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Resumo

A maioria das teorias atuais de mar�e est~ao baseadas na teoria de Darwin, e tem omo

arater��stia prinipal a introdu�~ao ad ho do atraso tidal. Estas teorias predizem uma

rota�~ao estaionaria s��nrona quando a �orbita �e irular, e um exesso de rota�~ao (o-

nheido omo super-sinronismo) quando a �orbita �e el��ptia. Na teoria de Darwin, esse

exesso �e dado por � 6ne

2

(n �e o movimento m�edio e e a exentriidade orbital), e �e

independente da natureza do orpo deformado. Reentemente, foi proposta uma nova

teoria de mar�e, desenvolvida no IAG (Ferraz-Mello, Celest Meh Dyn Astron 116: 109,

2013). Usando uma lineariza�~ao da equa�~ao de Navier-Stokes para um uido om um

n�umero de Reynolds muito baixo, esta teoria estuda a deforma�~ao do orpo extenso, su-

pondo que ela �e proporional ao stress. A onstante de proporionalidade  (hamada

fator de relaxa�~ao), depende inversamente da visosidade. O exesso de rota�~ao predito

nesta teoria �e � 6ne

2



2

=(n

2

+ 

2

). Todas estas teorias adotam a hip�otese da homogenei-

dade do orpo deformado. Por�em, orpos elestes reais, omo os sat�elites do Sistema Solar

Europa, En�elado ou Tit~a, apresentam uma estrutura de amadas, om um oeano interno

que possibilita a rota�~ao independente entre a rosta e o n�uleo, impossibilitando apliar

as teorias atuais a este tipo de problemas. Nesta tese estendemos a teoria de mar�e por

uênia, ou reep tide theory, para orpos n~ao homogêneos difereniados. Desenvolvendo

um modelo para duas amadas, estudamos a evolu�~ao rotaional, assim omo as solu�~oes

estaion�arias quando, al�em das for�as de mar�e, inluimos as poss��veis for�as de intera�~ao

entre as amadas, omo o aoplamento gravitaional e a fri�~ao. Posteriormente, apliamos

a teoria a Tit~a, adiionando a intera�~ao rosta-atmosfera e onsiderando a existênia de

um oeano interno. Finalmente, desenvolvemos a teoria de mar�e de Darwin para orpos

n~ao homogêneos difereniado e omparamos om a teoria de mar�e por uênia.





Abstrat

Almost all existing tidal theories are based on the Darwin's theory, and have as main

feature the introdution of the ad ho tidal lag. These theories predit a synhronous

stationary rotation when the orbit is irular, and an exess of rotation (known as super-

synhronism), when the orbit is elliptial. In the Darwin's theory, this exess is given by

� 6ne

2

(n is the mean motion and e is the orbital eentriity), and is independent of

the nature of the deformed body. Reently, a new theory was proposed, developed in the

IAG (Ferraz-Mello, Celest Meh Dyn Astron 116: 109, 2013). Using a linearization of the

Navier-Stokes equation for a uid with a very low Reynolds number, this theory studies

the deformation of the extense body, assuming that it is proportional to the stress. The

onstant of proportionality  (alled relaxation fator), depends inversely on the visosity.

The exess of rotation predited in this theory is � 6ne

2



2

=(n

2

+ 

2

). All these theories

adopt the hypothesis of homogeneity of the deformed body. However, real elestial bodies,

as the satellites of the Solar System Europe, Eneladus or Titan, present a multi-layered

struture, with an internal oean that allows the independent rotation between the rust

and the ore, making impossible to apply the urrent theories to this kind of problems.

In this thesis, we extend the reep tide theory, to a di�erentiated non-homogeneous body.

Developing the two-layer model, we study the rotational evolution, as well as the stationary

solutions when, besides the tidal fores, we inlude the interation between the di�erent

layers, as the gravitational oupling and the frition. Then, we apply the theory to Titan,

adding the rust-atmosphere exhange of angular momentum and onsidering the existene

of a subsurfae oean. Finally, we develop the Darwin tidal theory to di�erentiated non-

homogeneous bodies and ompare with the reep tide theory.
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Chapter 1

Introdution

Tidal torques are a key physial agent ontrolling the rotational and orbital evolution

of systems with lose-in bodies and may give important lues on the physial onditions

in whih these systems are originated and evolved. The visoelasti nature of a real body

auses a non-instantaneous deformation, and the body ontinuously tries to reover the

equilibrium �gure orresponding to the varying gravitational potential due to the orbital

ompanion. In standard Darwin's theory (e.g. Darwin, 1880; Kaula, 1964; Mignard, 1979;

Efroimsky and Lainey, 2007; Ferraz-Mello et al., 2008), the gravitational potential of the

deformed body is expanded in Fourier series, and the visosity is introdued by means of

ad ho phase lags in the periodi terms.

1

All these theories predit the existene of a stationary rotation. If the lags are assumed

to be proportional to the tidal frequenies, the stationary rotation has the frequeny 


stat

'

n(1+6e

2

), where n is the mean motion and e is the orbital eentriity

2

. The synhronous

rotation is only possible when the orbit is irular, but the stationary rotation beomes

super-synhronous in the non-zero eentriity ase. In these theories, the exess of rotation

6ne

2

does not depend on the rheology of the body. However, this predition is not on�rmed

for Titan, where the exess provided by the theory is � 38

Æ

per year, and the Cassini

mission, using radar measurement, has not showed disrepany from synhronous motion

larger than � 0:02

Æ

per year (Meriggiola, 2012; Meriggiola et al., 2016).

Reently, a new tidal theory for visous homogeneous bodies has been developed by

Ferraz-Mello (2013; 2015a) (hereafter FM13 and FM15, respetively). A Newtonian reep

1

Mignard (1979), introdued an ad ho onstant time lag.

2

If the tidal phase lags are assumed to be frequeny independent, as in MaDonald (1964), the resulting

stationary solution is 
 ' n(1 + 9:5e

2

) (see Goldreih, 1966).
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model, whih results from a spherial approximate solution of the Navier-Stokes equation

for uids with very low Reynolds number, is used to alulate the surfae deformation,

due to an anelasti tide. This deformation is assumed proportional to the stress, and

the proportionality onstant , alled the relaxation fator, is inversely proportional to the

visosity of the body. In the reep tide theory, the exess of synhronous rotation is roughly

proportional to 6n

2

e

2

=(n

2

+ 

2

). A similar planar theory, using a Maxwell visoelasti

rheology, was developed by Correia et al. (2014) and generalized later to the spatial ase

by Bou�e et al. (2016). Despite the di�erent methods used to introdue the elastiity of the

body, this approah is virtually equivalent to the reep tide theory (Ferraz-Mello, 2015b).

Other general rheologies were studied by Henning et al. (2009) and Frouard et al. (2016).

However, real elestial bodies are quite far from being homogeneous and how the tide

inuenes its dynami evolution is not entirely lear yet. Di�erentiation is ommon in our

Solar System, and several satellites present evidene of a subsurfae liquid oean. We may

ite, for instane, Europa (Wahr et al., 2006; Khurana et al., 1998) and Eneladus (Poro

et al., 2006; Nimmo et al., 2007). One paradigmati ase is Titan, where, in addition,

the exhange of a ertain amount of angular momentum between the surfae and the

atmosphere may be important (Tokano and Neubauer, 2005; Rihard et al., 2014), and the

presene of an internal oean (Tobie et al., 2005; Lorenz et al., 2008; Sohl et al., 2014) may

deouple rotationally the rust from the interior (Karatekin et al., 2008). The rotation of

the rust has been studied by Van Hoolst et al. (2009) using the stati tide and internal

e�ets, as gravitational oupling and pressure torques. They found that the rust rotation

is inuened, mainly by the atmosphere and the Saturn torque, and laim that the visous

rust deformation and the non-hydrostati e�ets, ould play an important role in the

amplitude of the rust osillation.

The main objetives of this work are: i) To extend the reep tide theory for multi-

layered bodies and to study their rotational evolution. ii) To apply the non-homogeneous

tidal theory to Titan. This thesis is organized as follows: In Chap. 2 we generalize the

linear Clairaut theory for one multi-layered body with di�erential rotation, adding a tidal

potential due to the presene of an external body. We present and solve the 2N lassial

equations of equilibrium and extend the Clairaut's equation for the ontinuous problem

and its solution. We alulate the potential at a point in the spae due to the deformed
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body and we alulate a generalized Love number for the di�erentiated non-homogeneous

bodies. Finally, we apply the theory to a body omposed of two homogeneous layers, and

for several laws of density. The main results, for the partiular ase in that all the layers

have the same angular veloity, were published in Folonier et al. (2015). In Chap. 3 we

present the non-homogeneous reep tide theory for one body omposed of N homogeneous

layers. We ompute the disturbing potential of the deformed body, as well as the fores,

the toques and the work done by the tidal fores ating on the bodies. In addition, we

alulate the variations in semi-major axis and eentriity, produed by the tidal fores.

In Chap. 4, we develop the two-layer model, adding the gravitational oupling between

the ore and the shell and the frition that ours at interfae in ontat. We ompare

the two-layer model with the homogeneous theory and alulate the approximate near-

synhronous rotation. In Chap. 5, we apply to Titan

3

. In Chap. 6 we extend the Darwin

tide theory for multi-layered bodies and ompare with the reep tide theory. Finally, the

onlusions are presented in Chap. 7. The work is ompleted by several appendies where

are given tehnial details of some of the topis presented in the forthoming hapters.

3

Chapters 3, 4 and 5 are the basis of one paper to be submitted soon to publiation in the journal

Celestial Mehanis and Dynamial Astronomy.
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Chapter 2

The stati tide

2.1 Introdution

Several theories of tidal evolution, sine the theory developed by Darwin in the XIX

entury (Darwin, 1880), are based on the �gure of equilibrium of an invisid tidally de-

formed body (see e.g. Ferraz-Mello et al., 2008; Ferraz-Mello, 2013). The addition of

the visosity to the model is done at a later stage, but the way it is introdued is not

unique and an vary when di�erent tidal theories are onsidered. Frequently, the adopted

�gure is a Jeans prolate spheroid or, if the rotation is important, a Rohe triaxial ellipsoid

(Chandrasekhar, 1969). It is worth realling that ellipsoidal �gures are exellent �rst ap-

proximations, but not exat �gures of equilibrium (Poinar�e, 1902; Lyapunov, 1925; 1927).

Besides, Malaurin, Jaobi, Rohe and Jeans ellipsoids are valid only for homogeneous bo-

dies. Real elestial objets, however, are quite far from being homogeneous. This auses

signi�ant deviations whih need to be taken into aount in the astronomial appliations.

The non-homogeneous problem, when we only onsider the deformation by rotation,

has been extensively studied. The problem of one body formed by n rotating homogeneous

spheroidal layers as well as its extension to the ontinuous ase was studied by Clairaut

(1743) (revisited by Tisserand, 1891 and Wavre, 1932). Their works were based on the

hypotheses of small deformations (linear theory for the polar attenings) and onstant

angular veloity inside the body. The general ase of homogeneous layers rotating with

di�erent angular veloities (non-linear theory) was studied by Montalvo et al. (1983) and

Esteban and Vazquez (2001) (see Borisov et al., 2009 for a more detailed review), and was

generalized to the ontinuous invisid ase by Bizyaev et al. (2014).

The ase of uniformly rotating layers was studied by several authors. Kong et al.
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(2010) disussed the partiular ase of a body formed by two homogeneous layers with

same angular veloity. Hubbard (2013), with a reursive numerial form of the potential of

a N-layers rotating planet, in hydrostati equilibrium, showed a solution for the spheroidal

shapes of the interfaes of the layers.

When the tidal fores ating on the body are taken into aount along with the rotation,

the literature is muh less extensive. Usually the spin-orbit synhronism is assumed, so

that the rotating body solution an be used (e.g. Van Hoolst et al., 2008). Triario (2014),

assuming synhronism, found a reursive analytial solution for the shape of a body formed

by an arbitrary number of layers. For this, he developed the potentials of homogeneous

ellipsoids in terms of the polar and equatorial shape eentriities. However, the results do

not inlude tidally deformed bodies whose rotation is non-synhronous, as, for instane,

the Earth, solar type stars hosting lose-in planets and hot Jupiters in highly eentri

orbits. Reently, Wahl et al. (2016) extended the Conentri Malaurin Spheroid method,

presented in Hubbard (2013), to inlude the tidal fores.

In this hapter, we study the stati equilibrium �gure of one body omposed of N

homogeneous layers, deformed by a tidal potential and the di�erential rotation of its layers.

The main results were published in Folonier et al. (2015).

2.2 The equilibrium equations

We onsider one di�erentiated body m of mass m

T

, disturbing to one mass point M of

mass M orbiting at a distane r from the enter of m. We assume that m is omposed

of N homogeneous layers of density d

i

(i = 1; � � � ; N) and angular veloity 


i

= 


i

b

k,

perpendiular to the orbital plane. We also assume that eah layer has an outer ellipsoidal

shape with semi axes a

i

, b

i

and 

i

, where the semi-major axis a

i

is pointing towards M and



i

is the axis of rotation (Fig. 2.1).

If we onsider one point on the outer surfae of the i-th layer, with position vetor

r

i

= (x

i

; y

i

; z

i

) and veloity v

i

= 


i

� r

i

, respet of the enter of m, we an use the same

equation used in the study of equilibrium ellipsoids (see Tisserand, 1891, Chap. 8 and

13; Jeans, 1929, Se. 215-216; Jardetzky, 1958; Chandrasekhar, 1969), whih expresses

the fat that the total fore ating on a point of its surfae must be perpendiular to the
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Figure 2.1: Body of mass m

T

formed of N homogeneous layers of density d

i

, where eah layer has an

outer mean equatorial radius R

i

and an angular veloity 


i

, and a point mass M orbiting at a distane r

from its enter in a plane perpendiular to the rotation axis. Figure extrated of Folonier and Ferraz-Mello

(2015).

surfae

r

r

i

�

i

/ r

r

i

U

G

+


i

� (


i

� r

i

); (2.1)

where U

G

is the total gravitational potential at r

i

, the term 


i

� (


i

� r

i

) orresponds to

the entripetal aeleration and

�

i

(x

i

; y

i

; z

i

) =

x

2

i

a

2

i

+

y

2

i

b

2

i

+

z

2

i



2

i

� 1 = 0; (2.2)

is the ellipsoidal surfae equation. The use of the above equilibrium equation in a ase

where the tidal fore �eld is hanging beause of the external body needs a justi�ation.

Eq. (2.1) means that no hange in the shape of the body ours beause of internal fores;

the shape will hange, but only beause of the relative hange of the position of the external

body.

Hene, we obtain the equilibrium equations




2

i

=

1

x

i

�U

G

�x

i

�

�

i

z

i

�U

G

�z

i




2
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=

1

y

i

�U

G

�y

i

�

�

i

z

i

�U

G

�z

i

; (2.3)

where

�

i

=



2

i

a

2

i

; �

i

=



2

i

b

2

i

: (2.4)
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The problem of �nd the equilibrium �gure (i.e. the values of the semi axes a

i

, b

i

and



i

) is equivalent to �nding the equatorial and polar attenings

�

(i)

�

=

a

i

� b

i

R

i

�

1� �

i

2

�

1� �

i

2

; �

(i)

z

=

b

i

� 

i

R

i

�

1� �

i

2

; (2.5)

where R

i

=

p

a

i

b

i

is the outer mean equatorial radius of the i-th layer. For this, we will

use the 2N equilibrium equations (2.3).

If we denote U

j

(with j = 1; � � � ; N) the potential of the j-th layer, and U

tid

the tidal

potential at r

i

, the total gravitational potential is

U

G

= U

tid

+

N

X

j=1

U

j

: (2.6)

As the equilibrium equations (2.3) are linear in the potential U , we an write




2

i

= �

(k)

i

(U

tid

) +

N

X

j=1

�

(k)

i

(U

j

); (2.7)

where �

(1)

i

and �

(2)

i

are the operators

�

(1)

i

=

1

x

i

�

�x

i

�

�

i

z

i

�

�z

i

�

(2)

i

=

1

y

i

�

�y

i

�

�

i

z

i

�

�z

i

: (2.8)

2.3 Flattening of the layers

The next step is to alulate the ontribution of eah gravitational potential to the

equilibrium equations (2.7). If we onsider separately the ontributions to the potentials

due to the inner and outer layers, and the tidal fores at a point on the i-th surfae (see

Appendix B), we obtain the equations
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The solution of this system an be written as

�

(i)

�

= H

i

�

J

; �

(i)

z

= G

i

��

M

; (2.10)

where ��

M

is the attening of the equivalent MaLaurin homogeneous spheroid in synhro-

nous rotation and �

J

are the attening of the equivalent Jeans homogeneous spheroids

��

M

=

5R

3

N

n

2

4m

T

G

; �

J

=

15MR

3

N

4m

T

r

3

; (2.11)

G is the gravitational onstant, n is the mean motion of M and R

N

=

p

a

N

b

N

is the outer

mean equatorial radius of m.

The oeÆients H

i

and G

i

are the Clairaut's numbers

H
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X
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(E
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ij
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(E
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ij

x
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j

n
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; (2.12)

where (E

�1

)

ij

are the elements of the inverse of the matrix E, with elements
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(2.13)

where x

i

= R

i

=R

N

and

b

d

i

= d

i

=d

1

are the normalized mean equatorial radius and density,

respetively, and f

N

= 3

R

1

0

b

d(z)z

2

dz, where

b

d(z) is the normalized density pro�le.

It is important to note that if the orbital motion is synhronous with the angular

veloity of eah layer, when the approximation �

J

' 3��

M

is adopted

1

, the system (2.9) is

ompletely equivalent to that found by Triario (2014), where the square of the polar and

equatorial \eentriities" used there are related to the polar and equatorial attenings

through e

2

pi

� 2�

(i)

z

and e

2

qi

� 2�

(i)

�

.

The alulations done are valid only for small attenings, i.e. we assume that the

perturbation due to the tide and the rotation are small enough so as not to deform too

muh the body (in the seond order, the �gure eases to be an ellipsoid).

