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Resumo

A maioria das teorias atuais de mar�e est~ao baseadas na teoria de Darwin, e tem 
omo


ara
ter��sti
a prin
ipal a introdu�
~ao ad ho
 do atraso tidal. Estas teorias predizem uma

rota�
~ao esta
ionaria s��n
rona quando a �orbita �e 
ir
ular, e um ex
esso de rota�
~ao (
o-

nhe
ido 
omo super-sin
ronismo) quando a �orbita �e el��pti
a. Na teoria de Darwin, esse

ex
esso �e dado por � 6ne

2

(n �e o movimento m�edio e e a ex
entri
idade orbital), e �e

independente da natureza do 
orpo deformado. Re
entemente, foi proposta uma nova

teoria de mar�e, desenvolvida no IAG (Ferraz-Mello, Celest Me
h Dyn Astron 116: 109,

2013). Usando uma lineariza�
~ao da equa�
~ao de Navier-Stokes para um 
uido 
om um

n�umero de Reynolds muito baixo, esta teoria estuda a deforma�
~ao do 
orpo extenso, su-

pondo que ela �e propor
ional ao stress. A 
onstante de propor
ionalidade 
 (
hamada

fator de relaxa�
~ao), depende inversamente da vis
osidade. O ex
esso de rota�
~ao predito

nesta teoria �e � 6ne

2




2

=(n

2

+ 


2

). Todas estas teorias adotam a hip�otese da homogenei-

dade do 
orpo deformado. Por�em, 
orpos 
elestes reais, 
omo os sat�elites do Sistema Solar

Europa, En
�elado ou Tit~a, apresentam uma estrutura de 
amadas, 
om um o
eano interno

que possibilita a rota�
~ao independente entre a 
rosta e o n�u
leo, impossibilitando apli
ar

as teorias atuais a este tipo de problemas. Nesta tese estendemos a teoria de mar�e por


uên
ia, ou 
reep tide theory, para 
orpos n~ao homogêneos diferen
iados. Desenvolvendo

um modelo para duas 
amadas, estudamos a evolu�
~ao rota
ional, assim 
omo as solu�
~oes

esta
ion�arias quando, al�em das for�
as de mar�e, in
luimos as poss��veis for�
as de intera�
~ao

entre as 
amadas, 
omo o a
oplamento gravita
ional e a fri
�
~ao. Posteriormente, apli
amos

a teoria a Tit~a, adi
ionando a intera�
~ao 
rosta-atmosfera e 
onsiderando a existên
ia de

um o
eano interno. Finalmente, desenvolvemos a teoria de mar�e de Darwin para 
orpos

n~ao homogêneos diferen
iado e 
omparamos 
om a teoria de mar�e por 
uên
ia.





Abstra
t

Almost all existing tidal theories are based on the Darwin's theory, and have as main

feature the introdu
tion of the ad ho
 tidal lag. These theories predi
t a syn
hronous

stationary rotation when the orbit is 
ir
ular, and an ex
ess of rotation (known as super-

syn
hronism), when the orbit is ellipti
al. In the Darwin's theory, this ex
ess is given by

� 6ne

2

(n is the mean motion and e is the orbital e

entri
ity), and is independent of

the nature of the deformed body. Re
ently, a new theory was proposed, developed in the

IAG (Ferraz-Mello, Celest Me
h Dyn Astron 116: 109, 2013). Using a linearization of the

Navier-Stokes equation for a 
uid with a very low Reynolds number, this theory studies

the deformation of the extense body, assuming that it is proportional to the stress. The


onstant of proportionality 
 (
alled relaxation fa
tor), depends inversely on the vis
osity.

The ex
ess of rotation predi
ted in this theory is � 6ne

2




2

=(n

2

+ 


2

). All these theories

adopt the hypothesis of homogeneity of the deformed body. However, real 
elestial bodies,

as the satellites of the Solar System Europe, En
eladus or Titan, present a multi-layered

stru
ture, with an internal o
ean that allows the independent rotation between the 
rust

and the 
ore, making impossible to apply the 
urrent theories to this kind of problems.

In this thesis, we extend the 
reep tide theory, to a di�erentiated non-homogeneous body.

Developing the two-layer model, we study the rotational evolution, as well as the stationary

solutions when, besides the tidal for
es, we in
lude the intera
tion between the di�erent

layers, as the gravitational 
oupling and the fri
tion. Then, we apply the theory to Titan,

adding the 
rust-atmosphere ex
hange of angular momentum and 
onsidering the existen
e

of a subsurfa
e o
ean. Finally, we develop the Darwin tidal theory to di�erentiated non-

homogeneous bodies and 
ompare with the 
reep tide theory.
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Chapter 1

Introdu
tion

Tidal torques are a key physi
al agent 
ontrolling the rotational and orbital evolution

of systems with 
lose-in bodies and may give important 
lues on the physi
al 
onditions

in whi
h these systems are originated and evolved. The vis
oelasti
 nature of a real body


auses a non-instantaneous deformation, and the body 
ontinuously tries to re
over the

equilibrium �gure 
orresponding to the varying gravitational potential due to the orbital


ompanion. In standard Darwin's theory (e.g. Darwin, 1880; Kaula, 1964; Mignard, 1979;

Efroimsky and Lainey, 2007; Ferraz-Mello et al., 2008), the gravitational potential of the

deformed body is expanded in Fourier series, and the vis
osity is introdu
ed by means of

ad ho
 phase lags in the periodi
 terms.

1

All these theories predi
t the existen
e of a stationary rotation. If the lags are assumed

to be proportional to the tidal frequen
ies, the stationary rotation has the frequen
y 


stat

'

n(1+6e

2

), where n is the mean motion and e is the orbital e

entri
ity

2

. The syn
hronous

rotation is only possible when the orbit is 
ir
ular, but the stationary rotation be
omes

super-syn
hronous in the non-zero e

entri
ity 
ase. In these theories, the ex
ess of rotation

6ne

2

does not depend on the rheology of the body. However, this predi
tion is not 
on�rmed

for Titan, where the ex
ess provided by the theory is � 38

Æ

per year, and the Cassini

mission, using radar measurement, has not showed dis
repan
y from syn
hronous motion

larger than � 0:02

Æ

per year (Meriggiola, 2012; Meriggiola et al., 2016).

Re
ently, a new tidal theory for vis
ous homogeneous bodies has been developed by

Ferraz-Mello (2013; 2015a) (hereafter FM13 and FM15, respe
tively). A Newtonian 
reep

1

Mignard (1979), introdu
ed an ad ho
 
onstant time lag.

2

If the tidal phase lags are assumed to be frequen
y independent, as in Ma
Donald (1964), the resulting

stationary solution is 
 ' n(1 + 9:5e

2

) (see Goldrei
h, 1966).



22 Chapter 1. Introdu
tion

model, whi
h results from a spheri
al approximate solution of the Navier-Stokes equation

for 
uids with very low Reynolds number, is used to 
al
ulate the surfa
e deformation,

due to an anelasti
 tide. This deformation is assumed proportional to the stress, and

the proportionality 
onstant 
, 
alled the relaxation fa
tor, is inversely proportional to the

vis
osity of the body. In the 
reep tide theory, the ex
ess of syn
hronous rotation is roughly

proportional to 6n


2

e

2

=(n

2

+ 


2

). A similar planar theory, using a Maxwell vis
oelasti


rheology, was developed by Correia et al. (2014) and generalized later to the spatial 
ase

by Bou�e et al. (2016). Despite the di�erent methods used to introdu
e the elasti
ity of the

body, this approa
h is virtually equivalent to the 
reep tide theory (Ferraz-Mello, 2015b).

Other general rheologies were studied by Henning et al. (2009) and Frouard et al. (2016).

However, real 
elestial bodies are quite far from being homogeneous and how the tide

in
uen
es its dynami
 evolution is not entirely 
lear yet. Di�erentiation is 
ommon in our

Solar System, and several satellites present eviden
e of a subsurfa
e liquid o
ean. We may


ite, for instan
e, Europa (Wahr et al., 2006; Khurana et al., 1998) and En
eladus (Por
o

et al., 2006; Nimmo et al., 2007). One paradigmati
 
ase is Titan, where, in addition,

the ex
hange of a 
ertain amount of angular momentum between the surfa
e and the

atmosphere may be important (Tokano and Neubauer, 2005; Ri
hard et al., 2014), and the

presen
e of an internal o
ean (Tobie et al., 2005; Lorenz et al., 2008; Sohl et al., 2014) may

de
ouple rotationally the 
rust from the interior (Karatekin et al., 2008). The rotation of

the 
rust has been studied by Van Hoolst et al. (2009) using the stati
 tide and internal

e�e
ts, as gravitational 
oupling and pressure torques. They found that the 
rust rotation

is in
uen
ed, mainly by the atmosphere and the Saturn torque, and 
laim that the vis
ous


rust deformation and the non-hydrostati
 e�e
ts, 
ould play an important role in the

amplitude of the 
rust os
illation.

The main obje
tives of this work are: i) To extend the 
reep tide theory for multi-

layered bodies and to study their rotational evolution. ii) To apply the non-homogeneous

tidal theory to Titan. This thesis is organized as follows: In Chap. 2 we generalize the

linear Clairaut theory for one multi-layered body with di�erential rotation, adding a tidal

potential due to the presen
e of an external body. We present and solve the 2N 
lassi
al

equations of equilibrium and extend the Clairaut's equation for the 
ontinuous problem

and its solution. We 
al
ulate the potential at a point in the spa
e due to the deformed
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body and we 
al
ulate a generalized Love number for the di�erentiated non-homogeneous

bodies. Finally, we apply the theory to a body 
omposed of two homogeneous layers, and

for several laws of density. The main results, for the parti
ular 
ase in that all the layers

have the same angular velo
ity, were published in Folonier et al. (2015). In Chap. 3 we

present the non-homogeneous 
reep tide theory for one body 
omposed of N homogeneous

layers. We 
ompute the disturbing potential of the deformed body, as well as the for
es,

the toques and the work done by the tidal for
es a
ting on the bodies. In addition, we


al
ulate the variations in semi-major axis and e

entri
ity, produ
ed by the tidal for
es.

In Chap. 4, we develop the two-layer model, adding the gravitational 
oupling between

the 
ore and the shell and the fri
tion that o

urs at interfa
e in 
onta
t. We 
ompare

the two-layer model with the homogeneous theory and 
al
ulate the approximate near-

syn
hronous rotation. In Chap. 5, we apply to Titan

3

. In Chap. 6 we extend the Darwin

tide theory for multi-layered bodies and 
ompare with the 
reep tide theory. Finally, the


on
lusions are presented in Chap. 7. The work is 
ompleted by several appendi
es where

are given te
hni
al details of some of the topi
s presented in the forth
oming 
hapters.

3

Chapters 3, 4 and 5 are the basis of one paper to be submitted soon to publi
ation in the journal

Celestial Me
hani
s and Dynami
al Astronomy.
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Chapter 2

The stati
 tide

2.1 Introdu
tion

Several theories of tidal evolution, sin
e the theory developed by Darwin in the XIX


entury (Darwin, 1880), are based on the �gure of equilibrium of an invis
id tidally de-

formed body (see e.g. Ferraz-Mello et al., 2008; Ferraz-Mello, 2013). The addition of

the vis
osity to the model is done at a later stage, but the way it is introdu
ed is not

unique and 
an vary when di�erent tidal theories are 
onsidered. Frequently, the adopted

�gure is a Jeans prolate spheroid or, if the rotation is important, a Ro
he triaxial ellipsoid

(Chandrasekhar, 1969). It is worth re
alling that ellipsoidal �gures are ex
ellent �rst ap-

proximations, but not exa
t �gures of equilibrium (Poin
ar�e, 1902; Lyapunov, 1925; 1927).

Besides, Ma
laurin, Ja
obi, Ro
he and Jeans ellipsoids are valid only for homogeneous bo-

dies. Real 
elestial obje
ts, however, are quite far from being homogeneous. This 
auses

signi�
ant deviations whi
h need to be taken into a

ount in the astronomi
al appli
ations.

The non-homogeneous problem, when we only 
onsider the deformation by rotation,

has been extensively studied. The problem of one body formed by n rotating homogeneous

spheroidal layers as well as its extension to the 
ontinuous 
ase was studied by Clairaut

(1743) (revisited by Tisserand, 1891 and Wavre, 1932). Their works were based on the

hypotheses of small deformations (linear theory for the polar 
attenings) and 
onstant

angular velo
ity inside the body. The general 
ase of homogeneous layers rotating with

di�erent angular velo
ities (non-linear theory) was studied by Montalvo et al. (1983) and

Esteban and Vazquez (2001) (see Borisov et al., 2009 for a more detailed review), and was

generalized to the 
ontinuous invis
id 
ase by Bizyaev et al. (2014).

The 
ase of uniformly rotating layers was studied by several authors. Kong et al.
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(2010) dis
ussed the parti
ular 
ase of a body formed by two homogeneous layers with

same angular velo
ity. Hubbard (2013), with a re
ursive numeri
al form of the potential of

a N-layers rotating planet, in hydrostati
 equilibrium, showed a solution for the spheroidal

shapes of the interfa
es of the layers.

When the tidal for
es a
ting on the body are taken into a

ount along with the rotation,

the literature is mu
h less extensive. Usually the spin-orbit syn
hronism is assumed, so

that the rotating body solution 
an be used (e.g. Van Hoolst et al., 2008). Tri
ari
o (2014),

assuming syn
hronism, found a re
ursive analyti
al solution for the shape of a body formed

by an arbitrary number of layers. For this, he developed the potentials of homogeneous

ellipsoids in terms of the polar and equatorial shape e

entri
ities. However, the results do

not in
lude tidally deformed bodies whose rotation is non-syn
hronous, as, for instan
e,

the Earth, solar type stars hosting 
lose-in planets and hot Jupiters in highly e

entri


orbits. Re
ently, Wahl et al. (2016) extended the Con
entri
 Ma
laurin Spheroid method,

presented in Hubbard (2013), to in
lude the tidal for
es.

In this 
hapter, we study the stati
 equilibrium �gure of one body 
omposed of N

homogeneous layers, deformed by a tidal potential and the di�erential rotation of its layers.

The main results were published in Folonier et al. (2015).

2.2 The equilibrium equations

We 
onsider one di�erentiated body m of mass m

T

, disturbing to one mass point M of

mass M orbiting at a distan
e r from the 
enter of m. We assume that m is 
omposed

of N homogeneous layers of density d

i

(i = 1; � � � ; N) and angular velo
ity 


i

= 


i

b

k,

perpendi
ular to the orbital plane. We also assume that ea
h layer has an outer ellipsoidal

shape with semi axes a

i

, b

i

and 


i

, where the semi-major axis a

i

is pointing towards M and




i

is the axis of rotation (Fig. 2.1).

If we 
onsider one point on the outer surfa
e of the i-th layer, with position ve
tor

r

i

= (x

i

; y

i

; z

i

) and velo
ity v

i

= 


i

� r

i

, respe
t of the 
enter of m, we 
an use the same

equation used in the study of equilibrium ellipsoids (see Tisserand, 1891, Chap. 8 and

13; Jeans, 1929, Se
. 215-216; Jardetzky, 1958; Chandrasekhar, 1969), whi
h expresses

the fa
t that the total for
e a
ting on a point of its surfa
e must be perpendi
ular to the



Se
tion 2.2. The equilibrium equations 27

Figure 2.1: Body of mass m

T

formed of N homogeneous layers of density d

i

, where ea
h layer has an

outer mean equatorial radius R

i

and an angular velo
ity 


i

, and a point mass M orbiting at a distan
e r

from its 
enter in a plane perpendi
ular to the rotation axis. Figure extra
ted of Folonier and Ferraz-Mello

(2015).

surfa
e

r

r

i

�

i

/ r

r

i

U

G

+


i

� (


i

� r

i

); (2.1)

where U

G

is the total gravitational potential at r

i

, the term 


i

� (


i

� r

i

) 
orresponds to

the 
entripetal a

eleration and

�

i

(x

i

; y

i

; z

i

) =

x

2

i

a

2

i

+

y

2

i

b

2

i

+

z

2

i




2

i

� 1 = 0; (2.2)

is the ellipsoidal surfa
e equation. The use of the above equilibrium equation in a 
ase

where the tidal for
e �eld is 
hanging be
ause of the external body needs a justi�
ation.

Eq. (2.1) means that no 
hange in the shape of the body o

urs be
ause of internal for
es;

the shape will 
hange, but only be
ause of the relative 
hange of the position of the external

body.

Hen
e, we obtain the equilibrium equations




2

i

=

1

x

i

�U

G

�x

i

�

�

i

z

i

�U

G

�z

i




2

i

=

1

y

i

�U

G

�y

i

�

�

i

z

i

�U

G

�z

i

; (2.3)

where

�

i

=




2

i

a

2

i

; �

i

=




2

i

b

2

i

: (2.4)
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The problem of �nd the equilibrium �gure (i.e. the values of the semi axes a

i

, b

i

and




i

) is equivalent to �nding the equatorial and polar 
attenings

�

(i)

�

=

a

i

� b

i

R

i

�

1� �

i

2

�

1� �

i

2

; �

(i)

z

=

b

i

� 


i

R

i

�

1� �

i

2

; (2.5)

where R

i

=

p

a

i

b

i

is the outer mean equatorial radius of the i-th layer. For this, we will

use the 2N equilibrium equations (2.3).

If we denote U

j

(with j = 1; � � � ; N) the potential of the j-th layer, and U

tid

the tidal

potential at r

i

, the total gravitational potential is

U

G

= U

tid

+

N

X

j=1

U

j

: (2.6)

As the equilibrium equations (2.3) are linear in the potential U , we 
an write




2

i

= �

(k)

i

(U

tid

) +

N

X

j=1

�

(k)

i

(U

j

); (2.7)

where �

(1)

i

and �

(2)

i

are the operators

�

(1)

i

=

1

x

i

�

�x

i

�

�

i

z

i

�

�z

i

�

(2)

i

=

1

y

i

�

�y

i

�

�

i

z

i

�

�z

i

: (2.8)

2.3 Flattening of the layers

The next step is to 
al
ulate the 
ontribution of ea
h gravitational potential to the

equilibrium equations (2.7). If we 
onsider separately the 
ontributions to the potentials

due to the inner and outer layers, and the tidal for
es at a point on the i-th surfa
e (see

Appendix B), we obtain the equations




2
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= �

3GM

r

3
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3
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� d
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+ �
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+ �
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�
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)

R

5
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R
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�
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The solution of this system 
an be written as

�

(i)

�

= H

i

�

J

; �

(i)

z

= G

i

��

M

; (2.10)

where ��

M

is the 
attening of the equivalent Ma
Laurin homogeneous spheroid in syn
hro-

nous rotation and �

J

are the 
attening of the equivalent Jeans homogeneous spheroids

��

M

=

5R

3

N

n

2

4m

T

G

; �

J

=

15MR

3

N

4m

T

r

3

; (2.11)

G is the gravitational 
onstant, n is the mean motion of M and R

N

=

p

a

N

b

N

is the outer

mean equatorial radius of m.

The 
oeÆ
ients H

i

and G

i

are the Clairaut's numbers

H

i

=

N

X

j=1

(E

�1

)

ij

x

3

j

G

i

=

N

X

j=1

(E

�1

)

ij

x

3

j

�




j

n

�

2

; (2.12)

where (E

�1

)

ij

are the elements of the inverse of the matrix E, with elements

(E)

ij

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>
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3

2f
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b
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�
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3
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; i < j
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2f
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3
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5
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2f

N

N

X

k=i+1

(

b

d
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�

b

d

k+1

)(x

3

k

� x

3

i

); i = j

�

3

2f

N

(

b

d

j

�

b

d

j+1
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x

5

j

x

2

i

; i > j

(2.13)

where x

i

= R

i

=R

N

and

b

d

i

= d

i

=d

1

are the normalized mean equatorial radius and density,

respe
tively, and f

N

= 3

R

1

0

b

d(z)z

2

dz, where

b

d(z) is the normalized density pro�le.

It is important to note that if the orbital motion is syn
hronous with the angular

velo
ity of ea
h layer, when the approximation �

J

' 3��

M

is adopted

1

, the system (2.9) is


ompletely equivalent to that found by Tri
ari
o (2014), where the square of the polar and

equatorial \e

entri
ities" used there are related to the polar and equatorial 
attenings

through e

2

pi

� 2�

(i)

z

and e

2

qi

� 2�

(i)

�

.

The 
al
ulations done are valid only for small 
attenings, i.e. we assume that the

perturbation due to the tide and the rotation are small enough so as not to deform too

mu
h the body (in the se
ond order, the �gure 
eases to be an ellipsoid).

1

The exa
t relation is �

J

= 3��

M

a

3

r

3

M

M+m

T

. The aproximation is valid only if the mass of the deformed

body and the e

entri
ity are small, that is r ' a and m

T

�M .
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In the rigid rotation 
ase, if the velo
ity of rotation of ea
h layer is 


i

= 
, the polar


attening of the i-th layer, 
an be rewritten as

�

(i)

z

= H

i

�

M

; (2.14)

where

�

M

=

5R

3

N




2

4m

T

G

; (2.15)

is the non-syn
hronous 
attening of the equivalent Ma
Laurin homogeneous spheroid.

