizontal gradient of vertical gravity (Tz):  

Ὤ Ὕ Ὕ  IV -13 

Amplitude of the total gradient or analytic signal of Tz:  

ὃ Ὕ Ὕ Ὕ  IV -14 

Differential curvature:  

ὅ Ὕ Ὕ ςὝ  IV -15 

Saad (2006) describes the combining GG products to obtain the three invariants above showing the 

usefulness in simplifying and highlighting the complex pattern of the anomalies about the source, 

providing further enhancements to the high frequency of anomalies due to shallow sources and 

producing coordinate-independent or invariant anomalies. These are easier to interpret than the 

original gradient components. Other coordinates independent invariants can be obtained and also 

used to interpret the data using different combinations of GG components. For example, one can 
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compute also the horizontal and total gradient of Tx and Ty as well as those already described by 

Pedersen and Rasmussen (1990). 

Gravity gradiometry data differ in many aspects of the óconventionalô terrestrial gravity data. An 

important difference is in the bandwidth which is narrow for the gravity gradient data. The 

bandwidth allows an increased retention of the signal with short wavelength (high frequency) 

generated by shallow and intermediate geological features that are not retained in conventional 

ground gravity data. This increased sensitivity allows a significant increase in the resolution of the 

anomalous bodies (Braga, 2006). 

Each tensor component of the gravity gradient corresponds exclusively to the size, shape, depth and 

density of the mass anomaly providing a constraint during the process of interpretation.  

All the five independent components are used in the process of interpretation for determining, for 

example, the center of mass (Txz and Tyz), the edges of the body (Tyy and Txx) and the corner (Txy) 

of the structure that causes the anomaly. The Tzz component is the one that closely resembles the 

standard gravity (Braga, 2006). But this is not always true. It can work very well for rectangular 

prism! 

IV.5.2. Tensor Rotation 

The gravity gradiometry data are largely obtained in a fixed coordinate system NED, thereby, many 

geological scenarios can produce enhanced imaging of the target features using alternative 

coordinate systems. Dickson et al. (2009) presented the underlying transformation of the tensor in a 

relatively simple process selecting a set of tensor components to be transformed, such that 

Ὕ Ὕ ÃÏÓ— Ὕ ÓÉÎ— IV -16 

Ὕ Ὕ ÓÉÎ— Ὕ ÃÏÓ— IV -17 

Ὕ ὓ Ὕ Ὕ Ⱦς IV -18 

Ὕ Ὕ ÃÏÓς— Ὕ ὓ ÓÉÎς— IV -19 

Ὕ ὓ Ὕ ÓÉÎς— Ὕ ὓ ÃÏÓς— IV -20 

Ὕ
Ὕ

ς
Ὕ ὓ  IV -21 

Ὕ Ὕ Ὕ  IV -22 



 

 
69 

where ɗ is the angle of rotation about the down axis. 

In order to better understand the gravity gradients signal, we simulate the gravity field effect from a 

simple rectangular prism model following the formulation given in Nagy et al. (2000). 

 

Figure IV -6: Anomalous mass represented by a rectangular prism with dimensions (ȹx, ȹy, ȹz) = (50,50,4) 

km at an average depth of 4 km centered in the origin of the xy-plane of the north-east-down (NED) 

coordinate system, which the positive x-axis correspond to north, which the positive y-axis correspond to 

east and positive z to down. 

Figure IV-6 shows the orientation and the dimensions of the simple prism hypothetically constucted 

to demonstrate the gravity gradient. The prism mass has a constant density (ȹɟ) of 250 kg/m
3
 and is 

centered in the origin of the 100 km x 100 km grid of the xy-plane with average depth of 4 km with 

respect to the north-east-down (NED) coordinate system. From the analysis of a single prism of 

positive density contrast, it is usually verified that the vertical component of the gravity anomaly 

(Tz) shows a diffuse circular anomaly centered on the prismatic body (Figure IV-7).  
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Figure IV -7: Example of the gravity gradients derived from anomalous mass (prism) with dimensions (ȹx, 

ȹy, ȹz) = (50,50,4) km at an average depth of 4 km. The vertical gravity component Tz is displayed in the 

lower left corner together with schematic 3-D prism for viewing at depth. Gradients Tij (with i, j 

representing the three axes x, y, z,) are plotted together with the white box in the xy-plane representing the 

lateral dimension of the 3D prism model. 

The six gravity tensor components can be recovered from a gravity gradiometry survey providing a 

powerful tool to delineate the characteristics of the body. The gravity gradients are aproximatelly 

related to the edges, borders, corners and center of mass of the anomalous masses, which in this 

case is a single prism model. The components were calculated on a xy-plane above the center of the 

prism (z = -4 km). Due to the symmetry, only the upper diagonal part of the gravity gradient tensor 

is shown in Figure IV-7. The Txx gradients highlight the x-axis (or east-west) edges of the prism by 

measuring the east-west changes in east-west gravity; the Tyy highlights the y-axis (or north-south) 

edges of the prism by measuring the north-south gravity trending boundaries. Tzz highlights all the 

edges of the anomaly, as it can be considered as a combination of Txx and Tyy with a sign change. 

Txz and Tyz gradient data outlines the north-south and the east-west mass anomaly axes, 

respectively, containing the center of mass of the box. They also help to highlight the north-south 

and east-west edges. Although less intuitive, Txy shows distinctive circular anomalies associated 

with the corners of the body. 
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Figure IV -8: At the top the profiles AA' along x-axis to y = 0 are plotted together with the vertical 

components of the gravity field (gravity anomaly ״ Tz and gravity gradient ״ Tzz, respectively). At the 

bottom the gravity field values (in the left) and the power spectrum (in the right) along the profile AA' show 

the enhanced curve and resolution of the gravity field components Tz and Tzz. 

Figure IV-8 compares the gravity field values and the power spectrum on profile AA' for the gravity 

anomaly (vertical component - Tz) and the vertical gravity gradient (Tzz) caused by the same 

rectangular prism shown in Figure IV-6. It is clear by comparison in the profile that there is a 

greater information level for the process of interpretation obtained from the Tz. However, there is a 

greater sharpness and separation of the gravity gradient anomalies showing, in principle, a higher 

ability to detect the prism edges.  

The power spectrum shows the steep curve of the Tzz gravity gradient component reflecting a 

possible improvement in the resolution of the observed field. The power spectrum suggests that the 

resolution of the gravity gradients improve significantly the capacity of detect the position of the 

anomalous mass (prism), i.e., the gravity gradients highlight better the anomalous body. 

Although the gravity tensor accurately maps subsurface density contrasts caused by the geologic 

structures, the gravity gradients are often underused, as in the classic interpretation methods the Tzz 

component is widely used. Thus, little attention is given to the horizontal components of the gravity 
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tensor, that could be of great importance if it were represented in combination with the other 

components in order to better identify the anomalous sources and the local geological setting. 