1

The exat relation is �

J

= 3��

M

a

3

r

3

M

M+m

T

. The aproximation is valid only if the mass of the deformed

body and the eentriity are small, that is r ' a and m

T

�M .
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In the rigid rotation ase, if the veloity of rotation of eah layer is 


i

= 
, the polar

attening of the i-th layer, an be rewritten as

�

(i)

z

= H

i

�

M

; (2.14)

where

�

M

=

5R

3

N




2

4m

T

G

; (2.15)

is the non-synhronous attening of the equivalent MaLaurin homogeneous spheroid.

2.4 Extension to the ontinuous ase

In this setion we extend the equilibrium �gure to the ontinuous ase. In order to

alulate the �rst Clairaut funtion H(x), we follow the method showed in Tisserand

(1891), Chap. 14, writing the �rst equation of (2.9), less the seond equation, as
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If we introdue the notation �(x

k

) = x

k

� x

k�1

and the boundary values x

0

= 0 and

d

N+1

= 0, we may rewrite the terms on the left hand side of the last equation as
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If we assume that the number of layers tends to in�nity so that the inrements �x

k

=

x

k

� x

k�1

are in�nitesimal quantities, when �x

k

! 0, the Eq. (2.16) beomes
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where the funtion f(x) is

f(x)

def

= 3

Z

x

0

b

d(z)z

2

dz; (2.21)

with f(0) = 0 and f(1) = f

N

.

Deriving (2.20) with respet to x, we have
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and deriving one more we obtain the di�erential equation for the attening pro�le
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It is a homogeneous linear di�erential equation of seond order with non-onstant o-

eÆients for the �rst Clairaut funtion H(x), that represent the ontinuous ounterpart

of the �rst Clairaut oeÆient H

i

. The di�erential equation (2.23) is the same expression

found by Clairaut (Tisserand, 1891; Je�reys, 1953).

The Eq. (2.20) allows us to alulate the limits that the Clairaut oe�ient H

N

an

take at the surfae. In the homogeneous ase

b

d(x) = 1, the integrals an be alulated

trivially. At the surfae x = 1, we obtain H

N

= 1. In the non-homogeneous ase, if the

density is a pieewise ontinuous non-inreasing funtion (

b

d

0

6 0), we have, at the surfae
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Then, under the assumption of equilibrium, a non-homogeneous body will have equatorial

attenings on the surfae with values between 0.4 and 1 times the values they would have

if the body was homogeneous.
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It is worth mentioning that Eq. (2.24) is valid if H(z) � 0, that is, a

i

� b

i

. If a

i

< b

i

,

we an rede�ne the equatorial attening as �

(i)

�

= (b

i

� a

i

)=R

i

= H

i

�

J

� 0.

In order to alulate the equation for the seond Clairaut funtion G(x), we an proeed

in the same way. Using the seond equation of (2.9), we obtain
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where
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and deriving one more we obtain the di�erential equation for the attening pro�le

G

00

(x) +

6

b

d(x)x

2

f(x)

G

0

(x) +

 

6

b

d(x)x

f(x)

�

6

x

2

!

G(x) =

4f

N

x

2

5f(x)

�

6

b




b




0

+ x

b




02

+ x

b




b




00

�

: (2.27)

It is a non-homogeneous linear di�erential equation of seond order with non-onstant

oeÆients. The homogeneous equation is equal to the di�erential equation of the �rst

Clairaut equation (2.23). The non-homogeneity of Eq. (2.27) depend on the rotation

pro�le

b


(x) = 
=n, partiularly depend on the

b




0

and

b




00

, therefore, to rigid rotation

b


(x)

is a onstant funtion, and the Eq. (2.27) results equal to the di�erential equation (2.23).

In the homogeneous ase

b

d(x) = 1, the integral (2.25) an be alulated trivially

G(x) =

2

5

b




2

+

3

5

G

N

; (2.28)

with G

N

=

b




2

N

at the surfae x = 1. In the non-homogeneous ase, if the density is a

non-inreasing funtion (

b

d

0

6 0), we have, at the surfae

G

N

=

2

b




2

N

5

+

3

5f

N

Z

z=1

z=0

b

d(z)d(z

5

G(z))

=

2

b




2

N

5

+

3

5f

N

�

b

d

N

G

N

�

Z

z=1

z=0

z

5

G(z)d

b

d(z)

�

>

2

b




2

N

5

: (2.29)

Then, under the assumption of equilibrium, a non-homogeneous body will have attenings

on the surfae with values between 0:4

b




2

n

and

b




2

n

times the values they would have if the

body was homogeneous.
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2.4.1 Boundary onditions. Radau transformation

The di�erential equation (2.23) requires two boundary onditions to be solved. Howe-

ver, before attempting to �nd these boundary onditions, we will show two relationships

that will turn out to be useful later. The �rst relationship is obtained from equation (2.22),

where at x = 1 we have

H

0

N

= 2(1�H

N

): (2.30)

The seond relationship is obtained from the di�erential equation (2.23). If we note that

f(x) � x

3

+3

b

d

0

0

x

4

=4 and

b

d(x) � 1+

b

d

0

0

x, in the neighborhood of x = 0, the Eq. (2.23) an

be approximated by

H

00

+ 6

H

0

x

+ 6

b

d

0

0

H

x

= 0; (2.31)

it is

H

0

0

= �

b

d

0

0

H

0

; (2.32)

where

b

d

0

0

is the derivative of the density at x = 0.

In pratial appliations, it is onvenient to introdue the Radau transformation

�(x) =

xH

0

(x)

H(x)

; (2.33)

and rewritten Clairaut's equation as the Riatti di�erential equation

�

0

+

�

2

x

+

�

q(x) +

5

x

�

� + q(x) = 0; (2.34)

where

q(x)

def

=

6

x

 

b

d(x)x

3

f(x)

� 1

!

: (2.35)

In the new variables, using the relation (2.32), the boundary ondition is

�(x = 0) = 0: (2.36)

The variable � is sometimes referred to as Radau's parameter (Bullen, 1975). De�ning

�(x = 1) = �

N

and using the relationship (2.30) and the transformation (2.33), the boun-

dary onditions of (2.23) are

H

N

=

2

2 + �

N

; H

0

N

=

2�

N

2 + �

N

: (2.37)
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As a result of this relationship, if onsidering that 0:4 < H

N

< 1, we reover the lassial

result 0 < �

N

< 3 (Tisserand, 1891).

Finally, it should be noted that one �(x) is found, we may �nd the pro�le attening

from equation (2.33), whose solution is

H(x) = H

N

e

R

x

1

�(z)=z dz

: (2.38)

The omplete study of the di�erential equation for the seond Clairaut funtion G(x)

(Eq. 2.27), esapes from the objetives of this work. As we will show in the following

Chapters, the axial terms of the potential of the deformed body, whih involve Clairaut

number G

i

, are torque free and do not ontribute to the tidal rotational evolution of m.

2.5 Potential of the tidally deformed body

The disturbing potential of the i-th ellipsoidal layer at an external point r

�

is given by

(see Eq. A.33)

ÆU

(i)

2

(r

�

) = �

GC

i

L

i

2r

�3

�

J

�

3 os
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�

�
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i

L
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i

2r

�3

��

M

�

3 os

2

	

z

� 1

�

; (2.39)

where 	

x

and 	

z

are the angles between the diretion of the point where the potential is

taken and the oordinate axes x and z, respetively, C

i

'

2

5

m

i

(R

5

i

� R

5

i�1

)=(R

3

i

� R

3

i�1

) is

the axial moment of inertia of the i-th layer (see Eq. A.26) and the parameters

L

i

=

H

i

R

5

i

�H

i�1

R

5

i�1

R

5

i

� R

5

i�1

; L

0

i
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G

i

R

5

i

� G

i�1

R

5

i�1

R

5

i

� R

5

i�1

: (2.40)

The total potential is the sum of the potentials of all layers:

U(r
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f
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15r
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15r
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3 os
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� 1
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; (2.41)

the onstants k

f

and k

0

f

are often alled the tidal and rotational uid Love number (Munk

and MaDonald, 1960; Correia and Rodr��guez, 2013). For a non-homogeneous body, by

identi�ation of the terms, we �nd

k

f

def

=

3

2

1

m

T

R

2

N

N

X

i=1

m

i

�(R

5

i

H

i

)

R

3

i

�R

3

i�1

; k

0

f

def

=

3

2

1

m

T

R

2

N

N

X

i=1

m

i

�(R

5

i

G

i

)

R

3

i

� R

3

i�1

; (2.42)

where �(f

i

) = f

i

� f

i�1

, denotes the inrement of one funtion f

i

, between the inner and

the outer boundaries of this layer. Using the ontinuous model and the mass of the i-th
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layer m

i

=

4�

3

d

i

(R

3

i

� R

3

i�1

), we obtain

k

f

=

3

2f

N

Z

z=1

z=0

b

d(z)d(z

5

H(z)); k

0

f

=

3

2f

N

Z

z=1

z=0

b

d(z)d(z

5

G(z)): (2.43)

Using the integral form of Clairaut's equations (2.20) and (2.25), and evaluating at

x = 1, we obtain

k

f

=

5

2

H

N

� 1; k

0

f

=

5

2

G

N

�

b




2

N

: (2.44)

whih shows the link of the tidal uid Love number k

f

, with the oeÆient H

N

. This

relationship is based on the fat that both onstants depend solely on the internal struture,

haraterizing the inhomogeneity of the body. In the homogeneous ase H

N

= 1 thus

reovering the lassial result k

f

= 1:5. If we also assume a synhronous rotation, G

N

=




N

=n = 1 and k

0

f

= k

f

= 1:5.

2.6 Two-layer Core-Shell model

2.6.1 Disrete model

In this setion we onsider the simple ase of a body formed of two synhronous ho-

mogeneous layers: a ore with density d

1

and mean radius R

1

, and a shell with density

d

2

=

b

d

1

d

1

(with

b

d

1

< 1) and mean outer radius R

2

(Fig. 2.2). If we de�ne the normalized

mean ore radius x

1

= R

1

=R

2

, then, the parameter f

N

an be written as

f

N

=

b

d

1

+ (1�

b

d

1

)x

3

1

: (2.45)

The linear system for the equatorial attenings is
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12
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= 1; (2.46)

(see Eq. 2.16), where the elements of the matrix E are
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2

b
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b

d
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3

1

2

b

d

1

+ 2(1�

b

d

1

)x

3

1

: (2.47)
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Figure 2.2: Density pro�le of a body formed by two homogeneous layers. x

1

is the mean radius of the

ore R

1

relative to the mean outer radius of the shell R

2

.

b

d

1

is the shell density d

2

relative to the ore

density d

1

. Figure extrated of Folonier et al. (2015).

Hene, the �rst Clairaut's numbers are
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: (2.48)

Figure 2.3: Possible values of H

1

(ore) and H

2

(shell) as funtions of the ore size x

1

and of the relative

density of the shell

b

d

1

. Figure extrated of Folonier et al. (2015).

Fig. 2.3 shows the results obtained for the onstants H

1

and H

2

. We see that:



Setion 2.6. Two-layer Core-Shell model 37

� If

b

d

1

= 1 or x

1

= 1, the onstants are H

1

= H

2

= 1, that is the solution for a

homogeneous body.

� When the ore is denser than the shell, H

2

> H

1

and the attening of the ore are

smaller than the equatorial attening of the surfae (where �

(1)

�

= H

1

�

J

6 �

(2)

�

=

H

2

�

J

).

� Sine H

2

6 1, the maximum surfae attening is given by the homogeneous solution.

In presene of a ore, the surfae is always less attened than it is in the homogeneous

ase.

� While H

1

may take all possible values bettween 0 and 1, H

2

is always larger than the

ritial limit 0.4, orresponding to the degenerate limit ase in whih the whole mass

would tend to onentrate in the enter and would be surrounded by a zero-density

shell (ase of Huygens-Rohe). Therefore the attenings of the outer surfae an

never be less than 40% of the homogeneous referene values. This is the same result

given by Eq. (2.24) for the ontinuous ase.

2.6.2 Continuous model

Now, we will onsider the same problem, but using the ontinuous model. In this ase,

the normalized density pro�le is

b

d(x) =

8

<

:

1 0 6 x 6 x
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< x 6 1;

(2.49)

and the funtion f(x) is
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1

< x 6 1:

(2.50)

A simple treatment, without atually solving the di�erential equation, is to solve the

integral equation (2.20), that an be alulated trivially sine the density pro�le

b

d(x) is

pieewise onstant

Z
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�
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5
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x
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< x 6 1;

(2.51)
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and

Z

1

x

b

d(z)dH =
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< x 6 1;

(2.52)

where H

1

= H(x

1

) and H

2

= H(1). We remind that, a priori, we do not know the form of

the funtion H(x).

In the ore, 0 6 x 6 x

1

, the integral equation is
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whih, for x = 0, gives the ondition
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only if
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+
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5

(1�

b
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1

)H
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; (2.54)

that is, the attening pro�le in the ore remains onstant, although we do not know yet

the boundary values H

1

and H

2

. Partiularly, if x = x

1

, we obtain

(2 + 3

b

d

1

)H

1

= 2f

N

+ 3

b

d

1

H

2

: (2.55)

In the shell, x

1

< x 6 1, the integral equation is
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If we evaluate it at the boundary x = 1, we obtain
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Sine the funtion H(x) should be ontinuous at the boundary x = x

1

, we may ombine

the equations (2.55) and (2.57), to obtain the boundary onditions:
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; (2.58)



Setion 2.6. Two-layer Core-Shell model 39

whih oinide with the results of the disrete model. The attening pro�le an then be

written as

H(x) =

8

>

>

<

>

>

:

H

1

; 0 6 x 6 x

1

3(1�

b

d

1

)x

5
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+ (2 + 3

b

d

1

)x
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x

3
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d

1

)x

3

1

�

H

1

; x

1

< x 6 1

:

Figure 2.4: Example of attening pro�le H(x) when x

1

= 0:2 and

b

d

1

= 0:2.

The results obtained with the two models are in exellent agreement. In the disrete

ase, by onstrution, we only obtain the values of the attening in the surfae of the

body and in the interfae ore-shell as a funtion of the relative density of both layers and

the normalized mean radius of the nuleus. In the ontinuous model, however, we get a

attening pro�le whih is ontinuous and oinides with those of the �rst model in the

points x = x

1

and x = 1. So, the ontinuous model not only gives the attening in the

surfaes of the two parts, but also the attening of the atual equipotentials within the

uid. Fig. 2.4 shows one example: we plot the attening pro�le H(x) when x

1

= 0:2

and

b

d

1

= 0:2. The values of the Clairaut funtion in the points x = x

1

and x = 1,

oinides with the Clairaut's numbers in the disrete model: H(x

1

) = H

1

' 0:379 and

H(1) = H

2

' 0:956.



40 Chapter 2. The stati tide

2.6.3 Fluid Love number

Using equation (2.44), together with the expression for H

2

(Eqn. 2.48), the expression

of the uid Love number k

f

is

k
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� 9
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1
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5

1

� 1: (2.59)

Fig. 2.5 shows the possible value of k

f

as a funtion of the ore size x

1

and of the

relative density of the shell

b

d

1

. If we obtain k

f

, for example by determining H

N

by diret

observation of the surfae attenings, then equation (2.59) de�nes a ontinuous urve of

possible values for the size of the nuleus x

1

and the relative density of the shell

b

d

1

under

the hypothesis of two homogeneous layers. Moreover, as an be seen in this �gure, a

maximum value for these physial parameters an be predited.

Figure 2.5: Possible values of k

f

as funtions of the ore size x

1

and of relative density of the shell

b

d

1

.

Figure extrated of Folonier et al. (2015).

2.7 Appliation to di�erent density distribution laws

In this setion, we present some appliations of the theory developed in this hapter

to bodies with ontinuous density distributions. For this we use two examples of density

distributions: polynomial and polytropi density laws.
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In both ases the Clairaut's equation is solved numerially after introdution of the

variable de�ned by the Eq. (2.33). The attening pro�le H(x) and the Love number are

then obtained through the inverse transformation.

2.7.1 Polynomial density funtions

We onsider initially a simple polynomial density law:

b

d(x) = 1� x

�

; (2.60)

where � > 0. The left panel of Fig. 2.6 shows the density funtions for � = 0:1; 1; 2; 10

and 100 as funtions of the normalized mean radius x.

Figure 2.6: Left : Density pro�les for polynomial density distributions with di�erent values of �. Right :

Flattening pro�le H(x) for the same density laws. � = 0:1 (blak), � = 1 (red), � = 2 (green), � = 10

(blue) and � = 100 (magenta). Figures extrated of Folonier et al. (2015).

The resulting attening pro�les H(x) are shown in the right panel of Fig. 2.6. In all

ases, the attening pro�le H(x) is an inreasing monotoni funtion and, for all x, the

values of H(x) inrease when the power � inreases.

Note that, as disussed in Setion 2.4, the value of H

N

is always greater than the limit

value 0.4 and less than 1. Partiularly H

N

tends to 0.570 when � tends to 0 and H

N

tends to 1 when � tends to1 (homogeneous ase). The uid Love number inreases from

0.424 (when � tends to 0) to 1.5 (when � tends to 1). These results an be seen in

Fig. 2.7, where we also show the values of the attening fator H

N

at the surfae and the

dimensionless moment of inertia C=m

T

R

2

N

. This last parameter inreases from 0.24 (when

� tends to 0) to 0.4 (when � tends to 1)

2

.

2

An elementary alulation allows one to �nd the relationship

C

m

T

R

2

�

2

3

R

1

0

b

dz

4

dz

R

1

0

b

dz

2

dz

=

2

5

�

3+�

5+�

.
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Figure 2.7: Values of H

N

(blak), k

f

(red) and C=m

T

R

2

N

(blue) for di�erent values of the exponent of

the polynomial density law. Figure extrated of Folonier et al. (2015).