2.4 Extension to the 
ontinuous 
ase

In this se
tion we extend the equilibrium �gure to the 
ontinuous 
ase. In order to


al
ulate the �rst Clairaut fun
tion H(x), we follow the method showed in Tisserand

(1891), Chap. 14, writing the �rst equation of (2.9), less the se
ond equation, as
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If we introdu
e the notation �(x

k

) = x

k

� x

k�1

and the boundary values x

0

= 0 and

d

N+1

= 0, we may rewrite the terms on the left hand side of the last equation as
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or
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and

(E)

ii

H

i

= �

3

2f

N

�(

b

d

i+1

)x

3

i

H

i

+

5

2

H

i

�

5

2f

N

N

X

k=i+1

(

b

d

k

�

b

d

k+1

)(x

3

k

� x

3

i

)H

i

= �

3

2f

N

�(

b

d

i+1

)x

3

i

H

i

+

5H

i

2

�

5H

i

2f

N

N

X

k=i+1

b

d

k

�(x

3

k

): (2.19)

If we assume that the number of layers tends to in�nity so that the in
rements �x

k

=

x

k

� x

k�1

are in�nitesimal quantities, when �x

k

! 0, the Eq. (2.16) be
omes

5x

2

3
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2f
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3
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5
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z=x
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b

d(z)d(z

5

H(z)) + x

5

Z

z=1

z=x

b

d(z)dH(z); (2.20)

where the fun
tion f(x) is

f(x)

def

= 3

Z

x

0

b

d(z)z

2

dz; (2.21)

with f(0) = 0 and f(1) = f

N

.

Deriving (2.20) with respe
t to x, we have

2f(x)

3x

3

H(x) +

f(x)

3x

2

H

0

(x) =

2f

N

3

+

Z

z=1

z=x

b

d(z)dH(z); (2.22)

and deriving on
e more we obtain the di�erential equation for the 
attening pro�le

H

00

(x) +

6

b

d(x)x

2

f(x)

H

0

(x) +

 

6

b

d(x)x

f(x)

�

6

x

2

!

H(x) = 0: (2.23)

It is a homogeneous linear di�erential equation of se
ond order with non-
onstant 
o-

eÆ
ients for the �rst Clairaut fun
tion H(x), that represent the 
ontinuous 
ounterpart

of the �rst Clairaut 
oeÆ
ient H

i

. The di�erential equation (2.23) is the same expression

found by Clairaut (Tisserand, 1891; Je�reys, 1953).

The Eq. (2.20) allows us to 
al
ulate the limits that the Clairaut 
oe�
ient H

N


an

take at the surfa
e. In the homogeneous 
ase

b

d(x) = 1, the integrals 
an be 
al
ulated

trivially. At the surfa
e x = 1, we obtain H

N

= 1. In the non-homogeneous 
ase, if the

density is a pie
ewise 
ontinuous non-in
reasing fun
tion (

b

d

0

6 0), we have, at the surfa
e

H

N

=

2

5

+

3

5f

N

Z

z=1

z=0

b

d(z)d(z

5

H(z))

=

2

5

+

3

5f

N

�

b

d

N

H

N

�

Z

z=1

z=0

z

5

H(z)d

b

d(z)

�

>

2

5

: (2.24)

Then, under the assumption of equilibrium, a non-homogeneous body will have equatorial


attenings on the surfa
e with values between 0.4 and 1 times the values they would have

if the body was homogeneous.
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It is worth mentioning that Eq. (2.24) is valid if H(z) � 0, that is, a

i

� b

i

. If a

i

< b

i

,

we 
an rede�ne the equatorial 
attening as �

(i)

�

= (b

i

� a

i

)=R

i

= H

i

�

J

� 0.

In order to 
al
ulate the equation for the se
ond Clairaut fun
tion G(x), we 
an pro
eed

in the same way. Using the se
ond equation of (2.9), we obtain

5x

2

3

f(x)G(x) =

2f

N

3

x

5

b




2

+

Z

z=x

z=0

b

d(z)d(z

5

G(z)) + x

5

Z

z=1

z=x

b

d(z)dG(z); (2.25)

where

b


 = 
(x)=n. Deriving with respe
t to x, we have

2f(x)

3x

3

G(x) +

f(x)

3x

2

G

0

(x) =

2f

N

3

b




2

+

4f

N

15

x

b




b




0

+

Z

z=1

z=x

b

d(z)dG(z); (2.26)

and deriving on
e more we obtain the di�erential equation for the 
attening pro�le

G

00

(x) +

6

b

d(x)x

2

f(x)

G

0

(x) +

 

6

b

d(x)x

f(x)

�

6

x

2

!

G(x) =

4f

N

x

2

5f(x)

�

6

b




b




0

+ x

b




02

+ x

b




b




00

�

: (2.27)

It is a non-homogeneous linear di�erential equation of se
ond order with non-
onstant


oeÆ
ients. The homogeneous equation is equal to the di�erential equation of the �rst

Clairaut equation (2.23). The non-homogeneity of Eq. (2.27) depend on the rotation

pro�le

b


(x) = 
=n, parti
ularly depend on the

b




0

and

b




00

, therefore, to rigid rotation

b


(x)

is a 
onstant fun
tion, and the Eq. (2.27) results equal to the di�erential equation (2.23).

In the homogeneous 
ase

b

d(x) = 1, the integral (2.25) 
an be 
al
ulated trivially

G(x) =

2

5

b




2

+

3

5

G

N

; (2.28)

with G

N

=

b




2

N

at the surfa
e x = 1. In the non-homogeneous 
ase, if the density is a

non-in
reasing fun
tion (

b

d

0

6 0), we have, at the surfa
e

G

N

=

2

b




2

N

5

+

3

5f

N

Z

z=1

z=0

b

d(z)d(z

5

G(z))

=

2

b




2

N

5

+

3

5f

N

�

b

d

N

G

N

�

Z

z=1

z=0

z

5

G(z)d

b

d(z)

�

>

2

b




2

N

5

: (2.29)

Then, under the assumption of equilibrium, a non-homogeneous body will have 
attenings

on the surfa
e with values between 0:4

b




2

n

and

b




2

n

times the values they would have if the

body was homogeneous.
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2.4.1 Boundary 
onditions. Radau transformation

The di�erential equation (2.23) requires two boundary 
onditions to be solved. Howe-

ver, before attempting to �nd these boundary 
onditions, we will show two relationships

that will turn out to be useful later. The �rst relationship is obtained from equation (2.22),

where at x = 1 we have

H

0

N

= 2(1�H

N

): (2.30)

The se
ond relationship is obtained from the di�erential equation (2.23). If we note that

f(x) � x

3

+3

b

d

0

0

x

4

=4 and

b

d(x) � 1+

b

d

0

0

x, in the neighborhood of x = 0, the Eq. (2.23) 
an

be approximated by

H

00

+ 6

H

0

x

+ 6

b

d

0

0

H

x

= 0; (2.31)

it is

H

0

0

= �

b

d

0

0

H

0

; (2.32)

where

b

d

0

0

is the derivative of the density at x = 0.

In pra
ti
al appli
ations, it is 
onvenient to introdu
e the Radau transformation

�(x) =

xH

0

(x)

H(x)

; (2.33)

and rewritten Clairaut's equation as the Ri
atti di�erential equation

�

0

+

�

2

x

+

�

q(x) +

5

x

�

� + q(x) = 0; (2.34)

where

q(x)

def

=

6

x

 

b

d(x)x

3

f(x)

� 1

!

: (2.35)

In the new variables, using the relation (2.32), the boundary 
ondition is

�(x = 0) = 0: (2.36)

The variable � is sometimes referred to as Radau's parameter (Bullen, 1975). De�ning

�(x = 1) = �

N

and using the relationship (2.30) and the transformation (2.33), the boun-

dary 
onditions of (2.23) are

H

N

=

2

2 + �

N

; H

0

N

=

2�

N

2 + �

N

: (2.37)
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As a result of this relationship, if 
onsidering that 0:4 < H

N

< 1, we re
over the 
lassi
al

result 0 < �

N

< 3 (Tisserand, 1891).

Finally, it should be noted that on
e �(x) is found, we may �nd the pro�le 
attening

from equation (2.33), whose solution is

H(x) = H

N

e

R

x

1

�(z)=z dz

: (2.38)

The 
omplete study of the di�erential equation for the se
ond Clairaut fun
tion G(x)

(Eq. 2.27), es
apes from the obje
tives of this work. As we will show in the following

Chapters, the axial terms of the potential of the deformed body, whi
h involve Clairaut

number G

i

, are torque free and do not 
ontribute to the tidal rotational evolution of m.

2.5 Potential of the tidally deformed body

The disturbing potential of the i-th ellipsoidal layer at an external point r

�

is given by

(see Eq. A.33)

ÆU

(i)

2

(r

�

) = �

GC

i

L

i

2r

�3

�

J

�

3 
os

2

	

x

� 1

�

�

GC

i

L

0

i

2r

�3

��

M

�

3 
os

2

	

z

� 1

�

; (2.39)

where 	

x

and 	

z

are the angles between the dire
tion of the point where the potential is

taken and the 
oordinate axes x and z, respe
tively, C

i

'

2

5

m

i

(R

5

i

� R

5

i�1

)=(R

3

i

� R

3

i�1

) is

the axial moment of inertia of the i-th layer (see Eq. A.26) and the parameters

L

i

=

H

i

R

5

i

�H

i�1

R

5

i�1

R

5

i

� R

5

i�1

; L

0

i

=

G

i

R

5

i

� G

i�1

R

5

i�1

R

5

i

� R

5

i�1

: (2.40)

The total potential is the sum of the potentials of all layers:

U(r

�

) = �

2k

f

Gm

T

R

2

N

15r

�3

�

J

�

3 
os

2

	

x

� 1

�

�

2k

0

f

Gm

T

R

2

N

15r

�3

��

M

�

3 
os

2

	

z

� 1

�

; (2.41)

the 
onstants k

f

and k

0

f

are often 
alled the tidal and rotational 
uid Love number (Munk

and Ma
Donald, 1960; Correia and Rodr��guez, 2013). For a non-homogeneous body, by

identi�
ation of the terms, we �nd

k

f

def

=

3

2

1

m

T

R

2

N

N

X

i=1

m

i

�(R

5

i

H

i

)

R

3

i

�R

3

i�1

; k

0

f

def

=

3

2

1

m

T

R

2

N

N

X

i=1

m

i

�(R

5

i

G

i

)

R

3

i

� R

3

i�1

; (2.42)

where �(f

i

) = f

i

� f

i�1

, denotes the in
rement of one fun
tion f

i

, between the inner and

the outer boundaries of this layer. Using the 
ontinuous model and the mass of the i-th
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layer m

i

=

4�

3

d

i

(R

3

i

� R

3

i�1

), we obtain

k

f

=

3

2f

N

Z

z=1

z=0

b

d(z)d(z

5

H(z)); k

0

f

=

3

2f

N

Z

z=1

z=0

b

d(z)d(z

5

G(z)): (2.43)

Using the integral form of Clairaut's equations (2.20) and (2.25), and evaluating at

x = 1, we obtain

k

f

=

5

2

H

N

� 1; k

0

f

=

5

2

G

N

�

b




2

N

: (2.44)

whi
h shows the link of the tidal 
uid Love number k

f

, with the 
oeÆ
ient H

N

. This

relationship is based on the fa
t that both 
onstants depend solely on the internal stru
ture,


hara
terizing the inhomogeneity of the body. In the homogeneous 
ase H

N

= 1 thus

re
overing the 
lassi
al result k

f

= 1:5. If we also assume a syn
hronous rotation, G

N

=




N

=n = 1 and k

0

f

= k

f

= 1:5.

2.6 Two-layer Core-Shell model

2.6.1 Dis
rete model

In this se
tion we 
onsider the simple 
ase of a body formed of two syn
hronous ho-

mogeneous layers: a 
ore with density d

1

and mean radius R

1

, and a shell with density

d

2

=

b

d

1

d

1

(with

b

d

1

< 1) and mean outer radius R

2

(Fig. 2.2). If we de�ne the normalized

mean 
ore radius x

1

= R

1

=R

2

, then, the parameter f

N


an be written as

f

N

=

b

d

1

+ (1�

b

d

1

)x

3

1

: (2.45)

The linear system for the equatorial 
attenings is

(E)

11

H

1

+ (E)

12

H

2

= x

3

1

(E)

21

H

1

+ (E)

22

H

2

= 1; (2.46)

(see Eq. 2.16), where the elements of the matrix E are

(E)

11

=

(2 + 3

b

d

1

)x

3

1

2

b

d

1

+ 2(1�

b

d

1

)x

3

1

; (E)

12

= �

3

b

d

1

x

3

1

2

b

d

1

+ 2(1�

b

d

1

)x

3

1

(E)

21

= �

3(1�

b

d

1

)x

5

1

2

b

d

1

+ 2(1�

b

d

1

)x

3

1

; (E)

22

=

2

b

d

1

+ 5(1�

b

d

1

)x

3

1

2

b

d

1

+ 2(1�

b

d

1

)x

3

1

: (2.47)
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Figure 2.2: Density pro�le of a body formed by two homogeneous layers. x

1

is the mean radius of the


ore R

1

relative to the mean outer radius of the shell R

2

.

b

d

1

is the shell density d

2

relative to the 
ore

density d

1

. Figure extra
ted of Folonier et al. (2015).

Hen
e, the �rst Clairaut's numbers are

H

1

=

10

�

b

d

1

+ (1�

b

d

1

)x

3

1

�

2

�
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b
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1
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b
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1

+ 5(1�

b

d

1
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�

� 9

b
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1
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b
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1
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1
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=
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b
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1

+ (1�
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d

1

)x

3

1

��

2 + 3

b

d

1

+ 3(1�

b

d

1

)x

5

1

�

�

2 + 3

b

d

1

��

2

b

d

1

+ 5(1�

b

d

1

)x

3

1

�

� 9

b

d

1

(1�

b

d

1

)x

5

1

: (2.48)

Figure 2.3: Possible values of H

1

(
ore) and H

2

(shell) as fun
tions of the 
ore size x

1

and of the relative

density of the shell

b

d

1

. Figure extra
ted of Folonier et al. (2015).

Fig. 2.3 shows the results obtained for the 
onstants H

1

and H

2

. We see that:
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� If

b

d

1

= 1 or x

1

= 1, the 
onstants are H

1

= H

2

= 1, that is the solution for a

homogeneous body.

� When the 
ore is denser than the shell, H

2

> H

1

and the 
attening of the 
ore are

smaller than the equatorial 
attening of the surfa
e (where �

(1)

�

= H

1

�

J

6 �

(2)

�

=

H

2

�

J

).

� Sin
e H

2

6 1, the maximum surfa
e 
attening is given by the homogeneous solution.

In presen
e of a 
ore, the surfa
e is always less 
attened than it is in the homogeneous


ase.

� While H

1

may take all possible values bettween 0 and 1, H

2

is always larger than the


riti
al limit 0.4, 
orresponding to the degenerate limit 
ase in whi
h the whole mass

would tend to 
on
entrate in the 
enter and would be surrounded by a zero-density

shell (
ase of Huygens-Ro
he). Therefore the 
attenings of the outer surfa
e 
an

never be less than 40% of the homogeneous referen
e values. This is the same result

given by Eq. (2.24) for the 
ontinuous 
ase.

2.6.2 Continuous model

Now, we will 
onsider the same problem, but using the 
ontinuous model. In this 
ase,

the normalized density pro�le is

b

d(x) =

8

<

:

1 0 6 x 6 x

1

b

d

1

x

1

< x 6 1;

(2.49)

and the fun
tion f(x) is

f(x) =

8

<

:

x

3

0 6 x 6 x

1

b

d

1

x

3

+ (1�

b

d

1

)x

3

1

x

1

< x 6 1:

(2.50)

A simple treatment, without a
tually solving the di�erential equation, is to solve the

integral equation (2.20), that 
an be 
al
ulated trivially sin
e the density pro�le

b

d(x) is

pie
ewise 
onstant

Z

x

0

b

d(z)d(z

5

H) =

8

<

:

x

5

H(x)�

h

x

5

H(x)

i

x=0

0 6 x 6 x

1

b

d

1

x

5

H(x) + (1�

b

d

1

)x

5

1

H

1

�

h

x

5

H(x)

i

x=0

x

1

< x 6 1;

(2.51)
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and

Z

1

x

b

d(z)dH =

8

<

:

(1�

b

d

1

)H

1

+

b

d

1

H

2

�H(x) 0 6 x 6 x

1

b

d

1

H

2

�

b

d

1

H(x) x

1

< x 6 1;

(2.52)

where H

1

= H(x

1

) and H

2

= H(1). We remind that, a priori, we do not know the form of

the fun
tion H(x).

In the 
ore, 0 6 x 6 x

1

, the integral equation is

5x

5

3

H(x) = x

5

�

2f

N

3

+

b

d

1

H

2

+ (1�

b

d

1

)H

1

�

�

h

x

5

H(x)

i

x=0

; (2.53)

whi
h, for x = 0, gives the 
ondition

5

3

h

x

5

H(x)

i

x=0

= �

h

x

5

H(x)

i

x=0

whi
h may be ful�lled

only if

h

x

5

H(x)

i

x=0

= 0. So in that interval, we have

H(x) =

2f

N

5

+

3

5

b

d

1

H

2

+

3

5

(1�

b

d

1

)H

1

; (2.54)

that is, the 
attening pro�le in the 
ore remains 
onstant, although we do not know yet

the boundary values H

1

and H

2

. Parti
ularly, if x = x

1

, we obtain

(2 + 3

b

d

1

)H

1

= 2f

N

+ 3

b

d

1

H

2

: (2.55)

In the shell, x

1

< x 6 1, the integral equation is
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�
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1

H

1

: (2.56)

If we evaluate it at the boundary x = 1, we obtain
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1
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: (2.57)

Sin
e the fun
tion H(x) should be 
ontinuous at the boundary x = x

1

, we may 
ombine

the equations (2.55) and (2.57), to obtain the boundary 
onditions:
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; (2.58)
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whi
h 
oin
ide with the results of the dis
rete model. The 
attening pro�le 
an then be

written as

H(x) =

8

>

>

<

>

>

:

H

1

; 0 6 x 6 x

1

3(1�

b

d

1

)x

5

1

+ (2 + 3

b

d

1

)x

5

5x

2

�

b

d

1

x

3

+ (1�

b

d

1

)x

3

1

�

H

1

; x

1

< x 6 1

:

Figure 2.4: Example of 
attening pro�le H(x) when x

1

= 0:2 and

b

d

1

= 0:2.

The results obtained with the two models are in ex
ellent agreement. In the dis
rete


ase, by 
onstru
tion, we only obtain the values of the 
attening in the surfa
e of the

body and in the interfa
e 
ore-shell as a fun
tion of the relative density of both layers and

the normalized mean radius of the nu
leus. In the 
ontinuous model, however, we get a


attening pro�le whi
h is 
ontinuous and 
oin
ides with those of the �rst model in the

points x = x

1

and x = 1. So, the 
ontinuous model not only gives the 
attening in the

surfa
es of the two parts, but also the 
attening of the a
tual equipotentials within the


uid. Fig. 2.4 shows one example: we plot the 
attening pro�le H(x) when x

1

= 0:2

and

b

d

1

= 0:2. The values of the Clairaut fun
tion in the points x = x

1

and x = 1,


oin
ides with the Clairaut's numbers in the dis
rete model: H(x

1

) = H

1

' 0:379 and

H(1) = H

2

' 0:956.
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2.6.3 Fluid Love number

Using equation (2.44), together with the expression for H

2

(Eqn. 2.48), the expression

of the 
uid Love number k

f

is

k

f

=

5

�

b

d

1

+ (1�

b

d

1

)x

3

1

��

2 + 3

b

d

1

+ 3(1�

b

d

1

)x

5

1

�

�

2 + 3

b

d

1

��

2

b

d

1

+ 5(1�

b

d

1

)x

3

1

�

� 9

b

d

1

(1�

b

d

1

)x

5

1

� 1: (2.59)

Fig. 2.5 shows the possible value of k

f

as a fun
tion of the 
ore size x

1

and of the

relative density of the shell

b

d

1

. If we obtain k

f

, for example by determining H

N

by dire
t

observation of the surfa
e 
attenings, then equation (2.59) de�nes a 
ontinuous 
urve of

possible values for the size of the nu
leus x

1

and the relative density of the shell

b

d

1

under

the hypothesis of two homogeneous layers. Moreover, as 
an be seen in this �gure, a

maximum value for these physi
al parameters 
an be predi
ted.

Figure 2.5: Possible values of k

f

as fun
tions of the 
ore size x

1

and of relative density of the shell

b

d

1

.

Figure extra
ted of Folonier et al. (2015).

2.7 Appli
ation to di�erent density distribution laws

In this se
tion, we present some appli
ations of the theory developed in this 
hapter

to bodies with 
ontinuous density distributions. For this we use two examples of density

distributions: polynomial and polytropi
 density laws.
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In both 
ases the Clairaut's equation is solved numeri
ally after introdu
tion of the

variable de�ned by the Eq. (2.33). The 
attening pro�le H(x) and the Love number are

then obtained through the inverse transformation.

2.7.1 Polynomial density fun
tions

We 
onsider initially a simple polynomial density law:

b

d(x) = 1� x

�

; (2.60)

where � > 0. The left panel of Fig. 2.6 shows the density fun
tions for � = 0:1; 1; 2; 10

and 100 as fun
tions of the normalized mean radius x.

Figure 2.6: Left : Density pro�les for polynomial density distributions with di�erent values of �. Right :

Flattening pro�le H(x) for the same density laws. � = 0:1 (bla
k), � = 1 (red), � = 2 (green), � = 10

(blue) and � = 100 (magenta). Figures extra
ted of Folonier et al. (2015).

