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“...Caminante, son tus huellas
el camino y nada mds;
caminante, no hay camino,

se hace camino al andar.

Al andar se hace camino
y al volver la vista atrds
se ve la senda que nunca

se ha de volver a pisar.

Caminante no hay camino

sino estelas en la mar...”

Antonio Machado, Cantares.






Resumo

A maioria das teorias atuais de maré estao baseadas na teoria de Darwin, e tem como
caracteristica principal a introducao ad hoc do atraso tidal. Estas teorias predizem uma
rotacao estacionaria sincrona quando a 6rbita é circular, e um excesso de rotacao (co-
nhecido como super-sincronismo) quando a 6rbita é eliptica. Na teoria de Darwin, esse
excesso ¢ dado por ~ 6ne? (n é o movimento médio e e a excentricidade orbital), e é
independente da natureza do corpo deformado. Recentemente, foi proposta uma nova
teoria de maré, desenvolvida no TAG (Ferraz-Mello, Celest Mech Dyn Astron 116: 1009,
2013). Usando uma linearizacao da equagao de Navier-Stokes para um fluido com um
nimero de Reynolds muito baixo, esta teoria estuda a deformacao do corpo extenso, su-
pondo que ela é proporcional ao stress. A constante de proporcionalidade 7 (chamada
fator de relaxacao), depende inversamente da viscosidade. O excesso de rotagao predito
nesta teoria é ~ 6ne’y?/(n? + ~?). Todas estas teorias adotam a hipétese da homogenei-
dade do corpo deformado. Porém, corpos celestes reais, como os satélites do Sistema Solar
Europa, Encélado ou Tita, apresentam uma estrutura de camadas, com um oceano interno
que possibilita a rotacao independente entre a crosta e o nicleo, impossibilitando aplicar
as teorias atuais a este tipo de problemas. Nesta tese estendemos a teoria de maré por
fluéncia, ou creep tide theory, para corpos nao homogéneos diferenciados. Desenvolvendo
um modelo para duas camadas, estudamos a evolucao rotacional, assim como as solugoes
estacionarias quando, além das forcas de maré, incluimos as possiveis forcas de interagao
entre as camadas, como o acoplamento gravitacional e a friccao. Posteriormente, aplicamos
a teoria a Tita, adicionando a interacao crosta-atmosfera e considerando a existéncia de
um oceano interno. Finalmente, desenvolvemos a teoria de maré de Darwin para corpos

nao homogeneos diferenciado e comparamos com a teoria de maré por fluéncia.






Abstract

Almost all existing tidal theories are based on the Darwin’s theory, and have as main
feature the introduction of the ad hoc tidal lag. These theories predict a synchronous
stationary rotation when the orbit is circular, and an excess of rotation (known as super-
synchronism), when the orbit is elliptical. In the Darwin’s theory, this excess is given by
~ 6ne? (n is the mean motion and e is the orbital eccentricity), and is independent of
the nature of the deformed body. Recently, a new theory was proposed, developed in the
[AG (Ferraz-Mello, Celest Mech Dyn Astron 116: 109, 2013). Using a linearization of the
Navier-Stokes equation for a fluid with a very low Reynolds number, this theory studies
the deformation of the extense body, assuming that it is proportional to the stress. The
constant of proportionality v (called relaxation factor), depends inversely on the viscosity.
The excess of rotation predicted in this theory is ~ 6ne?y2/(n? + v2). All these theories
adopt the hypothesis of homogeneity of the deformed body. However, real celestial bodies,
as the satellites of the Solar System Europe, Enceladus or Titan, present a multi-layered
structure, with an internal ocean that allows the independent rotation between the crust
and the core, making impossible to apply the current theories to this kind of problems.
In this thesis, we extend the creep tide theory, to a differentiated non-homogeneous body.
Developing the two-layer model, we study the rotational evolution, as well as the stationary
solutions when, besides the tidal forces, we include the interaction between the different
layers, as the gravitational coupling and the friction. Then, we apply the theory to Titan,
adding the crust-atmosphere exchange of angular momentum and considering the existence
of a subsurface ocean. Finally, we develop the Darwin tidal theory to differentiated non-

homogeneous bodies and compare with the creep tide theory.
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Chapter 1

Introduction

Tidal torques are a key physical agent controlling the rotational and orbital evolution
of systems with close-in bodies and may give important clues on the physical conditions
in which these systems are originated and evolved. The viscoelastic nature of a real body
causes a non-instantaneous deformation, and the body continuously tries to recover the
equilibrium figure corresponding to the varying gravitational potential due to the orbital
companion. In standard Darwin’s theory (e.g. Darwin, 1880; Kaula, 1964; Mignard, 1979;
Efroimsky and Lainey, 2007; Ferraz-Mello et al., 2008), the gravitational potential of the
deformed body is expanded in Fourier series, and the viscosity is introduced by means of
ad hoc phase lags in the periodic terms/[!

All these theories predict the existence of a stationary rotation. If the lags are assumed
to be proportional to the tidal frequencies, the stationary rotation has the frequency g, >~
n(1+6€e?), where n is the mean motion and e is the orbital eccentricityH. The synchronous
rotation is only possible when the orbit is circular, but the stationary rotation becomes
super-synchronous in the non-zero eccentricity case. In these theories, the excess of rotation
6ne? does not depend on the rheology of the body. However, this prediction is not confirmed
for Titan, where the excess provided by the theory is ~ 38° per year, and the Cassini
mission, using radar measurement, has not showed discrepancy from synchronous motion
larger than ~ 0.02° per year (Meriggiola, 2012; Meriggiola et al., 2016).

Recently, a new tidal theory for viscous homogeneous bodies has been developed by

Ferraz-Mello (2013; 2015a) (hereafter FM13 and FM15, respectively). A Newtonian creep

! Mignard (1979), introduced an ad hoc constant time lag.
2 If the tidal phase lags are assumed to be frequency independent, as in MacDonald (1964), the resulting

stationary solution is Q ~ n(1 + 9.5¢%) (see Goldreich, 1966).
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model, which results from a spherical approximate solution of the Navier-Stokes equation
for fluids with very low Reynolds number, is used to calculate the surface deformation,
due to an anelastic tide. This deformation is assumed proportional to the stress, and
the proportionality constant 7, called the relaxation factor, is inversely proportional to the
viscosity of the body. In the creep tide theory, the excess of synchronous rotation is roughly
proportional to 6ny?e?/(n? + 4?). A similar planar theory, using a Maxwell viscoelastic
rheology, was developed by Correia et al. (2014) and generalized later to the spatial case
by Boué et al. (2016). Despite the different methods used to introduce the elasticity of the
body, this approach is virtually equivalent to the creep tide theory (Ferraz-Mello, 2015b).
Other general rheologies were studied by Henning et al. (2009) and Frouard et al. (2016).

However, real celestial bodies are quite far from being homogeneous and how the tide
influences its dynamic evolution is not entirely clear yet. Differentiation is common in our
Solar System, and several satellites present evidence of a subsurface liquid ocean. We may
cite, for instance, Europa (Wahr et al., 2006; Khurana et al., 1998) and Enceladus (Porco
et al., 2006; Nimmo et al., 2007). One paradigmatic case is Titan, where, in addition,
the exchange of a certain amount of angular momentum between the surface and the
atmosphere may be important (Tokano and Neubauer, 2005; Richard et al., 2014), and the
presence of an internal ocean (Tobie et al., 2005; Lorenz et al., 2008; Sohl et al., 2014) may
decouple rotationally the crust from the interior (Karatekin et al., 2008). The rotation of
the crust has been studied by Van Hoolst et al. (2009) using the static tide and internal
effects, as gravitational coupling and pressure torques. They found that the crust rotation
is influenced, mainly by the atmosphere and the Saturn torque, and claim that the viscous
crust deformation and the non-hydrostatic effects, could play an important role in the
amplitude of the crust oscillation.

The main objectives of this work are: i) To extend the creep tide theory for multi-
layered bodies and to study their rotational evolution. ii) To apply the non-homogeneous
tidal theory to Titan. This thesis is organized as follows: In Chap. 2 we generalize the
linear Clairaut theory for one multi-layered body with differential rotation, adding a tidal
potential due to the presence of an external body. We present and solve the 2N classical
equations of equilibrium and extend the Clairaut’s equation for the continuous problem

and its solution. We calculate the potential at a point in the space due to the deformed
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body and we calculate a generalized Love number for the differentiated non-homogeneous
bodies. Finally, we apply the theory to a body composed of two homogeneous layers, and
for several laws of density. The main results, for the particular case in that all the layers
have the same angular velocity, were published in Folonier et al. (2015). In Chap. 3 we
present, the non-homogeneous creep tide theory for one body composed of N homogeneous
layers. We compute the disturbing potential of the deformed body, as well as the forces,
the toques and the work done by the tidal forces acting on the bodies. In addition, we
calculate the variations in semi-major axis and eccentricity, produced by the tidal forces.
In Chap. 4, we develop the two-layer model, adding the gravitational coupling between
the core and the shell and the friction that occurs at interface in contact. We compare
the two-layer model with the homogeneous theory and calculate the approximate near-
synchronous rotation. In Chap. 5, we apply to TitanH. In Chap. 6 we extend the Darwin
tide theory for multi-layered bodies and compare with the creep tide theory. Finally, the
conclusions are presented in Chap. 7. The work is completed by several appendices where

are given technical details of some of the topics presented in the forthcoming chapters.

3 Chapters 3, 4 and 5 are the basis of one paper to be submitted soon to publication in the journal

Celestial Mechanics and Dynamical Astronomy.
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Chapter 2

The static tide

2.1 Introduction

Several theories of tidal evolution, since the theory developed by Darwin in the XIX
century (Darwin, 1880), are based on the figure of equilibrium of an inviscid tidally de-
formed body (see e.g. Ferraz-Mello et al., 2008; Ferraz-Mello, 2013). The addition of
the viscosity to the model is done at a later stage, but the way it is introduced is not
unique and can vary when different tidal theories are considered. Frequently, the adopted
figure is a Jeans prolate spheroid or, if the rotation is important, a Roche triaxial ellipsoid
(Chandrasekhar, 1969). It is worth recalling that ellipsoidal figures are excellent first ap-
proximations, but not exact figures of equilibrium (Poincaré, 1902; Lyapunov, 1925; 1927).
Besides, Maclaurin, Jacobi, Roche and Jeans ellipsoids are valid only for homogeneous bo-
dies. Real celestial objects, however, are quite far from being homogeneous. This causes
significant deviations which need to be taken into account in the astronomical applications.

The non-homogeneous problem, when we only consider the deformation by rotation,
has been extensively studied. The problem of one body formed by n rotating homogeneous
spheroidal layers as well as its extension to the continuous case was studied by Clairaut
(1743) (revisited by Tisserand, 1891 and Wavre, 1932). Their works were based on the
hypotheses of small deformations (linear theory for the polar flattenings) and constant
angular velocity inside the body. The general case of homogeneous layers rotating with
different angular velocities (non-linear theory) was studied by Montalvo et al. (1983) and
Esteban and Vazquez (2001) (see Borisov et al., 2009 for a more detailed review), and was
generalized to the continuous inviscid case by Bizyaev et al. (2014).

The case of uniformly rotating layers was studied by several authors. Kong et al.
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(2010) discussed the particular case of a body formed by two homogeneous layers with
same angular velocity. Hubbard (2013), with a recursive numerical form of the potential of
a N-layers rotating planet, in hydrostatic equilibrium, showed a solution for the spheroidal
shapes of the interfaces of the layers.

When the tidal forces acting on the body are taken into account along with the rotation,
the literature is much less extensive. Usually the spin-orbit synchronism is assumed, so
that the rotating body solution can be used (e.g. Van Hoolst et al., 2008). Tricarico (2014),
assuming synchronism, found a recursive analytical solution for the shape of a body formed
by an arbitrary number of layers. For this, he developed the potentials of homogeneous
ellipsoids in terms of the polar and equatorial shape eccentricities. However, the results do
not include tidally deformed bodies whose rotation is non-synchronous, as, for instance,
the Earth, solar type stars hosting close-in planets and hot Jupiters in highly eccentric
orbits. Recently, Wahl et al. (2016) extended the Concentric Maclaurin Spheroid method,
presented in Hubbard (2013), to include the tidal forces.

In this chapter, we study the static equilibrium figure of one body composed of N
homogeneous layers, deformed by a tidal potential and the differential rotation of its layers.

The main results were published in Folonier et al. (2015).

2.2 The equilibrium equations

We consider one differentiated body m of mass my, disturbing to one mass point M of
mass M orbiting at a distance r from the center of m. We assume that m is composed
of N homogeneous layers of density d; (i = 1,---,N) and angular velocity €2; = QZ-E,
perpendicular to the orbital plane. We also assume that each layer has an outer ellipsoidal
shape with semi axes a;, b; and ¢;, where the semi-major axis a; is pointing towards M and
¢; is the axis of rotation (Fig. [21]).

If we consider one point on the outer surface of the i-th layer, with position vector
r; = (24, yi, 2;) and velocity v; = €; X r;, respect of the center of m, we can use the same
equation used in the study of equilibrium ellipsoids (see Tisserand, 1891, Chap. 8 and
13; Jeans, 1929, Sec. 215-216; Jardetzky, 1958; Chandrasekhar, 1969), which expresses

the fact that the total force acting on a point of its surface must be perpendicular to the
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<

Figure 2.1: Body of mass mr formed of N homogeneous layers of density d;, where each layer has an
outer mean equatorial radius R; and an angular velocity €2;, and a point mass M orbiting at a distance r

from its center in a plane perpendicular to the rotation axis. Figure extracted of Folonier and Ferraz-Mello
(2015).

surface

Vrl@i X VriUG + Qz X (Qz X I'i), (21)

where Ug is the total gravitational potential at r;, the term €; x (€2; X r;) corresponds to

the centripetal acceleration and

S R
(i, iy 2) = 5 + 75 + 5 — 1 =0, (2.2)
ai b} ¢

is the ellipsoidal surface equation. The use of the above equilibrium equation in a case
where the tidal force field is changing because of the external body needs a justification.
Eq. (ZI) means that no change in the shape of the body occurs because of internal forces;
the shape will change, but only because of the relative change of the position of the external
body.

Hence, we obtain the equilibrium equations

QQ _ l&UG _ %8UG
Q0 = 190s _ @GUG, (2.3)
Y 0y zi 0%z
where
c; c
Q= ?, Bi = ﬁ (2-4)
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The problem of find the equilibrium figure (i.e. the values of the semi axes a;, b; and
¢;) is equivalent to finding the equatorial and polar flattenings

W _ a—b l1-—a 1-p0 W _bi—a 1-00
e = R ; e = R
’ R; 2 2 ? R; 2

where R; = \/a;b; is the outer mean equatorial radius of the i-th layer. For this, we will
use the 2N equilibrium equations (Z.3)).
If we denote U; (with j = 1,---, N) the potential of the j-th layer, and Uy, the tidal

potential at r;, the total gravitational potential is

N
Ua=Usa+ Y _Uj. (2.6)

j=1

As the equilibrium equations (23] are linear in the potential U, we can write
N
22 = x{" (Uua) + 3P (U7, (2.7)
7=1

where XZ(-I) and XZ(-Z) are the operators

m _ 10 &0

2 l 0 _@ 0
Y 0Y; Ziazi‘

(2.8)

2.3 Flattening of the layers

The next step is to calculate the contribution of each gravitational potential to the
equilibrium equations (Z7). If we consider separately the contributions to the potentials
due to the inner and outer layers, and the tidal forces at a point on the i-th surface (see

Appendix [B)), we obtain the equations

3GM A7 | 3my 6 l R} — R}
2 _ = _ = . _ E Y (4) @Y _
Qi - r3 +G 3 27TR? 5(dz dz+1) j—i+12(dj dy+1) R? (ep +‘5z)
N 1—1 5
47 6 - , 47 6 R
643 Sy ) ()~ 625 Sy o B (@ )
3 25 3 25 R
j=i+1 7j=1
N 3 3
4w | 3my 6 R — R; )
2 _ = — 2. — . _ R DU S A A I ) R
0 = G | gegm 5 i) j:§i+12(d] s T
N i—1 5
4 6 , 4 6 R .
—G~ > =(dj = dj1)et) — G2 =(dj— dj+1)R—i—,€§])- (2.9)

j=i+1 j=1 t
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The solution of this system can be written as
Gg) = HZ'GJ; 63) = QZEM, (210)

where €, is the flattening of the equivalent MacLaurin homogeneous spheroid in synchro-
nous rotation and e; are the flattening of the equivalent Jeans homogeneous spheroids

_ 5RYn? _ I5MRY
N 4mTG ’ =

€ 2.11
M Amqpr3d ' (2.11)

(G is the gravitational constant, n is the mean motion of M and Ry = /ayxby is the outer
mean equatorial radius of m.

The coefficients H; and G; are the Clairaut’s numbers

H, = f:(El)ijx;’f G = i(El)ijx;’f <&>2 (2.12)

. n
J=1 J=1

where (E!);; are the elements of the inverse of the matrix E, with elements

3 (G dal, i<
2§N( J J+1) 5 5 N J
T T 3 > > 3 3 .
(E)ij = < _%( i = dip)oi + 5 - %k;l(dk = dp1) (), — 27), i=J (213
3 ~ o~ 2
\ 2fN( j ]+1)x227 (4 ]

where x; = R;/Ry and c/l\Z = d;/d; are the normalized mean equatorial radius and density,
respectively, and fy = 3 fol c?(z)z2 dz, where c?(z) is the normalized density profile.

It is important to note that if the orbital motion is synchronous with the angular
velocity of each layer, when the approximation €; ~ 3¢, is adoptedEl, the system (2.9) is
completely equivalent to that found by Tricarico (2014), where the square of the polar and
equatorial “eccentricities” used there are related to the polar and equatorial flattenings
through e; ~ 26 and CE 2¢).

The calculations done are valid only for small flattenings, i.e. we assume that the

perturbation due to the tide and the rotation are small enough so as not to deform too

much the body (in the second order, the figure ceases to be an ellipsoid).

I The exact relation is e; = 3€ M‘;—zﬁ The aproximation is valid only if the mass of the deformed

body and the eccentricity are small, that is r ~ a and mp < M.
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In the rigid rotation case, if the velocity of rotation of each layer is 2; = €2, the polar

flattening of the i-th layer, can be rewritten as

E(Z) = %iEM, (214)
where
5]?3’\,92
= 2.15
M AmyG’ ( )

is the non-synchronous flattening of the equivalent MacLaurin homogeneous spheroid.