2.7.2 Polytropis pressure-density laws

We may onsider a self-gravitating body in hydrostati equilibrium with a more general

polytropi pressure-density law:

P = Kd

1+

1

n

; (2.61)

where P is the pressure, n is the polytropi index and K is onstant. The di�erential

equation for the density is then given by the Lane-Emden equation (Chandrasekhar, 1969)

1

�

2

d

d�

�

x

2

d�

d�

�

+ �

n

= 0; (2.62)

where � =

b

d

1=n

and � = �=R, with �

2

= (n+1)Kd

1

n

�1

0

=4�G. The standard boundary on-

ditions are �(0) = 1 and �

0

(0) = 0. If 0 � n < 5 the solution �(�) dereases monotonially

and has a zero at a �nite value � = �

1

. This radius orresponds to the surfae of the body

where P = � = 0.

It is worth mentioning that several real ases exist that orrespond to polytropes. For

example, when onvetion is established in the interior of a star the resulting on�guration

is a polytrope; when the gas is degenerate, the orresponding equations of state have the

same form as the polytropi equation of state, et. (see Collins, 1989). We also mention

reent results by Leonte et al. (2011) showing that the density pro�le of hot Jupiters is

well approximated by a polytrope.

The left panel of the Fig. 2.8 shows the density funtions for n = 0:5; 1:0; 1:5; 3:0 and
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Figure 2.8: Left : Density pro�les for di�erent values of the polytropi index. Right : Flattening pro�le

H(x) for these density laws. n = 0:5 (blak), n = 1 (red), n = 1:5 (green), n = 3 (blue) and n = 4:5

(magenta). Figures extrated of Folonier et al. (2015).

4:5 as funtions of the normalized mean radius x = R=��

1

obtained from the integration

of the Lane-Emden equation.

The resulting attening pro�les H(x) are shown in the right panel of Fig. 2.8. In all

ases, the attening pro�le H(x) is an inreasing monotoni funtion and for all x, the

values of H(x) derease when the polytropi index n inreases.

As mentioned previously, the value of H

N

is always greater than the limit value 0.4.

Partiularly H

N

! 0:4 when n! 5. The uid Love number dereases from 1.5 for n = 0

(onstant density) to 0 when n tends to the limit n = 5. These results an be seen in

Fig. 2.9, where we also show the values of the attening fator H

N

and the dimensionless

moment of inertia C=m

T

R

2

N

for values of n below the limit n = 5. The adimensional

moment of inertia dereases from 0.4 (when n = 0) and tends to 0 when n! 5.

2.7.3 An analitial result: The politrope with n=1

The Clairaut di�erential equation (2.23) an be very diÆult to solve analitialy, even

for very simple density pro�les as linear or quadrati, whih an only be solved numerially.

However, for the partiular ase

b

d(x) =

sin�x

�x

; (2.63)

whih orresponds to the density pro�le of degenerate gases with a polytropi index n = 1

(see Fig. 2.10) (de Pater et al. 2010, Chap. 6), the solution an be expressed analytially.

This ase is very useful sine the state of the matter inside the gaseous planets is well
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Figure 2.9: Values of H

N

(blak), k

f

(red) and C=m

T

R

2

N

(blue) for di�erent polytropi indies n < 5.

Figure extrated of Folonier et al. (2015).

approximated by this model.

Figure 2.10: Polytropi density pro�le for n = 1.

In this ase, the funtion f(x) is

f(x) =

3

�

3

�

sin (�x)� �x os (�x)

�

; (2.64)

and the di�erential equation beomes

H

00

+

2�

2

x

1� �x ot (�x)

H

0

+

�

2�

2

1� �x ot (�x)

�

6

x

2

�

H = 0: (2.65)

We an verify that the resulting equation has the linearly independent solutions

u(x) =

3

x

2

�

�

2

1� �x ot (�x)

; v(x) =

(�

2

x

2

� 3) ot (�x) + 3�x

1� �x ot (�x)

; (2.66)
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and the attening pro�le an be written as

H(x) = C

1

u(x) + C

2

v(x); (2.67)

where C

1

and C

2

are onstants.

In order to alulate the integration onstants, we introdue the solution (2.67) into

the Eqs. (2.20) and (2.22). Evaluating at x = 1, we obtain the linear system

2f

N

3

=

�

5f

N

u

N

3

�

Z

z=1

z=0

b

d d(z

5

u)

�

C

1

+

�

5f

N

v

N

3

�

Z

z=1

z=0

b

d d(z

5

v)

�

C

2

1 =

�

u

N

+

u

0

N

2

�

C

1

+

�

v

N

+

v

0

N

2

�

C

2

; (2.68)

where u

N

= u(1), v

N

= v(1), u

0

N

= u

0

(1) and v

0

N

= v

0

(1). Replaing by the funtions, the

linear system beomes

2

�

2

= C

1

+

�

132

�

5

�

18

�

3

�

3

�

�

C

2

1 =

�

2

2

C

1

+

�

3

�

�

7�

2

�

C

2

: (2.69)

Figure 2.11: Polytropi attening pro�le for n = 1.

Hene, the integration onstants are

C

1

=

2

�

2

; C

2

= 0; (2.70)

and the attening pro�le is

H(x) =

6

�

2

x

2

+

2

�x ot (�x)� 1

; (2.71)
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whih is the same stritly inreasing funtion given in the right panel of Fig. 2.8, labeled

n = 1 (see Fig. 2.11). A simple alulation allows us to �nd that the Clairaut numbers at

the enter and surfae of m are

H(0) = H

0

= 0:4

H(1) = H

N

=

6

�

2

� 0:6; (2.72)

and the uid Love number, using the Eq. (2.44), is

k

f

=

15

�

2

� 1 � 0:52; (2.73)

in exellent agreement with the lassial value (Hubbard, 1975; Wahl et al., 2016).



Chapter 3

Non-homogeneous reep tide theory

3.1 Introdution

In this hapter, we extend the planar reep tide theory to the ase of a visoelasti

body formed by N homogeneous layers, using the multi-layered stati �gure alulated in

the above hapter. Solving the reep tide equation for eah layer interfae, we ompute

the disturbing potential of the deformed body, as well as the fores, the torques, the work

done by the tidal fores ating on the bodies and the variations in semi-major axis and

eentriity.

3.2 Creep tide theory

Let us onsider one di�erentiated body m of mass m

T

, disturbed by one mass point

M of mass M orbiting at a distane r from the enter of m. We assume that the body is

omposed of N homogeneous layers of densities d

i

(i = 1; � � � ; N) and angular veloities




i

, perpendiular to the orbital plane.

The outer surfae of the i-th layer is �

i

(b'

i

;

b

�

i

; t), where �

i

is the distane of the surfae

points to the enter of gravity of m and the angles b'

i

;

b

�

i

are their longitudes and o-

latitudes in a �xed inertial referene system. At eah instant, we assume that the stati

equilibrium �gure of eah layer under the ation of the tidal potential and the rotation may

be approximated by a triaxial ellipsoidal equilibrium surfae �

i

(b'

i

;

b

�

i

; t), whose semi-major

axis is oriented towards M (see Fig. 3.1).

The adopted rheophysial approah is founded on the simple law

_

�

i

= 

i

(�

i

� �

i

); (3.1)
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Figure 3.1: �

i

(b'

i

;

b

�

i

; t) is a setion of the surfae of the body at the time t; �

i

(b'

i

;

b

�

i

; t) is a setion of the

surfae of the equilibrium ellipsoid at the same time.

where 

i

is the relaxation fator at the outer surfae of the i-th layer. This is a radial

deformation rate gradient related to the visosity through (see Appendix C)



i

=

(d

i

� d

i+1

)g

i

R

i

2�

i

; (3.2)

where R

i

and g

i

are the equatorial mean radius and the gravity aeleration at the outer

surfae of the i-th layer. �

i

is the visosity of the inner layer (assumed to be larger than

that of the outer layer).

Although the reep equation is valid in a referene system o-rotating with the body,

we an use the oordinates in a �xed referene system. This is due to the fat that only

relative positions appear in the right-hand side of the reep equation. If b'

F

is the longitude

of a point in one frame �xed in the body, then we have

b'

i

= b'

F

+ 


i

t: (3.3)

3.3 The reep equation

As shown in the Chap. 2, the stati equilibrium �gure of eah layer under the ation of

the tidal potential and the rotation may be approximated by a triaxial ellipsoidal surfae.

Using that the equatorial and the polar attenings of the outer boundary of the i-th layer

are given by Eq. (2.10), the ellipsoidal surfae equation of this layer, to �rst order in the
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attenings, an be written as (see Eq. (A.15) in the Appendix A)

�

i

= R

i

�

1 +

1

2

H

i

�

J

sin

2

b

� os (2b'

i

� 2'

M

)�

�

1

2

H

i

�

J

+ G

i

��

M

�

os

2

b

�

�

; (3.4)

where '

M

is the longitude of M �xed inertial referene system. Then, the reep equation

(3.1) with the stati equilibrium surfae (3.4) is

_

�

i

+ 

i

�

i

= 

i

R

i

�

1 +

1

2

H

i

�

J

sin

2

b

� os (2b'

i

� 2'

M

)�

�

1

2

H

i

�

J

+ G

i

��

M

�

os

2

b

�

�

: (3.5)

In order to solve the reep di�erential equation, we onsider the two-body motion. The

equations of the Keplerian motion to M, orbiting to m, are

r =

a(1� e

2

)

1 + e os v

; (3.6)

and

v = `+

�

2e�

e

3

4

�

sin `+

5e

2

4

sin 2`+

13e

2

12

sin 3`+O(e

4

); (3.7)

where a is the semi-major axis, e is the eentriity and the angles v and ` are the true and

mean anomaly, respetively, of the body M. In the planar ase, we have that '

M

= v+$,

where $ is the longitude of the periapsis.

Then, the reep equation beomes an ordinary di�erential equation of �rst order with

periodi fored terms, that may be written as

_

�

i

+ 

i

�

i

= 

i

R

i

"

1 +

X

k2Z

�

Z

ik

sin

2

b

� os

b

�

ik

�Z

00

ik

os

2

b

� os

b

�

00

ik

�

#

; (3.8)

where the arguments of the osines �

ik

, �

00

ik

are linear funtions of the time

b

�

ik

= 2b'

i

� 2$ + (k � 2)`

b

�

00

ik

= k`: (3.9)

The onstants Z

ik

;Z

00

ik

are

Z

ik

=

1

2

H

i

��

J

E

2;k

Z

00

ik

=

1

2

H

i

��

J

E

0;k

+ Æ

0;k

G

i

��

M

; (3.10)

where Æ

0;k

is the Kroneker delta (Æ

0;k

= 1 when k = 0 and Æ

0;k

= 0 when k 6= 0), the

onstant ��

J

is

��

J

=

15MR

3

N

4m

T

a

3

; (3.11)
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and the oeÆients of the Fourier series E

q;p

are eentriity funtions alled the Cayley

funtions (Cayley, 1861)

E

q;p

(e) =

1

2�

Z

2�

0

�

a

r

�

3

os (qv + (p� q)`) d`: (3.12)

After integration we obtain the fored terms

Æ�

i

= R

i

X

k2Z

�

Z

ik

sin

2

b

� os �

ik

os (

b

�

ik

� �

ik

)� Z

00

ik

os

2

b

� os �

00

ik

os (

b

�

00

ik

� �

00

ik

)

�

: (3.13)

The phases �

ik

and �

00

ik

are

tan�

ik

=

_

b

�

ik



i

=

�

i

+ kn



i

; tan�

00

ik

=

_

b

�

00

ik



i

=

kn



i

; (3.14)

where �

i

= 2


i

�2n is the semi-diurnal frequeny. These phases are introdued during the

exat integration of the reep equation (3.8).

If we de�ne the angles

Æ

ik

= 2$ � (k � 2)`+ �

ik

Æ

00

ik

= k`� �

00

ik

; (3.15)

the solution (3.13) an be writen as

Æ�

i

= R

i

X

k2Z

�

Z

ik

os �

ik

sin

2

b

� os (2b'

i

� Æ

ik

)� Z

00

ik

os �

00

ik

os Æ

00

ik

os

2

b

�

�

; (3.16)

whih has a simple geometri interpretation: using Eq. (A.22), we an identify eah term

of the Fourier expansion of the height Æ�

i

, with one ellipsoidal surfae, with equatorial and

polar attenings

�

(ik)

�

= 2Z

ik

os �

ik

; �

(ik)

z

= Z

00

ik

os �

00

ik

os Æ

00

ik

�

�

(ik)

�

2

; (3.17)

and rotated at an angle Æ

ik

=2, with respet to the axis x.

3.4 The disturbing potential

The potential of the i-th layer ofm at a generi pointM

�

(r

�

; �

�

; '

�

) external to this layer,

an be written as the potential of one spherial shell of outer and inner radii R

i

and R

i�1

,

respetively, plus the disturbing potential due to the mass exess or de�it orresponding
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to the outer and the inner boundary heights Æ�

i

and Æ�

i�1

. It is important to note that sine

these exesses or de�its are very small, we may alulate the ontribution of eah term of

the Fourier expansion separately and then sum them to obtain the total ontribution.

In this way, we assume that the i-th layer has an outer and an inner boundary heights

given by the k-th term of the Fourier expansion. The equatorial and polar attenings of

the outer boundary, �

(ik)

�

and �

(ik)

z

, are given by Eq. (3.17), and the bulge is rotated at an

angle Æ

ik

=2 with respet to the axis x. Similarly, the inner boundary height Æ�

(1)

i�1

, an be

identi�ed with the boundary height of one ellipsoidal surfae, with equatorial and polar

attenings

�

(i�1k)

�

= 2Z

i�1k

os �

i�1k

; �

(i�1k)

z

= Z

00

i�1k

os �

00

i�1k

os Æ

00

i�1k

�

�

(i�1k)

�

2

; (3.18)

rotated at an angle Æ

i�1k

=2, with respet to the axis x.

The disturbing potential at an external point M(r

�

; �

�

; '

�

), due to the mass exess or

de�it, orresponding to the k-th term of the Fourier expansion of the outer and the inner

boundary heights Æ�

i

and Æ�

i�1

, is

ÆU

ik

(r

�

) = �

3GC

i
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�3
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5
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5

i�1

; (3.19)

where C

i

is the axial moment of inertia of the i-th layer (see Appendix A) and �(f

i

) =

f

i

� f

i�1

, denotes the inrement of one funtion f

i

, between the inner and the outer

boundaries of this layer.

Taking into aount that the total disturbing potential of the i-th layer, an be ap-

proximated by the sum of the ontribution of eah term of the Fourier expansion, we

obtain

ÆU

i

(r

�

) =

X

k2Z

ÆU

ik

(r

�

); (3.20)

and replaing the oeÆients Z

ik

and Z

00

ik

, given by Eq. (3.10), and the angles Æ

ik

and Æ

00

ik

,



52 Chapter 3. Non-homogeneous reep tide theory

given by Eq. (3.15), we obtain
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� 1); (3.21)

where the argument �

�

k

, is

�

�

k

= 2'

�

� 2$ + (k � 2)`; (3.22)

and the oeÆient L

0

i

, is

L

0

i

=

G

i

R

5

i

� G

i�1

R

5

i�1

R

5

i
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: (3.23)

The funtions C

ik

, D

ik

are de�ned as
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and the oeÆients C
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ik

, D

00

ik

are
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; (3.25)

and do not depend where the potential is alulated.

Furthermore, using the de�nitions of �

ik

and �

00

ik

, given by Eqs. (3.14), we an write

the trigonometri funtions as

sin 2�

ik

=
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i
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+ kn)
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i

+ kn)
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; os
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; (3.26)

and

sin 2�
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ik

=

2

i
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2

i

+ (kn)

2

; os

2

�

00

ik

=



2

i



2

i

+ (kn)

2

: (3.27)

These trigonometri expressions show the di�erene between the frequeny funtions C

ik

(�

i

; �

i�1

),

D

ik

(�

i

; �

i�1

) and the oeÆients C

00

ik

= C

ik

(0; 0), D

00

ik

= D

ik

(0; 0).

3.5 Fores and torques

To alulate the fore and torque due to the i-th layer of m, ating on one mass M

�

loated in M

�

(r

�

; �

�

; '

�

), we take the negative gradient of the potential of the i-th layer
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at the point M

�

and multiply it by the mass plaed in the point F

i

= �M

�

r

r

�

ÆU

i

. In

spherial oordinates, we obtain
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and the orresponding torque is M
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= r
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, or, sine, r
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that is
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3.6 Fores and torques ating on M

Sine we are interested in the fore ating on M due to the tidal deformation of the i-th

layer of m, we must substitute (M

�

; r

�

; �

�

; '

�

) by (M; r;

�

2

; $ + v). The fores, then are
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where the angle �

k

, is de�ned as

�

k

= 2v + (k � 2)`: (3.32)

The orresponding torques are
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After Fourier expansion, the torque along to the axis z (M

zi

= �M
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), an be written as
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Finally, the time average of the total torque over one period is hM
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i =
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: (3.35)

The above expression for the time average, whih is equivalent to take into aount

only the terms with j = 0, only is valid if �

i

is onstant. This ondition is satis�ed, for

example, by homogeneous bodies with  � n, as stars and giant gaseous planets, where its

stationary rotation is � 6ne

2

=(n

2

+ 

2

). However, the �nal rotation of the homogeneous

roky bodies, with  � n, as satellites and Earth-like planets, is dominated by a fored

libration � B

1

os (`+ �

1

) with the same period as the orbital motion of the system (see

Chap. 3 of FM15). In this ase, any time average that involves the rotation, should take
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into aount this osillation. It is worth emphasizing that in this paper we alulate the

time average of some quantities, as the work done by the tidal fores and the variations

in semi-major axis and eentriity, assuming whih �

i

is onstant, whih is valid only for

bodies with low visosity. The appliations to Titan in this paper were done using the

omplete equations, where the distintion between these extreme ases is not neessary.

3.7 Work done by the tidal fores ating on M

The time rate of the work done by the tidal fores due to the i-th layer is

_
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orb

= F
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�v,

where v is the relative veloity vetor of the external body, whose omponents in spherial

oordinates are
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: (3.36)

Using the tidal fore, given by the Eq. (3.31), the rate of the work orresponding to

the i-th layer is
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or after Fourier expansion
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1

For the details of this alulation, see Appendix F.



56 Chapter 3. Non-homogeneous reep tide theory

The time-average over one period is
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The average of the last term of Eq. (3.38) is
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(see Appendix D).