 

  

Figure IV -9: Representation of the gravity tensor using some invariances for highlight the anomalous mass, 

according eqs. IV -8 to IV -15. 

In most of the cases involving real gravity tensor data it is necessary to use the invariances to obtain 

a best representation of the gravity tensor components via simultaneous combinations given by eqs. 

IV-8 to IV-22. Notice that the prism is clearly mapped (Figure IV-9) following the eqs. IV-8 to 

IV-15, respectively. 

One notices also that the strike lineament technique obtained in Figure IV-9(e) would illustrate the 

dominant geological signature of the area if there exists a trend in a certain direction on the region. 

In this case, a single prism, we are not able to see the trend because it doesn't exist in this 

hypothetical model. However, according to Murphy and Brewster (2007), the identification of the 

lineaments on geological structures is normally possible if the estimates of the strike directions at 

each point are assessed based on their geological significance and continuity along a line with a 

simple rule of thumb. 
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Figure IV -10: Response derived from hypothetical single prism model (dashed white box) in a rotated 

tensor coordinate system of 120 degrees about the x-axis, simulating a structural feature to be enhanced in 

the northwest direction. 

The tensor rotation (Figure IV-10) is recommended in some geological scenarios, producing an 

enhanced imaging of the target features (Dickson et al., 2009).  

It is apparent that the combined use of the gravity tensor components is able to define in some 

extent the geological setting of a region. These imaging techniques include the use of rotational 

invariants, strike lineaments and rotations of the tensor coordinates. Thus, the correct application of 

these techniques can help and improve the interpretation of the gravity gradient maps for 

geophysical studies. 
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CHAPTER V  

V. PROCESSING THE GOCE DATA  

The GOCE mission is based on a sensor equipped with a GPS receiver for satellite-to-satellite 

tracking (SST-hl) in the high-low mode, plus a sophisticated satellite gravity gradiometry (SGG), 

providing a huge data set consisting of millions of orbital data (derived from SST) and very precise 

in-orbit gravity gradiometry data (Sunkell, 2002). This data contain abundant information about the 

Earth's gravity field on a global scale, from very low to high frequencies. This gravity field 

information is represented by a set of spherical harmonic coefficients up to degree and order 250, 

which corresponds to a half wavelength of about 80 km of spatial resolution.  

There are only four GGs, Vxx, Vyy, Vzz and Vxz, with very high accuracy; Vxy and Vyz are less accurate 

as a consequence of the gradiometer configuration that consists of six three-axis accelerometers 

being two ultrasensitive axis and one less sensitive axis, built and tested on Earth in a 1-g 

environment (ESA, 1999). 

The scientific processing of the GOCE data, known as Level 1b to Level 2 processing, is done by 

the high-level processing facility (HPF), which is part of the GOCE Ground Segment (Koop et al. 

2007). This preprocessing stage get the Level 1b gravity gradients (GGs) derived from the 

gradiometer observations which have been calibrated in flight using satellite shaking and star sensor 

data. After many transformations the data becomes EGG_TRF_2 L2 gravity gradients in LNOF (see 

Annex A) with corrections externally calibrated in a local north-oriented frame, including 

corrections due to the temporal gravity variations (e.g., ocean tides, pole tides, non-tidal) to isolate 

the static gravity field part, outliers fill -in gravity gradients for data gaps with flags (if detected) and 

their GG error estimates (Koop et al., 2007; Gruber et al., 2009).  

The Level 2 gradients together with precise science orbits are derived as a global gravity field 

model, represented by spherical harmonic coefficients. In particular, the GGs may be directly used 

in Earth sciences, typically for geophysical/oceanographic applications focusing on smaller spatial 

scales (Koop et al. 2007), using the gravity gradients transformed from the GRF to the LNOF 

system (see frames system in GOCE satellite at ANNEX A) by HPF in GOCE level 2 Products, 

released as a Track_GO_CONS_EGG_TRF_2 file (Figure V-1). 

However, to use of the released EGG_TRF_2 Level 2 Products requires the extraction and 

preparation of all the additional correction needed to remove the GOCE GGs noise (shift/drift) in 

crossover (XO) points (Figure V-2) due to the different orbit heights at each orbit of the satellite. In 
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this work, we have analyzed the 21 GOCE track files available in the study area to obtain such a 

correction using the crossover errors, and then we have removed a linear trend along the time, using 

standard least-squares parameter estimation. 

 

Figure V-1: Track files coverage of the GOCE gradiometric data provided by GOCE level 2 products 

covering the period from 10/2009 to 04/2011 (each bar corresponds to the time span of the orbit). 

Gravity gradiometer data are normally affected by high-frequency noise originated from the 

movement of the platform. Low pass filters are often applied to remove such motion-related noise. 

The filtering, however, does not discriminate between signal and noise and removes both from 

frequencies outside the pass band (Koop et al. 2007). The GOCE accelerometers are designed to 

give the highest achievable precision in the measurement bandwidth (MBW) between 5 and 100 

mHz, which corresponds to a resolution along track of 40-8000 km. The diagonal gravity gradients 

in LORF do not exceed the precision of 4 mE/ãHz in the MBW (Bouman et al., 2005). 

V.1. GOCE Satellite Track Cross-Overs 

The cross-overs (XOs) technique has been applied very successfuly not only in satellite altimetry 

but in other geophysical observations collected by oceanographic vessels, remotely-sensed data, 

airborne collection campaigns, or terrestrial measurements of various types obtained along criss-

cross traverses. The crossovers allow to detect possible systematic temporal errors, and to check the 

inherent accuracy of the gradiometer system (Wessel, 1989; Bouman et al. 2005; Jarecki and 

Müller, 2008; Wessel, 2010). 
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The basic principle of crossover in order to remove a drift in GOCE gradiometric data sets follow 

the steps described in Albertella (2000). Firstly identifying the satellite orbit crossovers, which do 

not really exist three-dimensionally due to the orbit eccentricity, that do not allow repeated 

measurements, and then removing the strongly orientation-dependent character of the orbits, due to 

the alignment of the satellite to be different on the ascendig and on the descending intersecting 

tracks. Therefore, these crossovers do not follow the simple concept of having data points collected 

at the same position in space, but they can be computed for the same position (ű, ɚ) of the ground 

track on a two-dimensional reference defined by their projection at the surface (aproximated by a 

sphere).  