2.4 FExtension to the continuous case

In this section we extend the equilibrium figure to the continuous case. In order to
calculate the first Clairaut function #(z), we follow the method showed in Tisserand

(1891), Chap. 14, writing the first equation of (Z9)), less the second equation, as

—

71—

(E)ijH; + (E)iHi+ Y (E)iH; = x. (2.16)

1 j=it1

J
If we introduce the notation A(xg) = ) — x,_; and the boundary values zy = 0 and

dyy1 = 0, we may rewrite the terms on the left hand side of the last equation as

j=1
al 3
E)H, = —— Y da d,
Z()ﬂ{] 2fNZ x%+f Z T,
Jj=i+1 Jj=t+1 Jj=i+1
33 3
— T dA dZ s ']—[“ 2.17
. Z T (2.17)
j=i+1
or
i—1 i—1 AA N R
O+ > @ty = 5= [T 3 A+
]:1 Jj=i+1 N =1 Jj=t+1
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and
3 5 5 O .
)it = —=—Adp)adHi+ Hi— =— Y (d — diy) (2} — 2})H,
(E) 3 (dit1) 5 > k:m( k= dit1) (2, )
N
3 - 5H;, 5H; ~
= ———A(di))T?H; + — — dpA(x3). 2.19
3 (dit1) 5 2ka:§z’+1 KA () (2.19)

If we assume that the number of layers tends to infinity so that the increments Az, =

x — xp_1 are infinitesimal quantities, when Az, — 0, the Eq. (ZI0) becomes

2 2 Z=T z=1 R
5% F@)H(z) = %x5+ / PECLEORE / A, (2.20)
where the function f(x) is
Fla) el / d(2)-dz, (2.21)
0
with f(0) =0 and f(1) = fn.
Deriving (2220) with respect to x, we have
2 2 z=1
A (@) + L) =20+ [ damia), (2.22)

and deriving once more we obtain the differential equation for the flattening profile

" 6d(x)z (o 6d(z)z 6 ) —
H (x)—i_if(x) H'(z) + ( (@) :1:2)H( ) =0. (2.23)

It is a homogeneous linear differential equation of second order with non-constant co-

efficients for the first Clairaut function H(z), that represent the continuous counterpart
of the first Clairaut coefficient #H;. The differential equation ([223]) is the same expression
found by Clairaut (Tisserand, 1891; Jeffreys, 1953).

The Eq. (Z20) allows us to calculate the limits that the Clairaut coeficient Hy can
take at the surface. In the homogeneous case c?(x) = 1, the integrals can be calculated

trivially. At the surface x = 1, we obtain Hy = 1. In the non-homogeneous case, if the

density is a piecewise continuous non-increasing function (d’ < 0), we have, at the surface

2 3 [ ;
Hy = +%/220 d(z)d(2H(2))

5

2 3 [~ o=t ~ 2
S+ — |dvHy — "H(2)dd(2)| > <. 2.24
o v = [ P > 3 (2.21)
Then, under the assumption of equilibrium, a non-homogeneous body will have equatorial
flattenings on the surface with values between 0.4 and 1 times the values they would have

if the body was homogeneous.
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It is worth mentioning that Eq. (224) is valid if H(z) > 0, that is, a; > b;. If a; < b;,
we can redefine the equatorial flattening as eE,i) = (b; — a;)/R; = Hie; > 0.
In order to calculate the equation for the second Clairaut function G(z), we can proceed
in the same way. Using the second equation of (2.]), we obtain
51,2 ) N Z=r z=1
2 @)6(r) = %ﬂz? + / A2)d(°G(2) + 27 / (2)dG(2), (2.25)
2=0 Z=x
where Q = Q(z)/n. Deriving with respect to z, we have

2(x) . . fl@)

323 32

G(z) + g’(x):m fN Q0 + / z:1c?(z)dg(z), (2.26)

3 .

and deriving once more we obtain the differential equation for the flattening profile

" 6&\(37)3:2 ! 66/[(33)37 _E T 4fN "Ly O/2 200"
G'(r) + =5 Q(x)+( o) x2> 6@) =570 <6QQ+ 02 + QQ) (2.27)

It is a non-homogeneous linear differential equation of second order with non-constant
coefficients. The homogeneous equation is equal to the differential equation of the first
Clairaut equation (Z23). The non-homogeneity of Eq. (227)) depend on the rotation
profile Q(x) = Q/n, particularly depend on the Q' and Q”, therefore, to rigid rotation ﬁ(x)
is a constant function, and the Eq. (227 results equal to the differential equation (223).

In the homogeneous case c/i\(a:) =1, the integral (Z223]) can be calculated trivially

9.
G(z) = 392 + %gN, (2.28)

with Gy = (AZ?V at the surface x = 1. In the non-homogeneous case, if the density is a

non-increasing function (&' < 0), we have, at the surface

A2 z=1 R
Gy = En 3 / A(2)d(2°G(2))
2=0

5  5fw
202 3 =l N 202,
= — + — ST {dNQN - /z:O z g(z)dd(z)] > = (2.29)

Then, under the assumption of equilibrium, a non-homogeneous body will have flattenings
on the surface with values between 0.40Q2 and Q2 times the values they would have if the

body was homogeneous.
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2.4.1 Boundary conditions. Radau transformation

The differential equation (223) requires two boundary conditions to be solved. Howe-
ver, before attempting to find these boundary conditions, we will show two relationships
that will turn out to be useful later. The first relationship is obtained from equation ([222)),
where at z = 1 we have

v =2(1—-Hy). (2.30)

The second relationship is obtained from the differential equation (223)). If we note that
f(x) ~ 23+ 3d)z* /4 and d(z) ~ 1+ d)z, in the neighborhood of z = 0, the Eq. (Z23) can
be approximated by

/
H' +6— + 6dgﬂ =0, (2.31)
T T

it is
H) = —d)Ho, (2.32)

where ch is the derivative of the density at x = 0.

In practical applications, it is convenient to introduce the Radau transformation

n(z) = xgég) (2.33)

and rewritten Clairaut’s equation as the Ricatti differential equation

,'72

n + ~ + [q(x) + g] n+q(x) =0, (2.34)

where

def 6 c?(x)a:?’ B
q(x) = . ( o) 1). (2.35)

In the new variables, using the relation (Z32)), the boundary condition is
n(z=0)=0. (2.36)

The variable 7 is sometimes referred to as Radau’s parameter (Bullen, 1975). Defining
n(x = 1) = ny and using the relationship (Z30) and the transformation (Z:33]), the boun-
dary conditions of ([2Z:23)) are

20N
Hy = : H = ) 2.37
. v (2:37)
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As a result of this relationship, if considering that 0.4 < Hy < 1, we recover the classical
result 0 < ny < 3 (Tisserand, 1891).
Finally, it should be noted that once n(x) is found, we may find the profile flattening

from equation (2.33)), whose solution is
H(z) = Hyell 12)/% a2, (2.38)

The complete study of the differential equation for the second Clairaut function G(z)
(Eq. B27), escapes from the objectives of this work. As we will show in the following
Chapters, the axial terms of the potential of the deformed body, which involve Clairaut

number G;, are torque free and do not contribute to the tidal rotational evolution of m.

2.5 Potential of the tidally deformed body

The disturbing potential of the i-th ellipsoidal layer at an external point r* is given by

(see Eq. [A.33)

GOiL)_

_GGiLi S EM (3cos®w, — 1), (2.39)

5U2(i)(r*) == € (3cos® ¥, — 1) —

where ¥, and ¥, are the angles between the direction of the point where the potential is
taken and the coordinate axes x and z, respectively, C; ~ 2m;(R? — R} |)/(R? — R? ) is
the axial moment of inertia of the i-th layer (see Eq. [A.26) and the parameters

o G~ G R
Z R} — R},

o MR} HRL,
R} —-RY,

(2.40)

The total potential is the sum of the potentials of all layers:

Qk}GmTR?V _

2 ;G R
- ST A (Beos? T — 1), (241
r*

ulr') = 157*3

€] (3(:052\111,—1) —

the constants k; and k' are often called the tidal and rotational fluid Love number (Munk

and MacDonald, 1960; Correia and Rodriguez, 2013). For a non-homogeneous body, by
identification of the terms, we find

L def 31 ZN: mA(RYH;) L def 31 i miA(RPG;)

I YmrR:, &~ R R} | I 2meR} &~ R}— R}’

=1 ¢

(2.42)

i=1
where A(f;) = fi — fi_1, denotes the increment of one function f;, between the inner and

the outer boundaries of this layer. Using the continuous model and the mass of the i-th
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layer m; = 7d;(R? — R? ), we obtain

by = /z: A(2)d(H(2)): K= 2 /z: A2)d(°G(2)). (2.43)

B E z=0 B % z=0
Using the integral form of Clairaut’s equations ([220) and (225), and evaluating at

r = 1, we obtain
5 . , D ~

which shows the link of the tidal fluid Love number k;, with the coefficient Hy. This
relationship is based on the fact that both constants depend solely on the internal structure,
characterizing the inhomogeneity of the body. In the homogeneous case Hy = 1 thus

recovering the classical result £y = 1.5. If we also assume a synchronous rotation, Gy =

Qn/n=1and K} = k; = 1.5.

2.6 Two-layer Core-Shell model

2.6.1 Discrete model

In this section we consider the simple case of a body formed of two synchronous ho-
mogeneous layers: a core with density d; and mean radius R, and a shell with density
dy = c/l\ldl (with c/i\l < 1) and mean outer radius Ry (Fig. 222). If we define the normalized

mean core radius x; = Ry /Ry, then, the parameter fy can be written as
fv=di + (1 —d)a}. (2.45)
The linear system for the equatorial flattenings is

(E)11%1+(E)12H2 = !L':{’
(E)aiH1 + (E)aeH2 = 1, (2.46)

(see Eq. [Z16]), where the elements of the matrix E are

B 3d, 23
2d, +2(1 — dy )23
2dy + 5(1 — dy)a?
2 — = ~ .
2d1 + 2(1 — dl)fl,’i{’

2+ 3dy)x?

(E)ll = A( I)Al ; (E)12 =

2d1 + 2(1 - dl)ﬂf‘;’
3(1 — di)a?

2d, +2(1 — dy)ad’

(E)2

(2.47)
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Figure 2.2: Density profile of a body formed by two homogeneous layers. z; is the mean radius of the
core R; relative to the mean outer radius of the shell Ry. dy is the shell density ds relative to the core

density d;. Figure extracted of Folonier et al. (2015).

Hence, the first Clairaut’s numbers are
~ ~ 2
10(41 +(1- dl)xi’)

BT o) (o 50— dat) - 91— dy

2(dy+ (1= d)at) (2+3d +3(1 — d)a)
Hy = — — — — —. (2.48)
(2+3) (24 +5(1 — d)a?) — 9 (1 — dh)a

1 : 1
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0.7 r 0.7

N 0.6 r N 0.6

d1 0.5 F d1 0.51 o& ° |
0.4 r 0.4+ -
0.3 r 0.3 -
0.2 r 0.2+ -

e
0.14 = r 0.1 -
0 T T T T T T T T \\ 0 7 7 T T T T T t T
0 01 02 03 04 05 06 0.7 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1
£y £y

Figure 2.3: Possible values of H; (core) and Hs (shell) as functions of the core size x1 and of the relative
density of the shell d;. Figure extracted of Folonier et al. (2015).

Fig. 2.3 shows the results obtained for the constants H; and Hy. We see that:
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o If 671 = 1 or x; = 1, the constants are H; = H, = 1, that is the solution for a

homogeneous body.

e When the core is denser than the shell, 2y > #; and the flattening of the core are
smaller than the equatorial flattening of the surface (where 6571) = Hie; < 622) =

%26]).

e Since Hy < 1, the maximum surface flattening is given by the homogeneous solution.
In presence of a core, the surface is always less flattened than it is in the homogeneous

case.

e While H; may take all possible values bettween 0 and 1, H, is always larger than the
critical limit 0.4, corresponding to the degenerate limit case in which the whole mass
would tend to concentrate in the center and would be surrounded by a zero-density
shell (case of Huygens-Roche). Therefore the flattenings of the outer surface can
never be less than 40% of the homogeneous reference values. This is the same result

given by Eq. ([224]) for the continuous case.

2.6.2 Continuous model

Now, we will consider the same problem, but using the continuous model. In this case,

the normalized density profile is

~ 1 0<z<oy
dlz)=1¢ __ (2.49)
dy T <x <1,
and the function f(z) is
z? 0<z<m
flz) =9 - - (2.50)
dl.’L'g + (]. — dl)x% T <x < 1.

A simple treatment, without actually solving the differential equation, is to solve the

-~

integral equation (Z20), that can be calculated trivially since the density profile d(z) is

piecewise constant

T ; B TH(z) — [:1:57{(3:)] B 0<xe<m
/ d2dm) = 4 a0 (2.51)
0 &M () + (1 — d)aiHy — [1;57-[(1;)] n<z<l

=0
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and

= (2.52)

N L—d)Hy+diHy —H 0<z<
/ d(2)dH (A 1)/\1 17112 (z) T < T
x dl’Hg—dl’H(x) T <z <1,

where Hy = H(x1) and Hy = H(1). We remind that, a priori, we do not know the form of
the function H(z).

In the core, 0 < z < x, the integral equation is

5
i — M) = (% Y diHs + (1—d)H, ) - [af’%(az)] R (2.53)
which, for z = 0, gives the condition 3 [ e )] - —[x57-[(x)] which may be fulfilled
=0 =0
only if [1;57-[(x)] = 0. So in that interval, we have
=0
oy 3~ 3 -
H(r) = % + gd17‘i2 + 5(1 —di)H, (2.54)

that is, the flattening profile in the core remains constant, although we do not know yet

the boundary values H; and H,. Particularly, if x = x;, we obtain
(2 +3d))H1 = 2fn + 3d, Ho. (2.55)

In the shell, ;1 < z < 1, the integral equation is

?2 (Jlx?' +(1— Jl)xi) H(z) = <ﬁ + d17-£2> (1= dy)2H,. (2.56)

If we evaluate it at the boundary z = 1, we obtain

~ ~ ~ 2
(1 —d)ayH, = (2d; +5(1 — dy)a3)Hy — g (2.57)

Since the function H(z) should be continuous at the boundary x = 21, we may combine

the equations ([2.55) and (2357, to obtain the boundary conditions:

10(d+ (1 - cﬂ)xi;')?
(2-+3d0) (2, + 501 - du)at) ~ 94,(1 — dy)a
2(81 +(1 - cfl)xi’) (2 +3d) +3(1 - El)qﬁ)

Hy = SRR - " (2.58)
(2 + 3d1) (le 4 5(1— dl):c%) —9d,(1 — dy)a?

Hi =
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which coincide with the results of the discrete model. The flattening profile can then be
written as
Hi, 0<e <<y

_ 1 — d)2d 4 (2 TN\
H(ZL’) 3( dl)flfl +( + 3d1).§€ %1, 2 <7 < 1

5a? <c/l\1x3 + (1 — cﬂ)x%)

H(x)

0,21~ -

\ L0 \
00 0,2 04 0,6 0,8 1

X

Figure 2.4: Example of flattening profile 7 (z) when z; = 0.2 and d; = 0.2.

The results obtained with the two models are in excellent agreement. In the discrete
case, by construction, we only obtain the values of the flattening in the surface of the
body and in the interface core-shell as a function of the relative density of both layers and
the normalized mean radius of the nucleus. In the continuous model, however, we get a
flattening profile which is continuous and coincides with those of the first model in the
points x = x; and z = 1. So, the continuous model not only gives the flattening in the
surfaces of the two parts, but also the flattening of the actual equipotentials within the
fluid. Fig. 24 shows one example: we plot the flattening profile H(xz) when z; = 0.2
and cfl = 0.2. The values of the Clairaut function in the points x = z; and z = 1,
coincides with the Clairaut’s numbers in the discrete model: H(z;) = H; ~ 0.379 and

(1) = Hs ~ 0.956.
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2.6.3 Fluid Love number

Using equation (2.44), together with the expression for Hy (Eqn. 24])), the expression
of the fluid Love number £; is
5(dh+ (1= d)at) (2 + 3 +3(1 — du)af)
(2+3d1) (24 +5(1 — d)at) — 94 (1 - d)a

~ 1. (2.59)

Fig. shows the possible value of ky as a function of the core size x; and of the
relative density of the shell c/l\l If we obtain ky, for example by determining Hy by direct
observation of the surface flattenings, then equation (Z39) defines a continuous curve of
possible values for the size of the nucleus x; and the relative density of the shell c?l under
the hypothesis of two homogeneous layers. Moreover, as can be seen in this figure, a
maximum value for these physical parameters can be predicted.

14
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Figure 2.5: Possible values of k; as functions of the core size z; and of relative density of the shell 31
Figure extracted of Folonier et al. (2015).

2.7 Application to different density distribution laws

In this section, we present some applications of the theory developed in this chapter
to bodies with continuous density distributions. For this we use two examples of density

distributions: polynomial and polytropic density laws.
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In both cases the Clairaut’s equation is solved numerically after introduction of the
variable defined by the Eq. (233). The flattening profile H () and the Love number are
then obtained through the inverse transformation.

2.7.1 Polynomial density functions

We consider initially a simple polynomial density law:

d(z) =1— 2% (2.60)

where o« > 0. The left panel of Fig. shows the density functions for « = 0.1,1,2, 10

and 100 as functions of the normalized mean radius z.

T T T T T T — T T
1 =100 | 1E 0=100 |
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Figure 2.6: Left: Density profiles for polynomial density distributions with different values of a. Right:
Flattening profile H(x) for the same density laws. a = 0.1 (black), a = 1 (red), a« = 2 (green), a = 10
(blue) and o = 100 (magenta). Figures extracted of Folonier et al. (2015).

The resulting flattening profiles #(z) are shown in the right panel of Fig. In all
cases, the flattening profile H(x) is an increasing monotonic function and, for all x, the
values of H(x) increase when the power « increases.

Note that, as discussed in Section 2.4], the value of Hy is always greater than the limit
value 0.4 and less than 1. Particularly Hy tends to 0.570 when «a tends to 0 and Hy
tends to 1 when « tends to co (homogeneous case). The fluid Love number increases from
0.424 (when « tends to 0) to 1.5 (when « tends to 0o). These results can be seen in
Fig. 27 where we also show the values of the flattening factor H at the surface and the
dimensionless moment of inertia C'/myR%. This last parameter increases from 0.24 (when

« tends to 0) to 0.4 (when « tends to oco)d.