3.8 Variations in semi-major axis and eentriity

In this setion, we alulate the variation in semi-major axis and eentriity. For this,

we use the energy and angular momentum de�nitions. If we di�erentiate the equation

W

orb

= �

GMm

T

2a

;

where a is the semi-major axis of the relative orbit, we obtain the equation for the rate of

variation in semi-major axis:
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2
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GMm
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: (3.41)

In the same way, if we di�erentiate the angular momentum equation, we obtain
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;

where e is the eentriity of the relative orbit, and using _n=n = �3 _a=2a, we obtain the

equation for the rate of variation in eentriity
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; (3.42)

where

_

L =M

z

is the total torque exerted by the tidal fores. The internal torques between

the di�erent layers of m, suh as the frition fores and to the gravitational oupling, anel

themselves and do not a�et the orbital motion.

Using Eqs. (3.41) and (3.34) and summing over all layers, we obtain the equation for
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the variation in semi-major axis:
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After the time-average over one period, we obtain that the variation in semi-major axes

is
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where the parameter Q
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is de�ned as
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where C

N+1

= 0 (sine d

N+1

= 0) and R

0

= 0. An elementary alulation using the axial

moment of inertia of the i-th-layer C

i

(see Setion A) and the total axial moment of inertia
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or, using the Eq. (2.42),
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where k

f

is the tidal uid Love number.

In the same way, using the Eq. (3.42), replaingM

z

and
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by the Eqs. (3.34) and

(3.38), and summing over all layers, we obtain
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After the time-average over one period, we obtain that the variation in eentriity is
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or
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It is important to note that the parameter Q

i

only depends on the internal struture.

When N = 1, we obtain Q

1

= 1, and reover the same di�erential equations of the

homogeneous ase given in FM15. In the general ase, the variations in semi-major axis

and eentriity an be expressed as the sum of the ontribution of eah layer weighed by

this parameter.



Chapter 4

The two-layer model

In the previous hapters we have studied the tidal e�et on one body omposed of N

homogeneous layers. However, in ontrast with a homogeneous body, in one di�erentiated

body we must also take into aount the interation between the di�erent layers. In this

hapter, we onsider two important interation e�ets: the gravitational oupling and the

frition that ours at eah interfae of two layers in ontat.

An important point to keeping mind is the number of layers to onsider, beause the

number free parameters inreases signi�antly as the number of layers is inreased. For

this reason, here, we study the simplest non-homogeneous problem: one body formed by

two independent rotating parts. The inner layer, or ore, is denoted with the subsript 

and the outer layer, or shell, is denoted with the subsript s. Despite its simpliity, the

two-layer model allows to study the main features, introduing a minimum number of free

parameters.

4.1 The tidal torques

The tidal torques due to the ore and the shell, along the axis z, are (see Eq. (3.34))
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where the funtion T
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(with i = ; s) is

T

i

=

X

k;j2Z

E

2;k

E

2;k+j



i

(�

j

+ kn) os j`+ 

2

i

sin j`



2

i

+ (�

i

+ kn)

2

; (4.2)
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the onstants T

ij

are
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and the tidal parameter T , is de�ned as
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R



, C



are the mean outer radius and moment of inertia of the ore, and R

s

, C

s

are the

mean outer radius and moment of inertia of the shell. The parameters H



, 



are the

Clairaut parameter and the relaxation fator at the ore-shell interfae and H

s

, 

s

are the

Clairaut parameter and the relaxation fator at the body's surfae.

4.2 The gravitational oupling

When the prinipal axes of inertia of two layers are not aligned, a restoring gravitational

torque whih tends to align these axes appears. This torque was alulated by several

authors (e.g. Bu�ett, 1996; Van Hoolst et al., 2008; Karatekin et al., 2008; Callegari et

al., 2015) when the layers are rigid. Here, we use one similar expression for this torque

adapted to a body assumed as formed by two layers whose boundaries are prolate ellipsoids,

whose attenings are de�ned by the omposition of the main elasti and anelasti tidal

omponents.

In the ase of one body omposed by N homogeneous layers, the torque ating on the

inner i-th layer due to the outer j-th layer (not neessarily ontiguous) is
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2

sin � dr d� d'; (4.5)

where d

j

, m

j

are the density and the mass in the j-th layer and ÆU

i

is the disturbing

potential of the i-th layer at an external point.

The limits of the integral in Eq. (4.5), �

0

j�1

and �

0

j

, are the real outer and inner

boundaries of the j-th layer, respetively. In our model we have to onsider the atual

attening of the surfaes, whih is the omposition of the main elasti and anelasti tidal

omponents (see Se. 10 of Ferraz-Mello, 2013). The addition of the two omponents

is virtually equivalent to the use ab initio of the Maxwell visoelasti model as done by

Correia et al. (2014) (Ferraz-Mello, 2015b).
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Figure 4.1: Equatorial setion of the i-th and j-th layers. �

0

i

and �

0

i�1

are the outer and the inner equatorial

attenings of the i-th layer and the angles #

i

and #

i�1

are its outer and inner geodeti lags. Similarly, �

0

j

and �

0

j�1

are the outer and the inner equatorial attenings and #

j

and #

j�1

are the equatorial attenings

and the geodeti lags of the j-th layer.

Assuming that the elasti and the tidal omponents have ellipsoidal surfaes (not alig-

ned), the resulting surfae an be approximated by a prolate ellipsoid with equatorial

attening �

0

and rotated by an angle # with respet to M. For the sake of simpliity, we

also assume that the relative motion of the outer body M is irular. Then, negleting the

axial term does not ontribute to the alulation of the gravitational oupling, the height

of the outer surfae of the j-th layer with respet to the one sphere of radius R

j

, in polar

oordinates, rotated by an angle #

j

with respet to M and to �rst order in the attenings

(see Fig. 4.2), is

Æ�

0

j

=

1

2

R

j

�

0

j

sin

2

� os (2'� 2#

j

) =

1

2

R

j

H

j

��

J

�

j

sin

2

� os 2'+

+

1

2

R

j

H

j

��

J

os �

j0

sin

2

� os (2'� �

j0

); (4.6)

where 0 < �

j

< 1 is a relative measurement of the maximum height of the elasti tides of

the outer boundary of the j-th layer. The angle #

j

is often alled the geodeti lag of the

surfae.

If we open the trigonometri funtions, by identi�ation of the terms with same trigo-

nometri arguments, the resulting equatorial attening of the outer boundary of the j-th

layer is

�

0

j

= H

j

��

J

q

�

2

j

+ os

2

�

j0

(1 + 2�

j

); (4.7)
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Figure 4.2: Sheme of the omposition of the elasti and anelasti tides of the outer boundary of the j-th

layer. �

(el)

j

(dotted ellipsoid) and �

(tide)

j

(dashed ellipsoid) are the equatorial attenings of the main elasti

and anelasti tides, respetively, and �

0

j

is the equatorial attening of the ellipsoidal surfae whih result

of this omposition (solid ellipsoid). The semi-major axis of the elasti ellipsoid is oriented towards M.

and the geodeti lag is

#

j

=

1

2

tan

�1

�

sin 2�

j0

1 + 2�

j

+ os 2�

j0

�

: (4.8)

The height of the inner boundary of the j-th layer, taking into aount the omposition

of the main elasti and anelasti tides has an idential expression:

Æ�

0

j�1

=

1

2

R

j�1

�

0

j�1

sin

2

� os (2'� 2#

j�1

) =

1

2

R

j�1

H

j�1

��

J

�

j�1

sin

2

� os 2'+

+

1

2

R

j�1

H

j�1

��

J

os �

j�1;0

sin

2

� os (2'� �

j�1;0

); (4.9)

where 0 < �

j�1

< 1 is a relative measurement of the maximum height of the elasti tides

of the inner boundary of the j-th layer. Then, the resulting equatorial attening is

�

0

j�1

= H

j�1

��

J

q

�

2

j�1

+ os

2

�

j�1;0

(1 + 2�

j�1

); (4.10)

and the geodeti lag is

#

j�1

=

1

2

tan

�1

�

sin 2�

j�1;0

1 + 2�

j�1

+ os 2�

j�1;0

�

: (4.11)

In the same way, we assume that the ellipsoidal shape of this layer is also given by the

omposition of the main elasti and anelasti tidal omponents. Then, the inner and outer
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equatorial attenings, respetively, are

�

0

i�1

= H

i�1

��

J

q

�

2

i�1

+ os

2

�

i�1;0

(1 + 2�

i�1

); �

0

i

= H

i

��

J

q

�

2

i

+ os

2

�

i0

(1 + 2�

i

);

(4.12)

and the orresponding geodeti lags are

#

i

=

1

2

tan

�1

�

sin 2�

i0

1 + 2�

i

+ os 2�

i0

�

; #

i�1

=

1

2

tan

�1

�

sin 2�

i�1;0

1 + 2�

i�1

+ os 2�

i�1;0

�

; (4.13)

where 0 < �

i

; �

i�1

< 1 are relative measurements of the maximum heights of the elasti

tides of the outer and inner boundaries of the i-th layer.

Using the expression of the disturbing portential, given by Eq. (A.36), and negleting

the axial term, we obtain

ÆU

i

= �

3GC

i

4r

3

sin

2

�

�

�

R

5

i

�

0

i

os (2'� 2#

i

)

�

R

5

i

� R

5

i�1

; (4.14)

where �(f

i

) = f

i

� f

i�1

, denotes the inrement of one funtion f

i

between the inner and

the outer boundaries of this layer. Then, the vetorial produt in Eq. (4.5) is

r�rÆU

i

= �

2�Gd

i

5r

3

�

2 sin ��

�

R

5

i

�

0

i

sin (2'� 2#

i

)

�

b

� + sin 2��

�

R

5

i

�

0

i

os (2'� 2#

i

)

�

b
'

�

:

(4.15)

Using the polar unitary vetors in Cartesian oordinates

b

� = os � os'
b
x+ os � sin'

b
y � sin �

b
z

b
' = � sin'

b
x+ os'

b
y; (4.16)

and the approximation of ln �

j

=�

j�1

to �rst order in the attenings

ln

�

j

�

j�1

� ln

R

j

R

j�1

+

1

2

R

j

�

0

j

sin

2

� os (2'� 2#

j

)�

1

2

R

j�1

�

0

j�1

sin

2

� os (2'� 2#

j�1

); (4.17)

then, the torque ating on the inner i-th layer due to the outer j-th layer is

�

ij

=

32�

2

G

75

d

i

d

j

�

ij

�

R

5

i

�

0

i

�

0

j

sin (2#

j

� 2#

i

)

�

b
z; (4.18)

where �

ij

(f

ij

)

def

= �(f

ij

)��(f

i;j�1

) = f

ij

� f

i�1;j

� f

i;j�1

+ f

i�1;j�1

.

As the torque ating on the outer j-th layer, due to the inner i-th layer, is the reation

�

ji

= ��

ij

; (4.19)
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then, the total gravitational oupling, ating on the i-th layer an be written as

�

i

=

N

X

p=1; p6=i

�

ip

= �

i�1

X

p=1

�

pi

+

N

X

p=i+1

�

ip

: (4.20)

If we onsider the two-layer model, the torques ating on the ore and the shell are

�



= K sin (2#

s

� 2#



)

�

s

= �K sin (2#

s

� 2#



); (4.21)

where the gravitational oupling parameter K is

K =

32�

2

G

75

d



d

s

�

0



�

0

s

R

5



: (4.22)

The equatorial attenings are

�

0



= H



��

J

p

�

2



+ os

2

�

0

(1 + 2�



); �

0

s

= H

s

��

J

p

�

2

s

+ os

2

�

s0

(1 + 2�

s

); (4.23)

and the geodeti lags are

#



=

1

2

tan

�1

�

sin 2�

0

1 + 2�



+ os 2�

0

�

; #

s

=

1

2

tan

�1

�

sin 2�

s0

1 + 2�

s

+ os 2�

s0

�

: (4.24)

The parameters 0 < �



; �

s

< 1 are relative measurements of the heights of the elasti tides

of the outer surfaes of the ore and the shell, respetively. The trigonometri sin 2�

i0

and

os

2

�

i0

are frequeny funtions given in Eq. (3.26). An elementary alulation shows that

os 2�

i0

=



2

i

� �

2

i



2

i

+ �

2

i

: (4.25)

4.3 Linear drag

The model onsidered here also assumes that a linear frition ours between two

ontiguous layers. We assume that between two ontiguous layers (for instane, the inner

boundary of the i-th layer and the outer boundary of the (i + 1)-th layer) exists a thin

liquid boundary with visosity b�

i

and thikness h

i

.

We assume that the torque, along to the axis z, ating on the inner i-th layer due to

the outer (i+ 1)-th layer is

�

i;i+1

= �

i

(


i+1

� 


i

); (4.26)

and vie-versa. The frition oeÆient �

i

of the i-th boundary is an undetermined onstant.
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Let dF

i;i+1

be the fore ating tangentially on the area element of an sphere of radius

R

i

. If the uid in ontat with the surfae of the sphere is a Newton uid, the modulus of

the fore is (Papanastasious et al., 2000, Chap. 6)

dF

i;i+1

=

b�

i

h

i

V

i

R

2

i

sin � d� d� (4.27)

where V

i

= R

i

sin �(


i+1

� 


i

) is the relative veloity of the (i + 1)-th layer with respet

to the i-th layer at the latitude � and R

i

; �; � are the spherial oordinates of the enter

of the area element. The modulus of the torque of the fore dF

i;i+1

, along to the axis z, is

d�

i;i+1

= R

i

sin � dF

i;i+1

: (4.28)

The element of area is R

i

d��R

i

sin �d�. The integral of d�

i;i+1

over the sphere is easy to

alulate giving

�

i;i+1

=

Z

2�

0

Z

�

0

b�

i

h

i

R

4

i

sin

3

�(


i+1

� 


i

)d� d� =

8�

3

b�

i

h

i

R

4

i

(


i+1

� 


i

) (4.29)

If we ompare with the law used to introdue the frition, we obtain

�

i

=

8�

3

b�

i

h

i

R

4

i

: (4.30)

This is the law orresponding to a liquid-solid boundary for low speeds.

The torque, along to the axis z, ating on the inner (i + 1)-th layer due to the outer

i-th layer is

�

i+1;i

= ��

i;i+1

= ��

i

(


i+1

� 


i

): (4.31)

Then, the total torque, due to the frition, ating on the i-th layer is the sum of the

torque due to the outer (i+1)-th layer plus the the torque due to the inner (i�1)-th layer

�

i

= �

i;i�1

+ �

i;i+1

= �

i�1

(


i�1

� 


i

)� �

i

(


i

� 


i+1

): (4.32)

In the two-layer model, the torque ating on the ore due to the shell and the torque

ating on the shell due to the ore are, respetively

�



= �(


s

� 




)

�

s

= ��(


s

� 




); (4.33)

where �

o

and h are the visosity and the thikness, respetively, of the ore-shell boundary

and

� =

8�

3

�

o

h

R

4



: (4.34)
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4.4 Rotational equations

Putting together all ontributions to the torque, we obtain the rotational equations

C



_






= M

ore

z

= �M

z

+ �



+ �



C

s

_




s

= M

shell

z

= �M

zs

+ �

s

+ �

s

; (4.35)

where M

ore

z

and M

shell

z

are the z-omponents of the total torque ating on the ore and

on the shell. These torques inlude the reation of the tidal torque M

zi

ating on the i-th

layer, the gravitational oupling �

i

and the frition �

i

.

4.5 Comparison with the homogeneous ase

In this setion, we ompare some of the main features of the homogeneous reep tide

theory, developed in FM15, with the non-homogeneous reep tide theory for the two-layer

model developed in this artile. The main diÆulty lies in the number of free parameters

in these approahes. In the homogeneous ase, with a suitable hoie of dimensionless

variables, the �nal state of rotation depends only on the ratio n= and on the eentriity

e (Eq. (42) of FM15). However, even in the most simple non-homogeneous ase (the two-

layer model), we need to set 12 free parameters. In order to proeed, we use the typial

values for Titan and also Titan's eentriity e = 0:028 (see Tables 5.1-5.4 in Se. 5.2),

and let as free parameters, only n=

i

, e and �.

Following FM15, we indrodue the adimensional variables y

i

= �

i

=� and the saled

time x = `=�, where � = 2





s

(



+ 

s

)

�1

. If we onsider the ase in whih 



= 

s

, the

behavior of the evolutions of y



and y

s

is similar to that observed in the homogeneous ase.

Fig. 4.3 shows the time evolution of y

s

, with inital onditions y



= 0:3, y

s

= 0:15 and

di�erents values of � = log

10

(n=



) = log

10

(n=

s

). When 

i

� n (i.e. roky bodies), after

a transient, the solution osillates around zero, independently of the inital onditions (left

panel), and the amplitude of osillation dereases when � dereases. In the ase � = 4, we

also plot the solution with initial onditions y



= 0:3 and y

s

= �0:15 (dashed blak line).

This solution inreases quikly, beoming indistinguishable of the solution with initial value

y

s

= 0:15. When 

i

� n, the stationary solution beomes a super-synhronous rotation

with the amplitude of the osillation tending to zero. Finally, when 

i

� n, the stationary
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Figure 4.3: Evolution of y

s

for the ase 



= 

s

with initial onditions y



= 0:3 and y

s

= 0:15 and

several values of � = log

10

(n=



) = log

10

(n=

s

). For � = 4, we also plot the initial onditions y

s

= 0 and

y

s

= �0:15. Left : � = 4; 3; 2. Right : � = 0;�1;�2.

Figure 4.4: Same as Fig. (4.3), with �

s

=n instead of y

s

.

solution of y

s

beomes loser zero (right panel), but �

s

= �y

s

tends to 12e

2

, independently

of the value of � (Fig. 4.4). The evolution of y



is very similar and the frition does not

have any relevant role.

When 



6= 

s

, we an have a di�erent behavior of the ore and shell rotations. In Fig.