According to Albertella (2000), the measurements ὠᶻ of GOCE's gravity gradiometer should show 

no differences at the orbit crossovers: 

ὠȟ
ᶻ  ὠȟ

ᶻ  V-1 

where the indices i, j represent the three axes of gradiometer x, y, z, and the indices 1, 2 mean that 

each ground track crossover has been found by intersection of two ascending and descending tracks, 

here obtained by the interpolation of seven or at least three data points along-track around the 

specific crossover (Figure V-2) using the method of Akima (1972).  
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Figure V-2: Cross-over geometry of the SGG satellite tracks. Schematization of the satellite orbit cross-over 

in (a) "the same position in 3D space", (Modified from Bouman et al., 2005); and (b) the same geographical 

position on a two-dimensional projection over the surface of the study area. 

Thus, for each ground crossover, i.e. the same (geographical) position (ű, ɚ), we can write 

•
ȟȟ

•
ȟȟ
ȟ‗

ȟȟ
‗

ȟȟ
 V-2 

As already mentioned, due to the orbit eccentricity, the satellite altitude differs in those projected 

positions, causing the existence of height differences ȹh12, that can be as high as ~13 km, causing 

measurement differences "at the same point in space" (crossovers) on the GOCE observations. 

Ὤ
ȟȟ

Ὤ
ȟȟ

 V-3 

 

Moreover, the different orientation of the gradiometer axes along each ascending and descending 

track must be considered, which leads to further measurement differences by rotating the 

measurements or by applying a reduction: 

ὠȟȟ ὠȟȟȟὩὸὧȢ V-4 

 

The XO differences can be used, in principle, with any available gravity quantity, because the 

measured variables are theoretically equivalent, to reduce the discrepancies between the tracks. One 
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method of doing this is to use modeled differences from simulated gravity gradients calculated from 

an existing geopotential model - e.g. EGM96, EGM2008 or EIGEN-GRACE. 

According to Jarecki et al. (2006), the reduction can be calculated as  

ὶὩὨ
ȟ

ὠȟ ὠȟ  V-5 

 

After this reduction, the XO differences are: 

Ўὠȟ ὠȟ ὠȟ ὶὩὨ
ȟ

 V-6 

As a reduction is necessary for compensating the height differences and in order to avoid a loss of 

quality in the measurements, we have used the reduction concept by linear trend estimation, and we 

did not apply any spacial filter to preserve important frequencies in the full gradient signal. 

Following Bouman et al. (2005), we can use another way of reduction by introducing a model error 

in the crossovers calculated from external validation methods (using auxiliary data from a 

geopotential model to simulate gravity gradients at the same position of the GOCE data points). 

Thus, the height differences in the crossover points lead to measurement differences in the gravity 

gradients that should be reduced to the same reference height and to the same orientation of the 

gradiometer axes along each track by applying 

ὠ Ὤ  ὠ Ὤ ὠ Ὤ ЎὬ ὠ Ὤ Ў‌  V-7 

where ὠ  is the derivative of the gradients in the vertical direction and ὠ  is the derivative with 

respect to the satellite orientation, which can be computed from the geopotential models (e.g., 

EGM2008) by simple numeric differentiation together with the height ЎὬ  and direction Ў‌  

differences. 

However, as we have no information about the direction of the gradiometer axes from EGG_TRF_2 

Level 2 Products, we will apply a reduction obtained from the crossover differences analysis, which 

can easily be estimated by the least-squares adjustment (linear trend) of the gravity gradient 

differences with respect to the time differences or to the height differences in the crossovers 

V.2. Linear Trend Estimation 

In practice this is a technique based on the assumption that the geophysical field is continuous from 

track to track and along the track. Even though the geology may be variable, the observed data will 
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tend to show significant correlations between the satellite orbit tracks. However, this method is only 

feasible if the track is free of systematic errors (for instance, without misalignments of the 

accelerometers, leveling, scale factor mismatches, etc) for a reference satellite height. As it is 

known that the orbit eccentricity makes the altitude of the satellite to be different at the crossing 

positions, it is necessary to use the crossover technique.  

The time stamped in each collected data point can be used for such a correction, since we have 

neglected the effects of the periodic errors (e.g. Fourier-type periodic disturbances), as discussed in 

Jarecki and Müller (2008) and Koop et al. (2002). 

Following Koop et al. (2002), let ὠ  represent the geophysical field measurement differences, 

which are a function of the observed gradients and the standard error model for the external 

calibration of the gradiometer measurements. This function can be constructed as  

ὠ ὸ  ὠ •ὸȟ‗ὸ ὠᶻ ὠǋὸȢ V-8 

with ὠᶻ considered as a constant bias corrupting the real gradients ὠ ; however, applying the 

crossover gradient differences, the constant bias cancels out, and reappears only in the magnitude of 

the errors. The linear trend ὠǋ is the basic error feature. It projects linearly into the crossover 

differences (V-6), while the real gradient ὠǋ in the reoccupied position ű(t1) = ű(t2), ɚ(t1) = ɚ(t2): 

ȹὠ  ὠ ὸ ὠ ὸ ὠǋẗὸ ὸ ὠǋẗЎὸȢ V-9 

Thus, the crossover errors (or crossover differences  ȹὠ   ὠǋ) can be expressed as a function 

of time t, f(t). The corrected measurements ὠ , i.e., the difference between ὠ  and f(t), are 

ὠ ὠ ὪὸȢ V-10 

Due to the geophysical field to be continuous and correlated track to track and along-track, the 

'corrected' measurements ὠ  in each track point should match, so that the difference between the 

two measurements at the crossover should be minimal, 

Ὑ ȹὠ Ὢὸ άὭὲ V-11 

Once a model f(t) is selected, the XO error function f(t) can be determined from the crossover 

differences (i.e., ὠ ὸ  and ὠ ὸ associated with the time difference ȹt = t1 ī t2) using standard 

least-squares parameter estimation. The measurement ὠ  is corrected using equation V-11, where 



 

 
80 

the gradients serve as a new reference 'free of systematic errors along-track', and this procedure is 

repeated for all along track point of the entire GOCE data set obtained (Figure V-1). 

The success of the systematic trend correction in the GOCE data is given by a crossover error 

model that adjusts the ὠǋ, which may not correspond to a geological meaningful model. For 

instance, if f(t) in eq. (V-11) fits ȹὠ  perfectly, we have no crossing errors. Obviously this is 

physically incorrect, as the orbit eccentricity do not allow exact repeated measurements in the 

crossing positions. A Matlab program was elaborated to estimate the crossover errors along one or 

more tracks fitting the measurements that best defines the crossover error model. 

The simple model of a crossover error function f(t) in a polynomial form can be given by 

Ὢὸ ὥ ὥὸ ὥὸ Ễ ὥὸ V-12 

where k is degree of polynomial and ak are the coefficients. The residual is given by 

Ὑ ὠ ὥ ὥὸ ὥὸ Ễ ὥὸ  V-13 

The coefficients a = (a0,a1,...,ak)
T
 can be resolved easily in a least-squares sense. For k = 1, the 

equation reduces to the linear solution. In this case, we assumed the crossover errors represent a 

linear trend along the time. 