The resulting 
attening pro�les H(x) are shown in the right panel of Fig. 2.6. In all


ases, the 
attening pro�le H(x) is an in
reasing monotoni
 fun
tion and, for all x, the

values of H(x) in
rease when the power � in
reases.

Note that, as dis
ussed in Se
tion 2.4, the value of H

N

is always greater than the limit

value 0.4 and less than 1. Parti
ularly H

N

tends to 0.570 when � tends to 0 and H

N

tends to 1 when � tends to1 (homogeneous 
ase). The 
uid Love number in
reases from

0.424 (when � tends to 0) to 1.5 (when � tends to 1). These results 
an be seen in

Fig. 2.7, where we also show the values of the 
attening fa
tor H

N

at the surfa
e and the

dimensionless moment of inertia C=m

T

R

2

N

. This last parameter in
reases from 0.24 (when

� tends to 0) to 0.4 (when � tends to 1)

2

.

2

An elementary 
al
ulation allows one to �nd the relationship

C

m

T

R

2

�

2

3

R

1

0

b

dz

4

dz

R

1

0

b

dz

2

dz

=

2

5

�

3+�

5+�

.



42 Chapter 2. The stati
 tide

Figure 2.7: Values of H

N

(bla
k), k

f

(red) and C=m

T

R

2

N

(blue) for di�erent values of the exponent of

the polynomial density law. Figure extra
ted of Folonier et al. (2015).

2.7.2 Polytropi
s pressure-density laws

We may 
onsider a self-gravitating body in hydrostati
 equilibrium with a more general

polytropi
 pressure-density law:

P = Kd

1+

1

n

; (2.61)

where P is the pressure, n is the polytropi
 index and K is 
onstant. The di�erential

equation for the density is then given by the Lane-Emden equation (Chandrasekhar, 1969)

1

�

2

d

d�

�

x

2

d�

d�

�

+ �

n

= 0; (2.62)

where � =

b

d

1=n

and � = �=R, with �

2

= (n+1)Kd

1

n

�1

0

=4�G. The standard boundary 
on-

ditions are �(0) = 1 and �

0

(0) = 0. If 0 � n < 5 the solution �(�) de
reases monotoni
ally

and has a zero at a �nite value � = �

1

. This radius 
orresponds to the surfa
e of the body

where P = � = 0.

It is worth mentioning that several real 
ases exist that 
orrespond to polytropes. For

example, when 
onve
tion is established in the interior of a star the resulting 
on�guration

is a polytrope; when the gas is degenerate, the 
orresponding equations of state have the

same form as the polytropi
 equation of state, et
. (see Collins, 1989). We also mention

re
ent results by Le
onte et al. (2011) showing that the density pro�le of hot Jupiters is

well approximated by a polytrope.

The left panel of the Fig. 2.8 shows the density fun
tions for n = 0:5; 1:0; 1:5; 3:0 and
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Figure 2.8: Left : Density pro�les for di�erent values of the polytropi
 index. Right : Flattening pro�le

H(x) for these density laws. n = 0:5 (bla
k), n = 1 (red), n = 1:5 (green), n = 3 (blue) and n = 4:5

(magenta). Figures extra
ted of Folonier et al. (2015).

4:5 as fun
tions of the normalized mean radius x = R=��

1

obtained from the integration

of the Lane-Emden equation.

The resulting 
attening pro�les H(x) are shown in the right panel of Fig. 2.8. In all


ases, the 
attening pro�le H(x) is an in
reasing monotoni
 fun
tion and for all x, the

values of H(x) de
rease when the polytropi
 index n in
reases.

As mentioned previously, the value of H

N

is always greater than the limit value 0.4.

Parti
ularly H

N

! 0:4 when n! 5. The 
uid Love number de
reases from 1.5 for n = 0

(
onstant density) to 0 when n tends to the limit n = 5. These results 
an be seen in

Fig. 2.9, where we also show the values of the 
attening fa
tor H

N

and the dimensionless

moment of inertia C=m

T

R

2

N

for values of n below the limit n = 5. The adimensional

moment of inertia de
reases from 0.4 (when n = 0) and tends to 0 when n! 5.

2.7.3 An analiti
al result: The politrope with n=1

The Clairaut di�erential equation (2.23) 
an be very diÆ
ult to solve analiti
aly, even

for very simple density pro�les as linear or quadrati
, whi
h 
an only be solved numeri
ally.

However, for the parti
ular 
ase

b

d(x) =

sin�x

�x

; (2.63)

whi
h 
orresponds to the density pro�le of degenerate gases with a polytropi
 index n = 1

(see Fig. 2.10) (de Pater et al. 2010, Chap. 6), the solution 
an be expressed analyti
ally.

This 
ase is very useful sin
e the state of the matter inside the gaseous planets is well
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Figure 2.9: Values of H

N

(bla
k), k

f

(red) and C=m

T

R

2

N

(blue) for di�erent polytropi
 indi
es n < 5.

Figure extra
ted of Folonier et al. (2015).

approximated by this model.

Figure 2.10: Polytropi
 density pro�le for n = 1.

In this 
ase, the fun
tion f(x) is

f(x) =

3

�

3

�

sin (�x)� �x 
os (�x)

�

; (2.64)

and the di�erential equation be
omes

H

00

+

2�

2

x

1� �x 
ot (�x)

H

0

+

�

2�

2

1� �x 
ot (�x)

�

6

x

2

�

H = 0: (2.65)

We 
an verify that the resulting equation has the linearly independent solutions

u(x) =

3

x

2

�

�

2

1� �x 
ot (�x)

; v(x) =

(�

2

x

2

� 3) 
ot (�x) + 3�x

1� �x 
ot (�x)

; (2.66)
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and the 
attening pro�le 
an be written as

H(x) = C

1

u(x) + C

2

v(x); (2.67)

where C

1

and C

2

are 
onstants.

In order to 
al
ulate the integration 
onstants, we introdu
e the solution (2.67) into

the Eqs. (2.20) and (2.22). Evaluating at x = 1, we obtain the linear system

2f

N

3

=

�

5f

N

u

N

3

�

Z

z=1

z=0

b

d d(z

5

u)

�

C

1

+

�

5f

N

v

N

3

�

Z

z=1

z=0

b

d d(z

5

v)

�

C

2

1 =

�

u

N

+

u

0

N

2

�

C

1

+

�

v

N

+

v

0

N

2

�

C

2

; (2.68)

where u

N

= u(1), v

N

= v(1), u

0

N

= u

0

(1) and v

0

N

= v

0

(1). Repla
ing by the fun
tions, the

linear system be
omes

2

�

2

= C

1

+

�

132

�

5

�

18

�

3

�

3

�

�

C

2

1 =

�

2

2

C

1

+

�

3

�

�

7�

2

�

C

2

: (2.69)

Figure 2.11: Polytropi
 
attening pro�le for n = 1.

Hen
e, the integration 
onstants are

C

1

=

2

�

2

; C

2

= 0; (2.70)

and the 
attening pro�le is

H(x) =

6

�

2

x

2

+

2

�x 
ot (�x)� 1

; (2.71)
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whi
h is the same stri
tly in
reasing fun
tion given in the right panel of Fig. 2.8, labeled

n = 1 (see Fig. 2.11). A simple 
al
ulation allows us to �nd that the Clairaut numbers at

the 
enter and surfa
e of m are

H(0) = H

0

= 0:4

H(1) = H

N

=

6

�

2

� 0:6; (2.72)

and the 
uid Love number, using the Eq. (2.44), is

k

f

=

15

�

2

� 1 � 0:52; (2.73)

in ex
ellent agreement with the 
lassi
al value (Hubbard, 1975; Wahl et al., 2016).



Chapter 3

Non-homogeneous 
reep tide theory

3.1 Introdu
tion

In this 
hapter, we extend the planar 
reep tide theory to the 
ase of a vis
oelasti


body formed by N homogeneous layers, using the multi-layered stati
 �gure 
al
ulated in

the above 
hapter. Solving the 
reep tide equation for ea
h layer interfa
e, we 
ompute

the disturbing potential of the deformed body, as well as the for
es, the torques, the work

done by the tidal for
es a
ting on the bodies and the variations in semi-major axis and

e

entri
ity.

3.2 Creep tide theory

Let us 
onsider one di�erentiated body m of mass m

T

, disturbed by one mass point

M of mass M orbiting at a distan
e r from the 
enter of m. We assume that the body is


omposed of N homogeneous layers of densities d

i

(i = 1; � � � ; N) and angular velo
ities




i

, perpendi
ular to the orbital plane.

The outer surfa
e of the i-th layer is �

i

(b'

i

;

b

�

i

; t), where �

i

is the distan
e of the surfa
e

points to the 
enter of gravity of m and the angles b'

i

;

b

�

i

are their longitudes and 
o-

latitudes in a �xed inertial referen
e system. At ea
h instant, we assume that the stati


equilibrium �gure of ea
h layer under the a
tion of the tidal potential and the rotation may

be approximated by a triaxial ellipsoidal equilibrium surfa
e �

i

(b'

i

;

b

�

i

; t), whose semi-major

axis is oriented towards M (see Fig. 3.1).

The adopted rheophysi
al approa
h is founded on the simple law

_

�

i

= 


i

(�

i

� �

i

); (3.1)
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Figure 3.1: �

i

(b'

i

;

b

�

i

; t) is a se
tion of the surfa
e of the body at the time t; �

i

(b'

i

;

b

�

i

; t) is a se
tion of the

surfa
e of the equilibrium ellipsoid at the same time.

where 


i

is the relaxation fa
tor at the outer surfa
e of the i-th layer. This is a radial

deformation rate gradient related to the vis
osity through (see Appendix C)




i

=

(d

i

� d

i+1

)g

i

R

i

2�

i

; (3.2)

where R

i

and g

i

are the equatorial mean radius and the gravity a

eleration at the outer

surfa
e of the i-th layer. �

i

is the vis
osity of the inner layer (assumed to be larger than

that of the outer layer).

Although the 
reep equation is valid in a referen
e system 
o-rotating with the body,

we 
an use the 
oordinates in a �xed referen
e system. This is due to the fa
t that only

relative positions appear in the right-hand side of the 
reep equation. If b'

F

is the longitude

of a point in one frame �xed in the body, then we have

b'

i

= b'

F

+ 


i

t: (3.3)

3.3 The 
reep equation

As shown in the Chap. 2, the stati
 equilibrium �gure of ea
h layer under the a
tion of

the tidal potential and the rotation may be approximated by a triaxial ellipsoidal surfa
e.

Using that the equatorial and the polar 
attenings of the outer boundary of the i-th layer

are given by Eq. (2.10), the ellipsoidal surfa
e equation of this layer, to �rst order in the
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attenings, 
an be written as (see Eq. (A.15) in the Appendix A)

�

i

= R

i

�

1 +

1

2

H

i

�

J

sin

2

b

� 
os (2b'

i

� 2'

M

)�

�

1

2

H

i

�

J

+ G

i

��

M

�


os

2

b

�

�

; (3.4)

where '

M

is the longitude of M �xed inertial referen
e system. Then, the 
reep equation

(3.1) with the stati
 equilibrium surfa
e (3.4) is

_

�

i

+ 


i

�

i

= 


i

R

i

�

1 +

1

2

H

i

�

J

sin

2

b

� 
os (2b'

i

� 2'

M

)�

�

1

2

H

i

�

J

+ G

i

��

M

�


os

2

b

�

�

: (3.5)

In order to solve the 
reep di�erential equation, we 
onsider the two-body motion. The

equations of the Keplerian motion to M, orbiting to m, are

r =

a(1� e

2

)

1 + e 
os v

; (3.6)

and

v = `+

�

2e�

e

3

4

�

sin `+

5e

2

4

sin 2`+

13e

2

12

sin 3`+O(e

4

); (3.7)

where a is the semi-major axis, e is the e

entri
ity and the angles v and ` are the true and

mean anomaly, respe
tively, of the body M. In the planar 
ase, we have that '

M

= v+$,

where $ is the longitude of the periapsis.

Then, the 
reep equation be
omes an ordinary di�erential equation of �rst order with

periodi
 for
ed terms, that may be written as

_

�

i

+ 


i

�

i

= 


i

R

i

"

1 +

X

k2Z

�

Z

ik

sin

2

b

� 
os

b

�

ik

�Z

00

ik


os

2

b

� 
os

b

�

00

ik

�

#

; (3.8)

where the arguments of the 
osines �

ik

, �

00

ik

are linear fun
tions of the time

b

�

ik

= 2b'

i

� 2$ + (k � 2)`

b

�

00

ik

= k`: (3.9)

The 
onstants Z

ik

;Z

00

ik

are

Z

ik

=

1

2

H

i

��

J

E

2;k

Z

00

ik

=

1

2

H

i

��

J

E

0;k

+ Æ

0;k

G

i

��

M

; (3.10)

where Æ

0;k

is the Krone
ker delta (Æ

0;k

= 1 when k = 0 and Æ

0;k

= 0 when k 6= 0), the


onstant ��

J

is

��

J

=

15MR

3

N

4m

T

a

3

; (3.11)
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and the 
oeÆ
ients of the Fourier series E

q;p

are e

entri
ity fun
tions 
alled the Cayley

fun
tions (Cayley, 1861)

E

q;p

(e) =

1

2�

Z

2�

0

�

a

r

�

3


os (qv + (p� q)`) d`: (3.12)

After integration we obtain the for
ed terms

Æ�

i

= R

i

X

k2Z

�

Z
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b
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ik


os (
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)� Z

00
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00
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�

00

ik
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00

ik
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: (3.13)

The phases �

ik

and �

00

ik

are

tan�

ik

=

_

b

�

ik




i

=

�

i

+ kn




i

; tan�

00

ik

=

_

b

�

00

ik




i

=

kn




i

; (3.14)

where �

i

= 2


i

�2n is the semi-diurnal frequen
y. These phases are introdu
ed during the

exa
t integration of the 
reep equation (3.8).

If we de�ne the angles

Æ

ik

= 2$ � (k � 2)`+ �

ik

Æ

00

ik

= k`� �

00

ik

; (3.15)

the solution (3.13) 
an be writen as

Æ�

i

= R

i

X

k2Z

�

Z

ik
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ik

sin
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b

� 
os (2b'
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� Æ
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)� Z

00

ik
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ik
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00
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b

�

�

; (3.16)

whi
h has a simple geometri
 interpretation: using Eq. (A.22), we 
an identify ea
h term

of the Fourier expansion of the height Æ�

i

, with one ellipsoidal surfa
e, with equatorial and

polar 
attenings

�

(ik)

�

= 2Z

ik


os �

ik

; �

(ik)

z

= Z

00

ik


os �

00

ik


os Æ

00

ik

�

�

(ik)

�

2

; (3.17)

and rotated at an angle Æ

ik

=2, with respe
t to the axis x.

3.4 The disturbing potential

The potential of the i-th layer ofm at a generi
 pointM

�

(r

�

; �

�

; '

�

) external to this layer,


an be written as the potential of one spheri
al shell of outer and inner radii R

i

and R

i�1

,

respe
tively, plus the disturbing potential due to the mass ex
ess or de�
it 
orresponding
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to the outer and the inner boundary heights Æ�

i

and Æ�

i�1

. It is important to note that sin
e

these ex
esses or de�
its are very small, we may 
al
ulate the 
ontribution of ea
h term of

the Fourier expansion separately and then sum them to obtain the total 
ontribution.

In this way, we assume that the i-th layer has an outer and an inner boundary heights

given by the k-th term of the Fourier expansion. The equatorial and polar 
attenings of

the outer boundary, �

(ik)

�

and �

(ik)

z

, are given by Eq. (3.17), and the bulge is rotated at an

angle Æ

ik

=2 with respe
t to the axis x. Similarly, the inner boundary height Æ�

(1)

i�1

, 
an be

identi�ed with the boundary height of one ellipsoidal surfa
e, with equatorial and polar


attenings

�

(i�1k)
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= 2Z

i�1k


os �

i�1k
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(i�1k)
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= Z

00
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00

i�1k


os Æ

00

i�1k

�

�

(i�1k)

�

2

; (3.18)

rotated at an angle Æ

i�1k

=2, with respe
t to the axis x.

The disturbing potential at an external point M(r

�

; �

�

; '

�

), due to the mass ex
ess or

de�
it, 
orresponding to the k-th term of the Fourier expansion of the outer and the inner

boundary heights Æ�

i

and Æ�

i�1

, is

ÆU

ik

(r

�

) = �

3GC

i

2r

�3

sin
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�
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�(R

5

i
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R

5

i

� R

5

i�1

; (3.19)

where C

i

is the axial moment of inertia of the i-th layer (see Appendix A) and �(f

i

) =

f

i

� f

i�1

, denotes the in
rement of one fun
tion f

i

, between the inner and the outer

boundaries of this layer.

Taking into a

ount that the total disturbing potential of the i-th layer, 
an be ap-

proximated by the sum of the 
ontribution of ea
h term of the Fourier expansion, we

obtain

ÆU

i

(r

�

) =

X

k2Z

ÆU

ik

(r

�

); (3.20)

and repla
ing the 
oeÆ
ients Z

ik

and Z

00

ik

, given by Eq. (3.10), and the angles Æ

ik

and Æ

00

ik

,
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given by Eq. (3.15), we obtain
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� 1); (3.21)

where the argument �

�

k

, is

�

�

k

= 2'

�

� 2$ + (k � 2)`; (3.22)

and the 
oeÆ
ient L

0

i

, is

L

0

i

=

G

i

R

5

i

� G

i�1

R

5

i�1

R

5

i

� R
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i�1

: (3.23)

The fun
tions C

ik

, D

ik

are de�ned as

C
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; (3.24)

and the 
oeÆ
ients C

00

ik

, D

00

ik

are
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; (3.25)

and do not depend where the potential is 
al
ulated.

Furthermore, using the de�nitions of �

ik

and �

00

ik

, given by Eqs. (3.14), we 
an write

the trigonometri
 fun
tions as

sin 2�

ik

=

2


i

(�

i

+ kn)
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i

+ (�

i

+ kn)

2
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os
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+ (�
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; (3.26)

and

sin 2�
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=
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+ (kn)
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�

00
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2

i
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i

+ (kn)

2

: (3.27)

These trigonometri
 expressions show the di�eren
e between the frequen
y fun
tions C

ik

(�

i

; �

i�1

),

D

ik

(�

i

; �

i�1

) and the 
oeÆ
ients C

00

ik

= C

ik

(0; 0), D

00

ik

= D

ik

(0; 0).

3.5 For
es and torques

To 
al
ulate the for
e and torque due to the i-th layer of m, a
ting on one mass M

�

lo
ated in M

�

(r

�

; �

�

; '

�

), we take the negative gradient of the potential of the i-th layer
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at the point M

�

and multiply it by the mass pla
ed in the point F

i

= �M

�

r

r

�

ÆU

i

. In

spheri
al 
oordinates, we obtain
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and the 
orresponding torque is M

i

= r

�

� F

i

, or, sin
e, r

�

= (r

�

; 0; 0):

M

1i

= 0; M
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; (3.29)

that is
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: (3.30)
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3.6 For
es and torques a
ting on M

Sin
e we are interested in the for
e a
ting on M due to the tidal deformation of the i-th

layer of m, we must substitute (M

�

; r

�

; �

�

; '

�

) by (M; r;

�

2

; $ + v). The for
es, then are
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; (3.31)

where the angle �

k

, is de�ned as

�

k

= 2v + (k � 2)`: (3.32)

The 
orresponding torques are

M
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= 0; (3.33)

After Fourier expansion, the torque along to the axis z (M

zi

= �M

2i

), 
an be written as

M
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45GM
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Finally, the time average of the total torque over one period is hM

zi

i =

1

2�

R

2�

0

M

zi

d`,

therefore
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: (3.35)

The above expression for the time average, whi
h is equivalent to take into a

ount

only the terms with j = 0, only is valid if �

i

is 
onstant. This 
ondition is satis�ed, for

example, by homogeneous bodies with 
 � n, as stars and giant gaseous planets, where its

stationary rotation is � 6n
e

2

=(n

2

+ 


2

). However, the �nal rotation of the homogeneous

ro
ky bodies, with 
 � n, as satellites and Earth-like planets, is dominated by a for
ed

libration � B

1


os (`+ �

1

) with the same period as the orbital motion of the system (see

Chap. 3 of FM15). In this 
ase, any time average that involves the rotation, should take
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into a

ount this os
illation. It is worth emphasizing that in this paper we 
al
ulate the

time average of some quantities, as the work done by the tidal for
es and the variations

in semi-major axis and e

entri
ity, assuming whi
h �

i

is 
onstant, whi
h is valid only for

bodies with low vis
osity. The appli
ations to Titan in this paper were done using the


omplete equations, where the distin
tion between these extreme 
ases is not ne
essary.

3.7 Work done by the tidal for
es a
ting on M

The time rate of the work done by the tidal for
es due to the i-th layer is

_

W

(i)

orb

= F

i

�v,

where v is the relative velo
ity ve
tor of the external body, whose 
omponents in spheri
al


oordinates are

v

1

=
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p

1� e
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= 0; v

3

=

na
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p

1� e
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r

: (3.36)

Using the tidal for
e, given by the Eq. (3.31), the rate of the work 
orresponding to

the i-th layer is
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or after Fourier expansion
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1

For the details of this 
al
ulation, see Appendix F.
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The time-average over one period is

*
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: (3.39)

The average of the last term of Eq. (3.38) is
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a
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4

sin v d` = 0; (3.40)

(see Appendix D).