4.5, we show the ore and shell rotation (left and right, respetively) for log

10

(n=



) = 2

and log

10

(n=

s

) = 4. We also set two very di�erents values for the frition: the fritionless

ase � = 0 (blak) and a very high value of frition � = 10

28

kg km

2

s

�1

(red lines),

larger than the expeted value in the ase of Titan (� = 10

11

� 10

13

kg km

2

s

�1

), whih

orresponds to a typial oean visosity �

o

= �

H

2

O

� 10

�3

Pa s and a large range for the
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Figure 4.5: Evolution of y



and y

s

for initial onditions y



= 0:3 and y

s

= 0:15, relaxation fators suh

that log

10

(n=



) = 2 and log

10

(n=

s

) = 4, and two values of the frition parameter: � = 0 (blak) and

� = 10

28

kg km

2

s

�1

(red).

oean thikness h (see Eq. 4.34). In the fritionless ase, we an observe the di�erential

rotation between the ore and the shell. After a transient, both solutions osillate around

zero with very di�erent amplitudes, depending on the value of  of eah surfae. For very

high frition parameter, both layers rotate with the same angular veloity. The ore and

the shell have the same amplitude of osillation and phase, keeping the relative veloity

equal to zero.

Figure 4.6: Family of stationary super-synhronous with rotations relaxation fators equal and suh that

n=



= n=

s

= 0:01 and 0 � e � 0:5. Left : � = 0. Right : � = 10

20

kg km

2

s

�1

.

Finally, we study the dependene of the stationary solutions on the eentriity. For

that sake, we hoose a grid of initial onditions �



=n and �

s

=n, and integrate the system

(4.35) until the stationary solution is reahed. When n=



= n=

s

� 1, all initial onditions
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lead to the same equilibrium point (a super-synhronous rotation), independently of the

value of the frition parameter. The value of the exess of rotation depends only on the

eentriity. In the left panels of Fig. 4.6, we show the family of stationary solutions, where

eah point orresponds to a di�erent eentriity value in 0 � e � 0:5. If the eentriity is

zero, the rotations are synhronous to the orbital motion. When the eentriity inreases,

the rotations beome super-synhronous, and the exess of rotation �

i

=n is proportional

to e

2

(right panels).

Figure 4.7: Families of stationary rotations for n=



= n=

s

= 1 and 0 � e � 0:5. Top: � = 0. Bottom:

� = 10

20

kg km

2

s

�1

.

When n=



and n=

s

inrease, that is, when the visosities inrease, the exess in the

super-synhronous rotation dereases. If the eentriity is low, the only attrator is the

super-synhronous solution. When the eentriity inreases, aptures in other attrators

�

i

' n; 2n; 3n; : : : appear gradually. This behavior was largely studied in FM15 and also

in Correia et al. (2014).

Fig. 4.7 shows the families of stationary rotation for n=



= n=

s

= 1, 0 � e � 0:5

and two values of the frition parameter: the fritionless ase, with � = 0 (top panels),

and a very high frition ase, with � = 10

20

kg km

2

s

�1

(bottom panels). In the fritionless

ase, when the eentriity is smaller than � 0:48, only the super-synhronous solution

is possible. If the eentriity is larger than 0:48, besides the super-synhronous solution,

three new stationary on�gurations appear: The ore and the shell in the 3/2 ommen-

surability (�



' n and �

s

' n), the ore in super-synhronous rotation and the shell in

the 3/2 ommensurability (�



' 0 and �

s

' n) and the ore in the 3/2 ommensurability

and the shell in super-synhronous rotation (�



' n and �

s

' 0). Fig. 4.8 shows in more
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Figure 4.8: Families of stationary rotations with rotations relaxation fators equal and suh that n=



=

n=

s

= 1, 0 � e � 0:5 and � = 0. Labels R

pq

indiates the two frequenies: �



= pn and �

s

= qn.

detail these stationary solutions. The labels R

pq

denote the stationary families indiating

the resonanes �



= pn and �

s

= qn. It is important to note that the exess in the rotati-

ons are large beause the eentriity is high. In the high frition ase (bottom panels of

Fig. 4.7), only the stationary solutions with the same ommensurabilities survive beause

in these on�gurations, the relative veloity of rotation between the ore and the shell is

zero. Fig. 4.9 shows the four basins of eah equilibrium point (red rosses, denoted by

the label P

pq

), when the eentriity is suh that e = 0:4875 and the frition parameter is

� = 0. The basins are shown in white (P

00

attrator), yan (P

01

attrator), yellow (P

10

attrator) and green (P

11

attrator). All the initial onditions in any of these regions, are

reahed to the orresponding attrator. Due to the inital rotations expeted are suh that

�



(t = 0) � �

s

(t = 0), the attrators with di�erential rotation zero are more probable than

the attrators with higher di�erential rotation.

If n=



and n=

s

ontinue to inrease and the frition parameter is low (not neessarily

zero), the ore and the shell may tend to di�erents resonanes, depending on the een-

triity. If the frition inreases, the attrators with higher di�erential rotation, begin to

disappear, until eventually, as from a ertain value limit of � only survive the attrators

with di�erential rotation zero Fig. 4.10.
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Figure 4.9: Basins of the attrating stationary rotations for n=



= n=

s

= 1, e = 0:4875 and � = 0.

We plot the families of stationary rotations, orresponding to these relaxation fators and frition (solid

blak lines) and the four stationary solutions, orresponding this eentriity (red rosses). The basins are

shown in white (the ore and the shell in super-synhronous rotation), yan (the ore in super-synhronous

rotation and the shell in the 3/2 ommensurability), yellow (the ore in the 3/2 ommensurability and the

shell in the 3/2 ommensurability) and green (the ore and the shell in the 3/2 ommensurability).

4.6 Near-synhronous solution of the rotational equations

Using the onvention 1 = ore and 2 = shell, the rotational system of the two-layer

model, given by Eq. (4.35), an be written as

_y

1

= �T

�

11

T

1

+K

1

sin 2� + F

1

(

2

y

2

� 

1

y

1

)

_y

2

= T

�

21

T

1

� T

�

22

T

2

�K

2

sin 2� �F

2

(

2

y

2

� 

1

y

1

); (4.36)

where, the rotational variables are

y

1

=

�

1



1

=

2


1



1

�

2n



1

; y

2

=

�

2



2

=

2


2



2

�

2n



2

; (4.37)

the tidal funtion T

i

is

T

i

=

X

k;j2Z

E

2;k

E

2;k+j

(y

i

+ P

ik

) os (jnt) + sin (jnt)

1 + (y

i
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ik
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; (4.38)

with P

ik

= kn=

i

= kp

i

. The onstants are

T

�

ij

=

2T

ij



i

; K

i

=

2K



i

C

i

; F

i

=

�



i
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: (4.39)
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Figure 4.10: Attrators when the relaxation fators are equal and suh that n=



= n=

s

= 10. The

frition � inreases from top to bottom and the eentriity e inreases from left to right. The units of �

are kg km

2

s

�1

.

We assume that the solution, to seond order in eentriity, an be written as

y
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= b

10

e

2

+ 

11

e os `+ s

11

e sin `+ 

12

e

2

os 2`+ s

12

e

2

sin 2`

y

2

= b

20

e

2

+ 

21

e os `+ s

21

e sin `+ 

22

e

2

os 2`+ s

22

e
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sin 2`; (4.40)

where k

i0

, 

ij

and s

ij

are undetermined oeÆients. Introduing the solution (4.40) into the

rotational system (4.36) and expanding to seond order in eentriity, by identi�ation of

the terms with same trigonometri argument, we an alulate these oeÆients.

The derivatives of (4.40) are

_y
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e sin ` + 2ns
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os 2`� 2n
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To seond order in eentriity, the tidal funtion T
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(4.42)

and, using the proposed solution (4.40), an be approximated by
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where the oeÆients q

i1

and q

i2

are
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: (4.44)

In the same way, the trigonometri funtion of the gravitational oupling an be ap-

proximated by
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and the amplitude of osillation is
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The frition term is
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Replaing (4.41)-(4.47) into (4.36) and oleting the terms with same trigonometri

argument, we an �nd three linear sub-systems for the undetermined b

i0

, 

ij

and s

ij

,whih

an be written in vetorial notation as
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are the undetermined oeÆients vetors. The onstants matries are de�ned as
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where the onstant a
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is
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and the terms with T

�

12

= 0, were added to make symmetrial the linear equations. Finally,

the vetors P
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and R
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The solution of these sub-systems are
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Finally, the rotational solutions an be written as
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4.6.1 Tidal drift and the periodi terms

The tidal drift is the term B

i0

of the solution (4.58). It is
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This result an be rewritte as
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The oeÆient �
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an be written as �
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=g, where f
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The two �rst terms of eah Eq. (4.61)
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ome from the non-periodi terms with jjj = 0, while the terms that involve 
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and s
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.
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ome from the periodi terms with jjj = 1. The harmoni terms with jjj = 2, do not

ontribute to the stationary rotation at order e

2

.

It is worth emphasizing that in the absene of frition and gravitational oupling, that

is, K = � = 0, the oeÆient �

ij

= Æ

i;j

. Then, the non-periodi exess of rotation of the

i-th layer has the same expression that the exess rotation in the ase of a homogeneous

body, with 
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instead of 
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): (4.66)

In the ase n=

1

� 1, n=

2

� 1, an elementary alulation shows that eah oeÆi-

ent �

ij

beomes independent of the frition parameter �, depending only on the internal

struture and on the relaxation fators 

1

and 

2

, with f
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tending to
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In the ase n=

1

� 1, n=

2

� 1, eah oeÆient �

ij

beomes independent of T , K

and �, depending only on the internal struture and on the relaxation fators 

1

and 

2

,

tending to
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+D
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; (4.68)

and the stationary solution tends to synhronous rotation.

Figure 4.11: The tidal drift B

i0

(blak solid lines), the ontribution of the non-periodi terms N

i

(blak

dashed lines) and the periodi terms P

i

(blak dotted lines) to the tidal drift, and the amplitudes of

osillation of the periodi terms B

i1

(red solid lines) and B

i2

(blue solid lines), of the Titan's ore and

shell in funtion of the shell relaxation fator 

2

. The ore relaxation fator is 

1

= 10

�8

s

�1

and the

oean's visosity and thikness are �

o

= 10

�3

Pa s and h = 178 km, respetively (see Tables 5.1-5.4). Left :

The parameter of the ore. Right : The parameters of the shell. We also plot the negative values of B

20

(green solid line) and P

2

(green dotted line).

The periodi terms have amplitudes B

i1

and B

i2

, given by the Eq. (4.59). The oef-

�ients 

ij

and s

ij

gives rise to intriate analytial expressions, but are easy to alulate

numerially. Fig. 4.11 shows one example for the Titan's ore and the shell onstants B

1j

and B

2j

, respetively, in funtion of the shell relaxation fator 

2

(see Table 5.1-5.4). We

use that the ore relaxation fator is 

1

= 10

�8

s

�1

, and �x the oean's visosity and thik-

ness values to �

o

= 10

�3

Pa s and h = 178 km, respetively. We also plot the non-periodi

N

i

and periodi P

i

terms, separately, and the total tidal drift B

i0

= N

i

+ P

i

. We an

observe that if 

2

& 10

7:5

s

�1

, the shell osillates around the super-synhronous rotation.

When 

2

. 10

7:5

s

�1

, the tidal drift B

20

beomes negative and tends to zero, that is, the

shell osillates around the synhronous rotation, with a period of osillation equal to the

orbital period. The negative sign of the tidal drift B

20

, is due to the ontribution of the
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periodi terms P

2

, whih beomes negative and jP

2

j � N

2

. Finally, if 

2

. 10

8

s

�1

, the

amplitude of the shell rotation dereases, tending to zero when 

2

dereases. On the other

hand, the ore osillates around the synhronous rotation, with a period of osillation equal

to the orbital period, independently of the shell relaxation fator.

This behavior is on�rmed by the numerial simulations of non-approximate system.

In Fig. 4.12, we show the omparison of the Titan's shell rotation in the omplete non-

linear system given by Eq. (4.36) and in the approximate analytial solution given by Eq.

(4.58), for some values of the ore's relaxation fator 



and oean thikness h. The dashed

red lines show the maximum and minimum values of 


s

� n given by the approximate

solution, taking into aount only the �rst harmoni (jjj � 1), while the solid blak lines

show the maximum and minimum values of 


s

� n when the omplete non-linear system

is integrated (using jjj � 7). The approximate solution is in exellent agreement with

numerial integration of the equations.

Figure 4.12: Comparison of the amplitudes of the shell rotation and orresponding length-of-day variation

of Titan, between the numerial integration of the system Eq. (4.35) (solid blak lines) and the analytial

solution �

i

' B

i0

+ B

i1

sin (`+ �

i1

) (dashed red lines). We also plot the stationary solution given by B

i0

(solid orange line). The ore relaxation fator 



inreases from top to bottom and the oean thikness h

inreases from left to right. The oean visosity is �

o

= 10

�3

Pa s. The horizontal dashed lines show the

on�dene interval of the observed values, as determined by Meriggiola (2012) (blue) and by Stiles et al.

(2010) (green).



Chapter 5

Appliation to Titan's rotation

5.1 Introdution

Before the Cassini-Huygens mission, the spin rate of Titan was assumed as a synh-

ronous rotation equal to the mean motion n = 22:5769768 deg/day. The �rst results of

this mission, showed a super-synhronous rotation 


s

= 22:5780 deg/day (Lorenz et al.,

2008), or, equivalently, an exess of rotation 


s

� n = 0:38 deg/yr. Using the Cassini

spaeraft's radar images, the super-synhronous rotation value was orreted later by

Stiles et al. (2010), to 


s

= 22:57731 deg/day, or, equivalently, an exess of rotation




s

� n = 0:122 deg/yr. These values are far from the synhronous rotation expeted to

one roky satellite. These values of the exess of rotation were interpreted as an evidene

of a subsurfae oean. Tokano and Neubauer (2005) showed that the exhange of a ertain

amount of angular momentum between the surfae and the atmosphere may be important,

and the presene of an internal oean (as was modeled by Tobie et al., 2005; Sohl et al.,

2014) may deouple rotationally the rust from the interior (Karatekin et al., 2008). The

rotation of the rust has been studied by Van Hoolst et al. (2009) using the stati tide and

internal e�ets, as gravitational oupling and pressure torques. They found that the rust

rotation is inuened, mainly by the atmosphere and the Saturn torque, and laim that

the visous rust deformation and the non-hydrostati e�ets, ould play an important

role in the amplitude of the rust osillation. Reently, Meriggiola et al. (2016) estimated

Titan's spin rate to 


s

= 22:57693 deg/day, with a residual non-synhronus rotation of




s

� n = �0:02 deg/yr ompatible with a synhronous rotation, and in agreement with

Goldreih and Mithell (2010) and Van Hoolst et al. (2013). These results were interpre-

ted as a di�erentiated Titan with a relatively thin rust of 10-50 km of thikness. In this
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hapter we apply the non-homogeneous reep tide theory to Titan, adding the torque due

to the exhange of angular momentum between the surfae and the atmosphere.

5.2 The model

Titan's interior was largely disussed in many papers (e.g. Tobie et al., 2005; Castillo-

Rogez and Lunine, 2010; MKinnon and Bland, 2011; Fortes, 2012). The existing general

data of the Titan-Saturn system is given in Table 5.1. In this setion, we assume the

interior model given by Sohl et al. (2014) (hereafter referene model, see Fig. 5.1), and

is given in Table 5.2. In this model, Titan is formed by four homogeneous layers: i) an

inner hydrated siliate ore (inner ore); ii) a layer of high-pressure ie (outer ore); iii) a

subsurfae water-ammonia oean and iv) a thin ie rust. For the sake of simpliity, we

onstrut one two-layer equivalent model, where the ore is a layer formed by the inner

ore and the high-pressure ie layer, and the shell is a layer formed by the subsurfae oean

and the ie rust, but keeping some features of the four-layer model (e.g. axial moments

of inertia and Clairaut numbers). In this way, we an use the rotational equations (4.35),

retaining the main features of the realisti referene model. This simpli�ed model is given

in Table 5.3, and some alulated parameters of eah layer are listed in Table 5.4.

Figure 5.1: Titan's interior for the referene model. Left : Sheme of Titan's interior. Right : Titan's

density pro�le. Figure extrated of Sohl et al. (2014).

In order to estimate the relative height of the elasti tide �

s

, we assume that the di�e-

rene between the observed surfae attening �

0

s

with the tidal attening �

s

= H

s

��

J

E

2;0

os �

s0

� H

s

��

J

os �

s0

(alulated) is due to the existene of an elasti omponent, with attening
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�

el

s

= �

s

H

s

��

J

. If we use Eq. (4.23), and assume that near to the synhronous rotation

os

2

�

s0

� 1, we obtain

�

s

�

�

0

s

H

s

��

J

� 1: (5.1)

For the relative heights of the elasti tide �



, we assume �



� �

s

def

= �.

Mass (10

22

kg)

(1)

m

T

13.45

Eentriity

(2)

e 0.028

Semi-major axis (AU)

(3)

a 0.00816825

Mean motion (deg/day)

(1)

n 22.5769768

(id.) (10

�6

s

�1

) 4.560678013

Orbital period (day)

(1)

2�=n 15.9454476

Di�erential Rotation (deg/yr) 


s

� n 0:122� 0:040

(4)

0:00

+0:02

�0:02

(5)

Titan's ellipsoid semi-major axes (km)

(6)

a 2575.152 � 0.048

b 2574.715 � 0.048

 2574.406 � 0.044

Titan's mean equatorial radius (km)

(6)

R

s

2574.933 � 0.033

Titan's equatorial prolateness (10

�4

)

(6)

�

0

s

1.70 � 0.26

Saturn's mass (10

26

kg)

(7)

M 5.68326

Saturn's mean-motion (10

�9

s

�1

)

(7)

n

�

6.713428

Titan's tidal parameter (10

�15

s

�2

)y T 4.63

(1)

Seidelmann et al. (2007);

(2)

Iess et al. (2012);

(3)

TASS 1.8z (Jan.1,2000);

(4)

Stiles et al. (2010);

(5)

Meriggiola et al. (2012; 2016);

(6)

Mitri et al. (2014);

(7)

Jaobson et al. (2006); y alulated parameter; z See Vienne and Duriez, (1995).

Table 5.1 - Basi data of Titan.