The orbit of ground track in the along-track direction is provided from the EGG_TRF_2 Level 2 

products at the altitude of about 250 km, with the position and GGs information with a sampling 

rate of 1 Hz. The main orbit characteristics are: major semi-axis 6628 km, inclination 96.6 and 

eccentricity 0.001 (Jarecki and Müller, 2008). 

The first step to obtain the cross-over correction was to break each EGG_TRF_2 products GOCE 

Level 2 into smaller tracks generating new tracks equivalent to ascending or descending tracks. 

Figure V-3 shows, for instance, the ground tracks in the South America from GOCE Level 2 

Products (Track_GO_CONS_EGG_TRF_2__20110211T000000_20110228T235959_0001, see 

Figure V-1). The 18 days orbit of this test data comprises a time span from February 11 to February 

28, 2011, with 1 Hz sampling interval, and have been broken into ascending and descending tracks, 

resulting in 61 ascending and 61 descending tracks; 1332 crossovers were found into this test area 

(60Ü Ò ű Ò 18Ü in latitude and -86Ü Ò ɚ Ò -30º in longitude).  
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In the same form, each GOCE gradiometric data set covering the period from 10/2009 to 04/2011 

(Figure V-1) was splitted into new ascending and descending tracks that were stored in a database 

set and posteriorly checked for intersection. Thus, the whole GOCE gravity gradients data set in the 

study area have been analyzed using the satellite track crossovers. 

When we compare an ascending track with a descending track from the same GOCE data set (i.e. an 

unique GOCE track file) we get the so-called óóinternal crossoversôô. The óóexternal crossoversôô are 

criss-cross points found when making the comparison of the ascending track with descending track 

from two different GOCE data sets (Figure V-1). 

Once all XOs were found (internal and external) in the test area, we have estimated the linear trend 

and report the crossover error (COE) and mean values for all observables in the corrected track 

files. The values of the observations at the intersections are interpolated from the nearby along-track 

values using the specified linear, cubic, or Akima (1972) spline interpolator, and the reduction 

procedures (such as long-term trend) are applied. The crossover information for each track pair is 

appended to a growing data file with all COE obtained to date. Here, we have used the Akima 

spline interpolation (Akima, 1972) to estimate the data values at the intersection points (i.e. to find 

the crossover values) because it is a special spline which is stable to the outliers, in contrast, for 

example, to the cubic spline, that can introduce spurious oscillations in the neighborhood of an 

outlier (Wessel, 2010). 

In the test study area given by Figure V-3 representing South America for whole track files depicted 

in the Figure V-1 534.769 XOs points have been found, and the position, the GPS time, the satellite 

height and the measured gradients were interpolated using the described procedure.  
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Figure V-3: Satellite ground orbit based on the GOCE data track arc (blue and red lines represent 

the ascending and descending tracks, respectively) from 18 orbit days acquired on February, 

2011 in a test area for the crossover analysis. 

The results of the linear trends of the gravity gradients with respect to height differences ȹh are 

shown in Figure V-4. 
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Figure V-4: XO differences of the whole data set of GOCE level 2 products covering the period from 

10/2009 to 04/2011 (in 361 days) discussed in Figure V-1, showing a linear trend clearly visible from the 

least-squares estimation. 

In the Figure V-4 one can observe that the off-diagonal gradients measurements presented a nearly 

noise-free signal. Therefore, we will apply the linear trend (k = 1 to eq. V-13) removal only for the 

diagonal tensor components. 

Figure V-5 exhibits the tensor vertical component (Vzz), in the left, from EGG_TRF_2 GOCE data 

without the crossover correction and filtering MBW, and, in the right, the tensor vertical component 

derived from a geopotential model at a height of 250 km. 
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Figure V-5: Comparison of the Vzz component from (a) EGG_TRF_2 products GOCE Level 2 data without 

XO errors removal and (b) from geopotential GOCE-only gravity model (Pail et al., 2011) up to degree and 

order 250 calculatade in the satellite altitude of 250 km. 

The effect of the linear trend superposed to the GOCE data set was estimated directly from the 

crossover differences by least-squares adjustment. As discussed in Jarecki and Müller (2008), the 

effects of the interpolation errors on crossovers can cause discrepancies of the original crossover 

differences. Nevertheless, it is recommended to use a more robust trend estimation method like the 

one described in Jarecki and Müller (2008) and/or a trend estimation from a large set of XO 

differences time intervals for minimizing the effect of outliers (e.g., Table V-1).  

The assessment of the interpolation errors on the trend estimation for different time intervals is 

summarised in Table V-1, considering that the investigated track sections were all in the study area 

(Figure V-3) and then the track data set for all terrestrial globe (Figure V-6) (only 1 and 11 days) 

denominated ñ1 revolutionò.  
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Figure V-6: Covered on all Earth for 1 day track from GOCE Level 2 Products 

Track_GO_CONS_EGG_TRF_2 at 31 October 2009.  

Table V-1: Estimation of linear trends from XO gravity gradient differences (ȹVzz) of the GOCE 

data set using different combinations (in height variation) of the tracks in the test area and in the 

global area.  

track section 

investigated 

crossovers with tracks 

from 

estimated trend 

std [mE/d] 

# samples (XOs) 

1 arc 
361 d (whole data set 

only in study area) 

-1.228988 

1.864492 

ca. 534.769 

1 revolution 1 d (global area) 

-1.232420 

0.0291720 

ca. 248 

1 revolution 11 d (global area) 

-1.231484 

0.029146 

ca. 28.425 

 

 



 

 
86 

 

Figure V-7: Gravity gradients at the mean satellite height (h å 250 km) from cross-over corrections. 

The analysis of the results (Figure V-7) shows that the component Vxz seems to be less accurate than 

the others gravity gradients components, and its values are almost 10 times greater than all the other 

components. This observation will be discussed in the next chapters. 
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CHAPTER VI  

VI.  TOPOGRAPHIC CORRECTI ON 

In an environment of irregular topography, the undulations of topography above and 

below the elevation level of a gravity observation point are referred as terrain 

correction. Terrain correction is necessary when the gravity effect due to topography 

between any station and the base station is over the accuracy of gravimeter (Forsberg, 

1984). 

Topographic and isostatic reductions are evaluated to eliminate the effects of the two 

most dominant and best known density anomalies of the earth: the visible topography 

and its associated compensation at depth. Generally, such gravity field effects are 

nominated "terrain effects" (Forsber, 1984).  