3.8 Variations in semi-major axis and e

entri
ity

In this se
tion, we 
al
ulate the variation in semi-major axis and e

entri
ity. For this,

we use the energy and angular momentum de�nitions. If we di�erentiate the equation

W

orb

= �

GMm

T

2a

;

where a is the semi-major axis of the relative orbit, we obtain the equation for the rate of

variation in semi-major axis:

_a =

2a

2

_

W

orb

GMm

T

: (3.41)

In the same way, if we di�erentiate the angular momentum equation, we obtain

L =

Mm

T

M +m

T
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2

p

1� e

2

=

GMm

T

na

p

1� e

2

;

where e is the e

entri
ity of the relative orbit, and using _n=n = �3 _a=2a, we obtain the

equation for the rate of variation in e

entri
ity

e _e

1� e

2

= �

_

L

L

�

_

W

orb

2W

orb

; (3.42)

where

_

L =M

z

is the total torque exerted by the tidal for
es. The internal torques between

the di�erent layers of m, su
h as the fri
tion for
es and to the gravitational 
oupling, 
an
el

themselves and do not a�e
t the orbital motion.

Using Eqs. (3.41) and (3.34) and summing over all layers, we obtain the equation for
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the variation in semi-major axis:
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After the time-average over one period, we obtain that the variation in semi-major axes

is
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or
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where the parameter Q

i

is de�ned as
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where C

N+1

= 0 (sin
e d

N+1

= 0) and R

0

= 0. An elementary 
al
ulation using the axial

moment of inertia of the i-th-layer C

i

(see Se
tion A) and the total axial moment of inertia
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or, using the Eq. (2.42),
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; (3.48)

where k

f

is the tidal 
uid Love number.

In the same way, using the Eq. (3.42), repla
ingM

z

and

_

W

orb

by the Eqs. (3.34) and

(3.38), and summing over all layers, we obtain
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After the time-average over one period, we obtain that the variation in e

entri
ity is
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2;k

C

ik

+
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E

2

0;k

C

00

ik

�
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(3.50)

or

h _ei = �

45MR

3

N

Cn

16m

2

T

a

4

(1� e

2

)

2ae

�

�

N

X

i=1

X

k2Z

Q

i

�

�

2

p

1� e

2

� (2� k)

�

E

2

2;k

sin 2�

ik

+

k

3

E

2

0;k

sin 2�

00

ik

�

: (3.51)

It is important to note that the parameter Q

i

only depends on the internal stru
ture.

When N = 1, we obtain Q

1

= 1, and re
over the same di�erential equations of the

homogeneous 
ase given in FM15. In the general 
ase, the variations in semi-major axis

and e

entri
ity 
an be expressed as the sum of the 
ontribution of ea
h layer weighed by

this parameter.



Chapter 4

The two-layer model

In the previous 
hapters we have studied the tidal e�e
t on one body 
omposed of N

homogeneous layers. However, in 
ontrast with a homogeneous body, in one di�erentiated

body we must also take into a

ount the intera
tion between the di�erent layers. In this


hapter, we 
onsider two important intera
tion e�e
ts: the gravitational 
oupling and the

fri
tion that o

urs at ea
h interfa
e of two layers in 
onta
t.

An important point to keeping mind is the number of layers to 
onsider, be
ause the

number free parameters in
reases signi�
antly as the number of layers is in
reased. For

this reason, here, we study the simplest non-homogeneous problem: one body formed by

two independent rotating parts. The inner layer, or 
ore, is denoted with the subs
ript 


and the outer layer, or shell, is denoted with the subs
ript s. Despite its simpli
ity, the

two-layer model allows to study the main features, introdu
ing a minimum number of free

parameters.

4.1 The tidal torques

The tidal torques due to the 
ore and the shell, along the axis z, are (see Eq. (3.34))

M

z


= T





C




T




M

zs

= T

ss

C

s

T

s

� T

s


C

s

T




; (4.1)

where the fun
tion T

i

(with i = 
; s) is

T

i

=

X

k;j2Z

E

2;k

E

2;k+j




i

(�

j

+ kn) 
os j`+ 


2

i

sin j`




2

i

+ (�

i

+ kn)

2

; (4.2)
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the 
onstants T

ij

are

T





= T H




; T

s


=

T H




R

5




R

5

s

� R

5




; T

ss

=

T H

s

R

5

s

R

5

s

�R

5




; (4.3)

and the tidal parameter T , is de�ned as

T =

45GM

2

R

3

s

8m

T

a

6

�

3n

2

��

�

2

: (4.4)

R




, C




are the mean outer radius and moment of inertia of the 
ore, and R

s

, C

s

are the

mean outer radius and moment of inertia of the shell. The parameters H




, 





are the

Clairaut parameter and the relaxation fa
tor at the 
ore-shell interfa
e and H

s

, 


s

are the

Clairaut parameter and the relaxation fa
tor at the body's surfa
e.

4.2 The gravitational 
oupling

When the prin
ipal axes of inertia of two layers are not aligned, a restoring gravitational

torque whi
h tends to align these axes appears. This torque was 
al
ulated by several

authors (e.g. Bu�ett, 1996; Van Hoolst et al., 2008; Karatekin et al., 2008; Callegari et

al., 2015) when the layers are rigid. Here, we use one similar expression for this torque

adapted to a body assumed as formed by two layers whose boundaries are prolate ellipsoids,

whose 
attenings are de�ned by the 
omposition of the main elasti
 and anelasti
 tidal


omponents.

In the 
ase of one body 
omposed by N homogeneous layers, the torque a
ting on the

inner i-th layer due to the outer j-th layer (not ne
essarily 
ontiguous) is

�

ij

=

Z

m

j

(r�rÆU

i

) dm

j

=

Z

2�

0

Z

�

0

Z

�

0

j

�

0

j�1

d

j

(r�rÆU

i

) r

2

sin � dr d� d'; (4.5)

where d

j

, m

j

are the density and the mass in the j-th layer and ÆU

i

is the disturbing

potential of the i-th layer at an external point.

The limits of the integral in Eq. (4.5), �

0

j�1

and �

0

j

, are the real outer and inner

boundaries of the j-th layer, respe
tively. In our model we have to 
onsider the a
tual


attening of the surfa
es, whi
h is the 
omposition of the main elasti
 and anelasti
 tidal


omponents (see Se
. 10 of Ferraz-Mello, 2013). The addition of the two 
omponents

is virtually equivalent to the use ab initio of the Maxwell vis
oelasti
 model as done by

Correia et al. (2014) (Ferraz-Mello, 2015b).
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Figure 4.1: Equatorial se
tion of the i-th and j-th layers. �

0

i

and �

0

i�1

are the outer and the inner equatorial


attenings of the i-th layer and the angles #

i

and #

i�1

are its outer and inner geodeti
 lags. Similarly, �

0

j

and �

0

j�1

are the outer and the inner equatorial 
attenings and #

j

and #

j�1

are the equatorial 
attenings

and the geodeti
 lags of the j-th layer.

Assuming that the elasti
 and the tidal 
omponents have ellipsoidal surfa
es (not alig-

ned), the resulting surfa
e 
an be approximated by a prolate ellipsoid with equatorial


attening �

0

and rotated by an angle # with respe
t to M. For the sake of simpli
ity, we

also assume that the relative motion of the outer body M is 
ir
ular. Then, negle
ting the

axial term does not 
ontribute to the 
al
ulation of the gravitational 
oupling, the height

of the outer surfa
e of the j-th layer with respe
t to the one sphere of radius R

j

, in polar


oordinates, rotated by an angle #

j

with respe
t to M and to �rst order in the 
attenings

(see Fig. 4.2), is

Æ�

0

j

=

1

2

R

j

�

0

j

sin

2

� 
os (2'� 2#

j

) =

1

2

R

j

H

j

��

J

�

j

sin

2

� 
os 2'+

+

1

2

R

j

H

j

��

J


os �

j0

sin

2

� 
os (2'� �

j0

); (4.6)

where 0 < �

j

< 1 is a relative measurement of the maximum height of the elasti
 tides of

the outer boundary of the j-th layer. The angle #

j

is often 
alled the geodeti
 lag of the

surfa
e.

If we open the trigonometri
 fun
tions, by identi�
ation of the terms with same trigo-

nometri
 arguments, the resulting equatorial 
attening of the outer boundary of the j-th

layer is

�

0

j

= H

j

��

J

q

�

2

j

+ 
os

2

�

j0

(1 + 2�

j

); (4.7)
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Figure 4.2: S
heme of the 
omposition of the elasti
 and anelasti
 tides of the outer boundary of the j-th

layer. �

(el)

j

(dotted ellipsoid) and �

(tide)

j

(dashed ellipsoid) are the equatorial 
attenings of the main elasti


and anelasti
 tides, respe
tively, and �

0

j

is the equatorial 
attening of the ellipsoidal surfa
e whi
h result

of this 
omposition (solid ellipsoid). The semi-major axis of the elasti
 ellipsoid is oriented towards M.

and the geodeti
 lag is

#

j

=

1

2

tan

�1

�

sin 2�

j0

1 + 2�

j

+ 
os 2�

j0

�

: (4.8)

The height of the inner boundary of the j-th layer, taking into a

ount the 
omposition

of the main elasti
 and anelasti
 tides has an identi
al expression:
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2
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� 
os (2'� 2#
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��

J
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sin
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� 
os (2'� �

j�1;0

); (4.9)

where 0 < �

j�1

< 1 is a relative measurement of the maximum height of the elasti
 tides

of the inner boundary of the j-th layer. Then, the resulting equatorial 
attening is

�

0

j�1

= H

j�1

��

J

q

�

2

j�1

+ 
os

2

�

j�1;0

(1 + 2�

j�1

); (4.10)

and the geodeti
 lag is

#

j�1

=

1

2

tan

�1

�

sin 2�

j�1;0

1 + 2�

j�1

+ 
os 2�

j�1;0

�

: (4.11)

In the same way, we assume that the ellipsoidal shape of this layer is also given by the


omposition of the main elasti
 and anelasti
 tidal 
omponents. Then, the inner and outer



Se
tion 4.2. The gravitational 
oupling 63

equatorial 
attenings, respe
tively, are

�

0

i�1

= H

i�1

��

J

q

�

2

i�1

+ 
os

2

�

i�1;0
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); �
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J
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os
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i0

(1 + 2�
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(4.12)

and the 
orresponding geodeti
 lags are

#

i

=

1

2
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os 2�

i0
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sin 2�
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+ 
os 2�

i�1;0

�

; (4.13)

where 0 < �

i

; �

i�1

< 1 are relative measurements of the maximum heights of the elasti


tides of the outer and inner boundaries of the i-th layer.

Using the expression of the disturbing portential, given by Eq. (A.36), and negle
ting

the axial term, we obtain

ÆU

i

= �

3GC

i

4r

3

sin
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�

�

�

R

5
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�

0
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os (2'� 2#
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5

i

� R

5

i�1

; (4.14)

where �(f

i

) = f

i

� f

i�1

, denotes the in
rement of one fun
tion f

i

between the inner and

the outer boundaries of this layer. Then, the ve
torial produ
t in Eq. (4.5) is

r�rÆU

i

= �

2�Gd

i

5r

3

�

2 sin ��

�
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(4.15)

Using the polar unitary ve
tors in Cartesian 
oordinates

b

� = 
os � 
os'
b
x+ 
os � sin'

b
y � sin �

b
z

b
' = � sin'

b
x+ 
os'

b
y; (4.16)

and the approximation of ln �

j

=�

j�1

to �rst order in the 
attenings
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); (4.17)

then, the torque a
ting on the inner i-th layer due to the outer j-th layer is

�

ij

=

32�

2

G

75

d

i
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�

ij

�
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�
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�
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� 2#
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b
z; (4.18)

where �

ij

(f

ij

)

def

= �(f

ij

)��(f

i;j�1

) = f

ij

� f

i�1;j

� f

i;j�1

+ f

i�1;j�1

.

As the torque a
ting on the outer j-th layer, due to the inner i-th layer, is the rea
tion

�

ji

= ��

ij

; (4.19)
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then, the total gravitational 
oupling, a
ting on the i-th layer 
an be written as

�

i

=

N

X

p=1; p6=i

�

ip

= �

i�1

X

p=1

�

pi

+

N

X

p=i+1

�

ip

: (4.20)

If we 
onsider the two-layer model, the torques a
ting on the 
ore and the shell are

�
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s
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); (4.21)

where the gravitational 
oupling parameter K is

K =

32�
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: (4.22)

The equatorial 
attenings are
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and the geodeti
 lags are

#
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=
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: (4.24)

The parameters 0 < �




; �

s

< 1 are relative measurements of the heights of the elasti
 tides

of the outer surfa
es of the 
ore and the shell, respe
tively. The trigonometri
 sin 2�

i0

and


os

2

�

i0

are frequen
y fun
tions given in Eq. (3.26). An elementary 
al
ulation shows that


os 2�

i0

=




2

i

� �

2

i




2

i

+ �

2

i

: (4.25)

4.3 Linear drag

The model 
onsidered here also assumes that a linear fri
tion o

urs between two


ontiguous layers. We assume that between two 
ontiguous layers (for instan
e, the inner

boundary of the i-th layer and the outer boundary of the (i + 1)-th layer) exists a thin

liquid boundary with vis
osity b�

i

and thi
kness h

i

.

We assume that the torque, along to the axis z, a
ting on the inner i-th layer due to

the outer (i+ 1)-th layer is

�

i;i+1

= �

i

(


i+1

� 


i

); (4.26)

and vi
e-versa. The fri
tion 
oeÆ
ient �

i

of the i-th boundary is an undetermined 
onstant.
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Let dF

i;i+1

be the for
e a
ting tangentially on the area element of an sphere of radius

R

i

. If the 
uid in 
onta
t with the surfa
e of the sphere is a Newton 
uid, the modulus of

the for
e is (Papanastasious et al., 2000, Chap. 6)

dF

i;i+1

=

b�

i

h

i

V

i

R

2

i

sin � d� d� (4.27)

where V

i

= R

i

sin �(


i+1

� 


i

) is the relative velo
ity of the (i + 1)-th layer with respe
t

to the i-th layer at the latitude � and R

i

; �; � are the spheri
al 
oordinates of the 
enter

of the area element. The modulus of the torque of the for
e dF

i;i+1

, along to the axis z, is

d�

i;i+1

= R

i

sin � dF

i;i+1

: (4.28)

The element of area is R

i

d��R

i

sin �d�. The integral of d�

i;i+1

over the sphere is easy to


al
ulate giving
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=

Z
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0
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) (4.29)

If we 
ompare with the law used to introdu
e the fri
tion, we obtain

�

i

=

8�

3

b�

i

h

i

R

4

i

: (4.30)

This is the law 
orresponding to a liquid-solid boundary for low speeds.

The torque, along to the axis z, a
ting on the inner (i + 1)-th layer due to the outer

i-th layer is

�

i+1;i

= ��

i;i+1

= ��

i

(


i+1

� 


i

): (4.31)

Then, the total torque, due to the fri
tion, a
ting on the i-th layer is the sum of the

torque due to the outer (i+1)-th layer plus the the torque due to the inner (i�1)-th layer

�

i

= �

i;i�1

+ �

i;i+1

= �

i�1

(


i�1

� 


i

)� �

i

(


i

� 


i+1

): (4.32)

In the two-layer model, the torque a
ting on the 
ore due to the shell and the torque

a
ting on the shell due to the 
ore are, respe
tively

�




= �(


s

� 





)

�

s

= ��(


s

� 





); (4.33)

where �

o

and h are the vis
osity and the thi
kness, respe
tively, of the 
ore-shell boundary

and

� =

8�

3

�

o

h

R

4




: (4.34)
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4.4 Rotational equations

Putting together all 
ontributions to the torque, we obtain the rotational equations

C




_







= M


ore

z

= �M

z


+ �




+ �




C

s

_




s

= M

shell

z

= �M

zs

+ �

s

+ �

s

; (4.35)

where M


ore

z

and M

shell

z

are the z-
omponents of the total torque a
ting on the 
ore and

on the shell. These torques in
lude the rea
tion of the tidal torque M

zi

a
ting on the i-th

layer, the gravitational 
oupling �

i

and the fri
tion �

i

.

4.5 Comparison with the homogeneous 
ase

In this se
tion, we 
ompare some of the main features of the homogeneous 
reep tide

theory, developed in FM15, with the non-homogeneous 
reep tide theory for the two-layer

model developed in this arti
le. The main diÆ
ulty lies in the number of free parameters

in these approa
hes. In the homogeneous 
ase, with a suitable 
hoi
e of dimensionless

variables, the �nal state of rotation depends only on the ratio n=
 and on the e

entri
ity

e (Eq. (42) of FM15). However, even in the most simple non-homogeneous 
ase (the two-

layer model), we need to set 12 free parameters. In order to pro
eed, we use the typi
al

values for Titan and also Titan's e

entri
ity e = 0:028 (see Tables 5.1-5.4 in Se
. 5.2),

and let as free parameters, only n=


i

, e and �.

Following FM15, we indrodu
e the adimensional variables y

i

= �

i

=�
 and the s
aled

time x = `=�
, where �
 = 2








s

(





+ 


s

)

�1

. If we 
onsider the 
ase in whi
h 





= 


s

, the

behavior of the evolutions of y




and y

s

is similar to that observed in the homogeneous 
ase.

Fig. 4.3 shows the time evolution of y

s

, with inital 
onditions y




= 0:3, y

s

= 0:15 and

di�erents values of � = log

10

(n=





) = log

10

(n=


s

). When 


i

� n (i.e. ro
ky bodies), after

a transient, the solution os
illates around zero, independently of the inital 
onditions (left

panel), and the amplitude of os
illation de
reases when � de
reases. In the 
ase � = 4, we

also plot the solution with initial 
onditions y




= 0:3 and y

s

= �0:15 (dashed bla
k line).

This solution in
reases qui
kly, be
oming indistinguishable of the solution with initial value

y

s

= 0:15. When 


i

� n, the stationary solution be
omes a super-syn
hronous rotation

with the amplitude of the os
illation tending to zero. Finally, when 


i

� n, the stationary



Se
tion 4.5. Comparison with the homogeneous 
ase 67

Figure 4.3: Evolution of y

s

for the 
ase 





= 


s

with initial 
onditions y




= 0:3 and y

s

= 0:15 and

several values of � = log

10

(n=





) = log

10

(n=


s

). For � = 4, we also plot the initial 
onditions y

s

= 0 and

y

s

= �0:15. Left : � = 4; 3; 2. Right : � = 0;�1;�2.

Figure 4.4: Same as Fig. (4.3), with �

s

=n instead of y

s

.

solution of y

s

be
omes 
loser zero (right panel), but �

s

= �
y

s

tends to 12e

2

, independently

of the value of � (Fig. 4.4). The evolution of y




is very similar and the fri
tion does not

have any relevant role.

When 





6= 


s

, we 
an have a di�erent behavior of the 
ore and shell rotations. In Fig.

4.5, we show the 
ore and shell rotation (left and right, respe
tively) for log

10

(n=





) = 2

and log

10

(n=


s

) = 4. We also set two very di�erents values for the fri
tion: the fri
tionless


ase � = 0 (bla
k) and a very high value of fri
tion � = 10

28

kg km

2

s

�1

(red lines),

larger than the expe
ted value in the 
ase of Titan (� = 10

11

� 10

13

kg km

2

s

�1

), whi
h


orresponds to a typi
al o
ean vis
osity �

o

= �

H

2

O

� 10

�3

Pa s and a large range for the
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Figure 4.5: Evolution of y




and y

s

for initial 
onditions y




= 0:3 and y

s

= 0:15, relaxation fa
tors su
h

that log

10

(n=





) = 2 and log

10

(n=


s

) = 4, and two values of the fri
tion parameter: � = 0 (bla
k) and

� = 10

28

kg km

2

s

�1

(red).

o
ean thi
kness h (see Eq. 4.34). In the fri
tionless 
ase, we 
an observe the di�erential

rotation between the 
ore and the shell. After a transient, both solutions os
illate around

zero with very di�erent amplitudes, depending on the value of 
 of ea
h surfa
e. For very

high fri
tion parameter, both layers rotate with the same angular velo
ity. The 
ore and

the shell have the same amplitude of os
illation and phase, keeping the relative velo
ity

equal to zero.

Figure 4.6: Family of stationary super-syn
hronous with rotations relaxation fa
tors equal and su
h that

n=





= n=


s

= 0:01 and 0 � e � 0:5. Left : � = 0. Right : � = 10

20

kg km

2

s

�1

.

Finally, we study the dependen
e of the stationary solutions on the e

entri
ity. For

that sake, we 
hoose a grid of initial 
onditions �




=n and �

s

=n, and integrate the system

(4.35) until the stationary solution is rea
hed. When n=





= n=


s

� 1, all initial 
onditions
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lead to the same equilibrium point (a super-syn
hronous rotation), independently of the

value of the fri
tion parameter. The value of the ex
ess of rotation depends only on the

e

entri
ity. In the left panels of Fig. 4.6, we show the family of stationary solutions, where

ea
h point 
orresponds to a di�erent e

entri
ity value in 0 � e � 0:5. If the e

entri
ity is

zero, the rotations are syn
hronous to the orbital motion. When the e

entri
ity in
reases,

the rotations be
ome super-syn
hronous, and the ex
ess of rotation �

i

=n is proportional

to e

2

(right panels).