Layer Outer radius (km) Density (g/m

3

) Visosity (Pa s)y

Ie I shell 2575 0.951 10

14

� 10

16

Oean 2464 1.07 10

�3

� 10

9

x

High-pressure ie 2286 1.30 10

15

� 10

20

Rok and iron ore 2084 2.55 10

20

y Mitri et al., 2014; x adopted values.

Table 5.2 - Titan's four-layer referene model.
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Layer Outer radius (km) Density (g/m

3

) Mass (10

22

kg)

Shell (rust + oean) 2575 1.02 2.19

Core (rok + HP ie mantle) 2286 2.25 11.26

Table 5.3 - Titan's two-layer equivalent model.

5.3 Atmospheri inuene on Titan's rotation

The seasonal variation in the mean and zonal wind speed and diretion in Titan's lower

troposphere auses the exhange of a substantial amount of angular momentum between

the surfae and the atmosphere. The variation alulated from the observed zonal wind

speeds shows that the atmosphere angular momentum undergoes a periodi osillation

between 3 � 10

18

and 3 � 10

19

kg km

2

s

�1

(Tokano and Neubauer, 2005, hereafter TN05)

with a period equal to half Saturn's orbital period and maxima at Titan's equinoxes (when

the Sun is in the satellite's equatorial plane).

The angular momentum of the atmosphere may be written as L

atm

= L

0

+ L

1

os 2�

�

where L

0

= 1:65�10

19

kg km

2

s

�1

, L

1

= 1:35�10

19

kg km

2

s

�1

and �

�

is the Saturnian right

asension of the Sun. The variation of the angular momentum is

_

L

atm

= �2L

1

n

�

sin 2�

�

.

If we neglet external e�ets (as atmospheri tides), this variation may be ompensated

by an equal variation in the shell's angular momentum: Æ

_

L

s

= �

_

L

atm

, whih orresponds

to an additional shell aeleration

Æ

_




s

=

2L

1

n

�

C

k

sin 2�

�

= A

�

sin 2�

�

: (5.2)

We must emphasize that we have onsidered in these alulations the moment of inertia

of the ie rust C

k

, sine the winds are ating on the rust and do not have diret ation

on the liquid part of the shell.

In a more reent work, Rihard et al. (2014) (hereafter R14) re-alulate the amplitude

of the variation of the angular momentum with the Titan IPSL GCM (Institut Pierre-Simon

Laplae General Cirulation models) (Lebonnois et al., 2012). They obtain L

1

= 8:20�10

17

kg km

2

s

�1

, whih is � 16:5 times less than the TN05 value.
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Core Shell

Clairaut number H

i

0.772 0.806

Parameter of Eq. (3.46) Q

i

0.308 0.484

Axial moment of inertia (10

29

kg km

2

) C

i

2.183 0.866

Equatorial attening (tidal) (10

�4

) �

i

1.15 1.20

Relative height of the elasti tide �

i

0.42 0.42

Gravitational oupling onstant (10

�15

s

�2

) K=C

i

2.65 6.69

Frition parameter (10

�17

s

�1

)x �=C

i

0.59 1.48

Atmospheri parameter (10

�18

s

�2

)y 2L

1

n

�

=C

k

- 5.08

2L

1

n

�

=C

s

- 0.31

x Assuming �

o

= 10

�3

Pa s; y L

1

= 1:35� 10

19

kg km

2

s

�1

(Tokano and Neubauer, 2015).

Table 5.4 - Titan's alulated parameters in the two-layer model.

5.4 The results

We �x the outer radius of the inner ore R

i

and the outer radius of the high-pressure

ie layer R

o

, the densities of the inner and outer ores d

i

and d

o

and the density of

the rust d

k

, to the referene model values in Table 5.2. The density of the inner ore is

alulated so as to verify the value of Titan's mass m

T

= 13:45� 10

22

kg. Fig. 5.2 shows

Figure 5.2: Dependene of some parameters on the thikness of the oean h. Left : Density of the inner

ore d

i

(solid orange) and the densities of the referene model (dashed lines). Middle: Clairaut parameters

H

i

(blak), the oeÆients D

i

(red), and the maximum relative height of the elasti tide � (blue). Right :

The axial moments of inertia of the oean C

o

(blak), the rust C

k

(red), the shell C

s

= C

o

+ C

k

(blue)

and the ore C



= C

i

+ C

o

(orange).

the weak dependene of the parameters on the thikness of the oean h: the density of

the inner ore d

i

(solid orange line) and densities of the referene model (left panel); the
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parameters D



, D

s

and the Clairaut numbers H



, H

s

(middle panel); the axial moments

of inertia C



and C

s

(right panel).

The main onsequee of the weak dependene of these parameters with the thikness

of the subsurfae oean, is that both the e�et of the tide and the gravitational oupling

parameter also depend weakly on h. The strength of the aeleration of the rotation, due

to the tide, is given by the produt T

ij

T

k

(see Eqs. (4.3) and (4.2)). While the parameter

T

ij

only depends on the internal struture of Titan, the funtion T

k

do not depend on h.

The left panel of Fig. 5.3 shows T

ij

and the gravitational oupling amplitude K

i

= K=C

i

,

as funtion of h. We also observe taht the thikness of the oean does not have any relevant

role. Then, for the tide and the gravitational oupling, the rotational evolution is driven

by the ratios n=



, n=

s

and the orbital eentriity e.

Figure 5.3: Dependene of some parameters with the thikness of the oean h. Left : Tidal parameter T

ij

and gravitational oupling onstant K

i

= K=C

i

. Right : The oeÆient n � �

i

, where �

i

= �=C

i

, for a

typial oean visosity �

o

= �

H

2

O

� 10

�3

Pa s.

The right panel of Fig. 5.3 shows the quantity n�

i

= n�=C

i

as funtion of the thikness

h, when we onsider the realisti oean visosity �

o

= �

H

2

O

� 10

�3

Pa s. The rotational

aeleration of eah layer, due to the frition, is �

i

(


s

�




). In super-synhronous rotation,

the exess of rotation of eah layer is of order ne

2

, then

�

i

(


s

� 




)� n�

i

� T

ij

; K

i

:

Therefore, in Titan's ase, the frition term is negligible ompared with the tide and the

gravitational oupling terms, independently of the h value.

Eqs. (4.35) and (5.2), allow us to alulate the veloities of rotation of the shell and

the ore of Titan for a wide range of relaxation fators 



and 

s

, when di�erent e�ets



Setion 5.4. The results 85

are onsidered. For that sake, we have to adopt the values of the involved parameters.

We use four di�erent values for the visosity of the subsurfae oean: a realisti value

�

o

= �

H

2

O

= 10

�3

Pa s, a moderate value �

o

= 10

0

Pa s and two very high values �

o

= 10

6

Pa s and �

o

= 10

9

Pa s. For the thikness of the oean, we use the values h = 15; 178 and

250 km, and for the variation of the atmospheri angular momentum, we use the values

given by Tokano and Neubauer (2005) and Rihard et al. (2014). When we integrate

the rotational equations, assuming the values of relaxation fator typial for rok bodies

(

i

< n), the results show that the exess of rotation of the shell is damped quikly and

the �nal state is an osillation around the synhronous motion with a period of � 15 days,

equal to the orbital period (Fig. 5.4). The amplitude of this osillation depends on the

relaxation fators and the oean thikness, mainly.

Figure 5.4: Time evolution of 


s

� n, when 



= 

s

= 10

�8

s

�1

, � = 10

�3

Pa s and h = 178 km.

These results are ompatible with the analytial approximate solution:

�

i

' B

i0

+B

i1

sin (`+ �

i1

) +B

i2

sin (2`+ �

i1

); (5.3)

where the onstants B

ij

and the phases �

ij

are given by Eqs. (4.59) (see Chap. 4.6.1). Fig.
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5.5 shows one example for the Titan's ore and shell onstants B

j

and B

sj

, in funtion of

the shell relaxation fator, when the ore relaxation fator is 



= 10

�8

s

�1

and the oean's

visosity and thikness are �

o

= 10

�3

Pa s and h = 178 km, respetively.

Figure 5.5: Tidal drift and amplitudes of osillation of the periodi terms of the Titan's ore and shell

in funtion of the shell relaxation fator 

s

. The ore relaxation fator is 



= 10

�8

s

�1

and the oean's

visosity and thikness are �

o

= 10

�3

Pa s and h = 178 km, respetively. Left : Core's parameters B

0

,

B

1

and B

2

. Right : Shell's parameters B

s0

, B

s1

and B

s2

.

In Fig. 5.6, �xing �

o

= 10

�3

Pa s and L

1

= 1:35� 10

19

kg km

2

s

�1

(TN05), we plot the

resulting the maximum and minimum of the �nal osillation of the shell rotation 


s

� n,

or, equivalently, the length-of-day variation

� LOD =

2�

n

�

2�




s

; (5.4)

in funtion of 

s

, for two dynamial models: i) tidal fores, gravitational oupling and

linear frition (solid blak lines); and ii) tidal fores, gravitational oupling, linear frition

and the atmospheri inuene (dashed red lines). The horizontal lines show the intervals

orresponding to 1� unertainties of the observed values: the blue dashed lines, labelled

M, orrespond to Meriggiola (2012) and Meriggiola et al. (2016) and green dashed lines,

labelled S, orrespond to the Stiles et al. (2010). The ore relaxation fator 



inreases

from 



= 10

�9

s

�1

(top panels) to 10

�6

s

�1

(bottom panels) and the oean thikness h

inreases from 15 km (left panels) to 250 km (right panels).

Figure 5.6 shows that if 

s

< 10

�7

s

�1

, the shell's rotation osillate around the synh-

ronous motion and the amplitude of osillation depends on the relaxation fators and the

oean thikness. The average rotation (entral orange line) is synhronous; it only beomes
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supersynhronous for relaxation values larger than � 10

�7

s

�1

. We also observe that when



s

< 10

�8

s

�1

, independently of the values of 



and h, the amplitude of osillation of the

shell tends to zero when the relaxation fator 

s

dereases. Partiularly, if 

s

< 10

�9

s

�1

,

the amplitude of the osillation of the exess of rotation reprodues the dispersion of the 


s

value of �0:02 deg/yr around the synhronous value, observed as reported by Meriggiola

(2012) and Merigiolla et al. (2016). The results are not onsistent with the previous drift

reported by Stiles et al. (2008; 2010). We note that for larger values of the relaxation, e.g.

10

�8

s

�1

, the large short period osillation due to the tide would be muh larger than the

reported values and would introdue big dispersion in the measurements, muh larger than

the reported dispersion due to the diÆulties in the preise loalization of Titan's features.

On the other hand, the e�et of the atmospheri torque is ompletely negligible in the

range of possible 

s

that reprodues the observed values of the shell rotation, even for the

high value of L

1

given Tokano and Neubauer (2005). When we onsider the amplitude of

the variation of the angular momentum given by Rihard et al. (2014), the ontribution

to the rotation variations tends to zero.

The results shown in Fig. 5.6, remain virtually unhanged when the oean visosity is

inreased up to a value of �

o

= 10

6

Pa s. But, if the oean visosity is inreased to �

o

= 10

9

Pa s, the transfer of angular momentum between the shell and the ore indues in the shell

aelerations of the same order as the rotational aeleration due to the others fores. As a

onsequene, the shell rotation will follow losely the ore rotation (whih is shown in Fig.

5.7). This high value of �

o

an be interpreted as the oean thikness tending to zero. In this

ase, to obtain the dispersion of Titan's observed rotation as determined by Meriggiola et

al. (2016) we should have a value of 

s

yet smaller than the values obtained in the previous

ases, where a low visosity oean was assumed between the shell and the ore. It is worth

noting yet that, in this ase, the observed dispersion ould also be obtained taking for 



an extremely low value (10

�9

s

�1

) and for 

s

a muh larger and unexpeted value (10

�5

s

�1

).

It is important to note that, in any ase, the rotational onstraint does not allow us

to estimate the value of the ore relaxation fator 



. For realisti values of the oean

visosity (�

o

= 10

�3

� 10

6

Pa s), the shell relaxation fator may be suh that 

s

. 10

�9

s

�1

. The atual value will depend on the values of h and 



and on the interpretation of the
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dispersion determined by Meriggiola, whih may inlude the fored short-period osillation

of 


s

. Equivalently, using Eq. (3.2), the shell visosity may be suh that �

s

& 10

18

Pa s.

These values remain without signi�ant hanges if �

o

< 10

9

Pa s. For the ase in whih a

subsurfae oean does not exist, the shell relaxation fator may be suh that 

s

. 10

�10

s

�1

, one order less that when an oean is onsidered. Equivalently, the shell visosity may

be suh that �

s

& 10

19

Pa s. It is worth noting that in this ase, when 

s

. 10

�7

s

�1

,

the rotation of the ore remains stuk to the rotation of the shell even when 



is larger,

notwithstanding the larger moment of inertia of the ore (Fig. 5.8).
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Figure 5.6: Shell rotation and orresponding length-of-day variation of Titan in funtion of the relaxation

fators, when �

o

= 10

�3

Pa s and L

1

= 1:35� 10

19

kg km

2

s

�1

. The ore relaxation fator 



inreases

from top to bottom and the oean thikness h inreases from left to right. We onsider two dynamial

models: The pair of solid blak lines, indiate the maximum and minimum of the shell rotation when the

tidal fores, the gravitational oupling and the linear frition are taken in aount, and the pair of dashed

red lines, indiate the maximum and minimum of the shell rotation when the angular momentum exhange

with the atmosphere is added. The orange solid line, indiates the analytial stationary rotation B

s0

. The

horizontal dashed lines show the on�dene interval of the observed values, as determined by Meriggiola

(2012) (blue) and by Stiles et al. (2010) (green).
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Figure 5.7: Same as Fig. 5.6 for � = 10

9

Pa s.
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Figure 5.8: Core rotation of Titan in funtion of the relaxation fators, when �

o

= 10

9

Pa s and L

1

=

1:35�10

19

kg km

2

s

�1

. The ore relaxation fator 



inreases from top to bottom and the oean thikness

h inreases from left to right. We onsider two dynamial models: The pair of solid blak lines, indiate

the maximum and minimum of the ore rotation when the tidal fores, the gravitational oupling and the

linear frition are taken in aount, and the pair of dashed red lines, indiate the maximum and minimum

of the ore rotation when the angular momentum exhange with the atmosphere is added. The orange

solid line, indiates the analytial stationary rotation B

0

.
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5.5 Near-synhronous solution of the rotational equations

When we onsider the e�et of the atmosphere, using the onvention 1 = ore and

2 = shell, the rotational system (4.36) beomes

_y

1

= �T

11

T

1

+K

1

sin 2� + F

1

(

2

y

2

� 

1

y

1

)

_y

2

= T

21

T

1

� T

22

T

2

�K

2

sin 2� � F

2

(

2

y

2

� 

1

y

1

) +A

�

sin 2�

�

: (5.5)

where

A

�

=

2A

�



2

: (5.6)

We assume that the partiular solution

y

1�

= 

1�

os 2�

�

+ s

1�

sin 2�

�

y

2�

= 

2�

os 2�

�

+ s

2�

sin 2�

�

; (5.7)

an be added to (4.40) to obtain the general solutions of the omplete equation. 

j�

and

s

j�

are undetermined oeÆients to be obtained by substitution of the parts of the solution

into Eq. (5.5) and identi�ation.

The derivative of (5.7) is

_y

1�

= �2n

�



1�

sin 2�

�

+ 2n

�

s

1�

os 2�

�

_y

2�

= �2n

�



2�

sin 2�

�

+ 2n

�

s

2�

os 2�

�

: (5.8)

The tidal funtion an be approximated by

T

i

' 

i�

os 2�

�

+ s

i�

sin 2�

�

; (5.9)

the trigonometri funtion of the gravitational oupling an be approximated by

sin 2� '

�



2�

1 + �

2

�



1�

1 + �

1

�

os 2�

�

+

�

s

2�

1 + �

2

�

s

1�

1 + �

1

�

e

2

sin 2�

�

; (5.10)

and the frition term is



2

y

2

� 

1

y

1

' (

2



2�

� 

1



1�

) os 2�

�

+ (

2

s

2�

� 

1

s

1�

) sin 2�

�

: (5.11)

De�ning the onstant matrix

D

�

=

2

6

6

6

6

6

6

4

a

11

2n

�

a

12

0

�2n

�

a

11

0 a

12

a

21

0 a

22

2n

�

0 a

21

�2n

�

a

22

3

7

7

7

7

7

7

5

; (5.12)
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and the onstant vetors

�

�

=

2

6

6

6

6

6

6

4



1�

s

1�



2�

s

2�

3

7

7

7

7

7

7

5

; P

�

= A

�

2

6

6

6

6

6

6

4

0

0

0

1

3

7

7

7

7

7

7

5

; (5.13)

the undetermined oeÆient vetor is

�

�

= D

�1

�

P

�

: (5.14)

Finally, the rotational solutions an be written as

�

1

= B

10

+B

11

sin (`+ �

11

) +B

12

sin (2`+ �

12

) +B

1�

sin (2�

�

+ �

1�

)

�

2

= B

20

+B

21

sin (`+ �

21

) +B

22

sin (2`+ �

22

) +B

2�

sin (2�

�

+ �

2�

); (5.15)

where the onstants B

i�

and the phases �

i�

are

B

i�

= 

i

q



2

i�

+ s

2

i�

�

i�

= tan

�1

(

i�

=s

i�

): (5.16)

In Fig. 5.9, we show the same omparison of the Titan's shell rotation between the

omplete non-linear system and the approximate analytial solution of the above setion.

The approximate solution, also is in exellent agreement with numerial integration. It

is important to note that the fat that the approximate solution of the non-linear system

(5.5) an be expressed as the sum of solutions (4.40) and (5.7), it means that this system

has a behavior quasi-linear, at least for the Titan's problem.
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Figure 5.9: Comparison of the amplitudes of the shell rotation and orresponding length-of-day variation

of Titan, between the numerial integration of the system Eq. (4.35) (solid blak lines) and the analytial

solution �

i

' B

i0

+ B

i1

sin (`+ �

i1

) + B

i�

sin (2�

�

+ �

i�

) (dashed red lines), inluding the atmospheri

inuene. We also plot the stationary solution given by B

i0

(solid orange line). The ore relaxation fator





inreases from top to bottom and the oean thikness h inreases from left to right. The oean visosity

is �

o

= 10

�3

Pa s. The horizontal dashed lines show the on�dene interval of the observed values, as

determined by Meriggiola (2012) (blue) and by Stiles et al. (2010) (green).