According Forsberg (1984), the term "terrain corrections (TC)" commonly applied will 

be reserved for a correction to the Bouguer reduction, to give the true (unlinear) effect 

of the topography on gravity anomalies. 

Helmert (1884) proposed a few methods for mathematically computing a potential field 

with no masses external to the geoid. The Stokesô integral requires also a gravitational 

potential with effect of the topographic masses above the geoid, as well as the isostatic 

balance masses removed (i.e., topographic-isostatic reduction of gravity) (Heiskanen & 

Moritz, 1967). Helmertôs 2
nd

 method of condensation removing the topographic masses 

and restores them on a condensed mass layer at the geoid and the attractive property of 

having a small indirect effect (Lambert 1930). Martinec (1998) said all existing 

Helmertôs 2
nd

 condensation approach in topographic effects use the concept of planar 

approximation of the geoid which describes the actual situation only very roughly. Only 

in Martinec (1993) begun to be studied in great detail to spherical effects. Smith et al. 

(2001) quantify the errors in using planar approximations and introduces spherical 

prism approach for terrain correction. 

Gravity anomalies provide important constraints for determining the geological 

properties and history of the Earth. The Gravity Missions by Satellite have also mapped 

the gravity fields that provided insights on the Earth's internal mass properties. Already 

the topographic reductions help differentiate free-air anomalies for components of 
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uncompensated terrain and other crustal and subcrustal mass variations (Asgharzadeh et 

al., 2007).  

The modelling of topographic effects in gravity gradients as observed by Gravity Field 

and Steady State Ocean Circulation Explore (GOCE) is based on the numerical 

evaluation of functionals of Newtonôs integral extending over the domain of the 

topographic masses which include the masses of the continents as well as the oceanic 

masses. The GOCE gravity gradient mission launched in late 2009 is resolving further 

details of the Earthôs gravity field to degree and order 250, until the present day, at 

roughly 250 km altitude. 

TC are needed in various applications such as geoid computation, interpretation of 

crustal structure as well orthometric correction (Hwang et al., 2003). Most of these 

methods are computed by algorithm based on the Fast Fourier Transform (FFT) and is 

suitable for grid-wise computation. The other algorithm is based on the direct 

integrations of the TC integrals and is ideal for point-wise computation (Hwang et al., 

2003). The most widely used method for terrain correction is the Hammerôs method 

(Hammer, 1939), which many geophysicists are still using it for terrain correction. 

Forsberg (1984) computed in effect of topographic masses by direct calculation of 

prisms deduced from the digital terrain model. Hwang et al., 2003 used a rigorous point-

wise method that is based on Gaussian quadrature. Heck & Seitz (2007) computed with 

a tesseroid method. 

Beside the topographic and density information which define the geometry and mass of 

the particular tesseroids, their spatial arrangement has to be fixed. Even though the used 

tesseroid formulas are given in a spherical manner, these bodies can be set up on 

different reference surfaces approximating MSL (Mean Sea Level). Tesseroids are well 

suited for the decomposition if the topography of the Earth is represented by a DTM 

(Digital Terrain Model) which is usually given in geographical coordinates. 

A much more effective approach analyzing gravity data over a finite spherical is to 

represent the anomalies by gravity effects of an equivalent point source distribution or 

related to the masses of a fixed distribution of gravity point poles by least-squares 

inversion (Asgharzadeh et al., 2007). Due the geological significance of the existing and 

growing volumes of regional (large scale) terrain elevation and satellite gravity data in 

study area, there is great need for computing theoretical anomalous gravity fields from 
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geological and geophysical models in spherical coordinates. For this, we used the 

tesseroids  1.1 software developed by Uieda (2011), which use the notion about 

tesseroid introduced by Anderson (1976), as described in Heck & Seitz (2007) shown 

previously in this thesis. 

The topographic data used to the calculation of topographic reductions was from 

ETOPO1 Global Relief Model, a global relief model of Earth's surface that integrates 

land topography and ocean bathymetry. The National Geophysical Data Center 

(NGDC) department of the National Oceanic and Atmospheric Administration (NOAA) 

has developed the ETOPO1 that was built from numerous global and regional data sets 

with a 1 arc-minute resolution in order to improve the ETOPO2v2 Global Relief Model 

(Amante & Eakins, 2008). 

Thus the topographic data represented in the Figure VI-1 were used from ETOPO1 

model with a grid 1 minute (Amante & Eakins, 2008). 

Just as Heck & Seitz (2007), for this calculation, the topographic surface of the Earth is 

often divided in spherical prism as described in Chapters previous and your calculate 

combined effect of a list of tesseroids on given computation points from the tesseroids - 

1.1 Beta software by Uieda (2012).  

The calculation of the Gravity Gradient Tensor (GGT) and gravity anomaly (gz) due to 

topographic masses using tesseroids was obtained from Digital Elevation Model (DEM) 

as such ETOPO1 model given on a resampled regular grid in 10' equal-spaced grid 

together with its corresponding density values. Here, for this method is assumed that the 

heights into and/or above sea level (reference level  zero depth meter) signal land is 

considered to be the average terrain density 2.67 g/cm
3
 and negative heights signal 

ocean is considered the constant density of -1.64 g/cm
3
 (i.e., the difference between the 

mean ocean saltwater density 1.03 g/cm
3
 and the reference crustal density 2.67 kg/m

3
). 
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Figure VI-1: Topography and bathymetry from ETOPO1 global relief model (Amante 

& Eakins, 2008). 

 

Figure VI-2: Effect caused by topographic masses using tesseroids at 250 km altitude for 

gravity anomalies from resampled ETOPO1 DEM 10' grid. 
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Figure VI-3: The resulting gravity effect on topography corresponding gravity gradients at 

altitude higher than regional height from resampled of the ETOPO1 DEM per 10 by 10 arc 

minute grid cell. 

As described above the terrain correction to gravity field due the topographic masses 

irregularities can be estimated from geometric element used in the forward gravity 

modelling processes such as prisms calculated from the Digital Terrain Model as 

computed by Forsberg (1984) relative to a smooth mean height surface. Here, the 

topographic reduction in gravity anomaly and GGT is performed from the effect of 

topographic masses by applying forward gravity modelling in space domain using 

tesseroids (See section III.3) deduced from ETOPO1 DEM at Earth's surface using a 

mean height level chosen to be higher than the regional topographic height. This is 

because the tesseroids-1.1 program does not guarantee the accuracy of the calculation at 
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zero height (Uieda et al. 2011). So, for area in South America, 6570 m mean height was 

used for estimate topographic masses effect. Also, we calculate the same effect at 250 

km height cosidering that is the GOCE satellite mean height, which has been derived 

the gravity field data. 