Figure 4.7: Families of stationary rotations for n=





= n=


s

= 1 and 0 � e � 0:5. Top: � = 0. Bottom:

� = 10

20

kg km

2

s

�1

.

When n=





and n=


s

in
rease, that is, when the vis
osities in
rease, the ex
ess in the

super-syn
hronous rotation de
reases. If the e

entri
ity is low, the only attra
tor is the

super-syn
hronous solution. When the e

entri
ity in
reases, 
aptures in other attra
tors

�

i

' n; 2n; 3n; : : : appear gradually. This behavior was largely studied in FM15 and also

in Correia et al. (2014).

Fig. 4.7 shows the families of stationary rotation for n=





= n=


s

= 1, 0 � e � 0:5

and two values of the fri
tion parameter: the fri
tionless 
ase, with � = 0 (top panels),

and a very high fri
tion 
ase, with � = 10

20

kg km

2

s

�1

(bottom panels). In the fri
tionless


ase, when the e

entri
ity is smaller than � 0:48, only the super-syn
hronous solution

is possible. If the e

entri
ity is larger than 0:48, besides the super-syn
hronous solution,

three new stationary 
on�gurations appear: The 
ore and the shell in the 3/2 
ommen-

surability (�




' n and �

s

' n), the 
ore in super-syn
hronous rotation and the shell in

the 3/2 
ommensurability (�




' 0 and �

s

' n) and the 
ore in the 3/2 
ommensurability

and the shell in super-syn
hronous rotation (�




' n and �

s

' 0). Fig. 4.8 shows in more
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Figure 4.8: Families of stationary rotations with rotations relaxation fa
tors equal and su
h that n=





=

n=


s

= 1, 0 � e � 0:5 and � = 0. Labels R

pq

indi
ates the two frequen
ies: �




= pn and �

s

= qn.

detail these stationary solutions. The labels R

pq

denote the stationary families indi
ating

the resonan
es �




= pn and �

s

= qn. It is important to note that the ex
ess in the rotati-

ons are large be
ause the e

entri
ity is high. In the high fri
tion 
ase (bottom panels of

Fig. 4.7), only the stationary solutions with the same 
ommensurabilities survive be
ause

in these 
on�gurations, the relative velo
ity of rotation between the 
ore and the shell is

zero. Fig. 4.9 shows the four basins of ea
h equilibrium point (red 
rosses, denoted by

the label P

pq

), when the e

entri
ity is su
h that e = 0:4875 and the fri
tion parameter is

� = 0. The basins are shown in white (P

00

attra
tor), 
yan (P

01

attra
tor), yellow (P

10

attra
tor) and green (P

11

attra
tor). All the initial 
onditions in any of these regions, are

rea
hed to the 
orresponding attra
tor. Due to the inital rotations expe
ted are su
h that

�




(t = 0) � �

s

(t = 0), the attra
tors with di�erential rotation zero are more probable than

the attra
tors with higher di�erential rotation.

If n=





and n=


s


ontinue to in
rease and the fri
tion parameter is low (not ne
essarily

zero), the 
ore and the shell may tend to di�erents resonan
es, depending on the e

en-

tri
ity. If the fri
tion in
reases, the attra
tors with higher di�erential rotation, begin to

disappear, until eventually, as from a 
ertain value limit of � only survive the attra
tors

with di�erential rotation zero Fig. 4.10.
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Figure 4.9: Basins of the attra
ting stationary rotations for n=





= n=


s

= 1, e = 0:4875 and � = 0.

We plot the families of stationary rotations, 
orresponding to these relaxation fa
tors and fri
tion (solid

bla
k lines) and the four stationary solutions, 
orresponding this e

entri
ity (red 
rosses). The basins are

shown in white (the 
ore and the shell in super-syn
hronous rotation), 
yan (the 
ore in super-syn
hronous

rotation and the shell in the 3/2 
ommensurability), yellow (the 
ore in the 3/2 
ommensurability and the

shell in the 3/2 
ommensurability) and green (the 
ore and the shell in the 3/2 
ommensurability).

4.6 Near-syn
hronous solution of the rotational equations

Using the 
onvention 1 = 
ore and 2 = shell, the rotational system of the two-layer

model, given by Eq. (4.35), 
an be written as

_y

1

= �T

�

11

T

1

+K

1

sin 2� + F

1

(


2

y

2

� 


1

y

1

)

_y

2

= T

�

21

T

1

� T

�

22

T

2

�K

2

sin 2� �F

2

(


2

y

2

� 


1

y

1

); (4.36)

where, the rotational variables are

y

1

=

�

1




1

=

2


1




1

�

2n




1

; y

2

=

�

2




2

=

2


2




2

�

2n




2

; (4.37)

the tidal fun
tion T

i

is

T

i

=

X

k;j2Z

E

2;k

E

2;k+j

(y

i

+ P

ik

) 
os (jnt) + sin (jnt)

1 + (y

i

+ P

ik

)

2

; (4.38)

with P

ik

= kn=


i

= kp

i

. The 
onstants are

T

�

ij

=

2T

ij




i

; K

i

=

2K




i

C

i

; F

i

=

�




i

C

i

: (4.39)
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Figure 4.10: Attra
tors when the relaxation fa
tors are equal and su
h that n=





= n=


s

= 10. The

fri
tion � in
reases from top to bottom and the e

entri
ity e in
reases from left to right. The units of �

are kg km

2

s

�1

.

We assume that the solution, to se
ond order in e

entri
ity, 
an be written as

y

1

= b

10

e

2

+ 


11

e 
os `+ s

11

e sin `+ 


12

e

2


os 2`+ s

12

e

2

sin 2`

y

2

= b

20

e

2

+ 


21

e 
os `+ s

21

e sin `+ 


22

e

2


os 2`+ s

22

e

2

sin 2`; (4.40)

where k

i0

, 


ij

and s

ij

are undetermined 
oeÆ
ients. Introdu
ing the solution (4.40) into the

rotational system (4.36) and expanding to se
ond order in e

entri
ity, by identi�
ation of

the terms with same trigonometri
 argument, we 
an 
al
ulate these 
oeÆ
ients.

The derivatives of (4.40) are

_y

1

= ns

11

e 
os `� n


11

e sin ` + 2ns

12

e

2


os 2`� 2n


12

e

2

sin 2`

_y

2

= ns

21

e 
os `� n


21

e sin ` + 2ns

22

e

2


os 2`� 2n


22

e

2

sin 2`; (4.41)
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To se
ond order in e

entri
ity, the tidal fun
tion T

i

is

T

i

'

y

i

1 + y

2

i

+

e

2

4

�

�

20y
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e

2

4

�

34y
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�
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�

7(y
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� p

i
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2
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e
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�
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34

1 + y

2
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7

1 + (y
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+ p
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)

2

�

7

1 + (y
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� p
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)

2

+

34

1 + (y

i

� 2p
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)

2

�

sin 2`;

(4.42)

and, using the proposed solution (4.40), 
an be approximated by

T
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'

�

b

i0

�

12p

i
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2

i

+ q

i1




i1

+ q
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+
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+
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�
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�
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�

17p
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1 + 4p
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34p
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1 + 4p
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+ q
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+ q
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�

e

2

sin 2`; (4.43)

where the 
oeÆ
ients q

i1

and q

i2

are

q

i1

=

3(2 + p

2

i

+ p

4

i

)

2(1 + p

2

i

)

2

; q

i2

=

3p

i

(1 + p

2

i

)

2

: (4.44)

In the same way, the trigonometri
 fun
tion of the gravitational 
oupling 
an be ap-

proximated by

sin 2� = sin

�

tan

�1

�

y

2

1 + �

2

(1 + y

2

2

)

�
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and the amplitude of os
illation is

K =

32�

2
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The fri
tion term is
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Repla
ing (4.41)-(4.47) into (4.36) and 
ole
ting the terms with same trigonometri


argument, we 
an �nd three linear sub-systems for the undetermined b

i0

, 


ij

and s

ij

,whi
h


an be written in ve
torial notation as

D
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1
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D
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� R
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; (4.49)

are the undetermined 
oeÆ
ients ve
tors. The 
onstants matri
es are de�ned as

D =

2

4

a

11

a

12

a

21

a

22

3

5

; T =

2

4

T

�

11

�T

�

12

�T

�

21

T

�

22

3

5

; Q =

2

4

q

11

�q

12

�q

21

q

22

3

5

; (4.50)

D

1

=

2

6

6

6

6

6

6

4

a

11

n a

12

0

�n a

11

0 a

12

a

21

0 a

22

n

0 a

21

�n a

22

3

7

7

7

7

7

7

5

; D

2

=

2

6

6

6

6

6

6

4

a

11

2n a

12

0

�2n a

11

0 a

12

a

21

0 a

22

2n

0 a

21

�2n a

22

3

7

7

7

7

7

7

5

; (4.51)

where the 
onstant a

ij

is

a

ij

= (�1)

i+j

�
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ij

+
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; (4.52)

and the terms with T

�

12

= 0, were added to make symmetri
al the linear equations. Finally,

the ve
tors P

i

and R

i

are
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The solution of these sub-systems are
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Finally, the rotational solutions 
an be written as
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where the 
onstants B
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and the phases �
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4.6.1 Tidal drift and the periodi
 terms

The tidal drift is the term B

i0

of the solution (4.58). It is
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This result 
an be rewritte as
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1

e

2




2

1

+ n

2

+

12n�

12




2

2

e

2




2

2

+ n

2

�

��

11




1

(q

11




11

+ q

12

s

11

)e

2

� �

12




2

(q

21




21

+ q

22

s

21

)e

2

+O(e

3

)

�

(stat)

2

=

12n�

21




2

1

e

2




2

1

+ n

2

+

12n�

22




2

2

e

2




2

2

+ n

2

�

��

21




1

(q

11




11

+ q

12

s

11

)e

2

� �

22




2

(q

21




21

+ q

22

s

21

)e

2

+O(e

3

): (4.61)

The 
oeÆ
ient �

ij


an be written as �

ij

= f

ij

=g, where f

ij

is

f

ij

= Æ

i;j

T C

1

C

2

C

H

1

H

2

R

5

2

R

5

2

� R

5

1

+

D

j




i




j

(1 + �

i

)K

(1 + �

1

)(1 + �

2

)

+D

j




i

�

2

; (4.62)

Æ

i;j

is the Krone
ker delta (Æ

1;1

= Æ

2;2

= 1 and Æ

1;2

= Æ

2;1

= 0) and the 
onstant g is

g = f

11

+ f

22

�

T C

1

C

2

C

H

1

H

2

R

5

2

R

5

2

�R

5

2

: (4.63)

The two �rst terms of ea
h Eq. (4.61)

N

i

=

12n�

i1




2

1

e

2




2

1

+ n

2

+

12n�

i2




2

2

e

2




2

2

+ n

2

(4.64)


ome from the non-periodi
 terms with jjj = 0, while the terms that involve 


i1

and s

i1

.

P

i

= ��

i1




1

(q

11




11

+ q

12

s

11

)e

2

� �

i2




2

(q

21




21

+ q

22

s

21

)e

2

; (4.65)


ome from the periodi
 terms with jjj = 1. The harmoni
 terms with jjj = 2, do not


ontribute to the stationary rotation at order e

2

.

It is worth emphasizing that in the absen
e of fri
tion and gravitational 
oupling, that

is, K = � = 0, the 
oeÆ
ient �

ij

= Æ

i;j

. Then, the non-periodi
 ex
ess of rotation of the

i-th layer has the same expression that the ex
ess rotation in the 
ase of a homogeneous

body, with 


i

instead of 


�

(stat)

i

=

12n


2

i

e

2




2

i

+ n

2

+O(e

4

): (4.66)

In the 
ase n=


1

� 1, n=


2

� 1, an elementary 
al
ulation shows that ea
h 
oeÆ
i-

ent �

ij

be
omes independent of the fri
tion parameter �, depending only on the internal

stru
ture and on the relaxation fa
tors 


1

and 


2

, with f

ij

tending to

f

ij

= Æ

i;j

T C

1

C

2

C

H

1

H

2

R

5

2

R

5

2

�R

5

1

+

D

j




i




j

(1 + �

i

)K

(1 + �

1

)(1 + �

2

)

: (4.67)
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In the 
ase n=


1

� 1, n=


2

� 1, ea
h 
oeÆ
ient �

ij

be
omes independent of T , K

and �, depending only on the internal stru
ture and on the relaxation fa
tors 


1

and 


2

,

tending to

�

ij

=

D

j




i

D

1




1

+D

2




2

; (4.68)

and the stationary solution tends to syn
hronous rotation.

Figure 4.11: The tidal drift B

i0

(bla
k solid lines), the 
ontribution of the non-periodi
 terms N

i

(bla
k

dashed lines) and the periodi
 terms P

i

(bla
k dotted lines) to the tidal drift, and the amplitudes of

os
illation of the periodi
 terms B

i1

(red solid lines) and B

i2

(blue solid lines), of the Titan's 
ore and

shell in fun
tion of the shell relaxation fa
tor 


2

. The 
ore relaxation fa
tor is 


1

= 10

�8

s

�1

and the

o
ean's vis
osity and thi
kness are �

o

= 10

�3

Pa s and h = 178 km, respe
tively (see Tables 5.1-5.4). Left :

The parameter of the 
ore. Right : The parameters of the shell. We also plot the negative values of B

20

(green solid line) and P

2

(green dotted line).

The periodi
 terms have amplitudes B

i1

and B

i2

, given by the Eq. (4.59). The 
oef-

�
ients 


ij

and s

ij

gives rise to intri
ate analyti
al expressions, but are easy to 
al
ulate

numeri
ally. Fig. 4.11 shows one example for the Titan's 
ore and the shell 
onstants B

1j

and B

2j

, respe
tively, in fun
tion of the shell relaxation fa
tor 


2

(see Table 5.1-5.4). We

use that the 
ore relaxation fa
tor is 


1

= 10

�8

s

�1

, and �x the o
ean's vis
osity and thi
k-

ness values to �

o

= 10

�3

Pa s and h = 178 km, respe
tively. We also plot the non-periodi


N

i

and periodi
 P

i

terms, separately, and the total tidal drift B

i0

= N

i

+ P

i

. We 
an

observe that if 


2

& 10

7:5

s

�1

, the shell os
illates around the super-syn
hronous rotation.

When 


2

. 10

7:5

s

�1

, the tidal drift B

20

be
omes negative and tends to zero, that is, the

shell os
illates around the syn
hronous rotation, with a period of os
illation equal to the

orbital period. The negative sign of the tidal drift B

20

, is due to the 
ontribution of the
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periodi
 terms P

2

, whi
h be
omes negative and jP

2

j � N

2

. Finally, if 


2

. 10

8

s

�1

, the

amplitude of the shell rotation de
reases, tending to zero when 


2

de
reases. On the other

hand, the 
ore os
illates around the syn
hronous rotation, with a period of os
illation equal

to the orbital period, independently of the shell relaxation fa
tor.

This behavior is 
on�rmed by the numeri
al simulations of non-approximate system.

In Fig. 4.12, we show the 
omparison of the Titan's shell rotation in the 
omplete non-

linear system given by Eq. (4.36) and in the approximate analyti
al solution given by Eq.

(4.58), for some values of the 
ore's relaxation fa
tor 





and o
ean thi
kness h. The dashed

red lines show the maximum and minimum values of 


s

� n given by the approximate

solution, taking into a

ount only the �rst harmoni
 (jjj � 1), while the solid bla
k lines

show the maximum and minimum values of 


s

� n when the 
omplete non-linear system

is integrated (using jjj � 7). The approximate solution is in ex
ellent agreement with

numeri
al integration of the equations.

Figure 4.12: Comparison of the amplitudes of the shell rotation and 
orresponding length-of-day variation

of Titan, between the numeri
al integration of the system Eq. (4.35) (solid bla
k lines) and the analyti
al

solution �

i

' B

i0

+ B

i1

sin (`+ �

i1

) (dashed red lines). We also plot the stationary solution given by B

i0

(solid orange line). The 
ore relaxation fa
tor 





in
reases from top to bottom and the o
ean thi
kness h

in
reases from left to right. The o
ean vis
osity is �

o

= 10

�3

Pa s. The horizontal dashed lines show the


on�den
e interval of the observed values, as determined by Meriggiola (2012) (blue) and by Stiles et al.

(2010) (green).



Chapter 5

Appli
ation to Titan's rotation

5.1 Introdu
tion

Before the Cassini-Huygens mission, the spin rate of Titan was assumed as a syn
h-

ronous rotation equal to the mean motion n = 22:5769768 deg/day. The �rst results of

this mission, showed a super-syn
hronous rotation 


s

= 22:5780 deg/day (Lorenz et al.,

2008), or, equivalently, an ex
ess of rotation 


s

� n = 0:38 deg/yr. Using the Cassini

spa
e
raft's radar images, the super-syn
hronous rotation value was 
orre
ted later by

Stiles et al. (2010), to 


s

= 22:57731 deg/day, or, equivalently, an ex
ess of rotation




s

� n = 0:122 deg/yr. These values are far from the syn
hronous rotation expe
ted to

one ro
ky satellite. These values of the ex
ess of rotation were interpreted as an eviden
e

of a subsurfa
e o
ean. Tokano and Neubauer (2005) showed that the ex
hange of a 
ertain

amount of angular momentum between the surfa
e and the atmosphere may be important,

and the presen
e of an internal o
ean (as was modeled by Tobie et al., 2005; Sohl et al.,

2014) may de
ouple rotationally the 
rust from the interior (Karatekin et al., 2008). The

rotation of the 
rust has been studied by Van Hoolst et al. (2009) using the stati
 tide and

internal e�e
ts, as gravitational 
oupling and pressure torques. They found that the 
rust

rotation is in
uen
ed, mainly by the atmosphere and the Saturn torque, and 
laim that

the vis
ous 
rust deformation and the non-hydrostati
 e�e
ts, 
ould play an important

role in the amplitude of the 
rust os
illation. Re
ently, Meriggiola et al. (2016) estimated

Titan's spin rate to 


s

= 22:57693 deg/day, with a residual non-syn
hronus rotation of




s

� n = �0:02 deg/yr 
ompatible with a syn
hronous rotation, and in agreement with

Goldrei
h and Mit
hell (2010) and Van Hoolst et al. (2013). These results were interpre-

ted as a di�erentiated Titan with a relatively thin 
rust of 10-50 km of thi
kness. In this
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hapter we apply the non-homogeneous 
reep tide theory to Titan, adding the torque due

to the ex
hange of angular momentum between the surfa
e and the atmosphere.

5.2 The model

Titan's interior was largely dis
ussed in many papers (e.g. Tobie et al., 2005; Castillo-

Rogez and Lunine, 2010; M
Kinnon and Bland, 2011; Fortes, 2012). The existing general

data of the Titan-Saturn system is given in Table 5.1. In this se
tion, we assume the

interior model given by Sohl et al. (2014) (hereafter referen
e model, see Fig. 5.1), and

is given in Table 5.2. In this model, Titan is formed by four homogeneous layers: i) an

inner hydrated sili
ate 
ore (inner 
ore); ii) a layer of high-pressure i
e (outer 
ore); iii) a

subsurfa
e water-ammonia o
ean and iv) a thin i
e 
rust. For the sake of simpli
ity, we


onstru
t one two-layer equivalent model, where the 
ore is a layer formed by the inner


ore and the high-pressure i
e layer, and the shell is a layer formed by the subsurfa
e o
ean

and the i
e 
rust, but keeping some features of the four-layer model (e.g. axial moments

of inertia and Clairaut numbers). In this way, we 
an use the rotational equations (4.35),

retaining the main features of the realisti
 referen
e model. This simpli�ed model is given

in Table 5.3, and some 
al
ulated parameters of ea
h layer are listed in Table 5.4.

Figure 5.1: Titan's interior for the referen
e model. Left : S
heme of Titan's interior. Right : Titan's

density pro�le. Figure extra
ted of Sohl et al. (2014).

In order to estimate the relative height of the elasti
 tide �

s

, we assume that the di�e-

ren
e between the observed surfa
e 
attening �

0

s

with the tidal 
attening �

s

= H

s

��

J

E

2;0


os �

s0

� H

s

��

J


os �

s0

(
al
ulated) is due to the existen
e of an elasti
 
omponent, with 
attening
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�

el

s

= �

s

H

s

��

J

. If we use Eq. (4.23), and assume that near to the syn
hronous rotation


os

2

�

s0

� 1, we obtain

�

s

�

�

0

s

H

s

��

J

� 1: (5.1)

For the relative heights of the elasti
 tide �




, we assume �




� �

s

def

= �.

Mass (10

22

kg)

(1)

m

T

13.45

E

entri
ity

(2)

e 0.028

Semi-major axis (AU)

(3)

a 0.00816825

Mean motion (deg/day)

(1)

n 22.5769768

(id.) (10

�6

s

�1

) 4.560678013

Orbital period (day)

(1)

2�=n 15.9454476

Di�erential Rotation (deg/yr) 


s

� n 0:122� 0:040

(4)

0:00

+0:02

�0:02

(5)

Titan's ellipsoid semi-major axes (km)

(6)

a 2575.152 � 0.048

b 2574.715 � 0.048


 2574.406 � 0.044

Titan's mean equatorial radius (km)

(6)

R

s

2574.933 � 0.033

Titan's equatorial prolateness (10

�4

)

(6)

�

0

s

1.70 � 0.26

Saturn's mass (10

26

kg)

(7)

M 5.68326

Saturn's mean-motion (10

�9

s

�1

)

(7)

n

�

6.713428

Titan's tidal parameter (10

�15

s

�2

)y T 4.63

(1)

Seidelmann et al. (2007);

(2)

Iess et al. (2012);

(3)

TASS 1.8z (Jan.1,2000);

(4)

Stiles et al. (2010);

(5)

Meriggiola et al. (2012; 2016);

(6)

Mitri et al. (2014);

(7)

Ja
obson et al. (2006); y 
al
ulated parameter; z See Vienne and Duriez, (1995).