Chapter 6

Non-homogeneous Darwin theory

In this Chapter, we extend the Darwin tidal theory, revisited in Ferraz-Mello et al.

(2008) (hereafter FRH), to the ase of one di�erentiated body m. The resulting equations

that desribe this theory are ompared to the equations of the reep tide theory, given in

Chap. 3.

6.1 Darwin tide theory

We onsider one di�erentiated body m of mass m

T

, disturbing to one mass point M of

mass M orbiting at a distane r from the enter of m, as in the Chap. 2. We assume that

m is omposed of N homogeneous layers of density d

i

(i = 1; � � � ; N) and angular veloity




i

= 


i

b

k, perpendiular to the orbital plane. We also assume that eah layer has an outer

ellipsoidal shape with semi axes a

i

, b

i

and 

i

, where the semi-major axis a

i

is pointing

towards M and 

i

is the axis of rotation (see Fig. 2.1 in Chap. 2).

We hoose a spherial oordinate system so that r = (r; �; ') and r

�

= (r

�

; �

�

; '

�

) are

the position vetors of M and an arbitrary point of the spae M

�

, respetively, relative to

the enter of the di�erentiated body m. The angles �, �

�

are their o-latitudes and ', '

�

are their longitudes (Fig. 6.1).

The disturbing potential generated by the i-th layer of the deformed body m, at the

arbitrary point r

�

, an be written as

ÆU

i

= �

k

i

GMR

5

i

2r

�3

r

3

(3 os

2

 � 1) +

k

0

i




2

i

R

5

i

6r

�3

(3 os

2

�

�

� 1); (6.1)

(see Appendix E for the details of this alulation), where  is the angle formed by the

positions vetors r and r

�

. The onstants k

i

and k

0

i

are the tidal and rotational uid Love
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Figure 6.1: Spherial oordinate system with origin at the m and its equator as referene plane.

numbers of the i-th layer, respetively:

k

i

=

b

k

i

L

i

; k

0

i

=

b

k

i

n

2

L

0

i




2

i

; (6.2)

where

b

k

i

=

15C

i

4m

T

R

2

i

R

3

N

R

3

i

; (6.3)

C

i

is the axial moment of inertia of this layer, and the parameter

L

i

=

H

i

R

5

i

�H

i�1

R

5

i�1

R

5

i

� R

5

i�1

; L

0

i

=

G

i

R

5

i

� G

i�1

R

5

i�1

R

5

i

� R

5

i�1

: (6.4)

In order to proeed, we onsider the two-body motion. The equations of the Keplerian

motion to M, orbiting to m, are

r =

a(1� e

2

)

1 + e os v

; (6.5)

and

v = `+

�

2e�

e

3

4

�

sin `+

5e

2

4

sin 2`+

13e

2

12

sin 3`+O(e

4

); (6.6)

where a is the semi-major axis, e is the eentriity and the angles v and ` are the true

and mean anomaly, respetively, of the body M. In the planar ase, we have � =

�

2

and

' = v + $, where $ is the longitude of the periapsis. By solving the spherial triangle,

we obtain

os = sin �

�

os ('

�

�$ � v); (6.7)
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the disturbing potential of the i-th layer, after Fourier expansion, beomes

ÆU

i

= �

3k

i

GMR

5

i

4r

�3

a

3

sin

2

�

�

X

k2Z

E

2;k

os�

�

k

+

k

i

GMR

5

i

4r

�3

a

3

(3 os

2

�

�

� 1)

X

k2Z

E

0;k

os k`+

k

0

i




2

i

R

5

i

6r

�3

(3 os

2

�

�

� 1); (6.8)

where the argument �

�

k

is given by Eq. (3.22) and the oeÆients of the Fourier series E

q;p

are the Cayley funtions given by Eq; (3.12).

6.2 The tidal phase lags

In Darwin's theory, for eah periodi term of the potential ÆU

i

, a delay is introdued

in the form of a lag angle (Darwin, 1880). The trigonometri funtions, in the potential

(6.8), are expanded to �rst order in the lag in the following way

os (2'

�

� 2$ + (k � 2)`� �

ik

) � os�

�

k

+ �

ik

sin�

�

k

sin (2'

�

� 2$ + (k � 2)`� �

ik

) � sin�

�

k

� �

ik

os �

�

k

; (6.9)

and

os (k`� �

ik

) � os k`+ �

ik

sin k`

sin (k`� �

ik

) � sin k`� �

ik

os k`; (6.10)

Aording to this de�nition, �

ik

denote the lag orresponding to the k-th setorial term

of the i-th layer, and �

ik

denote the lag orresponding to the k-th radial term of the i-th

layer. The lags are small quantities.

6.3 The Love numbers

In the homogeneous tidal theories using Love's theory to obtain the disturbing poten-

tial ÆU , the only Love number appearing is k

i

. In Darwin's theory (and in all theories

introduing lags individually after a Fourier deomposition of ÆU), we may onsider that

the surfae of the body does not respond instantaneously to the tidal potential and does

not reah the deformation predited in the equilibrium �gure theory. In order to take into
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aount this e�et, instead of the Love number

b

k

i

L

i

for the i-th layer, we may introdue

two di�erent dynamis Love numbers, one for eah layer boundary and tidal harmoni:

b

k

i

H

i

R

5

i

R

5

i

� R

5

i�1

k

�

ik

;

b

k

i

H

i�1

R

5

i�1

R

5

i

�R

5

i�1

k

�

i�1k

;

for the outer and the inner surfae, respetively. The oeÆient k

�

ik

, take into aount the

non-instantaneous response of the outer surfae of the layer and k

�

i�1k

the non-instantaneous

response of the inner surfae. These oeÆients do not depend on the layer, but only the

surfae onsidered (e.g. the outer surfae of the i-th layer has the same oeÆient for the

inner surfae of the (i+ 1)-th layer).

In FRH, for the sake of simpliity, only one value k

d

orresponding to the main tide

harmoni is used, while the others are merged with the orresponding lag "

j

. In the present

work, we have introdued the delay parameters orresponding to the outer surfae

�

0

ik

= k

�

ik

�

ik

; �

0

ik

= �

�

ik

�

ik

; (6.11)

where �

ik

; �

ik

are the lags of the frequeny-dependent tide harmonis of the outer boundary

of the i-th layer and k

�

ik

; �

�

ik

are the frequeny-dependent dynamis ounterparts of k

i

for the

setorial and radial terms, respetively. For the inner surfae we have similar expressions.

The sheme used to inlude the dynami Love numbers in the setorial terms is

k

i
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�
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=

b

k

i
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i
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'
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i
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i
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i
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�
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i
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; (6.12)

and for the radial terms

k
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)
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5
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� R

5

i�1

sin k`: (6.13)

where �(f

i

) = f

i

� f

i�1

, denotes the inrement of one funtion f

i

, between the inner and

the outer boundaries of this layer.



Setion 6.4. Delayed potential, fores and torques 99

We assume that the visosity does not a�et the rotational axial terms and the rota-

tional stati equilibrium �gure remains without hange. The orbital motion of M hange

tha angular veloity motion rotational uid Love number k

0

i

remains without hange.

6.4 Delayed potential, fores and torques

When we introdue the lags in the trigonometri funtions, we an write the delayed

tidal potential of the i-th layer as ÆU

(del)

i

, is given by

ÆU

(del)

i

= �

3

b

k

i
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where

A
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i
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: (6.15)

and

A
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i
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i
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5
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: (6.16)

To obtain the fore generated by the i-th layer, ating on one mass M

�

, loated in

M

�

(r

�

; �

�

; '

�

), we have to take the negative gradient of the potential of this layer at the
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point and multiply it by the mass plaed in the point, F
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The orresponding torque is M

i

= r

�

� F

i

, or, sine, r

�

= (r

�

; 0; 0):
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= 0; M
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; M
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; (6.18)

that is
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: (6.19)
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6.5 Fores and torques ating on M

Sine we are interested in the fore ating on M due to the tidal deformation of m, we

must substitute (M

�

; r

�

; �

�

; '

�

) by (M; r;

�

2

; $ + v). The fores, then are
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: (6.20)

where the angle �

k

is de�ned be the Eq. (3.32).

The orresponding torques are

M
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�
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= 0: (6.21)

After Fourier expansion, the torque along to the axis z (M

zi

= �M

2i

) an be written

as

M
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i
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6
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Finally, the time average of the total torque over one period is hM

zi

i =

1

2�

R
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0

M
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d`,

therefore
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: (6.23)

As it was explained in Setion 3.6, the above expression for the time average, whih

is equivalent to take into aount only the terms with j = 0, only is valid if �

0

ik

an be

onsidered as onstant. In the opposite ase, in whih �

0

ik

depends on the time, this fat

must be taken into aount when omputing the time average.

6.6 Work done by the tidal fores ating on M

The time rate of the work done by the tidal fores due to the i-th layer is

_

W

(i)

orb

= F

i

�v,

where v is the relative veloity vetor of the external body, whose omponents in spherial
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oordinates are

v
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: (6.24)

Using the tidal fore given by the Eq. (6.20), the rate of the work orresponding to the

i-th layer is
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or, after Fourier expansion of the tidal terms

1
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and its time-average over one period is

*
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The average of the last term of Eq. (6.26) is
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(see Appendix D).

1

For the details of this alulation, see Appendix F.
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6.7 Variations in semi-major axis and eentriity

In this setion, we alulate the variation in semi-major axis and eentriity. For this

sake, we use the same equations of the Setion 3.8.

Using Eqs. (3.41) and (6.21) and summing over all layers, we obtain the equation for

the variation in semi-major axis:
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After the time-average over one period, we obtain that the variation in semi-major axes

is
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In the same way, using the Eq. (3.42), replaingM

z

and

_
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orb

by the Eqs. (6.21) and

(6.26), and summing over all layers, we obtain
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Finally, after the time-average over one period, we obtain that the variation in een-

triity is
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(6.32)

6.8 Comparison with the reep tide theory

In the previous setions, we develop the extension of the non-homogeneous ase of the

Darwin tidal theory. The resulting equations that desribe this theory with the equations



104 Chapter 6. Non-homogeneous Darwin theory

given by the reep tide theory are signi�antly similar, being that the methods by whih

they are obtained di�er onsiderably.

Considering that

b

k

ik

is onstant, de�ned by the Eq. (6.3), the delayed disturbing

potential of the Darwin's theory (6.14), an be written as
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whih is idential to the disturbing potential of the reep tide (3.21), with A
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, B

ik

, A
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and B

00

ik

instead C
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, D
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, respetively. Considering the equality between these

oeÆients, we obtain that
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or, using the Eqs. (3.26) and (3.27), we obtain
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In other words, the reep tide theory is equivalent to propose a linear-frequeny law

for the lags �

ik

and �

ik

, and a frequeny-dependent setorial and radial dynami Love

numbers
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.

However, this equivalene between both theories is only valid if �
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� 1,

or n=

i

� 1. This orresponds to the ase of bodies with low visosity, suh as stars and

gas giant planets. In order to overome this limitation, we modify the sheme used to

inlude the dynami Love numbers in the setorial and radial terms, without any ad ho

hypothesis for the lags:
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The new oeÆients are
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Considering the equality between these oeÆients with the oeÆients given by the reep

tide, we obtain
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ik
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00

ik
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�
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Therefore, the reep tide theory an be interpreted as one partiular ase of the ge-

neralized Darwin's theory, where the lags and the dynamial tidal Love numbers depend

on the frequenies and the visosities as Eq. (6.39). It is worth emphasizing that while

the generalized Darwinian is an analytial free-parameters theory, the reep tide theory is

equivalent to �x these free parameter with one spei� rheophysial law.

It is important not to onfuse these lags � and � (or � and �

00

) with the geodeti lags of

the surfae of eah layer. The geodeti lags are the observed lags of eah surfae, and result

of the omposition of the elasti and anelasti tidal omponents. The reep tide use the

rheology of one visous uid, through the Navier-Stokes's equation. In order to introdue

the elasti omponent we an use two methods: the ad ho method, proposed in FM13

(Se. 10) or using the one Maxwellian rheology, as in Correia et al. (2014). These methods,

though they are very di�erent, are ompletely equivalent (see Ferraz-Mello, 2015b).
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Chapter 7

Conlusion

In this thesis, we extended the reep tide theory, presented in Ferraz-Mello (2013) and

Ferraz-Mello (2015a), to a di�erentiated non-homogeneous body formed by N homoge-

neous layers with di�erential rotation. For this sake, �rst we have extended the lassial

results on non-homogeneous rotating �gures of equilibrium to the ase in whih the body is

also under the ation of a tidal potential due to the presene of an external body, assuming

di�erential rotation. The only assumptions in this work are a body formed by N homoge-

neous ellipsoidal layers in equilibrium and small enough tidal and rotational deformations

with symmetry axes perpendiular to eah other (remember that, in the seond order, the

�gure eases to be an ellipsoid). We have alulated the 2N equilibrium equations for small

attenings and we have found that the equatorial and the polar attenings �

(k)

�

and �

(k)

z

are linearly related, both being proportional to the homogeneous referene values with the

fators of proportionality H

k

and G

k

, respetively. The equatorial deformations propagate

towards the interior of the body in the same way depending, in the �rst approximation,

only on the density pro�le; it does not depend on the origin of the two onsidered defor-

mations. Then the problem of �nding the 2N attenings orresponds to �nding the 2N

oeÆients H

k

and G

k

with 2N equilibrium equations. An important onsequene of this

approah is that the attening pro�le H

k

is the same no matter if the rotation of the body

is synhronous or non-synhronous and the results for H

k

are the same found by Triario

(2014).

We have also studied the ontinuous ase as the limit for a very large number of layers of

in�nitesimal thikness, whih leads to the Clairaut's di�erential equation for the funtion

H(x). This result was expeted beause the oeÆients of the Clairaut equation only
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depend on the internal distribution of matter �(x). Therefore, the di�erential equation

that generates the funtional form of the pro�le attening H(x) does not hange when we

hange the nature of the deformation, provided that it is small. For densities dereasing

monotonially with the radius, we have found that, at the surfae, H

n

takes values larger

than 0.4 (see Eq. (2.24)) and takes the limit value 1 in the homogeneous ase. This means

that the surfae attenings of a di�erentiated body are always smaller than the attening

of the orresponding homogeneous ellipsoids, but always larger than 40% of it.

Using this stati equilibrium �gure, we found the reep tide equation for the outer

surfae of eah layer. One solved the reep equations, we obtained the tidal equilibrium

�gure, and thereby we alulated the potential and the fores whih at on the external

mass produing the tide, as well as the variations in semi-major axis and eentriity,

produed by the tidal fores.

In order to apply the theory to satellites of our Solar System, we alulated the expliit

expression in the partiular ase of one body formed by two layers. We may remember

that the number of free parameters and independent variables inreases quikly when the

number of layers inreases. The simplest version of the non-homogeneous reep tide theory

(the two-layer model), allow us to obtain the main features due to the non-homogenity

of the body, by introduing a minimal quantity of free parameters. In the used model,

we have also alulated the tidal torque whih ats on eah layer and also the possible

interation torques, as the gravitational oupling and the frition at the interfae between

the ontiguous layers (general developement of these e�ets are given in Appendies 3

and 4). The frition was modeled assuming two homogeneous ontiguous layers separated

by one thin Newtonian uid layer. This model of frition is partiularly appropriate for

di�erentiated satellites with one subsurfae oean, as are various satellites of our Solar

System (e.g. Titan, Eneladus and Europa).

The two-layer was ompared with the homogeneous ase. For that sake, we �xed the

free parameters of Titan and studied the main features of the stationary solution of this

model in funtion of a few parameters, suh as the relaxation fators 

i

, the frition pa-

rameter � and the eentriity e. When 



� 

s

, the behavior of the stationary rotations

turned out to be idential to the homogeneous ase. When 



� 

s

� n, the stationary

solutions osillate around the super-synhronous rotation. When 



and 

s

inrease, the
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osillation tends to zero. Finally, if 



� 

s

� n, the stationary solution is damped to

synhronous rotation. We have also alulated the possible atrators when the eentriity

and the frition parameter � are varied. We reovered the resonanes trapping in ommen-

surabilities 




� 


s

�

2+k

2

n (where k = 1; 2; 3; � � � 2 N) as shown in Ferraz-Mello (2015a)

and Correia et al. (2014) for the homogeneous ase, and we found that if frition remains

low, the non-zero diferential rotation ommensurabilities 




�

2+i

2

n and 


s

�

2+j

2

n, with

i; j = 1; 2; 3; � � � 2 N and i 6= j, are possible. When the frition inreases, the resonanes

with higher di�erential rotation are destroyed. If � ontinues inreasing, only survive the

resonanes in whih ore and shell have the same rotation.

The two-layer model was applied to Titan, but adding to it the torques due to the

exhange of angular momentum between the surfae and the atmosphere, as modeled by

Tokano and Neubauer (2005) and by Rihard et al. (2014), and the results were ompared

to the determinations of Titan's rotational veloity as determined from Cassini observations

by Stiles et al. (2010) and Meriggiola et al. (2016). These omparisons allowed us to

onstrain the relaxation fator of the shell to 

s

. 10

�9

s

�1

. The integrations show that

for 

s

. 10

�7

s

�1

the shell may osillate around the synhronous rotation, with a period

of osillation equal to the orbital period, and the amplitude of this osillation depends on

the relaxation fators 



and 

s

and the oean's thikness and visosity. The tidal drift

tends to zero and the rotation is dominated by the main periodi term.