 

Figure VI-4: Effect caused by topographic masses using tesseroids at 250 km height for gravity 

anomalies from resampled of 10 arc-minutes ETOPO1 DEM. 
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Figure VI-5: Effect caused by topographic masses using tesseroids at GOCE satellite height (h = 

250 km) for GGT from resampled ETOPO1 10' grid DEM. 

Likewise, we obtained gravity modelling from others geological targets as Moho and 

basin sediments from seimological Moho thickness, depth and isopach models 

computing tesseroid masses and/or prism masses by LithoFlex program (Braitenberg et 

al., 2007) as discussed in next chapter. 
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CHAPTER VII  

VII.  RESULTS AND DISCUSSION  

VII.1.  Overview 

The mantle densities seem to exert an important control on the formation of the basins 

and the study of the gravity field, the potential and the gradient tensor, coupled with the 

isostatic state of the lithosphere in the region, is an essential tool by which one can 

classify these important structures (Braitenberg and Ebbing, 2007).  

Because of its large-scale size, the heavy coverage by tropical jungle, which limits the 

access and acquisition of geophysical measurements and geological parameters, little 

detailed and reliable information is available about the Amazon and Solimões Basin, 

one of the greatest geological domains of South America, located at the northern part of 

Brazil. Thus, coupled the lack of good terrestrial gravity data the Amazon and Solimões 

Basin profit greatly from the gravity satellites. The recent GOCE satellite mission, 

whith gradiometry on board, contributes greatly to improve the available gravity field, 

consequently, is of fundamental importance to characterize adequately the region. In 

this study, spherical coordinates have been used in the calculations of the gravity field 

potential from EGM2008 (Pavlis et al., 2012) and GO_CONS_GCF_2_TIM_R3 (Pail et 

al., 2011) GGMs published in terms of spherical harmonics according to what was 

discussed and recommend in APPENDIX A. 

The models associated to the gravity field are composed of different wavelengths that 

represent the density variations on different depths within the Earth. Therefore, the 

geoid or the observed gravity acceleration (and its derivatives) can be separated into 

different wavelengths by approximations used commonly in the regional-residual 

separation of gravity anomalies for exploration uses. 

Bowin (1983) showed that there is an approximate relation between the spectral content 

(information about wavelength) of the geoid and the depth of the anomalous mass 

which generates a particular wavelength. Similarly, the gravity anomaly corresponding 

to the same anomalous point can also be derived. Therefore, the relationships can be 

combined to obtain a boundary depth at which a mass distribution can exist to create the 

observed gravity and geoid anomalies in the earth's surface. Using spectral relationships 
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in the spherical harmonic representation of the free-air anomaly and geoid height, one 

can produce an estimate of the maximum depth of the anomalous masses as a fraction of 

the Earth's radius depending on the spherical harmonic degree. 

The sedimentary basins may be correlated with the geoid, but this is not always the 

case. This discrimination points towards different density characteristics in the 

integrated crustal column (Braitenberg and Ebbing, 2007). Other important observation 

constrained to the evolution of big sedimentary basins is the presence of volcanic 

structures at some time-stage and at some depth at the basins. In particular, the brazilian 

Amazon, Solimões and Parnaíba Paleozoic basins present a broad area where sill 

intrusions are frequent, and they might have a thickness of up to 500 m and an estimated 

volume intruded into sediments of about 240,000 km
3
, probably related to the break-up 

of South America and Africa (Wanderley Filho et al., 2006).  

Variations in the crustal thickness of large regions are usually attributed to downward 

deflection beneath the basin if it is associated with the load-driving subsidence within 

the crust. Furthermore, important observations in these basins are related to the 

deviation of the observations from the classic isostatic equilibrium model, that predicts 

the crustal thickness exclusively from the topographic and sedimentary loads. Instead of 

crustal thinning, a high density mass distribution in the crust and upper mantle appears 

to be a typical feature present in these large structures, that may be caused by a mean 

density distribution of the intruded material or a partial replacement of the lower crust 

by mantle material, continental underplating, or passive upwelling of partial melt during 

rifting and extension of the lithosphere (Braitenberg and Ebbing, 2007; Nunn and Aires, 

1988). 

In this case, isostatic gravity anomalies that can be modeled by an equivalent to the Airy 

model can be used to identify additional crustal loads, indicating under-compensation if 

a positive isostatic gravity anomaly is found or an over-compensation otherwise, as the 

zero isostatic anomaly corresponds to the isostatic equilibrium. The isostatic models are 

calculated for considering either crustal or sub-surface loads, the latter constituted by 

sediments and intruded material of high density such as diabase sills and dykes.  

VII.2.  Model Validation 

The sediment thickness map (Figure VII -1a) in the continental areas was obtained from 

the data base of Bizzi et al. (2004) (basement depth underlying the sedimentary 
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package); where not available the sediment thickness was hand-digitized using an 

isopach map from de Matos and Brown (1992),Wanderley Filho et al. (2005) and Eiras 

and Wanderley Filho (2006) and/or from the global sediment map digitized on a 1° x 1° 

scale (Laske and Masters, 1997). In the oceans the digital global sediment thickness 

model published by the NOAA at National Geophysical Data Center (NGDC) with a 

grid spacing of 5 arc-minutes by 5 arc-minutes (Divins, 2003) was used, although we 

will not go into details in this thesis, as our interest area is only in the Amazon and 

Solimões Basins.  

The density contrast used for the sedimentary basin rocks was defined relative to the 

reference continental crust density 2670 kg/m
3
 was considered to be between the 

basement and the sedimentary rocks ranging from 150 to 370 kg/m
3
 considering the 

increasing of the sedimentary package thickness (i.e., correspondent to the increase in 

density values from 2300 to 2520 kg/m
3
 with increase of the sediment thickness). As 

reported in Nunn and Aires (1988), we have also assumed a average density model of 

the sedimentary rocks 2550 kg/m
3
. For ocean sediments, we have assumed an average 

density about 2300 kg/m
3
 (Fischer et al., 1996) (Figure VII -1). 

 

Figure VII -1: Forward gravity modellig for sediment package and diabase sills from our 
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assumed density models. (a) sediment thickness from Bizzi et al. (2004); (b) gravity effect in 

sediments; (c) gravity effect in diabase sills; (d) gravity effect sills plus sediment. P.s: gravity 

effect is calculated from forward modelling using tessroids. 

We have also simulated the low density basin sediments being intruded by a denser 

material, reproducing the diabase sills and dykes reported in Wanderley Filho et al. 

(2006), that postulate that the crust has been intruded by denser material with a density 

of 3000 kg/m
3
 beneath the basin, attributing the density to the 'intruded material' as 

being the same of the Cambrian age pyroxenite body drilled beneath the north-central 

part of the Amazon basin (according to Nunn and Aires, 1988) in order to explain the 

observed positive gravity anomalies in the basin region. 