Table 5.1 - Basi
 data of Titan.

Layer Outer radius (km) Density (g/
m

3

) Vis
osity (Pa s)y

I
e I shell 2575 0.951 10

14

� 10

16

O
ean 2464 1.07 10

�3

� 10

9

x

High-pressure i
e 2286 1.30 10

15

� 10

20

Ro
k and iron 
ore 2084 2.55 10

20

y Mitri et al., 2014; x adopted values.

Table 5.2 - Titan's four-layer referen
e model.
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Layer Outer radius (km) Density (g/
m

3

) Mass (10

22

kg)

Shell (
rust + o
ean) 2575 1.02 2.19

Core (ro
k + HP i
e mantle) 2286 2.25 11.26

Table 5.3 - Titan's two-layer equivalent model.

5.3 Atmospheri
 in
uen
e on Titan's rotation

The seasonal variation in the mean and zonal wind speed and dire
tion in Titan's lower

troposphere 
auses the ex
hange of a substantial amount of angular momentum between

the surfa
e and the atmosphere. The variation 
al
ulated from the observed zonal wind

speeds shows that the atmosphere angular momentum undergoes a periodi
 os
illation

between 3 � 10

18

and 3 � 10

19

kg km

2

s

�1

(Tokano and Neubauer, 2005, hereafter TN05)

with a period equal to half Saturn's orbital period and maxima at Titan's equinoxes (when

the Sun is in the satellite's equatorial plane).

The angular momentum of the atmosphere may be written as L

atm

= L

0

+ L

1


os 2�

�

where L

0

= 1:65�10

19

kg km

2

s

�1

, L

1

= 1:35�10

19

kg km

2

s

�1

and �

�

is the Saturnian right

as
ension of the Sun. The variation of the angular momentum is

_

L

atm

= �2L

1

n

�

sin 2�

�

.

If we negle
t external e�e
ts (as atmospheri
 tides), this variation may be 
ompensated

by an equal variation in the shell's angular momentum: Æ

_

L

s

= �

_

L

atm

, whi
h 
orresponds

to an additional shell a

eleration

Æ

_




s

=

2L

1

n

�

C

k

sin 2�

�

= A

�

sin 2�

�

: (5.2)

We must emphasize that we have 
onsidered in these 
al
ulations the moment of inertia

of the i
e 
rust C

k

, sin
e the winds are a
ting on the 
rust and do not have dire
t a
tion

on the liquid part of the shell.

In a more re
ent work, Ri
hard et al. (2014) (hereafter R14) re-
al
ulate the amplitude

of the variation of the angular momentum with the Titan IPSL GCM (Institut Pierre-Simon

Lapla
e General Cir
ulation models) (Lebonnois et al., 2012). They obtain L

1

= 8:20�10

17

kg km

2

s

�1

, whi
h is � 16:5 times less than the TN05 value.
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Core Shell

Clairaut number H

i

0.772 0.806

Parameter of Eq. (3.46) Q

i

0.308 0.484

Axial moment of inertia (10

29

kg km

2

) C

i

2.183 0.866

Equatorial 
attening (tidal) (10

�4

) �

i

1.15 1.20

Relative height of the elasti
 tide �

i

0.42 0.42

Gravitational 
oupling 
onstant (10

�15

s

�2

) K=C

i

2.65 6.69

Fri
tion parameter (10

�17

s

�1

)x �=C

i

0.59 1.48

Atmospheri
 parameter (10

�18

s

�2

)y 2L

1

n

�

=C

k

- 5.08

2L

1

n

�

=C

s

- 0.31

x Assuming �

o

= 10

�3

Pa s; y L

1

= 1:35� 10

19

kg km

2

s

�1

(Tokano and Neubauer, 2015).

Table 5.4 - Titan's 
al
ulated parameters in the two-layer model.

5.4 The results

We �x the outer radius of the inner 
ore R

i


and the outer radius of the high-pressure

i
e layer R

o


, the densities of the inner and outer 
ores d

i


and d

o


and the density of

the 
rust d

k

, to the referen
e model values in Table 5.2. The density of the inner 
ore is


al
ulated so as to verify the value of Titan's mass m

T

= 13:45� 10

22

kg. Fig. 5.2 shows

Figure 5.2: Dependen
e of some parameters on the thi
kness of the o
ean h. Left : Density of the inner


ore d

i


(solid orange) and the densities of the referen
e model (dashed lines). Middle: Clairaut parameters

H

i

(bla
k), the 
oeÆ
ients D

i

(red), and the maximum relative height of the elasti
 tide � (blue). Right :

The axial moments of inertia of the o
ean C

o

(bla
k), the 
rust C

k

(red), the shell C

s

= C

o

+ C

k

(blue)

and the 
ore C




= C

i


+ C

o


(orange).

the weak dependen
e of the parameters on the thi
kness of the o
ean h: the density of

the inner 
ore d

i


(solid orange line) and densities of the referen
e model (left panel); the
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parameters D




, D

s

and the Clairaut numbers H




, H

s

(middle panel); the axial moments

of inertia C




and C

s

(right panel).

The main 
onseque
e of the weak dependen
e of these parameters with the thi
kness

of the subsurfa
e o
ean, is that both the e�e
t of the tide and the gravitational 
oupling

parameter also depend weakly on h. The strength of the a

eleration of the rotation, due

to the tide, is given by the produ
t T

ij

T

k

(see Eqs. (4.3) and (4.2)). While the parameter

T

ij

only depends on the internal stru
ture of Titan, the fun
tion T

k

do not depend on h.

The left panel of Fig. 5.3 shows T

ij

and the gravitational 
oupling amplitude K

i

= K=C

i

,

as fun
tion of h. We also observe taht the thi
kness of the o
ean does not have any relevant

role. Then, for the tide and the gravitational 
oupling, the rotational evolution is driven

by the ratios n=





, n=


s

and the orbital e

entri
ity e.

Figure 5.3: Dependen
e of some parameters with the thi
kness of the o
ean h. Left : Tidal parameter T

ij

and gravitational 
oupling 
onstant K

i

= K=C

i

. Right : The 
oeÆ
ient n � �

i

, where �

i

= �=C

i

, for a

typi
al o
ean vis
osity �

o

= �

H

2

O

� 10

�3

Pa s.

The right panel of Fig. 5.3 shows the quantity n�

i

= n�=C

i

as fun
tion of the thi
kness

h, when we 
onsider the realisti
 o
ean vis
osity �

o

= �

H

2

O

� 10

�3

Pa s. The rotational

a

eleration of ea
h layer, due to the fri
tion, is �

i

(


s

�





). In super-syn
hronous rotation,

the ex
ess of rotation of ea
h layer is of order ne

2

, then

�

i

(


s

� 





)� n�

i

� T

ij

; K

i

:

Therefore, in Titan's 
ase, the fri
tion term is negligible 
ompared with the tide and the

gravitational 
oupling terms, independently of the h value.

Eqs. (4.35) and (5.2), allow us to 
al
ulate the velo
ities of rotation of the shell and

the 
ore of Titan for a wide range of relaxation fa
tors 





and 


s

, when di�erent e�e
ts
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are 
onsidered. For that sake, we have to adopt the values of the involved parameters.

We use four di�erent values for the vis
osity of the subsurfa
e o
ean: a realisti
 value

�

o

= �

H

2

O

= 10

�3

Pa s, a moderate value �

o

= 10

0

Pa s and two very high values �

o

= 10

6

Pa s and �

o

= 10

9

Pa s. For the thi
kness of the o
ean, we use the values h = 15; 178 and

250 km, and for the variation of the atmospheri
 angular momentum, we use the values

given by Tokano and Neubauer (2005) and Ri
hard et al. (2014). When we integrate

the rotational equations, assuming the values of relaxation fa
tor typi
al for ro
k bodies

(


i

< n), the results show that the ex
ess of rotation of the shell is damped qui
kly and

the �nal state is an os
illation around the syn
hronous motion with a period of � 15 days,

equal to the orbital period (Fig. 5.4). The amplitude of this os
illation depends on the

relaxation fa
tors and the o
ean thi
kness, mainly.

Figure 5.4: Time evolution of 


s

� n, when 





= 


s

= 10

�8

s

�1

, � = 10

�3

Pa s and h = 178 km.

These results are 
ompatible with the analyti
al approximate solution:

�

i

' B

i0

+B

i1

sin (`+ �

i1

) +B

i2

sin (2`+ �

i1

); (5.3)

where the 
onstants B

ij

and the phases �

ij

are given by Eqs. (4.59) (see Chap. 4.6.1). Fig.
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5.5 shows one example for the Titan's 
ore and shell 
onstants B


j

and B

sj

, in fun
tion of

the shell relaxation fa
tor, when the 
ore relaxation fa
tor is 





= 10

�8

s

�1

and the o
ean's

vis
osity and thi
kness are �

o

= 10

�3

Pa s and h = 178 km, respe
tively.

Figure 5.5: Tidal drift and amplitudes of os
illation of the periodi
 terms of the Titan's 
ore and shell

in fun
tion of the shell relaxation fa
tor 


s

. The 
ore relaxation fa
tor is 





= 10

�8

s

�1

and the o
ean's

vis
osity and thi
kness are �

o

= 10

�3

Pa s and h = 178 km, respe
tively. Left : Core's parameters B


0

,

B


1

and B


2

. Right : Shell's parameters B

s0

, B

s1

and B

s2

.

In Fig. 5.6, �xing �

o

= 10

�3

Pa s and L

1

= 1:35� 10

19

kg km

2

s

�1

(TN05), we plot the

resulting the maximum and minimum of the �nal os
illation of the shell rotation 


s

� n,

or, equivalently, the length-of-day variation

� LOD =

2�

n

�

2�




s

; (5.4)

in fun
tion of 


s

, for two dynami
al models: i) tidal for
es, gravitational 
oupling and

linear fri
tion (solid bla
k lines); and ii) tidal for
es, gravitational 
oupling, linear fri
tion

and the atmospheri
 in
uen
e (dashed red lines). The horizontal lines show the intervals


orresponding to 1� un
ertainties of the observed values: the blue dashed lines, labelled

M, 
orrespond to Meriggiola (2012) and Meriggiola et al. (2016) and green dashed lines,

labelled S, 
orrespond to the Stiles et al. (2010). The 
ore relaxation fa
tor 





in
reases

from 





= 10

�9

s

�1

(top panels) to 10

�6

s

�1

(bottom panels) and the o
ean thi
kness h

in
reases from 15 km (left panels) to 250 km (right panels).

Figure 5.6 shows that if 


s

< 10

�7

s

�1

, the shell's rotation os
illate around the syn
h-

ronous motion and the amplitude of os
illation depends on the relaxation fa
tors and the

o
ean thi
kness. The average rotation (
entral orange line) is syn
hronous; it only be
omes
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supersyn
hronous for relaxation values larger than � 10

�7

s

�1

. We also observe that when




s

< 10

�8

s

�1

, independently of the values of 





and h, the amplitude of os
illation of the

shell tends to zero when the relaxation fa
tor 


s

de
reases. Parti
ularly, if 


s

< 10

�9

s

�1

,

the amplitude of the os
illation of the ex
ess of rotation reprodu
es the dispersion of the 


s

value of �0:02 deg/yr around the syn
hronous value, observed as reported by Meriggiola

(2012) and Merigiolla et al. (2016). The results are not 
onsistent with the previous drift

reported by Stiles et al. (2008; 2010). We note that for larger values of the relaxation, e.g.

10

�8

s

�1

, the large short period os
illation due to the tide would be mu
h larger than the

reported values and would introdu
e big dispersion in the measurements, mu
h larger than

the reported dispersion due to the diÆ
ulties in the pre
ise lo
alization of Titan's features.

On the other hand, the e�e
t of the atmospheri
 torque is 
ompletely negligible in the

range of possible 


s

that reprodu
es the observed values of the shell rotation, even for the

high value of L

1

given Tokano and Neubauer (2005). When we 
onsider the amplitude of

the variation of the angular momentum given by Ri
hard et al. (2014), the 
ontribution

to the rotation variations tends to zero.

The results shown in Fig. 5.6, remain virtually un
hanged when the o
ean vis
osity is

in
reased up to a value of �

o

= 10

6

Pa s. But, if the o
ean vis
osity is in
reased to �

o

= 10

9

Pa s, the transfer of angular momentum between the shell and the 
ore indu
es in the shell

a

elerations of the same order as the rotational a

eleration due to the others for
es. As a


onsequen
e, the shell rotation will follow 
losely the 
ore rotation (whi
h is shown in Fig.

5.7). This high value of �

o


an be interpreted as the o
ean thi
kness tending to zero. In this


ase, to obtain the dispersion of Titan's observed rotation as determined by Meriggiola et

al. (2016) we should have a value of 


s

yet smaller than the values obtained in the previous


ases, where a low vis
osity o
ean was assumed between the shell and the 
ore. It is worth

noting yet that, in this 
ase, the observed dispersion 
ould also be obtained taking for 





an extremely low value (10

�9

s

�1

) and for 


s

a mu
h larger and unexpe
ted value (10

�5

s

�1

).

It is important to note that, in any 
ase, the rotational 
onstraint does not allow us

to estimate the value of the 
ore relaxation fa
tor 





. For realisti
 values of the o
ean

vis
osity (�

o

= 10

�3

� 10

6

Pa s), the shell relaxation fa
tor may be su
h that 


s

. 10

�9

s

�1

. The a
tual value will depend on the values of h and 





and on the interpretation of the
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dispersion determined by Meriggiola, whi
h may in
lude the for
ed short-period os
illation

of 


s

. Equivalently, using Eq. (3.2), the shell vis
osity may be su
h that �

s

& 10

18

Pa s.

These values remain without signi�
ant 
hanges if �

o

< 10

9

Pa s. For the 
ase in whi
h a

subsurfa
e o
ean does not exist, the shell relaxation fa
tor may be su
h that 


s

. 10

�10

s

�1

, one order less that when an o
ean is 
onsidered. Equivalently, the shell vis
osity may

be su
h that �

s

& 10

19

Pa s. It is worth noting that in this 
ase, when 


s

. 10

�7

s

�1

,

the rotation of the 
ore remains stu
k to the rotation of the shell even when 





is larger,

notwithstanding the larger moment of inertia of the 
ore (Fig. 5.8).
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Figure 5.6: Shell rotation and 
orresponding length-of-day variation of Titan in fun
tion of the relaxation

fa
tors, when �

o

= 10

�3

Pa s and L

1

= 1:35� 10

19

kg km

2

s

�1

. The 
ore relaxation fa
tor 





in
reases

from top to bottom and the o
ean thi
kness h in
reases from left to right. We 
onsider two dynami
al

models: The pair of solid bla
k lines, indi
ate the maximum and minimum of the shell rotation when the

tidal for
es, the gravitational 
oupling and the linear fri
tion are taken in a

ount, and the pair of dashed

red lines, indi
ate the maximum and minimum of the shell rotation when the angular momentum ex
hange

with the atmosphere is added. The orange solid line, indi
ates the analyti
al stationary rotation B

s0

. The

horizontal dashed lines show the 
on�den
e interval of the observed values, as determined by Meriggiola

(2012) (blue) and by Stiles et al. (2010) (green).
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Figure 5.7: Same as Fig. 5.6 for � = 10

9

Pa s.
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Figure 5.8: Core rotation of Titan in fun
tion of the relaxation fa
tors, when �

o

= 10

9

Pa s and L

1

=

1:35�10

19

kg km

2

s

�1

. The 
ore relaxation fa
tor 





in
reases from top to bottom and the o
ean thi
kness

h in
reases from left to right. We 
onsider two dynami
al models: The pair of solid bla
k lines, indi
ate

the maximum and minimum of the 
ore rotation when the tidal for
es, the gravitational 
oupling and the

linear fri
tion are taken in a

ount, and the pair of dashed red lines, indi
ate the maximum and minimum

of the 
ore rotation when the angular momentum ex
hange with the atmosphere is added. The orange

solid line, indi
ates the analyti
al stationary rotation B


0

.
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5.5 Near-syn
hronous solution of the rotational equations

When we 
onsider the e�e
t of the atmosphere, using the 
onvention 1 = 
ore and

2 = shell, the rotational system (4.36) be
omes

_y

1

= �T

11

T

1

+K

1

sin 2� + F

1

(


2

y

2

� 


1

y

1

)

_y

2

= T

21

T

1

� T

22

T

2

�K

2

sin 2� � F

2

(


2

y

2

� 


1

y

1

) +A

�

sin 2�

�

: (5.5)

where

A

�

=

2A

�




2

: (5.6)

We assume that the parti
ular solution

y

1�

= 


1�


os 2�

�

+ s

1�

sin 2�

�

y

2�

= 


2�


os 2�

�

+ s

2�

sin 2�

�

; (5.7)


an be added to (4.40) to obtain the general solutions of the 
omplete equation. 


j�

and

s

j�

are undetermined 
oeÆ
ients to be obtained by substitution of the parts of the solution

into Eq. (5.5) and identi�
ation.

The derivative of (5.7) is

_y

1�

= �2n

�




1�

sin 2�

�

+ 2n

�

s

1�


os 2�

�

_y

2�

= �2n

�




2�

sin 2�

�

+ 2n

�

s

2�


os 2�

�

: (5.8)

The tidal fun
tion 
an be approximated by

T

i

' 


i�


os 2�

�

+ s

i�

sin 2�

�

; (5.9)

the trigonometri
 fun
tion of the gravitational 
oupling 
an be approximated by

sin 2� '

�




2�

1 + �

2

�




1�

1 + �

1

�


os 2�

�

+

�

s

2�

1 + �

2

�

s

1�

1 + �

1

�

e

2

sin 2�

�

; (5.10)

and the fri
tion term is




2

y

2

� 


1

y

1

' (


2




2�

� 


1




1�

) 
os 2�

�

+ (


2

s

2�

� 


1

s

1�

) sin 2�

�

: (5.11)

De�ning the 
onstant matrix

D

�

=

2

6

6

6

6

6

6

4

a

11

2n

�

a

12

0

�2n

�

a

11

0 a

12

a

21

0 a

22

2n

�

0 a

21

�2n

�

a

22

3

7

7

7

7

7

7

5

; (5.12)
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and the 
onstant ve
tors

�

�

=

2

6

6

6

6

6

6

4




1�

s

1�




2�

s

2�

3

7

7

7

7

7

7

5

; P

�

= A

�

2

6

6

6

6

6

6

4

0

0

0

1

3

7

7

7

7

7

7

5

; (5.13)

the undetermined 
oeÆ
ient ve
tor is

�

�

= D

�1

�

P

�

: (5.14)

Finally, the rotational solutions 
an be written as

�

1

= B

10

+B

11

sin (`+ �

11

) +B

12

sin (2`+ �

12

) +B

1�

sin (2�

�

+ �

1�

)

�

2

= B

20

+B

21

sin (`+ �

21

) +B

22

sin (2`+ �

22

) +B

2�

sin (2�

�

+ �

2�

); (5.15)

where the 
onstants B

i�

and the phases �

i�

are

B

i�

= 


i

q




2

i�

+ s

2

i�

�

i�

= tan

�1

(


i�

=s

i�

): (5.16)

In Fig. 5.9, we show the same 
omparison of the Titan's shell rotation between the


omplete non-linear system and the approximate analyti
al solution of the above se
tion.

The approximate solution, also is in ex
ellent agreement with numeri
al integration. It

is important to note that the fa
t that the approximate solution of the non-linear system

(5.5) 
an be expressed as the sum of solutions (4.40) and (5.7), it means that this system

has a behavior quasi-linear, at least for the Titan's problem.



94 Chapter 5. Appli
ation to Titan's rotation

Figure 5.9: Comparison of the amplitudes of the shell rotation and 
orresponding length-of-day variation

of Titan, between the numeri
al integration of the system Eq. (4.35) (solid bla
k lines) and the analyti
al

solution �

i

' B

i0

+ B

i1

sin (`+ �

i1

) + B

i�

sin (2�

�

+ �

i�

) (dashed red lines), in
luding the atmospheri


in
uen
e. We also plot the stationary solution given by B

i0

(solid orange line). The 
ore relaxation fa
tor







in
reases from top to bottom and the o
ean thi
kness h in
reases from left to right. The o
ean vis
osity

is �

o

= 10

�3

Pa s. The horizontal dashed lines show the 
on�den
e interval of the observed values, as

determined by Meriggiola (2012) (blue) and by Stiles et al. (2010) (green).



Chapter 6

Non-homogeneous Darwin theory

In this Chapter, we extend the Darwin tidal theory, revisited in Ferraz-Mello et al.

(2008) (hereafter FRH), to the 
ase of one di�erentiated body m. The resulting equations

that des
ribe this theory are 
ompared to the equations of the 
reep tide theory, given in

Chap. 3.

6.1 Darwin tide theory

We 
onsider one di�erentiated body m of mass m

T

, disturbing to one mass point M of

mass M orbiting at a distan
e r from the 
enter of m, as in the Chap. 2. We assume that

m is 
omposed of N homogeneous layers of density d

i

(i = 1; � � � ; N) and angular velo
ity




i

= 


i

b

k, perpendi
ular to the orbital plane. We also assume that ea
h layer has an outer

ellipsoidal shape with semi axes a

i

, b

i

and 


i

, where the semi-major axis a

i

is pointing

towards M and 


i

is the axis of rotation (see Fig. 2.1 in Chap. 2).