The main result was that the rotational onstraint does not allow us to on�rm or

rejet the existene of a subsurfae oean on Titan. Only the maximum shell's relaxation

fator 

s

an be determined, or equivalently, the minimum shell's visosity �

s

. When a

subsurfae oean is onsidered, the maximum shell's relaxation fator is suh that 

s

. 10

�9

s

�1

, depending on the oean's thikness and visosity values onsidered. Equivalently, this

maximum value of 

s

, orresponds with a minimum shell's visosity �

s

& 10

18

Pa s, some

orders of magnitude higher than the modeled by Mitri et al. (2014). When the non-oean

ase is onsidered, the maximum shell's relaxation fator is suh that 

s

. 10

�10

s

�1

and

the orresponding minimum shell's visosity is �

s

& 10

19

Pa s. For these values of 

s

, the

amplitude of the osillation of the exess of rotation reprodues the dispersion of the 


s

value of �0:02 deg/yr around the synhronous value, observed as reported by Meriggiola

(2012) and Merigiolla et al. (2016). It is important to note that in all the ases studied,
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the inuene of the atmosphere an be negleted, sine it does not a�et the results in the

ranges of 



and 

s

where the exess of rotation alulated is ompatible with the exess

of rotation observed.

Finally, we extended the Darwin theory to a di�erentiated non-homogeneous body

formed by N homogeneous layers with di�erential rotation, and ompared the resulting

equations that desribe this theory with the equations given by the reep tide theory.

The main result of this omparisons, was that the reep tide theory an be interpreted as

one partiular ase of the generalized Darwin's theory, where the lags and the dynamial

tidal Love number depends on the frequenies and the visosities. While the generalized

Darwinian is an analytial free-parameters theory, the reep tide theory is equivalent to

�x these free parameters with one spei� rheophysial law (the rheology of one visous

uid, through the Navier-Stokes's equation).
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Appendix A

Shape and gravitational potential of one ellipsoid and

one ellipsoidal layer

A.1 Homogeneous ellipsoid

Let us onsider a homogeneous triaxial ellipsoid with density d, semi axes a > b > ,

equatorial mean radius R =

p

ab and equatorial and polar attenings de�ned as
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Then, the semi axes of this ellipsoid an be written as
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Let us also onsider the equation of surfae of this homogeneous triaxial ellipsoid, in a

referene system where the semi axes a, b and  are aligned to the oordinates axes x, y

and z, respetively:
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If we use the semi axes (A.2), the spherial oordinates

x = � sin � os'; y = � sin � sin'; z = � os �; (A.4)

and expand to �rst order in the attenings, we obtain
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The mass of this ellipsoids is
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The prinipal moments of inertia are
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and its di�erenes are
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If we onsider that the attenings are
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then, the di�erene of the prinipal moments of inertia an be approximated to �rst order

in the attenings as

C � A � C(�

J

+ �

M

)

C � B � C�

M

B � A � C�

J

: (A.10)

The gravitational potential U generated by this ellipsoid, at an external point r
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where r

�

= jr

�

j, I is the moment of inertia of this ellipsoid, relative to the enter of

mass and I

nm

are the omponents of its inertia tensor (see Beutler, 2005; Murray and
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Dermott, 1999). If the referene axes are oriented following the prinipal axes of inertia,

then I

nm

= 0 if n 6= m. Beause A = I
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, and hene 2I = A+B+C,

the gravitational potential an be written as
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or, using the Eq. (A.8), we obtain
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Another useful way to express this gravitational potential is
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It is worth emphasizing that both the surfae equation (A.5) as the gravitational po-

tential (A.13) are valid in a referene system where the semi axes (or, equivalently, the

prinipal axes of inertia) are aligned to the oordinates axes x, y and z. In a referene

system rotated, around to the axis z, at an angle �
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, these equations remains valid if we

use the longitude transformations ' �! '
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A.2 Ellipsoidal layer

Let us onsider a homogeneous triaxial ellipsoidal shell with density d

i

, outer semi axes
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At the inner ellipsoidal boundary, the semi axes are a

i�1
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(not neessarily

aligned with the axes of the outer surfae), the inner equatorial mean radius is R
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The semi axes of the outer boundary are
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and the semi axes of the inner boundary are
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Beause the semi-major axes a

i

and a

i�1

are not neessarily aligned, we onsider a

referene system suh that the outer semi-major axis a

i

and the inner semi-major axis a

i�1

are not aligned with the oordinate axis x. In this referene system, using he Eq. (A.15),

the surfae equation of the outer boundary of the layer is
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and the surfae equation of the inner boundary of the layer is
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where �

i

and �

i�1

are the angles formed between the semi-major axes a

i

and a

i�1

, respe-

tively, and the oordinate axis x.

The mass m
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of this layer, an be written as the subtration of the masses of the two

homogeneous ellipsoids of same density d
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: the homogeneous ellipsoid of mass m
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surfae as the outer boundary of the layer, less the homogeneous ellipsoid of mass m
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Note that this result is independent of the orientation of the ellipsoidal boundaries semi
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Figure A.1: Sheme for the alulation of the mass, prinipal moments of inertia and gravitational

potential of a homogeneous ellipsoidal layer as the subtration of two homogeneous ellipsoids of same

density d

i

.

To alulate the prinipal moments of inertia A

i

; B

i

; C

i

of a homogeneous triaxial el-

lipsoidal layer when the inner and the outer boundaries are not aligned is partiularly

ompliated beause the orientation of the prinipal axes of inertia do not oinide with

the axes of symmetry of both boundaries. In the sequene we fous in the partiular ase

in whih the inner and the outer boundaries are aligned.
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In this ase, we an use the same sheme used to alulate the mass of the layer.

The prinipal moments of inertia of the layer, an be written as the subtration of the

prinipal moments of inertia of two homogeneous ellipsoids of same density d

i

: the prinipal

moments of inertia of one homogeneous ellipsoid of mass m

0

i

and the same surfae as the

outer boundary of the layer, less the prinipal moments of inertia of the homogeneous

ellipsoid of mass m

00

i

and the same surfae as the inner boundary of the layer. Using the

semi axes (A.20) and (A.21), and the masses (A.25), the prinipal moments of inertia an

be approximated to �rst order in the attenings as
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and its di�erenes are
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where �(f

i

) = f

i

� f

i�1

, denotes the inrement of one funtion f

i

, between the inner and

the outer boundaries of this layer.

Using the same sheme used to alulate the mass and the prinipal moments of inertia,

the orresponding gravitational potential of this homogeneous triaxial layer at an external
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If we onsider the stati equilibrium �gure, the attenings are
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where H

k

and G

k

are the Clairaut numbers (see Eq. 2.12). Then, the di�erene of the

prinipal moments of inertia an be approximated to �rst order in the attenings as
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where the parameters L
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The oeÆients L

i

and L

0

i

play a role equivalent to the oeÆients H

i

and G

i

for the

quantities C

i

� A

i

, C

i

� B

i

and B

i

� A

i

. In this ase, the moments of inertia B

i

� A

i

(resp. C

i

� B

i

) of the i-th layer an be written as the homogeneous moments multiplied

by the oeÆients L

i

(resp. L

0

i

), harateristis of this layer. The di�erene between L

i

and L

0

i

omes from the fat that the body has a di�erential rotation. If we assume a rigid

rotation, then L

0

i

= L

i

(
=n)

2

.

The orresponding gravitational potential of this homogeneous triaxial layer at an ex-
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Although we do not alulate the prinipal moments of inertia when the inner and the

outer boundaries are not aligned, it is possible to alulate easily the gravitational potential

with the same sheme used to alulate the mass of the layer and the prinipal moments

of inertia. The potential of the layer, an be written as the subtration of the potential of

two homogeneous ellipsoids of same density d

i

: the potential of one homogeneous ellipsoid

of mass m

0

i

and the same surfae as the outer boundary of the layer, given by the Eq.

(A.22), less the potential of the homogeneous ellipsoid of mass m

00

i

and the same surfae

as the inner boundary of the layer, given by the Eq. (A.23).

The orresponding gravitational potential is
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Appendix B

The ontribution of the gravitational potentials to the

equilibrium equations

B.1 The equilibrium equations

In this Appendix, we detail the alulation of the ontribution of eah gravitational

potential to the 2N equilibrium equations. For the sake of simpliity, due to the operators

�
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i

and �

(2)

i

are linear, the ontribution of the gravitational potential of i-th homogeneous

layer an be alulated as the subtration of the ontributions of the two homogeneous

ellipsoids of same density d

i

: the ontribution of one homogeneous ellipsoid of mass m
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i

and the same surfae as the outer boundary of the layer, less the ontribution of the

homogeneous ellipsoid of mass m

00
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and the same surfae as the inner boundary of the layer

(see Fig. A.1). Then, the ontribution of the i-th layer to the equilibrium equations an

be written as
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B.2 The ontribution of the outer layers
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and G is the gravitational onstant (see Tisserand, 1891, Chap. 8 and 13; Jardetzky, 1958,

Se. 2.2). Then the derivatives of the potential are
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and its ontribution to the �rst equation of equilibrium is
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Negleting terms of order 2 in the attenings we an write
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Similarly, if we onsider the potential U
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of the one ellipsoid with density d

j

and the

same surfae as the inner boundary of the j-th layer, the ontribution of this potential to

the �rst equilibrium equation, negleting terms of order 2 in the attenings, is
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Then, the total ontribution of the outer layers to the �rst equilibrium equation is
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and using the above results, we obtain
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Analogously, the total ontribution of the outer layers to the seond equilibrium equa-

tion is
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B.3 The ontribution of the inner layers

The gravitational potential U
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generated by one ellipsoid with density d
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and the same

surfae as the outer boundary of the j-th layer, at an external point r
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on the surfae of the i-th layer may be presented by Laplae series. Negleting harmonis

of degree higher than 2 we have (see Eq. (A.13))
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and its derivatives are
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Making the approximation r

i

' R

i

, the ontribution to the �rst equilibrium equation,

to �rst order in attenings, is
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Similarly, if we onsider the potential U

00

j

of the one ellipsoid with density d

j

and the

same surfae as the inner boundary of the j-th, its ontribution to the �rst equilibrium
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equation, negleting terms of order 2 in the attenings, is
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Then, the total ontribution of the inner layers to the �rst equilibrium equation is
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or, using that
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we obtain
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Analogously, the total ontribution of the inner layers to the seond equilibrium equa-

tion is
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B.4 The ontribution of the tidal potential

If r = rx̂ is the position of the mass M, the tidal potential, to seond order, at a point

r

i

= x

i

^
x+ y

i

^
y + z

i

^
z on the surfae of the i-th layer is (Lambek 1980)
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where P

2

is the Legendre polynomial of degree two. The di�erential aeleration of this

point is
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therefore their derivatives are
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Finally, the ontribution of the tide in the equilibrium equations of the i-th surfae is
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However, we disard terms whih ontaining �

(i)

�

; �

(i)

z

, beause when we alulate the

attenings of eah layer, they appear multiplied by a fator of the same order as �

(k)

�
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,

therefore we obtain
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Appendix C

The relaxation fator

Let us onsider the equilibrium surfae �

i

(�; �) between two adjaent homogeneous

layers of the body m whose densities are d

i

(inner) and d

i+1

(outer). We onsider that at

a given instant, the atual surfae between the two layers �

i

(�; �) does not oinide with

the equilibrium surfae (Fig. C.1). In some parts, the separation surfae is above the

equilibrium surfae (as in region I) and in other parts it is below the equilibrium surfae

(as in the region II). Let us now onsider one small element of the equilibrium surfae in

region I. The pressure in the base of this element is positive beause the weight of the

olumn above the element is larger than its weight in the equilibrium on�guration. Note

that the olumn is now partly oupied by the uid with density d

i

and d

i

> d

i+1

. The

pressure surplus is given by

p

I

= �wh; (C.1)

where �w = (d

i

� d

i+1

)g is the di�erene of the spei� weight of the two olumns in

the neighborhood of the separation surfae, and h is the distane of the element of the

equilibrium surfae to the atual separation surfae. g is the loal aeleration of gravity.

The radial ow in the onsidered element is ruled by the Navier-Stokes equation:

0 = F

ext

�rp

I

+ �

i

�u (C.2)

where F

ext

is the external fore per unit volume (equal to zero if no other external fores are

ating on the uid), u is the radial veloity and �

i

is the visosity of the layer i (assuming

�

i

> �

i+1

). We notie that � is operating on a vetor, ontrary to the usual �. Atually

in this pseudo-vetorial notation, the formula refers to the omponents of u and means the

vetor formed by the operation of the lassial � on the three omponents of the vetor
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Figure C.1: Interfae between two adjaent homogeneous layers of m whose densities are d

i

(inner) and

d

i+1

(outer). �

i

(�; �) and �

i

(�; �) are the atual and the equilibrium surfaes, respetively, of the outer

boundary of the i-th layer. I (resp. II) is the region where the atual surfae is above (resp. below) the

equilibrium surfae. F

I

(resp. F

II

) is the fore ating on one small element of the equilibrium surfae in

the region I (resp. region II) due to the pressure surplus (resp. pressure de�it).

u. We assume that the ow, respet to the equilibrium surfae, is radial and thus u is

restrited to its radial omponent u

r

. That is

0 � �w + �
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r
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: (C.3)
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The general solution of this equation is
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; (C.5)

where C

1

and C

2

are integration onstants. The task of interpreting and determining its

integration onstants beomes easier if the solution is linearized in the neighborhood of

r = �

i

(i.e. h = 0):

u

r
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r
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Hene u

r

(�

i

) = 0, that is, there is no pressure surplus (or de�it) when the atual

separation surfae oinides with the equilibrium and the linear approximation of the

solution is obtained when we assume u

00

r

(�

i

) = 0.

Therefore

C

1

= ��w=6�

i

C

2

= �

4

�w=12�

i

: (C.7)
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Hene u

0

r

(�

i

) = �

i

�w=2�

i

, and the linear approximation orresponding to the Newto-

nian reep of the uid is

u

r

(r) = 

i

(r � �

i

); (C.8)

where



i

= u

0

r

(�

i

) =

�w�

i

2�

i

: (C.9)

In the region II the alulation is similar; however, instead of a pressure surplus we

have a pressure de�it beause the equilibrium assumes one uid with density d

i

below the

equilibrium surfae, whih is now oupied by uid of density d

i+1

< d

i

. The equations

are the same as above. We note that in the new equations, the adopted visosity onti-

nues being �

i

sine we assumed it larger than �

i+1

. The relaxation of the surfae to the

equilibrium will be governed by the larger of the visosities of the two layers.

In the homogeneous ase we have one layer body (N = 1). If we onsider d

N+1

= 0

(negleted the density of the atmosphere), we reover the expression of the relaxation

fator of FM13 and FM15



N

�

wR

N

2�

N

; (C.10)

where w = d

N

g is the spei� weight and �

N

� R

N

.
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Appendix D

The integral of setion 3.7

Proposition:
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To prove (D.1), we onsider only the tidal fore. Introduing the adimensinals variables

and time
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the rotational system an be written as
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where the onstants
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In low- approximation (

i

� n), we an neglet the terms k 6= 0. If we onsider only
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the terms j = 0, the system beomes
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In the same way in Ferraz-Mello (2015a), eah solution of this system tends to zero.

The role of the terms j 6= 0 that are periodi utuations whih are the harmonis of the

orbital period are added to the solution. If we onsider the terms j 6= 0, we have that

y

i

� 1, and the rotational system is

_y

i
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X

j2Z j 6=0
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sin (jx); (D.6)

where K
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The solution of this di�erential equation is
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or, in term of the angular veloity, we obtain
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Therefore, the square of the angular veloity of the j-th layer an be written as
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Finally, the integral (D.1) is
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In high- approximation (

i

� n), we an neglet P

ik

, then, the system an be written

as
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If we onsider only the terms j = 0, the system beomes
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whih is idential to the system D.5, with

P

k2Z

E

2

2;k

instead of E

2

2;0

. Therefore, eah

solution of this system tends to zero. As in low- approximation, the role of the terms

j 6= 0 are periodi utuations whih are the harmonis of the orbital period are added

to the solution. If we onsider the terms j 6= 0, we have that y

i

� 1, and the rotational

system is
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Using the solution of the low- approximation, then, the angular veloity is




i

= 


i0

�



i

K

0

ij

2

+

X

j2Z j 6=0



i

K

0

ij

2j

os (jnt); (D.14)

and the integral (D.1) is zero.
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Appendix E

Fluid Love's number of the i-th layer

E.1 The tidal uid Love number of the i-th layer

The disturbing potential generated by the i-th homogeneous ellipsoidal layer, deformed

only by the tide due to a mass point M of mass M orbiting at a distane r, at an external

point r
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(see Eq. (A.34)).

On the other hand, the tidal potential at the same point r
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The Love's theorem says that (Munk and MaDonald, 1960; Correia and Rodriguez,

2013)
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therefore, we obtain
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The onstant k

i

is tidal uid Love number of the i-th layer, and an be rewritten as
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is given by Eq. (A.32), and
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E.2 The rotational uid Love number of the i-th layer

The disturbing potential generated by the i-th homogeneous ellipsoidal layer, deformed

only by the rotation with angular veloity 
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(see Eq. (A.34)).

The entrifugal potential at the same point r
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is
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The Love's theorem say that
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The onstant k
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is rotational uid Love number of the i-th layer, and an be rewritten

as
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where L
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i

and

b

k

i

are given by Eqs. (A.32) and (E.6), respetively.

E.3 Potential of the tidally deformed layer

Finally, using Eqs. (E.5) ana (E.11) in the disturbing potential (A.34), we obtain
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Appendix F

The Cayley funtions

In this appendix we omplete some alulations used in hapters 3 and 6. We also show

the Cayley oeÆients E

0;k

and E

2;k

, for jkj � 4.

F.1 Auxiliary formulas

In this setion we omplete some alulations used in the Eqs. (3.38) and (6.26). For

this sake, we use the Fourier expansion given in the Online Suplement of Ferraz-Mello

(2015):
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where the more general Cayley funtion is de�ned as:
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We also use the auxiliary formulas:
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(see Online Suplement of Ferraz-Mello (2015) for more details).
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Proposition 1:
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Using Eq. (F.2), with � = 0, we obtain
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or, using (F.5), with the transformation k �! k + j
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Using Eq. (F.1), with � = 0, we obtain
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Then
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or, using (F.5), with the transformation k �! k + j
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Using Eq. (F.2), with � = 0, we obtain
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Using Eq. (F.1), with � = 0, we obtain
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F.2 Cayley oeÆients
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