The fact of the high gravity anomalies being coincident, nearly, with the axis of the 

syneclise, suggesting shallow ultra-basic bodies, together with the underlying 

aulacogenic strata, led to the classic interpretation of a rifting mechanism as the initial 

driving mechanism for the subsidence of the Amazon Basin, according to Milani and 

Zalán (1999); so, we also have simulated diabase sills that lie into the sedimentary 

basins. For this, we replaced the load of low-density sediments by higher-density 

material with a density of 3000 kg/m
3
 for an average thickness of 500 m in the basins 

axis (Figure VII -1c). Figure VII -2 represents the contribution of the sediments and the 

sills into the basin system. 

 



 

 
98 

Figure VII -2: Gravity components along the profile A-A' that transects the Amazon Basin. See 

profile location plotted in Figure VII -3. 

In order to calculate the forward model by the tesseroids program already described in 

the previous chapters, we have calculated the grids of the density distribution and 

thickness of the sediments, as shown in Figure VII -1. 

In the same way, we also have calculated the gravity effect of the crustal thickness. The 

results from Lloyd et al. (2010) indicate that the seismological Moho is thicker beneath 

the central axis of the Amazon basin, flanked by a slightly thinner crust which becomes 

to be thicker towards the northwest and southeast of the Guyana and Guaporé shields, 

indicating that the load-driving subsidence of the Amazon Basin can be within the crust, 

which is in agreement with the observed positive anomaly at the center of the basin.  

These authors have considered a crustal density model with an intruded crustal material 

of density 3000 kg/m
3
, and so the response in the observed gravity is a positive anomaly 

caused by this crustal load. However, the positive gravity signal from Moho is broader 

than the positive gravity anomaly observed at the center of the basin. 

In order to obtain the representative response of the crustal and upper mantle structures, 

the geoid undulations were calculated with GOCE satellite-only GGM (Pail et al., 2011) 

up to degree 250, and the longest wavelength contribution was removed by subtracting 

the degrees smaller than 10 degree in the spherical harmonic expansion (Figure VII -4a). 

This reduction corresponds approximatelly to subtracting the components of the gravity 

field with wavelengths greater than 2000 km in the mid-latitudes (Braitenberg & Ebbing 

2007).  

The Bouguer anomaly (Figure VII -3a) derived from the GGM (Pail et al., 2011) has 

been corrected to remove the effect of the topographic masses estimated from forward 

gravity modelling using tesseroids (see section III.3) with the ETOPO1 DEM data; this 

modelling used a mean height level chosen to be higher than the regional topographic 

height, as shown in chapter V. The Bouguer anomaly so obtained has also been 

analyzed in comparison with terrestrial data where available (Figure VII -3b).  

Furthermore, the Bouguer gravity anomaly was also calculated in a simplified form 

from the geopotential model (Figure VII -3c), subtracting the attraction of the Bouguer 

plate (2ˊGɟH) from the classical gravity anomaly. This approximation for the 
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topography-reduced gravity anomaly is calculated by using the spherical approximation 

with the topographic heights H calculated from the model DTM2006 used up to the 

same maximum degree as the gravity field model (Barthelmes, 2009, eqs. 107 and 126). 

The simple Bouguer gravity anomaly was used for H Ó 0 (rock with density constrast ɟ 

= 2670 kg/m
3
), and for H < 0 (water with density contrast ɟ = (2670ī1025) kg/m

3
, 

according Barthelmes, 2009). This simplified model of the Bouguer anomaly has been 

calculated from the facilities available at the International Centre for Global Earth 

Models (ICGEM). 
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Figure VII -3: Representation of the Bouguer gravity anomaly in different aspects: (a) gravity 

anomaly calculated by tesseroids without the topographic effects; (b) Bouguer anomaly from 

the available terrestrial measurements; and (c) Bouguer gravity anomaly calculated in spherical 
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harmonics removing the Bouguer plate effect from the classic gravity anomaly.   

The Bouguer anomaly represents mainly the crustal sources and provides an outline for 

the crust thickness variations in younger tectonic areas. In the case of cratonic areas, the 

base of the crust is expected to show little variation and features observed in the 

Bouguer anomaly maps should be mainly caused by the density variations in the crust 

and upper mantle (Braitenberg & Ebbing 2007).  

 

Figure VII -4: (a) Geoid calculated by harmonic expansion up to degree and order 250; (b) geoid 

calculated by harmonic expansion up to degree and order 10; (c) Residual geoid, being the 

difference (a)-(b); (d) gravity anomaly - free-air (mGal) calculated by harmonic expansion up to 

degree and order 250; (e) free-air anomaly (mGal) calculated by harmonic expansion up to 

degree and order 10 (f) Residual free-air anomaly (mGal) on Amazon and Solimões Basins, 

being (d)-(e). Data: GO_CONS_GCF_2_TIM_R3 (Pail et al., 2011). 

The Figure VII -5 depicts the Bouguer anomaly along the profile AA' crossing the 

Amazon basin. The Solimões and Amazonas basins stretch for over 3000 km in the 

west-east direction and approximately 500 km in the north-south direction, where the 

sediments reach the thickness of 5,000 to 6,000 meters (Silva, 1987); in the Parnaíba 

Basins this thickness reaches 3,400 m (Caputo et al. 2005).   

The Bouguer anomaly map displays a chain of gravity highs about +30 mGal to +60 

mGal over the basin, roughly coinciding with the maximum thickness of sedimentary 
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rocks, and therefore, it should outline the most central part (the trough) of the Amazon 

Basin. However, the gravity highs are flanked by gravity lows of -40 ± 20 mGal, 

coinciding with a thicker crust region, as reported by Lloyd et al. (2010) (Figure VII -7). 

The relatively high values of the Bouguer anomaly in the region of the basin indicate a 

crustal thinning or thickening of the crust and/or upper mantle, since the sediments 

would contribute to lower the signal of the Bouguer anomaly (Figure VII -2).  Thus, if 

relatively high values of the Bouguer anomaly are observed, there must be either a 

shallower Moho or a crustal/upper mantle densification, to balance the negative signal 

produced by the sediments. This is the situation observed in the Amazon basin region. 

However, there is a lateral shift when we compare the position of the maximum Moho 

thickness beneath the basin and the position of the maximum Bouguer anomaly (Figure 

VII -5). 

 

Figure VII -5: Profiles of the Bouguer anomalies presented in Figure VII -3 in comparison with 

the modeled crustal thickness.  