We 
hoose a spheri
al 
oordinate system so that r = (r; �; ') and r

�

= (r

�

; �

�

; '

�

) are

the position ve
tors of M and an arbitrary point of the spa
e M

�

, respe
tively, relative to

the 
enter of the di�erentiated body m. The angles �, �

�

are their 
o-latitudes and ', '

�

are their longitudes (Fig. 6.1).

The disturbing potential generated by the i-th layer of the deformed body m, at the

arbitrary point r

�

, 
an be written as

ÆU

i

= �

k

i

GMR

5

i

2r

�3

r

3

(3 
os

2

 � 1) +

k

0

i




2

i

R

5

i

6r

�3

(3 
os

2

�

�

� 1); (6.1)

(see Appendix E for the details of this 
al
ulation), where  is the angle formed by the

positions ve
tors r and r

�

. The 
onstants k

i

and k

0

i

are the tidal and rotational 
uid Love
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Figure 6.1: Spheri
al 
oordinate system with origin at the m and its equator as referen
e plane.

numbers of the i-th layer, respe
tively:

k

i

=

b

k

i

L

i

; k

0

i

=

b

k

i

n

2

L

0

i




2

i

; (6.2)

where

b

k

i

=

15C

i

4m

T

R

2

i

R

3

N

R

3

i

; (6.3)

C

i

is the axial moment of inertia of this layer, and the parameter

L

i

=

H

i

R

5

i

�H

i�1

R

5

i�1

R

5

i

� R

5

i�1

; L

0

i

=

G

i

R

5

i

� G

i�1

R

5

i�1

R

5

i

� R

5

i�1

: (6.4)

In order to pro
eed, we 
onsider the two-body motion. The equations of the Keplerian

motion to M, orbiting to m, are

r =

a(1� e

2

)

1 + e 
os v

; (6.5)

and

v = `+

�

2e�

e

3

4

�

sin `+

5e

2

4

sin 2`+

13e

2

12

sin 3`+O(e

4

); (6.6)

where a is the semi-major axis, e is the e

entri
ity and the angles v and ` are the true

and mean anomaly, respe
tively, of the body M. In the planar 
ase, we have � =

�

2

and

' = v + $, where $ is the longitude of the periapsis. By solving the spheri
al triangle,

we obtain


os = sin �

�


os ('

�

�$ � v); (6.7)
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the disturbing potential of the i-th layer, after Fourier expansion, be
omes

ÆU

i

= �

3k

i

GMR

5

i

4r

�3

a

3

sin

2

�

�

X

k2Z

E

2;k


os�

�

k

+

k

i

GMR

5

i

4r

�3

a

3

(3 
os

2

�

�

� 1)

X

k2Z

E

0;k


os k`+

k

0

i




2

i

R

5

i

6r

�3

(3 
os

2

�

�

� 1); (6.8)

where the argument �

�

k

is given by Eq. (3.22) and the 
oeÆ
ients of the Fourier series E

q;p

are the Cayley fun
tions given by Eq; (3.12).

6.2 The tidal phase lags

In Darwin's theory, for ea
h periodi
 term of the potential ÆU

i

, a delay is introdu
ed

in the form of a lag angle (Darwin, 1880). The trigonometri
 fun
tions, in the potential

(6.8), are expanded to �rst order in the lag in the following way


os (2'

�

� 2$ + (k � 2)`� �

ik

) � 
os�

�

k

+ �

ik

sin�

�

k

sin (2'

�

� 2$ + (k � 2)`� �

ik

) � sin�

�

k

� �

ik


os �

�

k

; (6.9)

and


os (k`� �

ik

) � 
os k`+ �

ik

sin k`

sin (k`� �

ik

) � sin k`� �

ik


os k`; (6.10)

A

ording to this de�nition, �

ik

denote the lag 
orresponding to the k-th se
torial term

of the i-th layer, and �

ik

denote the lag 
orresponding to the k-th radial term of the i-th

layer. The lags are small quantities.

6.3 The Love numbers

In the homogeneous tidal theories using Love's theory to obtain the disturbing poten-

tial ÆU , the only Love number appearing is k

i

. In Darwin's theory (and in all theories

introdu
ing lags individually after a Fourier de
omposition of ÆU), we may 
onsider that

the surfa
e of the body does not respond instantaneously to the tidal potential and does

not rea
h the deformation predi
ted in the equilibrium �gure theory. In order to take into
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a

ount this e�e
t, instead of the Love number

b

k

i

L

i

for the i-th layer, we may introdu
e

two di�erent dynami
s Love numbers, one for ea
h layer boundary and tidal harmoni
:

b

k

i

H

i

R

5

i

R

5

i

� R

5

i�1

k

�

ik

;

b

k

i

H

i�1

R

5

i�1

R

5

i

�R

5

i�1

k

�

i�1k

;

for the outer and the inner surfa
e, respe
tively. The 
oeÆ
ient k

�

ik

, take into a

ount the

non-instantaneous response of the outer surfa
e of the layer and k

�

i�1k

the non-instantaneous

response of the inner surfa
e. These 
oeÆ
ients do not depend on the layer, but only the

surfa
e 
onsidered (e.g. the outer surfa
e of the i-th layer has the same 
oeÆ
ient for the

inner surfa
e of the (i+ 1)-th layer).

In FRH, for the sake of simpli
ity, only one value k

d


orresponding to the main tide

harmoni
 is used, while the others are merged with the 
orresponding lag "

j

. In the present

work, we have introdu
ed the delay parameters 
orresponding to the outer surfa
e

�

0

ik

= k

�

ik

�

ik

; �

0

ik

= �

�

ik

�

ik

; (6.11)

where �

ik

; �

ik

are the lags of the frequen
y-dependent tide harmoni
s of the outer boundary

of the i-th layer and k

�

ik

; �

�

ik

are the frequen
y-dependent dynami
s 
ounterparts of k

i

for the

se
torial and radial terms, respe
tively. For the inner surfa
e we have similar expressions.

The s
heme used to in
lude the dynami
 Love numbers in the se
torial terms is
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and for the radial terms
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where �(f

i

) = f

i

� f

i�1

, denotes the in
rement of one fun
tion f

i

, between the inner and

the outer boundaries of this layer.
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We assume that the vis
osity does not a�e
t the rotational axial terms and the rota-

tional stati
 equilibrium �gure remains without 
hange. The orbital motion of M 
hange

tha angular velo
ity motion rotational 
uid Love number k

0

i

remains without 
hange.

6.4 Delayed potential, for
es and torques

When we introdu
e the lags in the trigonometri
 fun
tions, we 
an write the delayed

tidal potential of the i-th layer as ÆU
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, is given by
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To obtain the for
e generated by the i-th layer, a
ting on one mass M

�

, lo
ated in

M

�

(r

�

; �

�

; '

�

), we have to take the negative gradient of the potential of this layer at the
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point and multiply it by the mass pla
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The 
orresponding torque is M
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, or, sin
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6.5 For
es and torques a
ting on M

Sin
e we are interested in the for
e a
ting on M due to the tidal deformation of m, we

must substitute (M
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where the angle �

k

is de�ned be the Eq. (3.32).

The 
orresponding torques are
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After Fourier expansion, the torque along to the axis z (M
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) 
an be written
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Finally, the time average of the total torque over one period is hM
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As it was explained in Se
tion 3.6, the above expression for the time average, whi
h

is equivalent to take into a

ount only the terms with j = 0, only is valid if �

0

ik


an be


onsidered as 
onstant. In the opposite 
ase, in whi
h �

0

ik

depends on the time, this fa
t

must be taken into a

ount when 
omputing the time average.

6.6 Work done by the tidal for
es a
ting on M

The time rate of the work done by the tidal for
es due to the i-th layer is

_

W

(i)

orb

= F

i

�v,

where v is the relative velo
ity ve
tor of the external body, whose 
omponents in spheri
al
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Using the tidal for
e given by the Eq. (6.20), the rate of the work 
orresponding to the

i-th layer is
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or, after Fourier expansion of the tidal terms
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and its time-average over one period is
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The average of the last term of Eq. (6.26) is
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(see Appendix D).

1

For the details of this 
al
ulation, see Appendix F.
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6.7 Variations in semi-major axis and e

entri
ity

In this se
tion, we 
al
ulate the variation in semi-major axis and e

entri
ity. For this

sake, we use the same equations of the Se
tion 3.8.

Using Eqs. (3.41) and (6.21) and summing over all layers, we obtain the equation for

the variation in semi-major axis:
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After the time-average over one period, we obtain that the variation in semi-major axes
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In the same way, using the Eq. (3.42), repla
ingM

z

and
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by the Eqs. (6.21) and

(6.26), and summing over all layers, we obtain
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Finally, after the time-average over one period, we obtain that the variation in e

en-

tri
ity is
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6.8 Comparison with the 
reep tide theory

In the previous se
tions, we develop the extension of the non-homogeneous 
ase of the

Darwin tidal theory. The resulting equations that des
ribe this theory with the equations
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given by the 
reep tide theory are signi�
antly similar, being that the methods by whi
h

they are obtained di�er 
onsiderably.

Considering that
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ik

is 
onstant, de�ned by the Eq. (6.3), the delayed disturbing

potential of the Darwin's theory (6.14), 
an be written as
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whi
h is identi
al to the disturbing potential of the 
reep tide (3.21), with A
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instead C
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, respe
tively. Considering the equality between these
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ients, we obtain that
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or, using the Eqs. (3.26) and (3.27), we obtain
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In other words, the 
reep tide theory is equivalent to propose a linear-frequen
y law

for the lags �
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and �

ik

, and a frequen
y-dependent se
torial and radial dynami
 Love

numbers
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However, this equivalen
e between both theories is only valid if �
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� 1 and �
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� 1,

or n=
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� 1. This 
orresponds to the 
ase of bodies with low vis
osity, su
h as stars and

gas giant planets. In order to over
ome this limitation, we modify the s
heme used to

in
lude the dynami
 Love numbers in the se
torial and radial terms, without any ad ho
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The new 
oeÆ
ients are
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Considering the equality between these 
oeÆ
ients with the 
oeÆ
ients given by the 
reep

tide, we obtain

�

ik

= �

ik

; k

�

ik

= 
os �

ik

�

ik

= �

00

ik

; �

�

ik

= 
os �

00

ik

: (6.39)

Therefore, the 
reep tide theory 
an be interpreted as one parti
ular 
ase of the ge-

neralized Darwin's theory, where the lags and the dynami
al tidal Love numbers depend

on the frequen
ies and the vis
osities as Eq. (6.39). It is worth emphasizing that while

the generalized Darwinian is an analyti
al free-parameters theory, the 
reep tide theory is

equivalent to �x these free parameter with one spe
i�
 rheophysi
al law.

It is important not to 
onfuse these lags � and � (or � and �

00

) with the geodeti
 lags of

the surfa
e of ea
h layer. The geodeti
 lags are the observed lags of ea
h surfa
e, and result

of the 
omposition of the elasti
 and anelasti
 tidal 
omponents. The 
reep tide use the

rheology of one vis
ous 
uid, through the Navier-Stokes's equation. In order to introdu
e

the elasti
 
omponent we 
an use two methods: the ad ho
 method, proposed in FM13

(Se
. 10) or using the one Maxwellian rheology, as in Correia et al. (2014). These methods,

though they are very di�erent, are 
ompletely equivalent (see Ferraz-Mello, 2015b).
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Chapter 7

Con
lusion

In this thesis, we extended the 
reep tide theory, presented in Ferraz-Mello (2013) and

Ferraz-Mello (2015a), to a di�erentiated non-homogeneous body formed by N homoge-

neous layers with di�erential rotation. For this sake, �rst we have extended the 
lassi
al

results on non-homogeneous rotating �gures of equilibrium to the 
ase in whi
h the body is

also under the a
tion of a tidal potential due to the presen
e of an external body, assuming

di�erential rotation. The only assumptions in this work are a body formed by N homoge-

neous ellipsoidal layers in equilibrium and small enough tidal and rotational deformations

with symmetry axes perpendi
ular to ea
h other (remember that, in the se
ond order, the

�gure 
eases to be an ellipsoid). We have 
al
ulated the 2N equilibrium equations for small


attenings and we have found that the equatorial and the polar 
attenings �

(k)

�

and �

(k)

z

are linearly related, both being proportional to the homogeneous referen
e values with the

fa
tors of proportionality H

k

and G

k

, respe
tively. The equatorial deformations propagate

towards the interior of the body in the same way depending, in the �rst approximation,

only on the density pro�le; it does not depend on the origin of the two 
onsidered defor-

mations. Then the problem of �nding the 2N 
attenings 
orresponds to �nding the 2N


oeÆ
ients H

k

and G

k

with 2N equilibrium equations. An important 
onsequen
e of this

approa
h is that the 
attening pro�le H

k

is the same no matter if the rotation of the body

is syn
hronous or non-syn
hronous and the results for H

k

are the same found by Tri
ari
o

(2014).

We have also studied the 
ontinuous 
ase as the limit for a very large number of layers of

in�nitesimal thi
kness, whi
h leads to the Clairaut's di�erential equation for the fun
tion

H(x). This result was expe
ted be
ause the 
oeÆ
ients of the Clairaut equation only
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depend on the internal distribution of matter �(x). Therefore, the di�erential equation

that generates the fun
tional form of the pro�le 
attening H(x) does not 
hange when we


hange the nature of the deformation, provided that it is small. For densities de
reasing

monotoni
ally with the radius, we have found that, at the surfa
e, H

n

takes values larger

than 0.4 (see Eq. (2.24)) and takes the limit value 1 in the homogeneous 
ase. This means

that the surfa
e 
attenings of a di�erentiated body are always smaller than the 
attening

of the 
orresponding homogeneous ellipsoids, but always larger than 40% of it.

Using this stati
 equilibrium �gure, we found the 
reep tide equation for the outer

surfa
e of ea
h layer. On
e solved the 
reep equations, we obtained the tidal equilibrium

�gure, and thereby we 
al
ulated the potential and the for
es whi
h a
t on the external

mass produ
ing the tide, as well as the variations in semi-major axis and e

entri
ity,

produ
ed by the tidal for
es.

In order to apply the theory to satellites of our Solar System, we 
al
ulated the expli
it

expression in the parti
ular 
ase of one body formed by two layers. We may remember

that the number of free parameters and independent variables in
reases qui
kly when the

number of layers in
reases. The simplest version of the non-homogeneous 
reep tide theory

(the two-layer model), allow us to obtain the main features due to the non-homogenity

of the body, by introdu
ing a minimal quantity of free parameters. In the used model,

we have also 
al
ulated the tidal torque whi
h a
ts on ea
h layer and also the possible

intera
tion torques, as the gravitational 
oupling and the fri
tion at the interfa
e between

the 
ontiguous layers (general developement of these e�e
ts are given in Appendi
es 3

and 4). The fri
tion was modeled assuming two homogeneous 
ontiguous layers separated

by one thin Newtonian 
uid layer. This model of fri
tion is parti
ularly appropriate for

di�erentiated satellites with one subsurfa
e o
ean, as are various satellites of our Solar

System (e.g. Titan, En
eladus and Europa).

The two-layer was 
ompared with the homogeneous 
ase. For that sake, we �xed the

free parameters of Titan and studied the main features of the stationary solution of this

model in fun
tion of a few parameters, su
h as the relaxation fa
tors 


i

, the fri
tion pa-

rameter � and the e

entri
ity e. When 





� 


s

, the behavior of the stationary rotations

turned out to be identi
al to the homogeneous 
ase. When 





� 


s

� n, the stationary

solutions os
illate around the super-syn
hronous rotation. When 





and 


s

in
rease, the
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os
illation tends to zero. Finally, if 





� 


s

� n, the stationary solution is damped to

syn
hronous rotation. We have also 
al
ulated the possible atra
tors when the e

entri
ity

and the fri
tion parameter � are varied. We re
overed the resonan
es trapping in 
ommen-

surabilities 





� 


s

�

2+k

2

n (where k = 1; 2; 3; � � � 2 N) as shown in Ferraz-Mello (2015a)

and Correia et al. (2014) for the homogeneous 
ase, and we found that if fri
tion remains

low, the non-zero diferential rotation 
ommensurabilities 





�

2+i

2

n and 


s

�

2+j

2

n, with

i; j = 1; 2; 3; � � � 2 N and i 6= j, are possible. When the fri
tion in
reases, the resonan
es

with higher di�erential rotation are destroyed. If � 
ontinues in
reasing, only survive the

resonan
es in whi
h 
ore and shell have the same rotation.

The two-layer model was applied to Titan, but adding to it the torques due to the

ex
hange of angular momentum between the surfa
e and the atmosphere, as modeled by

Tokano and Neubauer (2005) and by Ri
hard et al. (2014), and the results were 
ompared

to the determinations of Titan's rotational velo
ity as determined from Cassini observations

by Stiles et al. (2010) and Meriggiola et al. (2016). These 
omparisons allowed us to


onstrain the relaxation fa
tor of the shell to 


s

. 10

�9

s

�1

. The integrations show that

for 


s

. 10

�7

s

�1

the shell may os
illate around the syn
hronous rotation, with a period

of os
illation equal to the orbital period, and the amplitude of this os
illation depends on

the relaxation fa
tors 





and 


s

and the o
ean's thi
kness and vis
osity. The tidal drift

tends to zero and the rotation is dominated by the main periodi
 term.

The main result was that the rotational 
onstraint does not allow us to 
on�rm or

reje
t the existen
e of a subsurfa
e o
ean on Titan. Only the maximum shell's relaxation

fa
tor 


s


an be determined, or equivalently, the minimum shell's vis
osity �

s

. When a

subsurfa
e o
ean is 
onsidered, the maximum shell's relaxation fa
tor is su
h that 


s

. 10

�9

s

�1

, depending on the o
ean's thi
kness and vis
osity values 
onsidered. Equivalently, this

maximum value of 


s

, 
orresponds with a minimum shell's vis
osity �

s

& 10

18

Pa s, some

orders of magnitude higher than the modeled by Mitri et al. (2014). When the non-o
ean


ase is 
onsidered, the maximum shell's relaxation fa
tor is su
h that 


s

. 10

�10

s

�1

and

the 
orresponding minimum shell's vis
osity is �

s

& 10

19

Pa s. For these values of 


s

, the

amplitude of the os
illation of the ex
ess of rotation reprodu
es the dispersion of the 


s

value of �0:02 deg/yr around the syn
hronous value, observed as reported by Meriggiola

(2012) and Merigiolla et al. (2016). It is important to note that in all the 
ases studied,
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the in
uen
e of the atmosphere 
an be negle
ted, sin
e it does not a�e
t the results in the

ranges of 





and 


s

where the ex
ess of rotation 
al
ulated is 
ompatible with the ex
ess

of rotation observed.

Finally, we extended the Darwin theory to a di�erentiated non-homogeneous body

formed by N homogeneous layers with di�erential rotation, and 
ompared the resulting

equations that des
ribe this theory with the equations given by the 
reep tide theory.

The main result of this 
omparisons, was that the 
reep tide theory 
an be interpreted as

one parti
ular 
ase of the generalized Darwin's theory, where the lags and the dynami
al

tidal Love number depends on the frequen
ies and the vis
osities. While the generalized

Darwinian is an analyti
al free-parameters theory, the 
reep tide theory is equivalent to

�x these free parameters with one spe
i�
 rheophysi
al law (the rheology of one vis
ous


uid, through the Navier-Stokes's equation).
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Henning, W.G., OâConnell, R.J., Sasselov, D.D.: \Tidally heated terrestrial exoplanets:

vis
oelasti
 response models."Astrophys. J. 707, 1000-1015 (2009). arXiv:0912.1907

Hubbard, W.B.: \Gravitational �eld of a rotating planet with a polytropi
 index of

unity."Sov. Astron. 18, 621-624 (1975).

Hubbard, W.B.: \Con
entri
 Ma
laurin spheroid models of rotating liquid pla-

nets."Astrophys. J. 768, 43 (2013).

Iess, L., Ja
obson, R.A., Du

i, M., Stevenson, D.J., Lunine, J.I., et al.: \The tides of

Titan."S
ien
e 337, 457-459 (2012).

Ja
obson, R.A., Antreasian, P.G., Bordi, J.J., Criddle, K.E., Ionases
u, R., et al.: \The

gravity �eld of the Saturnian system from satellite observations and spa
e
raft tra
king

data."Astrophys. J. 132, 2520-2526 (2006).

Jardetzky, W.S.: \Theories of Figures of Celestial Bodies", (Inters
ien
e Publ. New York;

repr. Dover, Mineola, NY, 2005) (1958).



114 Bibliography

Jeans, J.: \Astronomy and Cosmogony"(Cambridge Univ. Press, Cambridge; repr. Dover,

New York, 1961) (1929).

Je�reys, H.S.: \The �gures of rotating planets."Mon. Not. R. astr. So
. 113, 97 (1953).

Karatekin,

�

O., Van Hoolst, T., Tokano, T.: \E�e
t of internal gravitational 
oupling on

Titan's non-syn
hronous rotation."Geophys. Res. Lett. 38, L16202 (2008).

Kaula, W.M.: \Tidal dissipation by solid fri
tion and the resulting orbital evolution."Rev.

Geophys. 3, 661-685 (1964).