¢ 2l0d¥dz 2 344
2 x 3ta,

2 . . .
An elementary calculation allows one to find the relationship % ~ 3 s o
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Figure 2.7: Values of Hy (black), k; (red) and C/mrR% (blue) for different values of the exponent of
the polynomial density law. Figure extracted of Folonier et al. (2015).

2.7.2 Polytropics pressure-density laws

We may consider a self-gravitating body in hydrostatic equilibrium with a more general
polytropic pressure-density law:

P=Kd"n, (2.61)
where P is the pressure, n is the polytropic index and K is constant. The differential
equation for the density is then given by the Lane-Emden equation (Chandrasekhar, 1969)

where 0 = d'/" and ¢ = a/R, with o = (n + 1)Kd0%_1/47rG. The standard boundary con-
ditions are (0) = 1 and #'(0) = 0. If 0 < n < 5 the solution 0(¢) decreases monotonically
and has a zero at a finite value £ = &;. This radius corresponds to the surface of the body
where P = p = 0.

It is worth mentioning that several real cases exist that correspond to polytropes. For
example, when convection is established in the interior of a star the resulting configuration
is a polytrope; when the gas is degenerate, the corresponding equations of state have the
same form as the polytropic equation of state, etc. (see Collins, 1989). We also mention
recent results by Leconte et al. (2011) showing that the density profile of hot Jupiters is
well approximated by a polytrope.

The left panel of the Fig. shows the density functions for n = 0.5,1.0,1.5, 3.0 and
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Figure 2.8: Left: Density profiles for different values of the polytropic index. Right: Flattening profile
H(z) for these density laws. n = 0.5 (black), n = 1 (red), n = 1.5 (green), n = 3 (blue) and n = 4.5
(magenta). Figures extracted of Folonier et al. (2015).

4.5 as functions of the normalized mean radius x = R/a&; obtained from the integration
of the Lane-Emden equation.

The resulting flattening profiles #(x) are shown in the right panel of Fig. 2.8 In all
cases, the flattening profile H(z) is an increasing monotonic function and for all z, the
values of #(x) decrease when the polytropic index n increases.

As mentioned previously, the value of Hy is always greater than the limit value 0.4.
Particularly Hy — 0.4 when n — 5. The fluid Love number decreases from 1.5 for n =0
(constant density) to 0 when n tends to the limit n = 5. These results can be seen in
Fig. 2.9 where we also show the values of the flattening factor #y and the dimensionless
moment of inertia C/mrR3% for values of n below the limit n = 5. The adimensional

moment of inertia decreases from 0.4 (when n = 0) and tends to 0 when n — 5.

2.7.3 An analitical result: The politrope with n=1

The Clairaut differential equation (223]) can be very difficult to solve analiticaly, even
for very simple density profiles as linear or quadratic, which can only be solved numerically.

However, for the particular case

d(z) = , (2.63)

which corresponds to the density profile of degenerate gases with a polytropic index n =1
(see Fig. Z10) (de Pater et al. 2010, Chap. 6), the solution can be expressed analytically.

This case is very useful since the state of the matter inside the gaseous planets is well
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Figure 2.9: Values of Hy (black), ks (red) and C/m7R% (blue) for different polytropic indices n < 5.
Figure extracted of Folonier et al. (2015).

approximated by this model.
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Figure 2.10: Polytropic density profile for n = 1.

In this case, the function f(z) is

f(z) = %(sin (wz) — 7 cos (1)), (2.64)

and the differential equation becomes

272 272 6
W'+ SRRy i 2 |#=0. (2.65)

1 — 7z cot (1) 1 —7mxcot (rz) a2

We can verify that the resulting equation has the linearly independent solutions

u(r) = L. s ; v(z) = (w°z® — 3) cot (mz) + 3me
22 1 —7xcot (rx)

. (2.66)

1 — 7x cot (m)
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and the flattening profile can be written as
H(z) = Cru(x) + Cyo(z), (2.67)

where C; and C5 are constants.
In order to calculate the integration constants, we introduce the solution (2.67)) into
the Eqgs. (220) and (222]). Evaluating at 2 = 1, we obtain the linear system

z=1 _ =1 __
2 _ <5fN% _/2 d d(z5u)> Cy + <5f§UN —/Z d d(z5v)> C

3 =0 =0

1 = <UN —+ U7N> Ci + <UN + U7N> CQ, (268)

where uy = u(1), vy = v(1), vy = v/(1) and vy = v'(1). Replacing by the functions, the

linear system becomes

™
72 3 Tr
1 = —C ——— ). 2.69
T <7r 2 ) ? (2.69)
17 —
0.8 i
<06+
as —//
04 .
02- .
O 02 04 06 08 1

X

Figure 2.11: Polytropic flattening profile for n = 1.

Hence, the integration constants are

2
and the flattening profile is

6 2
2

H(z) =

(2.71)

m2x? +7Txcot(7rx) -1
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which is the same strictly increasing function given in the right panel of Fig. 2.8 labeled
n =1 (see Fig. 21T1]). A simple calculation allows us to find that the Clairaut numbers at

the center and surface of m are

HO) = Hy—=0.4
H(1) = Hy =2~ 06, (2.72)

72
and the fluid Love number, using the Eq. ([2.44), is

15
b= —1~0.52, (2.73)

in excellent agreement with the classical value (Hubbard, 1975; Wahl et al., 2016).



Chapter 3

Non-homogeneous creep tide theory

3.1 Introduction

In this chapter, we extend the planar creep tide theory to the case of a viscoelastic
body formed by N homogeneous layers, using the multi-layered static figure calculated in
the above chapter. Solving the creep tide equation for each layer interface, we compute
the disturbing potential of the deformed body, as well as the forces, the torques, the work
done by the tidal forces acting on the bodies and the variations in semi-major axis and

eccentricity.

3.2 Creep tide theory

Let us consider one differentiated body m of mass my, disturbed by one mass point
M of mass M orbiting at a distance r from the center of m. We assume that the body is
composed of N homogeneous layers of densities d; (i = 1,---, N) and angular velocities
2;, perpendicular to the orbital plane.

The outer surface of the i-th layer is (;(@;, @, t), where (; is the distance of the surface
points to the center of gravity of m and the angles (p],@ are their longitudes and co-
latitudes in a fixed inertial reference system. At each instant, we assume that the static
equilibrium figure of each layer under the action of the tidal potential and the rotation may
be approximated by a triaxial ellipsoidal equilibrium surface p;(%;, @, t), whose semi-major
axis is oriented towards M (see Fig. B)).

The adopted rheophysical approach is founded on the simple law

G =vilpi — G), (3.1)
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-~

pi(@i, 0:, 1)

Gi(Pi, 04, 1)

Figure 3.1: (;(p;, @', t) is a section of the surface of the body at the time ¢; p;(o;, @', t) is a section of the

surface of the equilibrium ellipsoid at the same time.

where ~; is the relaxation factor at the outer surface of the i-th layer. This is a radial

deformation rate gradient related to the viscosity through (see Appendix [C))

(di - di—l—l)giRi
P = , 2
Y. o (3.2)

where R; and g; are the equatorial mean radius and the gravity acceleration at the outer
surface of the i-th layer. n; is the viscosity of the inner layer (assumed to be larger than
that of the outer layer).

Although the creep equation is valid in a reference system co-rotating with the body,
we can use the coordinates in a fixed reference system. This is due to the fact that only
relative positions appear in the right-hand side of the creep equation. If @ is the longitude

of a point in one frame fixed in the body, then we have

i = Pr + Qit. (3.3)

3.3 The creep equation

As shown in the Chap. Bl the static equilibrium figure of each layer under the action of
the tidal potential and the rotation may be approximated by a triaxial ellipsoidal surface.
Using that the equatorial and the polar flattenings of the outer boundary of the i-th layer
are given by Eq. ([2I0), the ellipsoidal surface equation of this layer, to first order in the
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flattenings, can be written as (see Eq. (AI3) in the Appendix [A])

1 ~ 1
pi=R; <1 + 5%16] sin? 0 cos (23; — 2¢ar) — {57{1-6] + Q’ZEM} cos? 9) (3.4)

where @) is the longitude of M fixed inertial reference system. Then, the creep equation
(B) with the static equilibrium surface ([B.4) is
. ]_ 9 o~ 1 — 27
GHvG=vR [ 1+ §’HZ~61 sin” @ cos (20; — 2¢ar) — 57—[i61 + Giey| cos®f ). (3.5)
In order to solve the creep differential equation, we consider the two-body motion. The

equations of the Keplerian motion to M, orbiting to m, are

a(l — €?)
= -7 3.6
1+ ecosv’ (3.6)
and
3 5 2 13 2
v="_+ <2€ - %) sin 4 + % sin 20 + 1—; sin 3¢ 4+ O(e*), (3.7)

where a is the semi-major axis, e is the eccentricity and the angles v and ¢ are the true and
mean anomaly, respectively, of the body M. In the planar case, we have that o, = v+ w,
where w is the longitude of the periapsis.

Then, the creep equation becomes an ordinary differential equation of first order with

periodic forced terms, that may be written as

G+ %G = iR |1+ Z (Zik sin® 6 cos Oy, — 2 cos® f cos A;'k) : (3.8)
keZ
where the arguments of the cosines ©;;, O, are linear functions of the time
On = 20— 2w+ (k—2)¢
o= k. (3.9)
The constants Z;;, Z],. are
1
Ziyp = §Hi€JE2,k
1
L = =Hi€rEor + doxGiEnr, (3.10)

2
where g, is the Kronecker delta (dpy = 1 when £ = 0 and dp = 0 when k£ # 0), the

constant €y is

~ 15MR}
€)= ——

(3.11)

Amqgad '
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and the coefficients of the Fourier series E,, are eccentricity functions called the Cayley

functions (Cayley, 1861)

E,(e) = — /0 " (%) cos (g + (0 — 0)0) . (3.12)

" or r
After integration we obtain the forced terms
§¢ = R; Z (Zl-k sin® 0 cos oy, cos (O — o) — 21 cos® 0 cos o cos (O, — U;;C)) . (3.13)
keZ

"
The phases o;; and o}, are

On vtk ok
tan oy = —= = Vit n; tan of), = —* = _n,
Vi Vi Vi Vi

(3.14)

where v; = 2€); — 2n is the semi-diurnal frequency. These phases are introduced during the
exact integration of the creep equation (3.8).
If we define the angles

51'19 = 2@— (k — 2)£+0'ik:

i = kl—oy, (3.15)

the solution (BI3) can be writen as
§¢ = R; Z (Zl-k cos 0 sin2 0 cos (20; — 041,) — Z};, cos ol cos 6l cos” 5) ,
kez

(3.16)

which has a simple geometric interpretation: using Eq. ([A22]), we can identify each term
of the Fourier expansion of the height d(;, with one ellipsoidal surface, with equatorial and
polar flattenings

egk)

i*) = 22, cos oy; e = Zji cos oy cos ), — 5 (3.17)

p

and rotated at an angle d;,/2, with respect to the axis .

3.4 The disturbing potential

The potential of the i-th layer of m at a generic point M*(r*, 6*, p*) external to this layer,
can be written as the potential of one spherical shell of outer and inner radii R; and R;_1,

respectively, plus the disturbing potential due to the mass excess or deficit corresponding



Section 3.4. The disturbing potential 51

to the outer and the inner boundary heights 0¢; and 0¢; ;. It is important to note that since
these excesses or deficits are very small, we may calculate the contribution of each term of
the Fourier expansion separately and then sum them to obtain the total contribution.

In this way, we assume that the i-th layer has an outer and an inner boundary heights
given by the k-th term of the Fourier expansion. The equatorial and polar flattenings of
the outer boundary, effk) and egik), are given by Eq. (B.I7), and the bulge is rotated at an
angle 0;;/2 with respect to the axis z. Similarly, the inner boundary height 6@@1, can be
identified with the boundary height of one ellipsoidal surface, with equatorial and polar
flattenings

(i—1k)

€p

((i-1h) ,
2

p

— . i—1k) __ " " "
= 22Z; 1}, COS 0;_1k; i) = 2 cosoll |, cosdl . — (3.18)

rotated at an angle §;_1;/2, with respect to the axis z.
The disturbing potential at an external point M(r*, 0%, ©*), due to the mass excess or
deficit, corresponding to the k-th term of the Fourier expansion of the outer and the inner

boundary heights 0¢; and 6¢; 1, is

. 3GC; . 5 A(R)Z. cos oy, cos (20 — 6
Up(r*) = — 53 sin? 6 ( b R5—kR5( 7 ) +
5 i1
A (Rf’ZZ’}C oS 0l COS 6;}6)

5 5 )
Ri - Rifl

GC; 5 ok
to (3cos® 0" —1)

(3.19)

where C; is the axial moment of inertia of the i-th layer (see Appendix [A) and A(f;) =
fi — fi—1, denotes the increment of one function f;, between the inner and the outer
boundaries of this layer.

Taking into account that the total disturbing potential of the i-th layer, can be ap-
proximated by the sum of the contribution of each term of the Fourier expansion, we

obtain

U (x%) = 6Us(r"), (3.20)

! "

and replacing the coefficients Z;; and 2}, given by Eq. (8I0), and the angles d;, and 4},



52 Chapter 3. Non-homogeneous creep tide theory

given by Eq. (BI3]), we obtain

) S5GMRLCy ., . .
6UZ (I‘ ) = _Wrr*é\ra} Sln2 0 kEZZ EQ’k (Czk Sin @k + Dzk COS @k) +
15GMR§’VC 2 g
m 0 ICEZZEOk(CkSHlkE—i_ kCOSkE)‘i‘
+W(3 cos“ 0" — 1), (321)
where the argument O}, is
O =2¢" — 2w + (k — 2)¢, (3.22)

and the coefficient £, is
GiR; —Gi R}

ch= (3.23)
R} — R,
The functions C;, D, are defined as
1 A(H,; R} sin 20;;) A(H;R? cos® oy,
Cip = ~ i : Dy = d : 3.24
k 2 RZ5 - R?—l ’ Rz5 - R?—l ( )
and the coefficients Cl}., DJ are
o 1 A(H; R} sin 207),) o _ A(H; R} cos® olf) (3.25)
“TyTRI-RL, CTTRRL, '

and do not depend where the potential is calculated.
Furthermore, using the definitions of oy and o, given by Eqs. ([B.I4), we can write

the trigonometric functions as

27i(vi + k ;
sin 203, = — %ivi + kn) : cos? oy, = 5 i , (3.26)
Vi + (Vi + kn)? Vi + (vi + kn)?
and
2v;kn 72
. "o i . 2 nm
R G 20

These trigonometric expressions show the difference between the frequency functions Cix (v;, 1),
Dk (v, vi—1) and the coefficients Clj. = C;1.(0,0), Dl\. = D (0,0).
3.5 Forces and torques

To calculate the force and torque due to the i-th layer of m, acting on one mass M*

located in M*(r*, 0%, ¢*), we take the negative gradient of the potential of the i-th layer
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at the point M* and multiply it by the mass placed in the point F; = —M*V,..0U;. In

spherical coordinates, we obtain

135GMM*R,C; -, e *
F;, = — omrair sin” 6 ,CEZZ Es (Cik sin ©;, + D, cos @k> +
45G M M*R3,C; i '
16mTa3r*]Z (3cos? 0 — 1) % Eo (CZc sin kl + D} cos kﬂ) +
LM REn2LIC; .
+ Fy— (3cos® " — 1)
A5GMM*RL,C; o *
P = 16mTa3r*]Z sin 26 kEZZ EQ,k (Czk S @k + Dy, cos @k) +
45GMM*R3,C; . . .
Tompar sin 20 ,CGZZ Fok ( .sin kl + Dl cos ké) +
15M*R3n?L.C;
+ NIV 2 G 0
8mprt
BGMM*R,C; * o
5 = 8mTa3r*iv sin f kGZZ Es (Cl-k cos Oy — Dy sin @k> , (3.28)

and the corresponding torque is M; = r* x F;, or, since, r* = (r*,0,0):

My =0; My = —r"Fy;; M = r*Fy, (3.29)
that is
45G M M* R3,C;
My = — N=" sin 6* Z Es (Cik cos O — Dy sin @’,;)
8mpadr*3 = ’
45GMM*R3,C; . . ok *
M, = 16mTa37’*]§ sin 26 kEZZ Es (Cik sin ©; + D cos G)k) +
45GMM*R§’VC¢ . « .
Tommaiyes Sn 20 ,CGZZ Eo (CZ';C sin k¢ + Dj} cos kﬂ) +

15M* R n2L1C;
+ N i i 29, (3.30)

8mpr*3
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3.6 Forces and torques acting on M

Since we are interested in the force acting on M due to the tidal deformation of the i-th

layer of m, we must substitute (M*,r*, 0%, ¢*) by (M,r,5,w +v). The forces, then are

135G M? R3,C; )
F, = — T Z Ey (Cik sin Yy + D cos Tk) —
45GM2R3 ) y 15M R3n?L.C;
Tomoairt Z Ey ( ik sin kl + D;. cos ké) - F——
o =0
45GM?*R3,C;
F3i = —NZEQk<Czk COS Tk - Dzk sinTk>, (331)
8mpadrt ’
k€7
where the angle Yy, is defined as
T =2v+ (k—2)L. (3.32)
The corresponding torques are
45GM? R}, C;
Mgi = e N Z E2 k (Czk COS Tk - Dzk sin Tk>
8mra3r3 = ’
M = 0, (3.33)
After Fourier expansion, the torque along to the axis z (M,; = —My;), can be written as
45GM?R3,C;
My = “ZZWNT BBy (cik cos j{ + Dy sin jé). (3.34)
§mra kjez S

Finally, the time average of the total torque over one period is (M,;) = % 02” M.,;dl,

therefore
45GM?*R3,C
(M.;) = > B3 Cir (3.35)

- Smpa® k7
The above expression for the time average, which is equivalent to take into account
only the terms with 7 = 0, only is valid if v; is constant. This condition is satisfied, for
example, by homogeneous bodies with v > n, as stars and giant gaseous planets, where its
stationary rotation is ~ 6nye?/(n? 4+ 4?). However, the final rotation of the homogeneous
rocky bodies, with v < n, as satellites and Earth-like planets, is dominated by a forced
libration ~ Bj cos (¢ + ¢;) with the same period as the orbital motion of the system (see

Chap. 3 of FM15). In this case, any time average that involves the rotation, should take
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into account this oscillation. It is worth emphasizing that in this paper we calculate the
time average of some quantities, as the work done by the tidal forces and the variations
in semi-major axis and eccentricity, assuming which v; is constant, which is valid only for
bodies with low viscosity. The applications to Titan in this paper were done using the

complete equations, where the distinction between these extreme cases is not necessary.