The Figure VII -6(a) shows the gravity disturbance calculated by the GOCE satellite-

only model (Pail et al. 2011) up to degree and order 250, and one can see, for example, 

that the gravity disturbance provides a more detailed map, but the delineated features 

are similar to those found in the gravity anomaly maps (Figure VII -4d), since the 

magnitude of the gravity disturbance is directly related to the disturbing potential, and, 
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in turn, the gravity anomaly can be expressed as a linear combination of the disturbing 

potential and its normal derivative (Heiskanen & Moritz, 1967).  

The maps showing the components of the deflection of the vertical (Figure VII -6b and 

c) present the north-south and east-west variations resulting from heterogeneities within 

the Earth. As seen in previous maps, the sediment thickness in the Solimões and 

Amazon Basin is characterized by these components. These quantities appear more 

neatly in the region of the Parnaíba Basin, identifying, for instance, in the meridian 

component, the east-west variations that mark the sedimentary rocks of the Parnaíba 

Basin. As well, we can also find tectonic structures such as the Vilhena Arch and 

gravity anomalies in Parecis Basin caused by sedimentary rocks deposited during 

Cretaceous. 

Some authors (Bizzi et al., 2004) have postulated the division of the Parnaíba Basin into 

four sub-basins (Parnaíba, Alpercatas, Grajaú and Espigão-Mestre basins) that 

originated from successive basins/cycles, but this subject will not be investigated in the 

present work. 
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Figure VII -6: (a) Gravity disturbance; Deflection of the vertical components: (b) the meridian 

east/west (ɖ) components and (c) the prime vertical or north/south (ɝ). Data obtained from 

GO_CONS_GCF_2_TIM_R3 model  (Pail et al., 2011). 

The crustal thickness values were derived by Lloyd et al. (2010) from receiver functions 

(RF) from 20 temporary broadband seismic stations deployed across the eastern Brazil, 

including teleseismic and some regional events that provided the earthquake data for the 

RF analysis. This study has suggested that the Moho depth and the Moho relief vary 

slightly with the age within the Precambrian crust, and has also revealed an anomalous 

deep Moho beneath the oldest core of the Amazonian Craton. 

These results about the variations in depth of the crust/mantle boundary (Moho) show 

the consistency of the gravity low and the other values already obtained with 
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seismological stations within the study area. The result can be interpreted by the 

presence of a thinner crust towards the north of the study area, albeit the absence of 

more stations in the northern part of the craton does not permit the conclusion of the 

existence of a possible crustal thinning, and even if it exists, it is not evident whether it 

follows to the north direction or stays just under the intracratonic basin. Note that Moho 

depth thicknes along a NW-SE trend (exactly as the direction of the profile AA', which 

is centered on this anomaly) going through the shields and the Amazon basin, which 

covered an area coinciding to the portions of the Central Amazonian and Ventuari-

Tapajos Provinces. 

According to Lloyd et al. (2010), the Vp/Vs ratio is smaller in the eastern part, 

suggesting a differentiated lower crust of the central part of the Amazon Craton. Or 

rather, the Moho anomaly is weaker in the Amazon Basin compared to adjacent shields. 

The  crustal thickness of the Amazon Craton is greater than 50 km towards the east of 

the Guyana shield increasing continuously through the Amazon Basin within the 

Central Brazil shield, and a high density in the lower crust or upper mantle must be 

taken into account. 

Indeed, the northern region of Brazil has deficiency about information on crustal 

thickness (Moho depth) and Poisson's ratio (Vp/Vs). Such information is of great 

importance for characterizing the area and further to assist in the improvement of the 

calculated models for the region. 

The Amazon and Solimões basins follow the types of deep basins with the presence of a 

linear gravity high that can reach +50 mGal. The explanation given by Nunn & Aires 

(1988) for this signal is a supposed rift aborted below the basin. Currently, it is known 

that the rifts below the Amazon, Solimões and Parnaíba Paleozoic interior basins have 

in their sediments intrusions of  diabase sills and dykes, mainly in the form of sills, in an 

event known as Penatecaua Episode during late Triassic to early Jurassic (Wanderley 

Filho et al. 2006). 

The geoid height in the Parnaíba Basin reveals a large-scale residual variation, but it 

does not show a clear correlation with the basin itself. In contrast, a correlation is 

observed in the Amazon basin (Figure VII -4). 

The geoid undulations (Figure VII -4a) for the basins show greater variability, but even 

with the good correlation found within the basins by Braitenberg & Ebbing (2007), the 
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topographic effect, the sedimentary loads, and the high density in the lower crust and/or 

upper mantle appear to contribute to this variability in the geoid signature of these 

structures. 

 

Figure VII -7: (a) Moho depth map (crustal thickness) in the Solimões, Amazonas Basin 

(from Lloyd et al. 2010) and the (b) gravity anomaly from it. 

Indeed, we have found a pronounced low in the residual geoid in the basins studied in 

this work, as shown in Figure VII -4c, that displays a clear correlation between the geoid 

signature and the area of greatest crustal thickness (Figure VII -7), coinciding with the 

Tapajós-Parima and Central Amazon provinces in the Amazon Craton (purple dashed 

line in the figure), as proposed from a geochronological model (Bizzi et al., 2004, see 

Figure II -3). 

In Figure VII -8 and Figure VII -9 we present all the five independent components of the 

gravity gradient tensor used in the interpretation process in Earth's surface and satellite 

height, respectively. The combinations of these gravity gradients are used to calculate 

the anomalous signature invariants, shown in Figure VII -10. 

The rates of change of each gravity component in relation to the change in the position 

in the three coordinate directions were also obtained by calculating the second 

derivative of the gravity disturbance component obtained from the 

GO_CONS_GCF_2_TIM_R3 model (Pail et al. 2011).    
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Figure VII -8: Gravity tensor components from GOCE only-satellite from 

GO_CONS_GCF_2_TIM_R3 (Pail et al. 2011). The Txy and Tyz components were despicted 

together with the major structures of the basin (black line). Data CPRM (Bizzi et al. 2004).  
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Figure VII -9: Gravity tensor components from GOCE at 250 km satellite height.  
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Figure VII -10: (a) Amplitude of the horizontal gradient; (b) Amplitude of the total 

gradient or analytic signal of Tz; and (c) The differential curvature from data obtained in 

Figure VII -8. (d), (e) and (f) are the same previous definitions however for the GOCE 

satellite height at 250 km. 

Figure VII -8 shows that the gradient tensor components have a good correlation with 

the structures present in the surface, as indicated by the geological studies of the region. 

However, as we don't have significant information about the subsurface geology, it is 

quite difficult to analyze the data from the individual components of the gravity gradient 

tensor, but the combination of the gradient components in invariants quantities (also 

controversy, the inavariants are contested and taken as filters) may bring an 

improvement to the interpretation of the gravity tensor data (Figure VII -10). Already, 












