Khurana, K.K., Kivelson, M.G., Stevenson, D.J., S
hubert, G., Russell, C.T., Walker,

R.J., Polanskey, C.: \Indu
ed magneti
 �elds as eviden
e for subsurfa
e o
eans in Europa

and Callisto."Nature 395, 777â780 (1998).
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Appendix A

Shape and gravitational potential of one ellipsoid and

one ellipsoidal layer

A.1 Homogeneous ellipsoid

Let us 
onsider a homogeneous triaxial ellipsoid with density d, semi axes a > b > 
,

equatorial mean radius R =

p

ab and equatorial and polar 
attenings de�ned as

�

�

=

a� b

R

; �

z

=

b� 


R

: (A.1)

Then, the semi axes of this ellipsoid 
an be written as
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Let us also 
onsider the equation of surfa
e of this homogeneous triaxial ellipsoid, in a

referen
e system where the semi axes a, b and 
 are aligned to the 
oordinates axes x, y

and z, respe
tively:

x

2

a

2

+

y

2

b

2

+

z

2




2

= 1: (A.3)

If we use the semi axes (A.2), the spheri
al 
oordinates

x = � sin � 
os'; y = � sin � sin'; z = � 
os �; (A.4)

and expand to �rst order in the 
attenings, we obtain

� = R
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The mass of this ellipsoids is

m =
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: (A.6)

The prin
ipal moments of inertia are
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and its di�eren
es are
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If we 
onsider that the 
attenings are

�

�

= �

J

; �

z

= �

M

; (A.9)

then, the di�eren
e of the prin
ipal moments of inertia 
an be approximated to �rst order

in the 
attenings as
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The gravitational potential U generated by this ellipsoid, at an external point r

�

=

x

�

^
x + y
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^
y + z

�

^
z, may be presented by Lapla
e series. Negle
ting harmoni
s of degree

higher than 2 we have
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(A.11)

where r

�

= jr

�

j, I is the moment of inertia of this ellipsoid, relative to the 
enter of

mass and I

nm

are the 
omponents of its inertia tensor (see Beutler, 2005; Murray and
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Dermott, 1999). If the referen
e axes are oriented following the prin
ipal axes of inertia,

then I

nm

= 0 if n 6= m. Be
ause A = I

xx

, B = I
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and C = I

zz

, and hen
e 2I = A+B+C,

the gravitational potential 
an be written as
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or, using the Eq. (A.8), we obtain
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Another useful way to express this gravitational potential is
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It is worth emphasizing that both the surfa
e equation (A.5) as the gravitational po-

tential (A.13) are valid in a referen
e system where the semi axes (or, equivalently, the

prin
ipal axes of inertia) are aligned to the 
oordinates axes x, y and z. In a referen
e

system rotated, around to the axis z, at an angle �

r

, these equations remains valid if we

use the longitude transformations ' �! '
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A.2 Ellipsoidal layer

Let us 
onsider a homogeneous triaxial ellipsoidal shell with density d

i

, outer semi axes
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, outer equatorial mean radius R
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At the inner ellipsoidal boundary, the semi axes are a

i�1

> b

i�1

> 


i�1

(not ne
essarily

aligned with the axes of the outer surfa
e), the inner equatorial mean radius is R
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and inner equatorial and polar 
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The semi axes of the outer boundary are
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and the semi axes of the inner boundary are
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Be
ause the semi-major axes a

i

and a

i�1

are not ne
essarily aligned, we 
onsider a

referen
e system su
h that the outer semi-major axis a

i

and the inner semi-major axis a

i�1

are not aligned with the 
oordinate axis x. In this referen
e system, using he Eq. (A.15),

the surfa
e equation of the outer boundary of the layer is
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and the surfa
e equation of the inner boundary of the layer is
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where �

i

and �

i�1

are the angles formed between the semi-major axes a

i

and a

i�1

, respe
-

tively, and the 
oordinate axis x.

The mass m

i

of this layer, 
an be written as the subtra
tion of the masses of the two

homogeneous ellipsoids of same density d
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: the homogeneous ellipsoid of mass m
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e as the outer boundary of the layer, less the homogeneous ellipsoid of mass m
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Note that this result is independent of the orientation of the ellipsoidal boundaries semi

axes. The masses m
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and m
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Figure A.1: S
heme for the 
al
ulation of the mass, prin
ipal moments of inertia and gravitational

potential of a homogeneous ellipsoidal layer as the subtra
tion of two homogeneous ellipsoids of same

density d

i

.

To 
al
ulate the prin
ipal moments of inertia A

i

; B

i

; C

i

of a homogeneous triaxial el-

lipsoidal layer when the inner and the outer boundaries are not aligned is parti
ularly


ompli
ated be
ause the orientation of the prin
ipal axes of inertia do not 
oin
ide with

the axes of symmetry of both boundaries. In the sequen
e we fo
us in the parti
ular 
ase

in whi
h the inner and the outer boundaries are aligned.
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In this 
ase, we 
an use the same s
heme used to 
al
ulate the mass of the layer.

The prin
ipal moments of inertia of the layer, 
an be written as the subtra
tion of the

prin
ipal moments of inertia of two homogeneous ellipsoids of same density d

i

: the prin
ipal

moments of inertia of one homogeneous ellipsoid of mass m

0

i

and the same surfa
e as the

outer boundary of the layer, less the prin
ipal moments of inertia of the homogeneous

ellipsoid of mass m

00

i

and the same surfa
e as the inner boundary of the layer. Using the

semi axes (A.20) and (A.21), and the masses (A.25), the prin
ipal moments of inertia 
an

be approximated to �rst order in the 
attenings as
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and its di�eren
es are
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where �(f

i

) = f

i

� f

i�1

, denotes the in
rement of one fun
tion f

i

, between the inner and

the outer boundaries of this layer.

Using the same s
heme used to 
al
ulate the mass and the prin
ipal moments of inertia,

the 
orresponding gravitational potential of this homogeneous triaxial layer at an external
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If we 
onsider the stati
 equilibrium �gure, the 
attenings are
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where H

k

and G

k

are the Clairaut numbers (see Eq. 2.12). Then, the di�eren
e of the

prin
ipal moments of inertia 
an be approximated to �rst order in the 
attenings as
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where the parameters L
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and L
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The 
oeÆ
ients L

i

and L

0

i

play a role equivalent to the 
oeÆ
ients H

i

and G

i

for the

quantities C

i

� A

i

, C

i

� B

i

and B

i

� A

i

. In this 
ase, the moments of inertia B

i

� A

i

(resp. C

i

� B

i

) of the i-th layer 
an be written as the homogeneous moments multiplied

by the 
oeÆ
ients L

i

(resp. L

0

i

), 
hara
teristi
s of this layer. The di�eren
e between L

i

and L

0

i


omes from the fa
t that the body has a di�erential rotation. If we assume a rigid

rotation, then L

0

i

= L

i

(
=n)

2

.

The 
orresponding gravitational potential of this homogeneous triaxial layer at an ex-
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Although we do not 
al
ulate the prin
ipal moments of inertia when the inner and the

outer boundaries are not aligned, it is possible to 
al
ulate easily the gravitational potential

with the same s
heme used to 
al
ulate the mass of the layer and the prin
ipal moments

of inertia. The potential of the layer, 
an be written as the subtra
tion of the potential of

two homogeneous ellipsoids of same density d

i

: the potential of one homogeneous ellipsoid

of mass m

0

i

and the same surfa
e as the outer boundary of the layer, given by the Eq.

(A.22), less the potential of the homogeneous ellipsoid of mass m

00

i

and the same surfa
e

as the inner boundary of the layer, given by the Eq. (A.23).
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orresponding gravitational potential is
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Appendix B

The 
ontribution of the gravitational potentials to the

equilibrium equations

B.1 The equilibrium equations

In this Appendix, we detail the 
al
ulation of the 
ontribution of ea
h gravitational

potential to the 2N equilibrium equations. For the sake of simpli
ity, due to the operators

�

(1)

i

and �

(2)

i

are linear, the 
ontribution of the gravitational potential of i-th homogeneous

layer 
an be 
al
ulated as the subtra
tion of the 
ontributions of the two homogeneous

ellipsoids of same density d

i

: the 
ontribution of one homogeneous ellipsoid of mass m

0

i

and the same surfa
e as the outer boundary of the layer, less the 
ontribution of the

homogeneous ellipsoid of mass m

00

i

and the same surfa
e as the inner boundary of the layer

(see Fig. A.1). Then, the 
ontribution of the i-th layer to the equilibrium equations 
an

be written as
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B.2 The 
ontribution of the outer layers

Let us 
onsider the 
ontribution by the j-th layer at one point r

i

= x

i

^
x+ y

i

^
y + z

i

^
z on

the surfa
e of the i-th layer, assumed interior to it. The gravitational potential U
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ellipsoid with density d
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and the same surfa
e as the outer boundary of the j-th layer is
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where the 
oeÆ
ients U
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and G is the gravitational 
onstant (see Tisserand, 1891, Chap. 8 and 13; Jardetzky, 1958,

Se
. 2.2). Then the derivatives of the potential are
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and its 
ontribution to the �rst equation of equilibrium is
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Negle
ting terms of order 2 in the 
attenings we 
an write
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Similarly, if we 
onsider the potential U

00

j

of the one ellipsoid with density d

j

and the

same surfa
e as the inner boundary of the j-th layer, the 
ontribution of this potential to

the �rst equilibrium equation, negle
ting terms of order 2 in the 
attenings, is
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Then, the total 
ontribution of the outer layers to the �rst equilibrium equation is
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and using the above results, we obtain
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Analogously, the total 
ontribution of the outer layers to the se
ond equilibrium equa-

tion is
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B.3 The 
ontribution of the inner layers

The gravitational potential U

0

j

generated by one ellipsoid with density d

j

and the same

surfa
e as the outer boundary of the j-th layer, at an external point r

i

= x

i

^
x + y

i

^
y + z

i

^
z

on the surfa
e of the i-th layer may be presented by Lapla
e series. Negle
ting harmoni
s

of degree higher than 2 we have (see Eq. (A.13))
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and its derivatives are
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Making the approximation r

i

' R

i

, the 
ontribution to the �rst equilibrium equation,

to �rst order in 
attenings, is
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Similarly, if we 
onsider the potential U

00

j

of the one ellipsoid with density d

j

and the

same surfa
e as the inner boundary of the j-th, its 
ontribution to the �rst equilibrium
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equation, negle
ting terms of order 2 in the 
attenings, is
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Then, the total 
ontribution of the inner layers to the �rst equilibrium equation is
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or, using that
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we obtain
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Analogously, the total 
ontribution of the inner layers to the se
ond equilibrium equa-

tion is
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B.4 The 
ontribution of the tidal potential

If r = rx̂ is the position of the mass M, the tidal potential, to se
ond order, at a point

r

i

= x

i

^
x+ y

i

^
y + z

i

^
z on the surfa
e of the i-th layer is (Lambe
k 1980)

U

tid

= �

GMr

2

i

r

3

P

2

(r̂ � r̂

i

) (B.19)

where P
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is the Legendre polynomial of degree two. The di�erential a

eleration of this

point is
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therefore their derivatives are
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Finally, the 
ontribution of the tide in the equilibrium equations of the i-th surfa
e is
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However, we dis
ard terms whi
h 
ontaining �
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, be
ause when we 
al
ulate the


attenings of ea
h layer, they appear multiplied by a fa
tor of the same order as �
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therefore we obtain
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Appendix C

The relaxation fa
tor

Let us 
onsider the equilibrium surfa
e �

i

(�; �) between two adja
ent homogeneous

layers of the body m whose densities are d

i

(inner) and d

i+1

(outer). We 
onsider that at

a given instant, the a
tual surfa
e between the two layers �

i

(�; �) does not 
oin
ide with

the equilibrium surfa
e (Fig. C.1). In some parts, the separation surfa
e is above the

equilibrium surfa
e (as in region I) and in other parts it is below the equilibrium surfa
e

(as in the region II). Let us now 
onsider one small element of the equilibrium surfa
e in

region I. The pressure in the base of this element is positive be
ause the weight of the


olumn above the element is larger than its weight in the equilibrium 
on�guration. Note

that the 
olumn is now partly o

upied by the 
uid with density d

i

and d

i

> d

i+1

. The

pressure surplus is given by

p

I

= �wh; (C.1)

where �w = (d
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)g is the di�eren
e of the spe
i�
 weight of the two 
olumns in

the neighborhood of the separation surfa
e, and h is the distan
e of the element of the

equilibrium surfa
e to the a
tual separation surfa
e. g is the lo
al a

eleration of gravity.

The radial 
ow in the 
onsidered element is ruled by the Navier-Stokes equation:

0 = F

ext

�rp

I

+ �

i

�u (C.2)

where F

ext

is the external for
e per unit volume (equal to zero if no other external for
es are

a
ting on the 
uid), u is the radial velo
ity and �

i

is the vis
osity of the layer i (assuming

�

i

> �

i+1

). We noti
e that � is operating on a ve
tor, 
ontrary to the usual �. A
tually

in this pseudo-ve
torial notation, the formula refers to the 
omponents of u and means the

ve
tor formed by the operation of the 
lassi
al � on the three 
omponents of the ve
tor
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Figure C.1: Interfa
e between two adja
ent homogeneous layers of m whose densities are d

i

(inner) and

d

i+1

(outer). �

i

(�; �) and �

i

(�; �) are the a
tual and the equilibrium surfa
es, respe
tively, of the outer

boundary of the i-th layer. I (resp. II) is the region where the a
tual surfa
e is above (resp. below) the

equilibrium surfa
e. F

I

(resp. F

II

) is the for
e a
ting on one small element of the equilibrium surfa
e in

the region I (resp. region II) due to the pressure surplus (resp. pressure de�
it).

u. We assume that the 
ow, respe
t to the equilibrium surfa
e, is radial and thus u is

restri
ted to its radial 
omponent u

r

. That is

0 � �w + �

i

r

2

u

r

: (C.3)

Then

r

2

u

r

=

�

2

u

r

�r

2

+

2

r

�u

r

�r

�

2u

r

r

2

= �

�w

�

i

: (C.4)

The general solution of this equation is

u

r

(r) = C

1

r +

C

2

r

2

�

�w

4�

i

r

2

; (C.5)

where C

1

and C

2

are integration 
onstants. The task of interpreting and determining its

integration 
onstants be
omes easier if the solution is linearized in the neighborhood of

r = �

i

(i.e. h = 0):

u

r

(r) = u

r

(�

i

) + u

0

r

(�

i

)(r � �

i

) +

1

2

u

00

r

(�

i

)(r � �

i

)

2

+ ::: (C.6)

Hen
e u

r

(�

i

) = 0, that is, there is no pressure surplus (or de�
it) when the a
tual

separation surfa
e 
oin
ides with the equilibrium and the linear approximation of the

solution is obtained when we assume u

00

r

(�

i

) = 0.

Therefore

C

1

= ��w=6�

i

C

2

= �

4

�w=12�

i

: (C.7)
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Hen
e u

0

r

(�

i

) = �

i

�w=2�

i

, and the linear approximation 
orresponding to the Newto-

nian 
reep of the 
uid is

u

r

(r) = 


i

(r � �

i

); (C.8)

where




i

= u

0

r

(�

i

) =

�w�

i

2�

i

: (C.9)

In the region II the 
al
ulation is similar; however, instead of a pressure surplus we

have a pressure de�
it be
ause the equilibrium assumes one 
uid with density d

i

below the

equilibrium surfa
e, whi
h is now o

upied by 
uid of density d

i+1

< d

i

. The equations

are the same as above. We note that in the new equations, the adopted vis
osity 
onti-

nues being �

i

sin
e we assumed it larger than �

i+1

. The relaxation of the surfa
e to the

equilibrium will be governed by the larger of the vis
osities of the two layers.

In the homogeneous 
ase we have one layer body (N = 1). If we 
onsider d

N+1

= 0

(negle
ted the density of the atmosphere), we re
over the expression of the relaxation

fa
tor of FM13 and FM15




N

�

wR

N

2�

N

; (C.10)

where w = d

N

g is the spe
i�
 weight and �

N

� R

N

.
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Appendix D

The integral of se
tion 3.7

Proposition:

1

2�

Z

2�

0




2

j

�

a

r

�

4

sin v d` = 0: (D.1)

To prove (D.1), we 
onsider only the tidal for
e. Introdu
ing the adimensinals variables

and time

y

i

=

�

i




i

; x = nt = `; (D.2)

the rotational system 
an be written as
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: (D.3)

where the 
onstants

T

�

ij

=

2T




i

n
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j
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5

j

R

5

i

�R

5

i�1

; P

ik

=

kn




i

: (D.4)

In low-
 approximation (


i

� n), we 
an neglet the terms k 6= 0. If we 
onsider only
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the terms j = 0, the system be
omes
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: (D.5)

In the same way in Ferraz-Mello (2015a), ea
h solution of this system tends to zero.

The role of the terms j 6= 0 that are periodi
 
u
tuations whi
h are the harmoni
s of the

orbital period are added to the solution. If we 
onsider the terms j 6= 0, we have that

y

i

� 1, and the rotational system is

_y

i

= �

X

j2Z j 6=0

K

ij

sin (jx); (D.6)

where K

ij

= (T

�

ii

� T

�

ii�1

)E

2;0

E

2;j

.

The solution of this di�erential equation is

y

i

(x) = y

i0

�K

ij

+

X

j2Z j 6=0

K

ij

j


os (jx); (D.7)

or, in term of the angular velo
ity, we obtain




i

= 


i0

�




i

K

ij

2

+

X

j2Z j 6=0




i

K

ij

2j


os (jnt): (D.8)

Therefore, the square of the angular velo
ity of the j-th layer 
an be written as




2

j

=

1

X

k=0

A
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os k`: (D.9)

Finally, the integral (D.1) is
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(D.10)
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In high-
 approximation (


i

� n), we 
an neglet P

ik

, then, the system 
an be written

as
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If we 
onsider only the terms j = 0, the system be
omes
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; (D.12)

whi
h is identi
al to the system D.5, with

P

k2Z

E

2

2;k

instead of E

2

2;0

. Therefore, ea
h

solution of this system tends to zero. As in low-
 approximation, the role of the terms

j 6= 0 are periodi
 
u
tuations whi
h are the harmoni
s of the orbital period are added

to the solution. If we 
onsider the terms j 6= 0, we have that y

i

� 1, and the rotational

system is

_y

i

= �

X

j2Z j 6=0

K

0

ij

sin (jx); (D.13)

where K

0

ij

= (T

�

ii

� T

�

ii�1

)

P

k2Z

E

2;k

E

2;k+j

.

Using the solution of the low-
 approximation, then, the angular velo
ity is
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i0

�




i

K

0

ij

2

+

X

j2Z j 6=0




i

K

0

ij

2j


os (jnt); (D.14)

and the integral (D.1) is zero.
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Appendix E

Fluid Love's number of the i-th layer

E.1 The tidal 
uid Love number of the i-th layer

The disturbing potential generated by the i-th homogeneous ellipsoidal layer, deformed

only by the tide due to a mass point M of mass M orbiting at a distan
e r, at an external

point r

�

is

ÆU

(tid)

i

(r

�

) = �
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(3 
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(E.1)

(see Eq. (A.34)).

On the other hand, the tidal potential at the same point r

�
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U
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�

) = �
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�2
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3

(3 
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� 1): (E.2)

The Love's theorem says that (Munk and Ma
Donald, 1960; Correia and Rodriguez,

2013)
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); (E.3)

therefore, we obtain
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The 
onstant k

i

is tidal 
uid Love number of the i-th layer, and 
an be rewritten as

k

i
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i

; (E.5)

where L

i

is given by Eq. (A.32), and

b
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=
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i
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i

: (E.6)
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E.2 The rotational 
uid Love number of the i-th layer

The disturbing potential generated by the i-th homogeneous ellipsoidal layer, deformed

only by the rotation with angular velo
ity 


i

, at an external point r
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(see Eq. (A.34)).

The 
entrifugal potential at the same point r

�

is
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The Love's theorem say that
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therefore
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The 
onstant k

0

i

is rotational 
uid Love number of the i-th layer, and 
an be rewritten

as

k
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=

b

k

i
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0

i




2

i

; (E.11)

where L

0

i

and

b

k

i

are given by Eqs. (A.32) and (E.6), respe
tively.

E.3 Potential of the tidally deformed layer

Finally, using Eqs. (E.5) ana (E.11) in the disturbing potential (A.34), we obtain
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Appendix F

The Cayley fun
tions

In this appendix we 
omplete some 
al
ulations used in 
hapters 3 and 6. We also show

the Cayley 
oeÆ
ients E

0;k

and E

2;k

, for jkj � 4.

F.1 Auxiliary formulas

In this se
tion we 
omplete some 
al
ulations used in the Eqs. (3.38) and (6.26). For

this sake, we use the Fourier expansion given in the Online Suplement of Ferraz-Mello

(2015):
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where the more general Cayley fun
tion is de�ned as:
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We also use the auxiliary formulas:
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(see Online Suplement of Ferraz-Mello (2015) for more details).
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Proposition 1:
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Using Eq. (F.2), with � = 0, we obtain
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or, using (F.5), with the transformation k �! k + j
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Using Eq. (F.1), with � = 0, we obtain
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Then
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or, using (F.5), with the transformation k �! k + j
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Using Eq. (F.2), with � = 0, we obtain
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or, using (F.4), with the transformation k �! k + j
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Using Eq. (F.1), with � = 0, we obtain
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