3.7 Work done by the tidal forces acting on M

The time rate of the work done by the tidal forces due to the i-th layer is W(zi =F,; v,

or

where v is the relative velocity vector of the external body, whose components in spherical

coordinates are
nae sin v 0 na’y/1 — e2 (3.36)
V1—e¢?’ r

Using the tidal force, given by the Eq. (B.31), the rate of the work corresponding to

v =

the i-th layer is

dt 8mpab

d (4) 4 M2 3 ;
Worb _ 5G RNC n Z {EQ’k %

keZ

2¢/1 — e?
+D 5 (“)4 i T +\/172<“)5 -
i | ——=(—) sinwvcos —e?(—) sin
\ovi—e \r ‘ r ‘
EO,k 3e a\* . no_: "
—i—?ﬁ (;) smv( ikmnké—i—DikcosM) -
15MC;R3ne
8mpady/1 — e?

or after Fourier expansio

X [Cik ( i (%)4sinvsin T —V1—e? (%)5(:05 Tk> +

_|_

2p1 (@ +
n°L; (-] sinwv, (3.37)
r

awl)) 45GM?R%,Cin <
;= Z 2—k—j)EoE -(Ci cos jl + D; sin'é)_
dt 16myab kJ_ZEZ ( ) B2k Ea kit Cik J L Sin j

.
( ;: D) By Borss (cg; cos j0 + D! sin jé)) -

15MC;R3ne
8mpady/1 — e?

! For the details of this calculation, see Appendix [E]

n?L) (%)4sinv. (3.38)
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The time-average over one period is

aw 45G M2?R3,Cin I
< dt b> - 16mT56 > <(2 — k)E34Ci — S Ei, ;;) . (3.39)
tide kEZ

The average of the last term of Eq. ([B38)) is

1, ra\t . - ARNE ) 1, rand _
/. n°L; (;) sin v d@—; BT, g/o Q(—) sinv d¢ =0, (3.40)

(see Appendix [D]).

3.8 Variations in semi-major axis and eccentricity

In this section, we calculate the variation in semi-major axis and eccentricity. For this,

we use the energy and angular momentum definitions. If we differentiate the equation

GM
Worb - _ﬂa
2a

where a is the semi-major axis of the relative orbit, we obtain the equation for the rate of

variation in semi-major axis:
ors
. 2a Worb
GMmT

In the same way, if we differentiate the angular momentum equation, we obtain

a (3.41)

M M
L= Mmr e yime s GMmr s

:M—i-mT na

where e is the eccentricity of the relative orbit, and using n/n = —3a/2a, we obtain the

equation for the rate of variation in eccentricity

ee L ” orb
- _Z 3.42
1— 62 L QLLorb, ( )

where L = M, is the total torque exerted by the tidal forces. The internal torques between
the different layers of m, such as the friction forces and to the gravitational coupling, cancel
themselves and do not affect the orbital motion.

Using Eqs. (840 and (834) and summing over all layers, we obtain the equation for
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the variation in semi-major axis:

i A5M R3,.Cin

a =

8m%a4 Z ((2 — k- j)EQ’kEQ’k+j (Czk CcOS jf + Dik sin jﬂ) —

i=1 k,jEZ

b
— ( _3F J) EoxEo kit j (CtI;c cos j¢ + Dy, sin ﬂ))

15R3n3e a4 al
— —— (— ) si Ci L. 3.43
(1) sy (3.49

After the time-average over one period, we obtain that the variation in semi-major axes

is
N
_ 45M R%,Cin k
@ = > TQNGAL > <(2 — k) B3 Cir — 3 Fo ”) (3.44)
i=1 T keZ
or
45M R3,C k
@ = 2 Na4 n ZZ QZ< — k)E3  sin 20, — gEg’k sin za;;€> ., (3.45)
=1 keZ

where the parameter Q; is defined as

(3.46)

Q' — A ( C’L+1 ) R?Hz

R, -R) C

where C'y1 = 0 (since dyy1 = 0) and Ry = 0. An elementary calculation using the axial

moment of inertia of the i-th-layer C; (see Section [Al) and the total axial moment of inertia

C =% d, Ry gn, with gy = 5 [ d(2)2" dz, gives

1 ~ o~
Q; = —(d; — dipy)xiH; > 0, (3.47)
gn
or, using the Eq. (242),
N
S0 = 2Ny (3.48)
i=1 39N

where k; is the tidal fluid Love number.
In the same way, using the Eq. (342), replacing M, and W, by the Egs. B34) and
339), and summing over all layers, we obtain
A5MR3.Cin (1 — €?) 2
- —(2—k- )E E
Z 8m al 20¢ k¥z<( 1_ o2 ( J) 2,k L2 k+5 X

(k+7)
3

X (Cik cos jl + Dy, sin jé) + EoxEo g+ (Cl’ﬁ€ cos j{ + D;). sin jé)) —

15R3n?
_SGT]\;”@QVI_eQ (’r‘) sin v E CEI (349)
T
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After the time-average over one period, we obtain that the variation in eccentricity is

N
45 M R3,Cin (1 — €%) ) k
. - 2 —(2—Fk >E2 Cz o2 " ,
<€> ; Sm%afl 2ae kgz (m ( ) 2,k k+ 3 0,k%ik
(3.50)
or
A5M R3 1 —e?
@) = 45 RQNC’n( e)x
16mTa4 2ae
N 5 L
X ; % Q; [(7\/@ —(2— k))E;k sin 207y, + gEg,k sin207, |.  (3.51)
It is important to note that the parameter Q; only depends on the internal structure.
When N = 1, we obtain @; = 1, and recover the same differential equations of the

homogeneous case given in FM15. In the general case, the variations in semi-major axis
and eccentricity can be expressed as the sum of the contribution of each layer weighed by

this parameter.



Chapter 4

The two-layer model

In the previous chapters we have studied the tidal effect on one body composed of N
homogeneous layers. However, in contrast with a homogeneous body, in one differentiated
body we must also take into account the interaction between the different layers. In this
chapter, we consider two important interaction effects: the gravitational coupling and the
friction that occurs at each interface of two layers in contact.

An important point to keeping mind is the number of layers to consider, because the
number free parameters increases significantly as the number of layers is increased. For
this reason, here, we study the simplest non-homogeneous problem: one body formed by
two independent rotating parts. The inner layer, or core, is denoted with the subscript ¢
and the outer layer, or shell, is denoted with the subscript s. Despite its simplicity, the
two-layer model allows to study the main features, introducing a minimum number of free

parameters.

4.1 'The tidal torques
The tidal torques due to the core and the shell, along the axis z, are (see Eq. (3.34]))

Mzc - chcc,];
Mzs - Tsscs,];_TscCsﬁa (41)

where the function 7; (with i = ¢, s) is

vi(vj + kn) cos j + 42 sin j¢
V2 + (v; + kn)?

Ti= ) EarFapy (4.2)

k,j€z
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the constants T;; are

THRS THR?
ch = T%c; Tsc = R5 RE” ss R5 RE” (43)
and the tidal parameter 7, is defined as
4 M2 3 2=
7= BEMR,  3n7é, (4.4)

Smpa® 2
R., C, are the mean outer radius and moment of inertia of the core, and R,, C; are the
mean outer radius and moment of inertia of the shell. The parameters #., 7. are the
Clairaut parameter and the relaxation factor at the core-shell interface and H,, 7, are the

Clairaut parameter and the relaxation factor at the body’s surface.

4.2 The gravitational coupling

When the principal axes of inertia of two layers are not aligned, a restoring gravitational
torque which tends to align these axes appears. This torque was calculated by several
authors (e.g. Buffett, 1996; Van Hoolst et al., 2008; Karatekin et al., 2008; Callegari et
al., 2015) when the layers are rigid. Here, we use one similar expression for this torque
adapted to a body assumed as formed by two layers whose boundaries are prolate ellipsoids,
whose flattenings are defined by the composition of the main elastic and anelastic tidal
components.

In the case of one body composed by N homogeneous layers, the torque acting on the
inner i-th layer due to the outer j-th layer (not necessarily contiguous) is

Fij:/

(r x V6U,) dm; = /%/ /Cj d; (r x VOU,) r2sind dr df dp,  (4.5)
j 0 G

where dj, m; are the density and the mass in the j-th layer and 6U; is the disturbing
potential of the i-th layer at an external point.

The limits of the integral in Eq. ([&3), ¢j_; and (}, are the real outer and inner
boundaries of the j-th layer, respectively. In our model we have to consider the actual
flattening of the surfaces, which is the composition of the main elastic and anelastic tidal
components (see Sec. 10 of Ferraz-Mello, 2013). The addition of the two components

is virtually equivalent to the use ab initio of the Maxwell viscoelastic model as done by

Correia et al. (2014) (Ferraz-Mello, 2015b).
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Figure 4.1: Equatorial section of the i-th and j-th layers. €, and €}_; are the outer and the inner equatorial
flattenings of the i-th layer and the angles ; and 9J;; are its outer and inner geodetic lags. Similarly, €}
and €;_; are the outer and the inner equatorial flattenings and 9J; and 9J;_1 are the equatorial flattenings
and the geodetic lags of the j-th layer.

Assuming that the elastic and the tidal components have ellipsoidal surfaces (not alig-
ned), the resulting surface can be approximated by a prolate ellipsoid with equatorial
flattening € and rotated by an angle ¢ with respect to M. For the sake of simplicity, we
also assume that the relative motion of the outer body M is circular. Then, neglecting the
axial term does not contribute to the calculation of the gravitational coupling, the height
of the outer surface of the j-th layer with respect to the one sphere of radius R;, in polar

coordinates, rotated by an angle ¥; with respect to M and to first order in the flattenings
(see Fig. [£2), is

1 1
0¢; = §Rje;- sin® 6 cos (2¢ — 20;) = §Rﬂ-[jéj)\j sin? § cos 2 +

1
+§Rj%j€] COS 0o sin @ cos (2 — Tj0), (4.6)

where 0 < A; < 11is a relative measurement of the maximum height of the elastic tides of
the outer boundary of the j-th layer. The angle ¥; is often called the geodetic lag of the
surface.

If we open the trigonometric functions, by identification of the terms with same trigo-
nometric arguments, the resulting equatorial flattening of the outer boundary of the j-th

layer is

€; = ’Hja]\/)\§ + cos? ojo(1 + 22), (4.7)
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(tide) ., =
o €, =H;E cosoj

Figure 4.2: Scheme of the composition of the elastic and anelastic tides of the outer boundary of the j-th
layer. eg-el) (dotted ellipsoid) and egtide) (dashed ellipsoid) are the equatorial flattenings of the main elastic
and anelastic tides, respectively, and e;- is the equatorial flattening of the ellipsoidal surface which result
of this composition (solid ellipsoid). The semi-major axis of the elastic ellipsoid is oriented towards M.

and the geodetic lag is

1 in 20;
9; = - tan™! oI 2040 . (4.8)
2 1 +2)\] -+ cos 20’j0

The height of the inner boundary of the j-th layer, taking into account the composition

of the main elastic and anelastic tides has an identical expression:

1 1
5{;_1 = §Rj,1e;-_1 sin @ cos (2 — 20,_41) = §Rj717{j71€])\j,1 sin? § cos 2 +
1
+§Rj_1Hj_1€J COST;-1,0 SiIl2 0 cos (2(,0 - Jj—l,O)a (49)

where 0 < A\j_; < 1 is a relative measurement of the maximum height of the elastic tides

of the inner boundary of the j-th layer. Then, the resulting equatorial flattening is

6;'71 = /ijlgl]\/)\ifl + cos? Uj,1,0(1 + 2)\]',1), (410)

and the geodetic lag is

1 in 20;_
Vi1 = —tan ! P 2010 . (4.11)
2 1+ 2)\9'_1 -+ cos 20’7'_1,0

In the same way, we assume that the ellipsoidal shape of this layer is also given by the

composition of the main elastic and anelastic tidal components. Then, the inner and outer
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equatorial flattenings, respectively, are

6;71 = Hi_léj\/)\%_l + cos? Ui—l,O(l + 2)\2_1), 6; = HZEJ\/)\lQ + cos? UiO(l + 2)\1),
(4.12)

and the corresponding geodetic lags are

1 _ sin 20;0 1 _ sin 20;_1.9
¥; = —tan ! . : V;_1 = =tan ! — 4.13
2 an (1 + 2)\; + cos 20'1'0) ’ ! 2 an 1+ 2\ + cos 20'1',1,0 ’ ( )

where 0 < A;, \;_1 < 1 are relative measurements of the maximum heights of the elastic
tides of the outer and inner boundaries of the i-th layer.
Using the expression of the disturbing portential, given by Eq. (A.36]), and neglecting

the axial term, we obtain

L A(RS cos (2 — 20,
6U¢:—3Gq sin? 0 (e cos (2 )

17 -k,

(4.14)

where A(f;) = fi — fi_1, denotes the increment of one function f; between the inner and

the outer boundaries of this layer. Then, the vectorial product in Eq. (£3) is

2nGd; () . . ~ ~
r x VoU; = — Wr?’ (2 sin OA (R} €; sin (2¢ — 20;)) 0 + sin 20 A (R€; cos (2 — 219Z~))cp>.
(4.15)
Using the polar unitary vectors in Cartesian coordinates
0 = cosfcosp X+ cosfsing y —sinf z
P = —sinpgX+cospy, (4.16)

and the approximation of In(;/(;_; to first order in the flattenings

j R, 1 1
In CCJ ~ In 7 7+ §Rje;- sin® 6 cos (2¢ — 209;) — §Rj715;>1 sin® @ cos (2¢ — 209, 1), (4.17)
i1 i1

then, the torque acting on the inner i-th layer due to the outer j-th layer is

2 2

where A;;(fij) d:efA(fij) —A(fij1)=fij— ficrj— fija+ ficij1

As the torque acting on the outer j-th layer, due to the inner i-th layer, is the reaction

Fji - _Fija (419)
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then, the total gravitational coupling, acting on the i-th layer can be written as
N i1 N
Ti= ) Typ=-)T,+ > Ty (4.20)
p=1; p#i p=1 p=i+1

If we consider the two-layer model, the torques acting on the core and the shell are

I, = Ksin (20, — 20,)

[, = —Ksin(20, — 20,), (4.21)

where the gravitational coupling parameter K is

322G
K = %dcdge’ce;Ri. (4.22)

The equatorial flattenings are

€ = Mo/ N2+ cos? o1+ 2),); € = H,e7/ A2 + cosoyo(1 4 2),), (4.23)

and the geodetic lags are

1 in 2 1 in 2
J, = = tan ! P 290 : Y, = —tan S 2950 . (4.24)
2 142X, + cos 20 2 142X, + cos 204

The parameters 0 < A., Ay < 1 are relative measurements of the heights of the elastic tides
of the outer surfaces of the core and the shell, respectively. The trigonometric sin 20;, and

cos? oy are frequency functions given in Eq. (B:26). An elementary calculation shows that

22
cos 2040 = % (4.25)
Vi TV

4.3 Linear drag

The model considered here also assumes that a linear friction occurs between two
contiguous layers. We assume that between two contiguous layers (for instance, the inner
boundary of the i-th layer and the outer boundary of the (i + 1)-th layer) exists a thin
liquid boundary with viscosity 7; and thickness h;.

We assume that the torque, along to the axis z, acting on the inner ¢-th layer due to
the outer (i + 1)-th layer is

Diip1 = pi(Qipa — ), (4.26)

and vice-versa. The friction coefficient y; of the i-th boundary is an undetermined constant.
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Let dF; ;1 be the force acting tangentially on the area element of an sphere of radius
R;. If the fluid in contact with the surface of the sphere is a Newton fluid, the modulus of
the force is (Papanastasious et al., 2000, Chap. 6)

dF ;1 = %V;Rf sin 6 de df (4.27)

where V; = R;sin 0(Q; 1 — €2;) is the relative velocity of the (i + 1)-th layer with respect
to the i-th layer at the latitude 6 and R;, ¢, # are the spherical coordinates of the center

of the area element. The modulus of the torque of the force dF;,,, along to the axis z, is
dq)i,i—l—l == Rz sin 6 dﬂ’i+1. (428)

The element of area is R;df x R;sinfd¢. The integral of d®;,,, over the sphere is easy to

calculate giving

2w 87T 771 .
ZZ_|_1 / / SlIl 9 i1 Qz)dﬁ dd) == ? h R (Qi—l—l - Qz) (429)
If we compare with the law used to introduce the friction, we obtain
8T i 4
P = —R;. 4.30
W=y (4.30)

This is the law corresponding to a liquid-solid boundary for low speeds.
The torque, along to the axis z, acting on the inner (i + 1)-th layer due to the outer

i-th layer is
Pivii = =Py = —pa(Qipr — Q). (4.31)
Then, the total torque, due to the friction, acting on the i-th layer is the sum of the
torque due to the outer (i + 1)-th layer plus the the torque due to the inner (i — 1)-th layer
Qi =D 1+ Diipr = pio1 (Qicr — Q) — (s — Qiga). (4.32)
In the two-layer model, the torque acting on the core due to the shell and the torque
acting on the shell due to the core are, respectively
. = p(Q— Q)
O, = —p(Q — ), (4.33)

where 7, and h are the viscosity and the thickness, respectively, of the core-shell boundary

and
8T Mo 14
= —R:. 4.34
= (4.34)
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4.4 Rotational equations

Putting together all contributions to the torque, we obtain the rotational equations

CCQC - Mgore — _Mzc + Fc + (I)c

Oy = Ml = _ M, 4+ T, + @, (4.35)

where M%7¢ and M3 are the z-components of the total torque acting on the core and
on the shell. These torques include the reaction of the tidal torque M,; acting on the i-th

layer, the gravitational coupling I'; and the friction ®,.

4.5 Comparison with the homogeneous case

In this section, we compare some of the main features of the homogeneous creep tide
theory, developed in FM15, with the non-homogeneous creep tide theory for the two-layer
model developed in this article. The main difficulty lies in the number of free parameters
in these approaches. In the homogeneous case, with a suitable choice of dimensionless
variables, the final state of rotation depends only on the ratio n/v and on the eccentricity
e (Eq. (42) of FM15). However, even in the most simple non-homogeneous case (the two-
layer model), we need to set 12 free parameters. In order to proceed, we use the typical
values for Titan and also Titan’s eccentricity e = 0.028 (see Tables B.IH5.4] in Sec. [.2]),
and let as free parameters, only n/v;, e and p.

Following FM15, we indroduce the adimensional variables y; = v;/% and the scaled
time x = £/%, where ¥ = 29.7,(v. + vs)~". If we consider the case in which 7. = ~,, the
behavior of the evolutions of 3. and y; is similar to that observed in the homogeneous case.
Fig. shows the time evolution of y,, with inital conditions y. = 0.3, ys = 0.15 and
differents values of o = logy, (n/7.) = logyy (n/7s). When 7; < n (i.e. rocky bodies), after
a transient, the solution oscillates around zero, independently of the inital conditions (left
panel), and the amplitude of oscillation decreases when « decreases. In the case o = 4, we
also plot the solution with initial conditions y. = 0.3 and y; = —0.15 (dashed black line).
This solution increases quickly, becoming indistinguishable of the solution with initial value
ys = 0.15. When 7; ~ n, the stationary solution becomes a super-synchronous rotation

with the amplitude of the oscillation tending to zero. Finally, when +; > n, the stationary
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Figure 4.3: Evolution of y, for the case 7. = v, with initial conditions y. = 0.3 and ys; = 0.15 and
several values of a = log;, (n/7.) = log,o (n/7s). For a =4, we also plot the initial conditions y, = 0 and
ys = —0.15. Left: a« =4,3,2. Right: « =0,—1,—-2.

Figure 4.4: Same as Fig. [@3)), with v4/n instead of ys.

solution of g, becomes closer zero (right panel), but v, = Jy, tends to 12¢%, independently
of the value of o (Fig. [£4). The evolution of y, is very similar and the friction does not
have any relevant role.

When 7, # 75, we can have a different behavior of the core and shell rotations. In Fig.
[0 we show the core and shell rotation (left and right, respectively) for logy, (n/7.) = 2
and log,, (n/vs) = 4. We also set two very differents values for the friction: the frictionless
case © = 0 (black) and a very high value of friction u = 10?® kg km?s™! (red lines),
larger than the expected value in the case of Titan (u = 10 — 10" kg km?s™!), which

corresponds to a typical ocean viscosity 1, = nm,0 ~ 1073 Pa s and a large range for the
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Figure 4.5: Evolution of y. and ys for initial conditions y. = 0.3 and ys = 0.15, relaxation factors such
that log,o (n/7.) = 2 and log;, (n/7s) = 4, and two values of the friction parameter: g = 0 (black) and
p=10%® kg km?s~! (red).

ocean thickness h (see Eq. [L34). In the frictionless case, we can observe the differential
rotation between the core and the shell. After a transient, both solutions oscillate around
zero with very different amplitudes, depending on the value of v of each surface. For very
high friction parameter, both layers rotate with the same angular velocity. The core and
the shell have the same amplitude of oscillation and phase, keeping the relative velocity

equal to zero.

w=0 w=10"
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Figure 4.6: Family of stationary super-synchronous with rotations relaxation factors equal and such that
n/v. =n/ys =0.01 and 0 < e < 0.5. Left: u=0. Right: u = 10?° kg km?s~1.

Finally, we study the dependence of the stationary solutions on the eccentricity. For
that sake, we choose a grid of initial conditions v./n and vg/n, and integrate the system

(A35) until the stationary solution is reached. When n/v. = n/vs < 1, all initial conditions
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lead to the same equilibrium point (a super-synchronous rotation), independently of the
value of the friction parameter. The value of the excess of rotation depends only on the
eccentricity. In the left panels of Fig. 1.6l we show the family of stationary solutions, where
each point corresponds to a different eccentricity value in 0 < e < 0.5. If the eccentricity is
zero, the rotations are synchronous to the orbital motion. When the eccentricity increases,
the rotations become super-synchronous, and the excess of rotation v;/n is proportional

to €2 (right panels).
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Figure 4.7: Families of stationary rotations for n/y. = n/vys =1 and 0 < e < 0.5. Top: p = 0. Bottom:
pw=10% kg km?s L.

When n/v. and n/v, increase, that is, when the viscosities increase, the excess in the
super-synchronous rotation decreases. If the eccentricity is low, the only attractor is the
super-synchronous solution. When the eccentricity increases, captures in other attractors
v; ~ n,2n,3n,... appear gradually. This behavior was largely studied in FM15 and also
in Correia et al. (2014).

Fig. [T shows the families of stationary rotation for n/y. = n/v, =1, 0 < e < 0.5
and two values of the friction parameter: the frictionless case, with = 0 (top panels),
and a very high friction case, with u = 10% kg km?s™! (bottom panels). In the frictionless
case, when the eccentricity is smaller than ~ 0.48, only the super-synchronous solution
is possible. If the eccentricity is larger than 0.48, besides the super-synchronous solution,
three new stationary configurations appear: The core and the shell in the 3/2 commen-
surability (v, ~ n and vs; ~ n), the core in super-synchronous rotation and the shell in
the 3/2 commensurability (v, ~ 0 and v4 ~ n) and the core in the 3/2 commensurability

and the shell in super-synchronous rotation (v, ~ n and vy ~ 0). Fig. shows in more
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Figure 4.8: Families of stationary rotations with rotations relaxation factors equal and such that n/v. =
n/vs =1,0<e<0.5 and g = 0. Labels R,, indicates the two frequencies: v, = pn and v, = gn.

detail these stationary solutions. The labels R,, denote the stationary families indicating
the resonances v, = pn and vy, = ¢n. It is important to note that the excess in the rotati-
ons are large because the eccentricity is high. In the high friction case (bottom panels of
Fig. [L7), only the stationary solutions with the same commensurabilities survive because
in these configurations, the relative velocity of rotation between the core and the shell is
zero. Fig. shows the four basins of each equilibrium point (red crosses, denoted by
the label P,,), when the eccentricity is such that e = 0.4875 and the friction parameter is
pu = 0. The basins are shown in white (Pyy attractor), cyan (Py attractor), yellow (Pjg
attractor) and green (P;; attractor). All the initial conditions in any of these regions, are
reached to the corresponding attractor. Due to the inital rotations expected are such that
ve(t =0) ~ vg(t = 0), the attractors with differential rotation zero are more probable than
the attractors with higher differential rotation.

If n/v. and n/vs continue to increase and the friction parameter is low (not necessarily
zero), the core and the shell may tend to differents resonances, depending on the eccen-
tricity. If the friction increases, the attractors with higher differential rotation, begin to
disappear, until eventually, as from a certain value limit of p only survive the attractors

with differential rotation zero Fig. .10l
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Figure 4.9: Basins of the attracting stationary rotations for n/y. = n/vs = 1, e = 0.4875 and p = 0.
We plot the families of stationary rotations, corresponding to these relaxation factors and friction (solid
black lines) and the four stationary solutions, corresponding this eccentricity (red crosses). The basins are
shown in white (the core and the shell in super-synchronous rotation), cyan (the core in super-synchronous
rotation and the shell in the 3/2 commensurability), yellow (the core in the 3/2 commensurability and the
shell in the 3/2 commensurability) and green (the core and the shell in the 3/2 commensurability).

4.6 Near-synchronous solution of the rotational equations

Using the convention 1 = core and 2 = shell, the rotational system of the two-layer

model, given by Eq. ([£33), can be written as

n = =17\ T + Kisin 28 + Fi(vay2 — nyr)

Yo = To, T — ToyTo — Kosin 26 — Fo(yayo — M191)s (4.36)

where, the rotational variables are

2Q) 2 2Q) 2
oz e k2 (4.37)
71 T T V2 V2 V2

the tidal function 7; is

(y; + Pyi.) cos (jnt) + sin (jnt)

Ti=_ EiBop 5 : (4.38)
hie 1+ (yi + Pi)
with Py = kn/v; = kp;. The constants are
2T 2K
Tp="0 K= F=- (4.39)
i 7 Cs 7 Cs
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Figure 4.10: Attractors when the relaxation factors are equal and such that n/y. = n/ys = 10. The

friction u increases from top to bottom and the eccentricity e increases from left to right. The units of u

are kg km?s 1,

We assume that the solution, to second order in eccentricity, can be written as

n

Y2

= bipe? + crrecosl + sypesin l + cipe? cos 20 + s1pe? sin 20

_ 2 . 2 2
= byge” 4 ca1ec08l + so1e8inl + cope” cos 20 + Sg9e” sin 20,

(4.40)

where kjo, ¢;; and s;; are undetermined coefficients. Introducing the solution (€:40) into the

rotational system (386 and expanding to second order in eccentricity, by identification of

the terms with same trigonometric argument, we can calculate these coefficients.

The derivatives of (£40) are

n

Y2

= nspecosl —nepesinl + 2nsipe? cos 20 — 2neqae? sin 20

= nsgecosl — neyesinl + 2nsqse’ cos 20 — 2ncgqe’ sin 20,

(4.41)
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To second order in eccentricity, the tidal function 7; is

Yi e <_ 20y; (vi + i) 49(yi —
1+ L+y? 14+ @i+p)? 1+ (i —p)?

~

i

y? 4
( 6y (vit+pi) n 7(yi_pi)2>cosg+

3
~——
+

L+y? 1+ (yi+p)? 14 (yi—p)
8 -+ ! + I >s' 0+
n
142 1+ (i p)? L (- )2
2 342 7 i i 7 i — Di 34 P — 2
+_< v _ (y +p)2_ (i — i) (vi — 2pi) )COS%JF
L+y? 14 (yi+ ) L+ (i —pi)? 14+ (yi — 2p;)?

e
2
e
2
e

4
e 34 n 7 7 n 34 <in 2/
i — in 2/,
4 T4+y? 14+ (yi+p)? 14+ (yi—pi)? 14 (yi— 2p;)?

[\

and, using the proposed solution (L40), can be approximated by

12p;
Ti ~ (bz’O T+ 0 + ginca +Qz2311> >+ < ;

p
cos/?
1+p2>e +

i

4p; 17p;
il 14 PR i1Ci1 — i25i 2 20
+<31 1+p2>esm +< 1+4p%+q101 q251>e Cos 20 +

7

34p2 92 .
+ Si2 — 1 + 4p2 + i2Ci1 + @i1Si1 | € Sl 247 (443)

where the coefficients ¢;; and ¢;» are

324 p! +p}) 3p;

= ——————. 4.44
e - mT Iy (4.44)

qi1 =

In the same way, the trigonometric function of the gravitational coupling can be ap-

proximated by

. . _ Y2 -1 n
2 = tan ! —t
snze = s [ () - ()|

bao bio 9 Ca1 C11
— — 14
<1+>\2 L+ XM\ o T+ 1+x)° "

So1 S11 . C22 C12 2
— Y4 — 20
+<1+)\2 1+A1>esm +<1+>\2 1+)\1>6COS *
522 S12 9 .
— 20 4.45
+<1+)\2 1+)\1>e sin 2/, (4.45)

and the amplitude of oscillation is

327T2G 1+ 2)\1 1+ 2)\2
K = Edido RO [N+ — = I 2 4 — =2
HiHoE,d1d> \/1+ 1+y%\/2+ 1+ 42

327T2G
75

12

(14 A) (1 + o) My Hotod do RS (4.46)
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The friction term is

YeY2 — Y1 =

+ (y2Ca2 — Y1€12) €2 €08 20 + (V2899 — Y1512) €% sin 20,

(’}/ngo — leblO) 62 + (’}/2621 — ’}/1611) ecost + (’72821 — ’}/1811) esin/ +

(4.47)

Replacing (@A1)-(@4T) into (£36) and colecting the terms with same trigonometric

argument, we can find three linear sub-systems for the undetermined bj, ¢;; and s;;,which

can be written in vectorial notation as

D1 /\1 -
DQ/\Q -
D/\O —
where
b
/\0 - 10 ; /\1 =
b20

are the undetermined coefficients vectors. The constants matrices are defined as

P
Py —Ro

TP — TR,

C11
S11

C21

521

As

D— a1 Q12 : T— T, T : Q=
(21 Qg2 15, Ty
a1 n 12 0 a1 2n
Dl _ —n ai 0 a12 : D2 _ —2n ai
921 0 99 n 921 0
0 ay —n  a 0 a9
where the constant a;; is

. IC:

_ + * ¢
aij = (=1)" (Tij Y +fm> :

C12

S12

C22

522

i —q12
—421 q22
a0 |
0 a
Qoo 21

—2n  ag

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

and the terms with 775, = 0, were added to make symmetrical the linear equations. Finally,

the vectors P; and R; are

1+p?
p_pp| P/ |

p2/ (1 4 p3)

qi1¢c11 + q12511

R —

G21C21 + @22521

(4.53)



Section 4.6. Near-synchronous solution of the rotational equations 75

Tiip1 /(L4 p7) — Tiopa/ (1 + p3)
T 2 1_|_ 2 — T 2 1_|_ 2
P, =4 11P1 ( p1) 1205 ( p2) : (4.54)
~T5ip1/ (1 + pi) + Tsop2/ (1 + p3)

—T5pt/(1+pt) + Toop3 /(1 +p3) |

Tyip1 /(1 + 4p7) — Thypo /(1 + 4p3)

T 202 /(1 + 4p?) — T52p2 /(1 + 4p2
P, =17 11 p1/( pl) 12 p2/( p2) : (4.55)

—T5,p1/ (1 +4p7) + Toppa/ (1 + 4p3)
| —T52p1/ (1 +4p1) + T5,2p3/ (1 + 4p3) |

T1*1(CI11011 - Q12311) — 17 (QQ1021 - QQ2321)

Ty (qiacin + qrisin) — 175 (ga2621 + qr2s11)

Ry = (4.56)
=T5 (quien — qizs11) + Toy(qoica1 — qo2521)
—T51 (qr2en + quisin) + Top(gaca1 + qi2si1)
The solution of these- sub-systems are -
A, = D;'Py
Ny = D,'Py —D,'R,
Ao = D 'TP-D 'TR. (4.57)
Finally, the rotational solutions can be written as
v1 = Bio+ Byisin (¢4 ¢11) + Biasin (20 + ¢19)
Vo = Bog+ By sin (£ + ¢o1) + Bogsin (20 + ¢a9), (4.58)
where the constants B;; and the phases ¢;; are
Biy = 7ibige®
Bi; = %\/m el
¢ij = tan™' (cij/sij). (4.59)
4.6.1 Tidal drift and the periodic terms
The tidal drift is the term B of the solution (L358). It is
I/EStat) = By = yibie + O(e?)
AT = Byy = yaboge? + O(€). (4.60)
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This result can be rewritte as

(stat) 12nk1173e?  12nkpvse?
Yy = 2 2 2 2
i +n Y5 +n
—kny1(quen + Q12511)62 — K1272(q21621 + Q22821)€2 + 0(63)
(stat) 12nkg177e” | 12nk97y5€”
Vs = 2 2 2 2
Yitn Y2+ n

—ko1v1(quien + 6112811)62 — Ko272(qa1 21 + CI22821)62 + 0(63)- (4.61)

The coefficient ;; can be written as x;; = f;;/g, where f;; is

i =05 - +Dvi=, 4.62
i R AN (ES B (e W R 402
d;,; is the Kronecker delta (611 = 022 =1 and 6,2 = d2,; = 0) and the constant g is
TCCy HiHo RS
= — . 4.63
g = fi1+ fa C R-R ( )
The two first terms of each Eq. (ZGI)
N, 12nk;72e?  12nkpvy3e? (4.64)

i+ 7+’

come from the non-periodic terms with |j| = 0, while the terms that involve ¢;; and s;1.

P = —liz'171(Q11C11 + Q12811)€2 - /iz'272(CI21021 + %2821)62, (4-65)

come from the periodic terms with [j| = 1. The harmonic terms with |j| = 2, do not
contribute to the stationary rotation at order e2.

It is worth emphasizing that in the absence of friction and gravitational coupling, that
is, K = = 0, the coefficient x;; = 0, ;. Then, the non-periodic excess of rotation of the
i-th layer has the same expression that the excess rotation in the case of a homogeneous
body, with ~; instead of v

l/(stat) o 12”71262

= + O(e"). 4.66
) = S+ 0l (4.66)
In the case n/y; > 1, n/7, > 1, an elementary calculation shows that each coeffici-
ent x;; becomes independent of the friction parameter j, depending only on the internal
structure and on the relaxation factors vy, and v, with f;; tending to
TCiCoHiHsRS  Dyvi  (14+ MK

ij = 0ij .
=% mom Ty L+ )

(4.67)
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In the case n/v; < 1, n/y, < 1, each coefficient k;; becomes independent of 7, K

and g, depending only on the internal structure and on the relaxation factors +; and ~s,

tending to
Djvi
Kij = ———— | 4.68
7 Divi 4+ Daye (4.68)
and the stationary solution tends to synchronous rotation.
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Figure 4.11: The tidal drift B;y (black solid lines), the contribution of the non-periodic terms N; (black
dashed lines) and the periodic terms P; (black dotted lines) to the tidal drift, and the amplitudes of
oscillation of the periodic terms B;; (red solid lines) and B;s (blue solid lines), of the Titan’s core and
shell in function of the shell relaxation factor 72. The core relaxation factor is y; = 107® s7! and the
ocean’s viscosity and thickness are 17, = 1073 Pa s and h = 178 km, respectively (see Tables G.IH5.4)). Left:
The parameter of the core. Right: The parameters of the shell. We also plot the negative values of By
(green solid line) and P» (green dotted line).

The periodic terms have amplitudes B;; and Bis, given by the Eq. (£59). The coef-
ficients ¢;; and s;; gives rise to intricate analytical expressions, but are easy to calculate
numerically. Fig. .11l shows one example for the Titan’s core and the shell constants B;;
and Byj, respectively, in function of the shell relaxation factor v, (see Table G.IH5.4). We
use that the core relaxation factor is y; = 1078 s7!, and fix the ocean’s viscosity and thick-
ness values to 7, = 1073 Pa s and h = 178 km, respectively. We also plot the non-periodic
N; and periodic P; terms, separately, and the total tidal drift B,y = N; + P;. We can
observe that if v, > 1075 s™!, the shell oscillates around the super-synchronous rotation.
When v, < 107° 571, the tidal drift Byy becomes negative and tends to zero, that is, the

shell oscillates around the synchronous rotation, with a period of oscillation equal to the

orbital period. The negative sign of the tidal drift By, is due to the contribution of the
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periodic terms P,, which becomes negative and |P| > N,. Finally, if 75 < 108 s7!, the
amplitude of the shell rotation decreases, tending to zero when 7, decreases. On the other
hand, the core oscillates around the synchronous rotation, with a period of oscillation equal
to the orbital period, independently of the shell relaxation factor.

This behavior is confirmed by the numerical simulations of non-approximate system.
In Fig. [412] we show the comparison of the Titan’s shell rotation in the complete non-
linear system given by Eq. (£36) and in the approximate analytical solution given by Eq.
(£58), for some values of the core’s relaxation factor 7, and ocean thickness h. The dashed
red lines show the maximum and minimum values of 2, — n given by the approximate
solution, taking into account only the first harmonic (|j| < 1), while the solid black lines
show the maximum and minimum values of 2, — n when the complete non-linear system
is integrated (using |j| < 7). The approximate solution is in excellent agreement with

numerical integration of the equations.
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Figure 4.12: Comparison of the amplitudes of the shell rotation and corresponding length-of-day variation

of Titan, between the numerical integration of the system Eq. ([£38) (solid black lines) and the analytical
solution v; ~ Bjo + B sin (£ + ¢;1) (dashed red lines). We also plot the stationary solution given by Bjg
(solid orange line). The core relaxation factor . increases from top to bottom and the ocean thickness h
increases from left to right. The ocean viscosity is 7, = 1072 Pa s. The horizontal dashed lines show the
confidence interval of the observed values, as determined by Meriggiola (2012) (blue) and by Stiles et al.
(2010) (green).



Chapter 5

Application to Titan’s rotation

5.1 Introduction

Before the Cassini-Huygens mission, the spin rate of Titan was assumed as a synch-
ronous rotation equal to the mean motion n = 22.5769768 deg/day. The first results of
this mission, showed a super-synchronous rotation Q; = 22.5780 deg/day (Lorenz et al.,
2008), or, equivalently, an excess of rotation Q; — n = 0.38 deg/yr. Using the Cassini
spacecraft’s radar images, the super-synchronous rotation value was corrected later by
Stiles et al. (2010), to 4 = 22.57731 deg/day, or, equivalently, an excess of rotation
Qg —n = 0.122 deg/yr. These values are far from the synchronous rotation expected to
one rocky satellite. These values of the excess of rotation were interpreted as an evidence
of a subsurface ocean. Tokano and Neubauer (2005) showed that the exchange of a certain
amount of angular momentum between the surface and the atmosphere may be important,
and the presence of an internal ocean (as was modeled by Tobie et al., 2005; Sohl et al.,
2014) may decouple rotationally the crust from the interior (Karatekin et al., 2008). The
rotation of the crust has been studied by Van Hoolst et al. (2009) using the static tide and
internal effects, as gravitational coupling and pressure torques. They found that the crust
rotation is influenced, mainly by the atmosphere and the Saturn torque, and claim that
the viscous crust deformation and the non-hydrostatic effects, could play an important
role in the amplitude of the crust oscillation. Recently, Meriggiola et al. (2016) estimated
Titan’s spin rate to , = 22.57693 deg/day, with a residual non-synchronus rotation of
Qg — n = £0.02 deg/yr compatible with a synchronous rotation, and in agreement with
Goldreich and Mitchell (2010) and Van Hoolst et al. (2013). These results were interpre-
ted as a differentiated Titan with a relatively thin crust of 10-50 km of thickness. In this
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chapter we apply the non-homogeneous creep tide theory to Titan, adding the torque due

to the exchange of angular momentum between the surface and the atmosphere.

5.2 The model

Titan’s interior was largely discussed in many papers (e.g. Tobie et al., 2005; Castillo-
Rogez and Lunine, 2010; McKinnon and Bland, 2011; Fortes, 2012). The existing general
data of the Titan-Saturn system is given in Table [B.Il In this section, we assume the
interior model given by Sohl et al. (2014) (hereafter reference model, see Fig. b)), and
is given in Table £2l In this model, Titan is formed by four homogeneous layers: i) an
inner hydrated silicate core (inner core); ii) a layer of high-pressure ice (outer core); iii) a
subsurface water-ammonia ocean and iv) a thin ice crust. For the sake of simplicity, we
construct one two-layer equivalent model, where the core is a layer formed by the inner
core and the high-pressure ice layer, and the shell is a layer formed by the subsurface ocean
and the ice crust, but keeping some features of the four-layer model (e.g. axial moments
of inertia and Clairaut numbers). In this way, we can use the rotational equations (L35,
retaining the main features of the realistic reference model. This simplified model is given

in Table 5.3, and some calculated parameters of each layer are listed in Table B.4]

e crust
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Figure 5.1: Titan’s interior for the reference model. Left: Scheme of Titan’s interior. Right: Titan’s
density profile. Figure extracted of Sohl et al. (2014).

In order to estimate the relative height of the elastic tide A;, we assume that the diffe-
rence between the observed surface flattening €, with the tidal flattening e, = H€;E5 o cos o4

~ H€y cos oy (calculated) is due to the existence of an elastic component, with flattening
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€l = \H,é;. If we use Eq. (EZ3), and assume that near to the synchronous rotation

cos? o4 ~ 1, we obtain

6I

A —— — 1. 5.1

T (5.1)
For the relative heights of the elastic tide A., we assume A, ~ A d:ef A

Mass (10%2kg) ™) mr 13.45

Eccentricity(? e 0.028

Semi-major axis (AU)®) a 0.00816825

Mean motion (deg/day)™ n 22.5769768

(id.) (10771 4.560678013

Orbital period (day)® 21 /n 15.9454476

Differential Rotation (deg/yr) Qs—n 0.122 4 0.040 4

0.0015:05 @

Titan’s ellipsoid semi-major axes (km)®) a 2575.152 + 0.048
b 2574.715 4+ 0.048
c 2574.406 £+ 0.044
Titan’s mean equatorial radius (km)(® R, 2574.933 4+ 0.033
Titan’s equatorial prolateness (10=4)®) ¢ 1.70 + 0.26
Saturn’s mass (10% kg)(™ M 5.68326
Saturn’s mean-motion (1072 s7)(™ ne 6.713428

Titan’s tidal parameter (10~ s~2)t T 4.63
(DSeidelmann et al. (2007); ) Tess et al. (2012); ®)TASS 1.8% (Jan.1,2000);
®Stiles et al. (2010); )Meriggiola et al. (2012; 2016); ) Mitri et al. (2014);

() Jacobson et al. (2006); f calculated parameter; § See Vienne and Duriez, (1995).

Table 5.1 - Basic data of Titan.

Layer Outer radius (km) Density (g/cm?®) Viscosity (Pa s)t
Ice I shell 2575 0.951 10 — 106
Ocean 2464 1.07 1073 —10° §
High-pressure ice 2286 1.30 101 — 1020
Rock and iron core 2084 2.55 10%°

T Mitri et al., 2014; § adopted values.

Table 5.2 - Titan’s four-layer reference model.



82 Chapter 5. Application to Titan’s rotation

Layer Outer radius (km) Density (g/cm?®) Mass (10*2kg)
Shell (crust + ocean) 2575 1.02 2.19
Core (rock + HP ice mantle) 2286 2.25 11.26

Table 5.3 - Titan’s two-layer equivalent model.

5.3 Atmospheric influence on Titan’s rotation

The seasonal variation in the mean and zonal wind speed and direction in Titan’s lower
troposphere causes the exchange of a substantial amount of angular momentum between
the surface and the atmosphere. The variation calculated from the observed zonal wind
speeds shows that the atmosphere angular momentum undergoes a periodic oscillation
between 3 x 10'® and 3 x 10" kgkm?s~" (Tokano and Neubauer, 2005, hereafter TNO5)
with a period equal to half Saturn’s orbital period and maxima at Titan’s equinoxes (when
the Sun is in the satellite’s equatorial plane).

The angular momentum of the atmosphere may be written as L, = Lo + Lq cos 2ag,
where Ly = 1.65x10" kg km? s, L; = 1.35x10" kg km? s~! and a, is the Saturnian right
ascension of the Sun. The variation of the angular momentum is Lyym = —2L;ng sin 2a,.
If we neglect external effects (as atmospheric tides), this variation may be compensated
by an equal variation in the shell’s angular momentum: 5Ls = —Latm, which corresponds
to an additional shell acceleration

60, = QLC’% sin 2a = Ag sin 20 (5.2)
We must emphasize that we have considered in these calculations the moment of inertia
of the ice crust C}, since the winds are acting on the crust and do not have direct action
on the liquid part of the shell.
In a more recent work, Richard et al. (2014) (hereafter R14) re-calculate the amplitude
of the variation of the angular momentum with the Titan IPSL GCM (Institut Pierre-Simon
Laplace General Circulation models) (Lebonnois et al., 2012). They obtain L; = 8.20x10"7

kg km? s, which is ~ 16.5 times less than the TNO05 value.
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Core Shell

Clairaut number H; 0.772 0.806
Parameter of Eq. (3.40) Q, 0.308 0.484
Axial moment of inertia (10*kg km?) C; 2.183 0.866
Equatorial flattening (tidal) (107*) € 1.15 1.20
Relative height of the elastic tide i 0.42 0.42
Gravitational coupling constant (10~%s72)  K/C; 2.65 6.69
Friction parameter (10~'7s7')§ e 0.59 1.48
Atmospheric parameter (107'8s72)1 2Line/Cy - 5.08
2Ling/Cs - 0.31

§ Assuming 7, = 1073 Pa s; + L; = 1.35 x 10" kg km? s™' (Tokano and Neubauer, 2015).

Table 5.4 - Titan’s calculated parameters in the two-layer model.

5.4 The results

We fix the outer radius of the inner core R;. and the outer radius of the high-pressure
ice layer R,., the densities of the inner and outer cores d;. and d,. and the density of
the crust dj, to the reference model values in Table The density of the inner core is
calculated so as to verify the value of Titan’s mass my = 13.45 x 10?2 kg. Fig. shows
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Figure 5.2: Dependence of some parameters on the thickness of the ocean h. Left: Density of the inner
core d;. (solid orange) and the densities of the reference model (dashed lines). Middle: Clairaut parameters
H; (black), the coefficients D; (red), and the maximum relative height of the elastic tide A (blue). Right:
The axial moments of inertia of the ocean C, (black), the crust Cy (red), the shell C5 = C, + C) (blue)
and the core C. = C;. + C,. (orange).

the weak dependence of the parameters on the thickness of the ocean h: the density of

the inner core d;. (solid orange line) and densities of the reference model (left panel); the
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parameters D., D; and the Clairaut numbers H., Hs (middle panel); the axial moments
of inertia C, and Cj (right panel).

The main consequece of the weak dependence of these parameters with the thickness
of the subsurface ocean, is that both the effect of the tide and the gravitational coupling
parameter also depend weakly on h. The strength of the acceleration of the rotation, due
to the tide, is given by the product T;;7; (see Egs. (A3) and (£2])). While the parameter
T,

i; only depends on the internal structure of Titan, the function 7, do not depend on h.
The left panel of Fig. L.3lshows T;; and the gravitational coupling amplitude K; = K/C;,
as function of h. We also observe taht the thickness of the ocean does not have any relevant
role. Then, for the tide and the gravitational coupling, the rotational evolution is driven

by the ratios n/v., n/vs and the orbital eccentricity e.
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Figure 5.3: Dependence of some parameters with the thickness of the ocean h. Left: Tidal parameter Tj;
and gravitational coupling constant K; = K/C;. Right: The coefficient n x p;, where u; = p/C;, for a
typical ocean viscosity 7, = nm,0 ~ 1072 Pa s.

The right panel of Fig. shows the quantity nu; = nu/C; as function of the thickness
h, when we consider the realistic ocean viscosity 17, = ng,0 ~ 107® Pa s. The rotational
acceleration of each layer, due to the friction, is 11;(Q5—.). In super-synchronous rotation,

the excess of rotation of each layer is of order ne?, then
:U’Z(Qs - Qc) < npy K T}j; K;.

Therefore, in Titan’s case, the friction term is negligible compared with the tide and the
gravitational coupling terms, independently of the h value.
Eqs. ([#35) and (5.2)), allow us to calculate the velocities of rotation of the shell and

the core of Titan for a wide range of relaxation factors 4. and 7,, when different effects
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are considered. For that sake, we have to adopt the values of the involved parameters.
We use four different values for the viscosity of the subsurface ocean: a realistic value
Mo = N0 = 1072 Pa s, a moderate value 1, = 10° Pa s and two very high values n, = 10°
Pa s and 1, = 10° Pa s. For the thickness of the ocean, we use the values h = 15, 178 and
250 km, and for the variation of the atmospheric angular momentum, we use the values
given by Tokano and Neubauer (2005) and Richard et al. (2014). When we integrate
the rotational equations, assuming the values of relaxation factor typical for rock bodies
(7; < n), the results show that the excess of rotation of the shell is damped quickly and
the final state is an oscillation around the synchronous motion with a period of ~ 15 days,
equal to the orbital period (Fig. B54). The amplitude of this oscillation depends on the

relaxation factors and the ocean thickness, mainly.
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Figure 5.4: Time evolution of Q, — n, when 7. =, = 1078 s~!, n = 1073 Pa s and h = 178 km.

These results are compatible with the analytical approximate solution:
Vv, ~ BiO + Bil sin (f + ¢zl) + BiQ SiIl (25 + ¢i1), (53)

where the constants B;; and the phases ¢;; are given by Eqs. ([{59) (see Chap. EG.T). Fig.
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shows one example for the Titan’s core and shell constants B.; and By, in function of

579
the shell relaxation factor, when the core relaxation factor is 7, = 107® s~* and the ocean’s

viscosity and thickness are 1, = 1073 Pa s and h = 178 km, respectively.
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Figure 5.5: Tidal drift and amplitudes of oscillation of the periodic terms of the Titan’s core and shell

1

in function of the shell relaxation factor 7. The core relaxation factor is 7. = 1078 s~! and the ocean’s

viscosity and thickness are 1, = 107 Pa s and h = 178 km, respectively. Left: Core’s parameters B.g,
B, and B.y. Right: Shell’s parameters By, B, and Bys.

In Fig. 5.6, fixing 7, = 107 Pa s and L; = 1.35 x 10" kg km? s™' (TNO05), we plot the
resulting the maximum and minimum of the final oscillation of the shell rotation 2, — n,

or, equivalently, the length-of-day variation

2r 2w
ALOD = — — — 4
O n Q (5-4)

in function of 7y, for two dynamical models: i) tidal forces, gravitational coupling and
linear friction (solid black lines); and ii) tidal forces, gravitational coupling, linear friction
and the atmospheric influence (dashed red lines). The horizontal lines show the intervals
corresponding to 1o uncertainties of the observed values: the blue dashed lines, labelled
M, correspond to Meriggiola (2012) and Meriggiola et al. (2016) and green dashed lines,
labelled S, correspond to the Stiles et al. (2010). The core relaxation factor 7. increases
from v, = 107% s7! (top panels) to 107° s~ (bottom panels) and the ocean thickness h
increases from 15 km (left panels) to 250 km (right panels).

Figure shows that if v, < 1077 s7!, the shell’s rotation oscillate around the synch-
ronous motion and the amplitude of oscillation depends on the relaxation factors and the

ocean thickness. The average rotation (central orange line) is synchronous; it only becomes
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-1

supersynchronous for relaxation values larger than ~ 10~7 s~'. We also observe that when

v, < 1078 571, independently of the values of 7, and h, the amplitude of oscillation of the
shell tends to zero when the relaxation factor v, decreases. Particularly, if v, < 107% s71,
the amplitude of the oscillation of the excess of rotation reproduces the dispersion of the €2
value of £0.02 deg/yr around the synchronous value, observed as reported by Meriggiola
(2012) and Merigiolla et al. (2016). The results are not consistent with the previous drift
reported by Stiles et al. (2008; 2010). We note that for larger values of the relaxation, e.g.
1078 s71, the large short period oscillation due to the tide would be much larger than the
reported values and would introduce big dispersion in the measurements, much larger than
the reported dispersion due to the difficulties in the precise localization of Titan’s features.
On the other hand, the effect of the atmospheric torque is completely negligible in the
range of possible 7, that reproduces the observed values of the shell rotation, even for the
high value of L; given Tokano and Neubauer (2005). When we consider the amplitude of
the variation of the angular momentum given by Richard et al. (2014), the contribution
to the rotation variations tends to zero.

The results shown in Fig. B.6] remain virtually unchanged when the ocean viscosity is
increased up to a value of 7, = 10° Pa s. But, if the ocean viscosity is increased to n, = 10°
Pa s, the transfer of angular momentum between the shell and the core induces in the shell
accelerations of the same order as the rotational acceleration due to the others forces. As a
consequence, the shell rotation will follow closely the core rotation (which is shown in Fig.
[51). This high value of 1, can be interpreted as the ocean thickness tending to zero. In this
case, to obtain the dispersion of Titan’s observed rotation as determined by Meriggiola et
al. (2016) we should have a value of y, yet smaller than the values obtained in the previous
cases, where a low viscosity ocean was assumed between the shell and the core. It is worth
noting yet that, in this case, the observed dispersion could also be obtained taking for 7,
an extremely low value (107 s7!) and for v, a much larger and unexpected value (107°
s7h).

[t is important to note that, in any case, the rotational constraint does not allow us
to estimate the value of the core relaxation factor 7.. For realistic values of the ocean
viscosity (1, = 1073 — 10° Pa s), the shell relaxation factor may be such that v, < 107°

s~!. The actual value will depend on the values of h and 7, and on the interpretation of the
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dispersion determined by Meriggiola, which may include the forced short-period oscillation
of Q,. Equivalently, using Eq. ([3.2)), the shell viscosity may be such that n, = 10'® Pa s.
These values remain without significant changes if 1, < 10° Pa s. For the case in which a
subsurface ocean does not exist, the shell relaxation factor may be such that v, < 107'°
s~!, one order less that when an ocean is considered. Equivalently, the shell viscosity may
be such that n, > 10 Pa s. It is worth noting that in this case, when v, < 1077 s7!,
the rotation of the core remains stuck to the rotation of the shell even when 7, is larger,

notwithstanding the larger moment of inertia of the core (Fig. B.8).
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Figure 5.6: Shell rotation and corresponding length-of-day variation of Titan in function of the relaxation

factors, when 1, = 1073 Pa s and L; = 1.35 x 10'"? kg km? s~'. The core relaxation factor -, increases

from top to bottom and the ocean thickness h increases from left to right. We consider two dynamical

models: The pair of solid black lines, indicate the maximum and minimum of the shell rotation when the

tidal forces, the gravitational coupling and the linear friction are taken in account, and the pair of dashed

red lines, indicate the maximum and minimum of the shell rotation when the angular momentum exchange

with the atmosphere is added. The orange solid line, indicates the analytical stationary rotation Byy. The

horizontal dashed lines show the confidence interval of the observed values, as determined by Meriggiola
(2012) (blue) and by Stiles et al. (2010) (green).
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Figure 5.7: Same as Fig. 5.6 for n = 10° Pa s.
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Figure 5.8: Core rotation of Titan in function of the relaxation factors, when 1, = 10° Pa s and L; =
1.35x 10" kg km? s~!. The core relaxation factor 7. increases from top to bottom and the ocean thickness
h increases from left to right. We consider two dynamical models: The pair of solid black lines, indicate
the maximum and minimum of the core rotation when the tidal forces, the gravitational coupling and the
linear friction are taken in account, and the pair of dashed red lines, indicate the maximum and minimum
of the core rotation when the angular momentum exchange with the atmosphere is added. The orange
solid line, indicates the analytical stationary rotation B.g.
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5.5 Near-synchronous solution of the rotational equations

When we consider the effect of the atmosphere, using the convention 1 = core and

2 = shell, the rotational system (L36) becomes

91 = =TT+ Kisin2€ + Fi(vy2 — 11y1)

Vo = TTh —TnTs — Kesin 26 — Fo(vay2 — 7191) + Ag sin 205,

where
B 244

Ao
Y2

We assume that the particular solution

Y1ie = C1e COS 20 + S16 Sin 20y,

Yae = Cap COS 200 + Sap SIN 2avg,

(5.5)

(5.6)

(5.7)

can be added to (£40) to obtain the general solutions of the complete equation. ¢;e and

s are undetermined coefficients to be obtained by substitution of the parts of the solution

into Eq. (B3] and identification.
The derivative of (5.7) is

yl® = —277/@01@ sin 20[@ + 2”@31@ COS 20[@

Tom = —2NeCae Sin2ap + 2neS9e COS 200.
The tidal function can be approximated by
Ti =~ Ciecos2aa + S sin 2ag),

the trigonometric function of the gravitational coupling can be approximated by

. Coo Cio 520 510 9 .
28 ~ — 2 — 2
sin 2& <1+)\2 1+)\1>cos a@+<1+)\2 1+)\1>e sin 2ay),

and the friction term is

VoY —N1Y1 = (’7202@ - 7101@) cos 2a + (’7232@ - ’7131@) sin 2ag,.

Defining the constant matrix

a1 271@ a12 0
— 27’L@ a1 0 12
D, = :
21 0 1929 2”@
0 az1 —2ng a2

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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and the constant vectors

Cl@
Sl@
Ao = ; Po=As
Coo

, (5.13)

o O O

SQ@

the undetermined coefficient vector is
Ao = D, 'P. (5.14)
Finally, the rotational solutions can be written as

vV = BIU + Bll Sil'l (E + ¢11) + 312 sin (24 + ¢12) + Bl@ sin (20[@ + ¢1®)

V9 = B20 + 321 sin (E + ¢21) + 322 sin (24 + ¢22) + BQ@ sin (20[@ + ¢2®), (515)

where the constants B;. and the phases ¢;. are

Bio = 7viy/ch + sk

bio = tan ' (Cio/sio)- (5.16)

In Fig. B9 we show the same comparison of the Titan’s shell rotation between the
complete non-linear system and the approximate analytical solution of the above section.
The approximate solution, also is in excellent agreement with numerical integration. It
is important to note that the fact that the approximate solution of the non-linear system
(E3) can be expressed as the sum of solutions ([{L40) and (5.7), it means that this system

has a behavior quasi-linear, at least for the Titan’s problem.
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Figure 5.9: Comparison of the amplitudes of the shell rotation and corresponding length-of-day variation
of Titan, between the numerical integration of the system Eq. ([@35) (solid black lines) and the analytical
solution v; ~ By + By sin (£ + ¢41) + Big sin (2ag + ¢ie) (dashed red lines), including the atmospheric
influence. We also plot the stationary solution given by B;o (solid orange line). The core relaxation factor
7. increases from top to bottom and the ocean thickness h increases from left to right. The ocean viscosity
is 7, = 1073 Pa s. The horizontal dashed lines show the confidence interval of the observed values, as
determined by Meriggiola (2012) (blue) and by Stiles et al. (2010) (green).
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Non-homogeneous Darwin theory

In this Chapter, we extend the Darwin tidal theory, revisited in Ferraz-Mello et al.
(2008) (hereafter FRH), to the case of one differentiated body m. The resulting equations
that describe this theory are compared to the equations of the creep tide theory, given in

Chap. B

6.1 Darwin tide theory

We consider one differentiated body m of mass my, disturbing to one mass point M of
mass M orbiting at a distance r from the center of m, as in the Chap. Pl We assume that
m is composed of N homogeneous layers of density d; (i = 1,---, N) and angular velocity
Q, = QiE, perpendicular to the orbital plane. We also assume that each layer has an outer
ellipsoidal shape with semi axes a;, b; and c;, where the semi-major axis a; is pointing
towards M and ¢; is the axis of rotation (see Fig. 21in Chap. ).

We choose a spherical coordinate system so that r = (1,6, ¢) and r* = (r*, 6%, p*) are
the position vectors of M and an arbitrary point of the space M*, respectively, relative to
the center of the differentiated body m. The angles 0, 0* are their co-latitudes and ¢, p*
are their longitudes (Fig. G.T]).

The disturbing potential generated by the i-th layer of the deformed body m, at the
arbitrary point r*, can be written as

kiGMR?
Qr*3p3

kK2 R?

oU; = — (3cos?¢p — 1) + = L(3cos? 0" — 1), (6.1)

(see Appendix [E] for the details of this calculation), where ¢ is the angle formed by the

positions vectors r and r*. The constants k; and k] are the tidal and rotational fluid Love
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M*

\Y M PP

Figure 6.1: Spherical coordinate system with origin at the m and its equator as reference plane.

numbers of the i-th layer, respectively:

N n2r
ki = kil [ iy (6.2)
Q;
where
. 15C, R

" dmrR? R—f” (6:3)

C; is the axial moment of inertia of this layer, and the parameter

H;R> — H;_R? R? — G, RY
Ei: 7,5 51 z—l; E;:g 1,5 g 51 z—l. (64)
R} — Ry, R, — R,

In order to proceed, we consider the two-body motion. The equations of the Keplerian

motion to M, orbiting to m, are
_a(l—¢)

= 6.9
1+ecosv’ (6:5)
and
3 5e? 13e?
v="_+ <2€—€Z> siné—l—%sin2€+1—;sin3€+0(e4), (6.6)

where a is the semi-major axis, e is the eccentricity and the angles v and ¢ are the true

and mean anomaly, respectively, of the body M. In the planar case, we have # = 7 and

¢ = v + w, where w is the longitude of the periapsis. By solving the spherical triangle,

we obtain

cos ) = sin 6 cos (p* — w — v), (6.7)
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the disturbing potential of the i-th layer, after Fourier expansion, becomes

SkGMRY *
ou; = TR sin’ # Z Es j cos O +
kez
W(?) cos® 0* — 1) Z Eycoskl + 6 (3cos?0* — 1),  (6.8)

kEZ

where the argument ©} is given by Eq. (8:22)) and the coefficients of the Fourier series E,,
are the Cayley functions given by Eq; (B12).

6.2 'The tidal phase lags

In Darwin’s theory, for each periodic term of the potential 0U;, a delay is introduced
in the form of a lag angle (Darwin, 1880). The trigonometric functions, in the potential

([6.8), are expanded to first order in the lag in the following way

cos (29" — 2w + (k — 2)0 — i) ~ cos O + a, sin O

sin (2" — 2w + (k — 2)0 — ay,) =~ sin ©f — ay, cos OF, (6.9)
and

cos (kl — Bi) = coskl + [ sin kl
sin (kl — B;,) =~ sinkl — ;. coskl, (6.10)

According to this definition, a;; denote the lag corresponding to the k-th sectorial term
of the i-th layer, and f3;; denote the lag corresponding to the k-th radial term of the i-th

layer. The lags are small quantities.

6.3 The Love numbers

In the homogeneous tidal theories using Love’s theory to obtain the disturbing poten-
tial U, the only Love number appearing is k;. In Darwin’s theory (and in all theories
introducing lags individually after a Fourier decomposition of 6U), we may consider that
the surface of the body does not respond instantaneously to the tidal potential and does

not reach the deformation predicted in the equilibrium figure theory. In order to take into
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account this effect, instead of the Love number Eiﬁi for the i-th layer, we may introduce

two different dynamics Love numbers, one for each layer boundary and tidal harmonic:

R

R
2 iz

L D5 5 1k 1 D5 5 1—1k>»
Ri - Rifl R Rz 1

for the outer and the inner surface, respectively. The coefficient k7, take into account the
non-instantaneous response of the outer surface of the layer and k}_,, the non-instantaneous
response of the inner surface. These coefficients do not depend on the layer, but only the
surface considered (e.g. the outer surface of the i-th layer has the same coefficient for the
inner surface of the (i 4+ 1)-th layer).

In FRH, for the sake of simplicity, only one value k; corresponding to the main tide
harmonic is used, while the others are merged with the corresponding lag €;. In the present

work, we have introduced the delay parameters corresponding to the outer surface

gy, = Kok Bix = KikBik, (6.11)
where «;i, B are the lags of the frequency-dependent tide harmonics of the outer boundary
of the i-th layer and k7, k7, are the frequency-dependent dynamics counterparts of &; for the
sectorial and radial terms, respectively. For the inner surface we have similar expressions.

The scheme used to include the dynamic Love numbers in the sectorial terms is

k;cos O = /I@R?H_Zi};%_l cos O — /15217;5__17]]%%_11 cos O},
— & klka’L]zf’l cos (©F — ayy) — k; ik 1,6% cos (©F — aj_1)
:E%;{_—}%“f) cos O +EZ~AR(;6—JZB?T) sin O, (6.12)
and for the radial terms
k;coskl = ERL}; cos kl — E ;;5__17]]%55__11 cos kl
. Hlkﬁ%};l cos (K — Bi) — ;_m% S (K — By
k AR}E’H—]?%?T) cos kﬁ+@i% sin k. (6.13)

where A(f;) = fi — fi_1, denotes the increment of one function f;, between the inner and

the outer boundaries of this layer.
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We assume that the viscosity does not affect the rotational axial terms and the rota-
tional static equilibrium figure remains without change. The orbital motion of M change

tha angular velocity motion rotational fluid Love number £} remains without change.

6.4 Delayed potential, forces and torques

When we introduce the lags in the trigonometric functions, we can write the delayed

tidal potential of the i-th layer as 5Ui(del), is given by

e 3k:GMR?
ST SIS0y By (Aik sin O + By cos @;;) +
e ke
S AR
%(3 cos” 0" — 1) > Eou (A;.'k sin k¢ + B cos M) +
ra keZ
ki L'n? R
%(3 cos? 0% — 1), (6.14)
where
A (HiR2aj,) A (MR K,
Air, = RE’——RELI’ By, = o, (6.15)
and
no_ A (H'LR’?BZ,IC) "o A (,HZR?H:IC) (6 16)
*T R -RY, ®T RI-RY, '

To obtain the force generated by the i-th layer, acting on one mass M*, located in

M*(r*,0*, ©*), we have to take the negative gradient of the potential of this layer at the
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point and multiply it by the mass placed in the point, F; = —M*Vr*5Ui(del)

9k GMM*R?
F,; = BT sin? 0* ZEM< ik Sin O + By, cos@,’;) +
o keZ
3k GMM*R?
W (3cos® 0" — ZEM< lksinkﬂ—l—BZﬁcoskZ) +
o kEZ
ki M Lin® R?
%(3 cos? 0* — 1)
3k GMM*R?
Fy; g sin 20* ZEM( ik Sin O}, + By, cos @,’;) +
e keZ
3k,G M M* R?
e sin20" Y By (A;’k sin k¢ + BY, cos kﬂ)
o keZ
T A L2 5
+—kzM Lin E; sin 20"
2,’4*4
3k,G M M* R?
mi:._Eﬂg—umm2y34mw%%—&mm%) (6.17)
kEZ

The corresponding torque is M; = r* x F;, or, since, r* = (r*,0,0):

My =0; My = —r"Fy;; M = r*Fy, (6.18)
that is
3LGMM*R> . .
My = —W sin 6 Z Egyk <Azk Ccos G)k — B;j, sin ®k>
ke
3k GMM*R} . s .
M = g sin 26 Z E, k( ik Sin O + By, cos @k) +
k€T
3k GMM*R? . .
— g S 20" ,CEZZ Ey ( vosin bl + B, cos kﬂ)
k;M*Lin2R?
+# sin 20*. (6.19)

27.*3
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6.5 Forces and torques acting on M

Since we are interested in the force acting on M due to the tidal deformation of m, we

must substitute (M*,r*,60*, ¢*) by (M,r, 5, @ 4 v). The forces, then are

9k GM?*R? )
F; = B Z E, k( ik sin Yy + By cos Tk> —
35,G M2R? kML R}
—W ZEOk<AkSIHk£+B, COS:ICZ) — T
k€7
Fpi = 0
3k GM?R? )
ng = W Z E2 k (Azk COS Tk Bik Sin Tk> . (620)
keZ
where the angle Ty is defined be the Eq. (B:32).
The corresponding torques are
3k GM?R?
MQZ' = W Z EQ k (Azk CcOS Tk - sz sin Tk)
keZ
After Fourier expansion, the torque along to the axis z (M,; = —My;) can be written
as N
3k;GM*R? .
Mzi = T Z E2,kE2,k+jBik COS ]é (622)
k€7
Finally, the time average of the total torque over one period is (M,;) = % fo% M.;dl,
therefore N
3k;GM*R?
(My) = ————+ > E}.Bu. (6.23)
k€7

As it was explained in Section B.6], the above expression for the time average, which
is equivalent to take into account only the terms with j = 0, only is valid if o}, can be
considered as constant. In the opposite case, in which o/, depends on the time, this fact

must be taken into account when computing the time average.

6.6 Work done by the tidal forces acting on M

The time rate of the work done by the tidal forces due to the i-th layer is Wo(f% =F; v,

where v is the relative velocity vector of the external body, whose components in spherical
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coordinates are

. 2 /1 2
771(116 sm;); vy = 0; vy = nev. -« ) (6.24)
Vi—e r

Using the tidal force given by the Eq. (620), the rate of the work corresponding to the

v =

i-th layer is

aw ) 3k,G M?R?
ort . _SGM Min Rznz{gmx

dt 2ab
kcZ

X

A (2\/%—62 (g)zlsinvsin“f,€ —V1—¢? (%)5608 ’fk> +

+Bix <2\/% (%)4 sinvcos Tj, + V1 — €2 (%)5 sin Tk>

Eor  3e a\?t . 0o "
+T2\/T—62 (—) s1nv( iksmkﬂ—l-QBikcoskE) -

”
k;MRone 9 a\*t

- p?L] <—> sinw, 6.25
2a3v/1 — €2 r (6.25)

or, after Fourier expansion of the tidal termsEl,

+

aw® 3k:GM?Ron . : in i
A v D ((2—k—J)Eg,kEz,m(AmCOSJ“Bz'ksmﬂ)‘
k,jEZ
(k+ )

3 Eo 1 Eo (.AZ,c cos jl + B}, sin jé)) —

k;MRne
2a3y/1 — €2

and its time-average over one period is

aw 3k,GM2R} i
< dtorb> — —Zn Z <(2 — k)Eg,kAzk - gEg,kA;,k> . (627)

4ab
kcZ

20 (O +
n“L; | —) sinwv, (6.26)
r

The average of the last term of Eq. (620]) is

1 2 N 4 B N A(R?(E—l)mx;’)) 1 2T , [a 4
%/0 n’L! (;) sin v dé—; R, %/0 Q; <—> sinv dl =0, (6.28)

(see Appendix [D]).

! For the details of this calculation, see Appendix [E]
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6.7 Variations in semi-major axis and eccentricity

In this section, we calculate the variation in semi-major axis and eccentricity. For this
sake, we use the same equations of the Section B.8

Using Eqs. (8.41) and (6.2I)) and summing over all layers, we obtain the equation for
the variation in semi-major axis:

N ~
3k;MRn . . o
Z mat Z <(2 —k = J) Bk By <Aik cos jl + By smyﬂ) —

k,jEZ

)EO,kEO,k-I-j (A;Ik cos j + Bjj sin J€)>

- Z by Bne n2£; (2>4sin v, (6.29)

Gmray/1 — e2 r

After the time-average over one period, we obtain that the variation in semi-major axes

is
N
3EMRPn k
= D e E:(@—kﬂgw%h—gﬂﬂA%>. (6.30)
i=1 keZ

In the same way, using the Eq. (342), replacing M, and W, by the Eqs. (621) and

([626), and summing over all layers, we obtain

N ~
3k;MRPn (1 — €?) 9
:E: i 7—2—k_')EE |
‘ Py 2mra* 2ae Z ((,/1_62 ( 7)) BorEagij X

k,jEZ

bt
X (Aik cos jl + By, sinjé) _(k+J) EokFoj+; (A;'k cos jl + Bl sin ]é))
N o~
kiR3n /1 — €2 4
— Z i ‘ n*L! (2) sin v, (6.31)
— Gmra  2a r
Finally, after the time-average over one period, we obtain that the variation in eccen-
tricity is
N ~
3k;MRn (1 — e?) 2 k
) = e = (2 ) B A — S ERLAL ).
<6> ; 2mTa4 2a¢ kEZZ ( 1_¢2 ( ) 2,k ik 3 0,k Vik

(6.32)

6.8 Comparison with the creep tide theory

In the previous sections, we develop the extension of the non-homogeneous case of the

Darwin tidal theory. The resulting equations that describe this theory with the equations
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given by the creep tide theory are significantly similar, being that the methods by which
they are obtained differ considerably.

Considering that /lgzk is constant, defined by the Eq. (G3]), the delayed disturbing
potential of the Darwin’s theory (6I4)), can be written as

del 45GMR3.C; . . o )
6Ui( ) — _m sin’ 6 keZZ Es (Aik sin ©, + Bj cos @k> +
15GMR3,C, ) |
m (3cos?0* — 1) % Eo (A;’k sin kl + B cos ké) +
S5R3n*L.C; -
T gmgres G005 07— 1), (6.33)

which is identical to the disturbing potential of the creep tide ([B.21), with A, B, A%
and B}, instead Cj, D, Cl). and DJ , respectively. Considering the equality between these

coefficients, we obtain that

sin 20y,
! o * K, * 2
o = kpoug = 5 k. = cos® oy
sin 20
i _ * ol __ ik . * 2 n
B = kB = BCEE K, = COS™ Oy, (6.34)

or, using the Eqs. (3.26) and (B.21), we obtain

v; + kn . v2
' % C it k)
kn 2
i Vi ik v + (kn)? (6:35)

In other words, the creep tide theory is equivalent to propose a linear-frequency law
for the lags «y, and (;;, and a frequency-dependent sectorial and radial dynamic Love
numbers Ezkl*k and Ei/f;?‘k.

However, this equivalence between both theories is only valid if o, < 1 and G, < 1,
or n/v; < 1. This corresponds to the case of bodies with low viscosity, such as stars and
gas giant planets. In order to overcome this limitation, we modify the scheme used to
include the dynamic Love numbers in the sectorial and radial terms, without any ad hoc

hypothesis for the lags:

o 7ae Ml " 2o MRy .
ki COS @k — klkzkm CcOS (@k — Otik) — klkz—lk_R’;’)_i_R?i COS (@k — ai—lk)
~ A (H;R2k}, cos ap) .~ A (MRS, sin agy,) i
~ k; 75 }“%571 cos O + k; 75 25,1 sin Oy, (6.36)
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and
—~ R5 Hl 1R5
k; k? kiK' ————— kl — B; :-‘7 _— kl — [;_
cos kl — kK, R cos ( Bik) — ”“RE’ R cos( Bi—1k)
~ A (H; R}k, cos Bix) A (H;R2 K}, sin Bix)
~ k; i cos kl + k; i sin k. (6.37)
R} — R}, R} — R},

The new coefficients are

A (H;RY K, sin aiy,) A (H;RP k3, cos ciy)

Aik = a sz = 9
R} — R}, R} - R},
v A (H;RPk; K. sin sz) v A (H;R3k; b cos Bik) (6.38)
g e ey o

Considering the equality between these coefficients with the coefficients given by the creep

tide, we obtain

. * —_—
Qik, = Oik; kix = cos oy

Bir = oi Kjj = COS 07y, (6.39)

Therefore, the creep tide theory can be interpreted as one particular case of the ge-
neralized Darwin’s theory, where the lags and the dynamical tidal Love numbers depend
on the frequencies and the viscosities as Eq. ([6.39). It is worth emphasizing that while
the generalized Darwinian is an analytical free-parameters theory, the creep tide theory is
equivalent to fix these free parameter with one specific rheophysical law.

It is important not to confuse these lags o and 8 (or o and ¢”) with the geodetic lags of
the surface of each layer. The geodetic lags are the observed lags of each surface, and result
of the composition of the elastic and anelastic tidal components. The creep tide use the
rheology of one viscous fluid, through the Navier-Stokes’s equation. In order to introduce
the elastic component we can use two methods: the ad hoc method, proposed in FM13
(Sec. 10) or using the one Maxwellian rheology, as in Correia et al. (2014). These methods,
though they are very different, are completely equivalent (see Ferraz-Mello, 2015b).
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Chapter 7

Conclusion

In this thesis, we extended the creep tide theory, presented in Ferraz-Mello (2013) and
Ferraz-Mello (2015a), to a differentiated non-homogeneous body formed by N homoge-
neous layers with differential rotation. For this sake, first we have extended the classical
results on non-homogeneous rotating figures of equilibrium to the case in which the body is
also under the action of a tidal potential due to the presence of an external body, assuming
differential rotation. The only assumptions in this work are a body formed by N homoge-
neous ellipsoidal layers in equilibrium and small enough tidal and rotational deformations
with symmetry axes perpendicular to each other (remember that, in the second order, the
figure ceases to be an ellipsoid). We have calculated the 2NV equilibrium equations for small
flattenings and we have found that the equatorial and the polar flattenings eE)k) and e,(zk)
are linearly related, both being proportional to the homogeneous reference values with the
factors of proportionality H; and Gi, respectively. The equatorial deformations propagate
towards the interior of the body in the same way depending, in the first approximation,
only on the density profile; it does not depend on the origin of the two considered defor-
mations. Then the problem of finding the 2N flattenings corresponds to finding the 2N
coefficients ‘H; and G, with 2N equilibrium equations. An important consequence of this
approach is that the flattening profile 4, is the same no matter if the rotation of the body
is synchronous or non-synchronous and the results for H;, are the same found by Tricarico
(2014).

We have also studied the continuous case as the limit for a very large number of layers of
infinitesimal thickness, which leads to the Clairaut’s differential equation for the function

H(z). This result was expected because the coefficients of the Clairaut equation only
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depend on the internal distribution of matter p(x). Therefore, the differential equation
that generates the functional form of the profile flattening #H(x) does not change when we
change the nature of the deformation, provided that it is small. For densities decreasing
monotonically with the radius, we have found that, at the surface, H,, takes values larger
than 0.4 (see Eq. (2224))) and takes the limit value 1 in the homogeneous case. This means
that the surface flattenings of a differentiated body are always smaller than the flattening
of the corresponding homogeneous ellipsoids, but always larger than 40% of it.

Using this static equilibrium figure, we found the creep tide equation for the outer
surface of each layer. Once solved the creep equations, we obtained the tidal equilibrium
figure, and thereby we calculated the potential and the forces which act on the external
mass producing the tide, as well as the variations in semi-major axis and eccentricity,
produced by the tidal forces.

In order to apply the theory to satellites of our Solar System, we calculated the explicit
expression in the particular case of one body formed by two layers. We may remember
that the number of free parameters and independent variables increases quickly when the
number of layers increases. The simplest version of the non-homogeneous creep tide theory
(the two-layer model), allow us to obtain the main features due to the non-homogenity
of the body, by introducing a minimal quantity of free parameters. In the used model,
we have also calculated the tidal torque which acts on each layer and also the possible
interaction torques, as the gravitational coupling and the friction at the interface between
the contiguous layers (general developement of these effects are given in Appendices 3
and 4). The friction was modeled assuming two homogeneous contiguous layers separated
by one thin Newtonian fluid layer. This model of friction is particularly appropriate for
differentiated satellites with one subsurface ocean, as are various satellites of our Solar
System (e.g. Titan, Enceladus and Europa).

The two-layer was compared with the homogeneous case. For that sake, we fixed the
free parameters of Titan and studied the main features of the stationary solution of this
model in function of a few parameters, such as the relaxation factors ;, the friction pa-
rameter x and the eccentricity e. When ~, & 7,, the behavior of the stationary rotations
turned out to be identical to the homogeneous case. When 7, =~ 7, < n, the stationary

solutions oscillate around the super-synchronous rotation. When «,. and -, increase, the
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oscillation tends to zero. Finally, if v. ~ v, > n, the stationary solution is damped to
synchronous rotation. We have also calculated the possible atractors when the eccentricity
and the friction parameter p are varied. We recovered the resonances trapping in commen-
surabilities Q. ~ Q, ~ #£n (where k = 1,2,3,--- € N) as shown in Ferraz-Mello (2015a)
and Correia et al. (2014) for the homogeneous case, and we found that if friction remains

low, the non-zero diferential rotation commensurabilities 2, ~ %n and Qg ~ %n, with
i, =1,2,3,--- € N and ¢ # j, are possible. When the friction increases, the resonances
with higher differential rotation are destroyed. If i continues increasing, only survive the
resonances in which core and shell have the same rotation.

The two-layer model was applied to Titan, but adding to it the torques due to the
exchange of angular momentum between the surface and the atmosphere, as modeled by
Tokano and Neubauer (2005) and by Richard et al. (2014), and the results were compared
to the determinations of Titan’s rotational velocity as determined from Cassini observations
by Stiles et al. (2010) and Meriggiola et al. (2016). These comparisons allowed us to
constrain the relaxation factor of the shell to v, < 107 s™'. The integrations show that
for 7, < 1077 s7! the shell may oscillate around the synchronous rotation, with a period
of oscillation equal to the orbital period, and the amplitude of this oscillation depends on
the relaxation factors . and 7, and the ocean’s thickness and viscosity. The tidal drift
tends to zero and the rotation is dominated by the main periodic term.

The main result was that the rotational constraint does not allow us to confirm or
reject the existence of a subsurface ocean on Titan. Only the maximum shell’s relaxation
factor v, can be determined, or equivalently, the minimum shell’s viscosity ;. When a
subsurface ocean is considered, the maximum shell’s relaxation factor is such that v, < 107°

s~!, depending on the ocean’s thickness and viscosity values considered. Equivalently, this

> 10'8 Pa s, some

~J

maximum value of v, corresponds with a minimum shell’s viscosity 7
orders of magnitude higher than the modeled by Mitri et al. (2014). When the non-ocean

—1and

case is considered, the maximum shell’s relaxation factor is such that v, < 10719 s
the corresponding minimum shell’s viscosity is 1, = 10! Pa s. For these values of v,, the
amplitude of the oscillation of the excess of rotation reproduces the dispersion of the )
value of £0.02 deg/yr around the synchronous value, observed as reported by Meriggiola

(2012) and Merigiolla et al. (2016). It is important to note that in all the cases studied,
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the influence of the atmosphere can be neglected, since it does not affect the results in the
ranges of 7, and v, where the excess of rotation calculated is compatible with the excess
of rotation observed.

Finally, we extended the Darwin theory to a differentiated non-homogeneous body
formed by N homogeneous layers with differential rotation, and compared the resulting
equations that describe this theory with the equations given by the creep tide theory.
The main result of this comparisons, was that the creep tide theory can be interpreted as
one particular case of the generalized Darwin’s theory, where the lags and the dynamical
tidal Love number depends on the frequencies and the viscosities. While the generalized
Darwinian is an analytical free-parameters theory, the creep tide theory is equivalent to
fix these free parameters with one specific rheophysical law (the rheology of one viscous

fluid, through the Navier-Stokes’s equation).
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Appendix A

Shape and gravitational potential of one ellipsoid and

one ellipsoidal layer

A.1 Homogeneous ellipsoid

Let us consider a homogeneous triaxial ellipsoid with density d, semi axes a > b > c,

equatorial mean radius R = v ab and equatorial and polar flattenings defined as

a—"b b—c
=" €&="—p (A.1)

Then, the semi axes of this ellipsoid can be written as

o = R-,/1+(%”)2+%- ~R[1+ 2]
=y (3) 5=l
c = R-\/1+(6—2p>2—%p—ez %R[ —62—p—ez], (A.2)

Let us also consider the equation of surface of this homogeneous triaxial ellipsoid, in a
reference system where the semi axes a, b and ¢ are aligned to the coordinates axes x, y

and z, respectively:
2 2 2
2 pta

If we use the semi axes ([A.2)), the spherical coordinates

~1. (A.3)

x = psinf cos @; y = psinf sin ; 2= pcosh, (A.4)
and expand to first order in the flattenings, we obtain

p=R (1 + %’ sin? f cos 2¢ — [%ﬂ + ez] cos” 0) . (A.5)



122 Appendix A. Shape and gravitational potential of one ellipsoid and one ellipsoidal layer

The mass of this ellipsoids is

A Am s €
m = 3dabc~ 3dR [1 5 ez]. (A.6)

The principal moments of inertia are

1 2
A = Sm(b2 + ) = -mR*[1 — ¢, — €]

5
I S BT N S
B = 5m(a +c°) ~ 5mR [1—¢,]
1 2
C = gm(a2 +b%) ~ ngQ, (A7)

and its differences are

2
C—A =~ ngQ(ep +e€,) ~ Cle, +€,)
2
C-B =~ SmR2ez ~ (e,
2
B—A = ngQGp ~ Ce,. (A.8)

If we consider that the flattenings are
€p = €7, €, = €M, (Ag)

then, the difference of the principal moments of inertia can be approximated to first order

in the flattenings as

C—-A =~ C(6J+€M)
C—-—B =~ Cey

The gravitational potential U generated by this ellipsoid, at an external point r* =
X + y*y + 2%z, may be presented by Laplace series. Neglecting harmonics of degree

higher than 2 we have
_Gm  GI 3G

Ur*) = - 3 + 2% L™ + Lyy™ + 12" + 2L, 0%y + 21, y" 2" + 21,,2% 2" |,
(A.11)
where r* = |r*|, I is the moment of inertia of this ellipsoid, relative to the center of

mass and I, are the components of its inertia tensor (see Beutler, 2005; Murray and
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Dermott, 1999). If the reference axes are oriented following the principal axes of inertia,
then I, = 0if n # m. Because A = I,,, B = I, and C' = I,,, and hence 2] = A+B+C,

the gravitational potential can be written as

B—-A — B
Ur*) = _Cizn — G(Qr*5 )(3x*2 — 7))+ 7(?(027“5 )(3,2*2 —r*?), (A.12)
or, using the Eq. (A.8]), we obtain
G GC GC
Ur*) = — rin - ﬁe,,@ cos? p* sin? §* — 1) + WEZ(Z% cos?0* —1). (A.13)

Another useful way to express this gravitational potential is

_Gm 3GC

rr o 4pe3

(2 re)Beoss 1) (A1)

Ue?) = 23 \ 2

€, sin” 0% cos 2p* +

It is worth emphasizing that both the surface equation (A.D) as the gravitational po-
tential (A.13) are valid in a reference system where the semi axes (or, equivalently, the
principal axes of inertia) are aligned to the coordinates axes x, y and z. In a reference
system rotated, around to the axis z, at an angle ¢,, these equations remains valid if we
use the longitude transformations ¢ — ¢’ — ¢, and ¢* — ¢* — ¢,., and the co-latitude

transformations § — @' and 0* — 6’*. That is

_ €p 2y " & 2 ot
p=R (1 + 5 sin ' cos (2¢" — 2¢,) [2 + ez] cos 9) , (A.15)
and
* _ Gm GC 2 I£3 22 ik GC 2 nix
Ur*) = . 2r*3ep(300s (o br) sin” 0 1)+ 2T*gez(i’)cos 0 1),
(A.16)
or
«w _ Gm 3GC ., . . GC (e, 9
Urr*) = — T g EoSin 0" cos (2¢" — 2¢,) + 53 <§+ez) (3cos®f —1).

(A.17)

A.2 Ellipsoidal layer

Let us consider a homogeneous triaxial ellipsoidal shell with density d;, outer semi axes
a; > b; > ¢;, outer equatorial mean radius R; = +v/a;b; and outer equatorial and polar

flattenings
i . — Vi iy _ bi—c
eE)) =& ; ) = R (A.18)
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At the inner ellipsoidal boundary, the semi axes are a; 1 > b; 1 > ¢; 1 (not necessarily
aligned with the axes of the outer surface), the inner equatorial mean radius is R;_; =

\/a;_1b;_1 and inner equatorial and polar flattenings are

(i-1) _ aj—1 — bz’—l_ (i-1) _ bi1 —ciq A19
K Ry o © Ry (19
The semi axes of the outer boundary are
@\? 0 [ 0]
a\° 0] [ 0]
€ € €
' ' \ * ( 2 ) 2 ' 2
OANIO R EONE
¢ = R; \l—l- % —%—eg) ~ R; 1—%—63) . (A.20)
and the semi axes of the inner boundary are
(i-1)\ 2 (i-1) r (i-1)
ep Gp 6p
i1 = R;_ 1 ~Ri_|1
a;—1 Rz 1 \ + < 9 ) + 9 Rz 1 + 9
(i-1)\ 2 (-1 (i-1)
€ € €
bioy = Ri_ 1 4 — L ~ R |1—-2
i—1 Rz 1 \ +< 9 9 Rz 1 9
(i—1)\ 2 (i—1) (i—1)
ci-1 = Ry \ 1+ <6p2 - 6p2 — eV xRy [1— ©__ egz_l)] .

(A.21)

Because the semi-major axes a; and a;_; are not necessarily aligned, we consider a
reference system such that the outer semi-major axis a; and the inner semi-major axis a;_{
are not aligned with the coordinate axis x. In this reference system, using he Eq. (A3,

the surface equation of the outer boundary of the layer is

(4)
pi = R;

1+ % sin @ cos (20 — 2¢;) —

and the surface equation of the inner boundary of the layer is

65)171)

pi-1 = R (1 +

sin 0 cos (20 — 2¢; 1) — [

(2)
% + €| cos? 9) : (A.22)
(i-1)
£ 4 691)] cos? 9) , (A.23)
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where ¢; and ¢; ; are the angles formed between the semi-major axes a; and a; 1, respec-
tively, and the coordinate axis .

The mass m; of this layer, can be written as the subtraction of the masses of the two
homogeneous ellipsoids of same density d;: the homogeneous ellipsoid of mass m/ and same
surface as the outer boundary of the layer, less the homogeneous ellipsoid of mass m; and

same surface as the inner boundary of the layer (Fig. [A.l). The total mass of the layer

LD
1— ”2 — D) (A24)

Note that this result is independent of the orientation of the ellipsoidal boundaries semi

then is

A 0
T 1—2—622)

m; = m; —m. ~ —d; (Rf’

i 3 - R'?fl

axes. The masses m, and m] are

(i) .
€ (4)
, A7 mZRf’ |:]_ - pT — €3 ]

m; = di—abic; & @ ) (-1 :
3 Rp[1—g -] — Ry, [1- e — )]

(i—1) .
€ (i—1)
. A m; R}, [1 -t —€ ]

m; = digaiflbiflciflz

B2 O] 1o g -]

2

QDe

Figure A.1: Scheme for the calculation of the mass, principal moments of inertia and gravitational
potential of a homogeneous ellipsoidal layer as the subtraction of two homogeneous ellipsoids of same

density d;.

To calculate the principal moments of inertia A;, B;, C; of a homogeneous triaxial el-
lipsoidal layer when the inner and the outer boundaries are not aligned is particularly
complicated because the orientation of the principal axes of inertia do not coincide with
the axes of symmetry of both boundaries. In the sequence we focus in the particular case

in which the inner and the outer boundaries are aligned.
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In this case, we can use the same scheme used to calculate the mass of the layer.
The principal moments of inertia of the layer, can be written as the subtraction of the
principal moments of inertia of two homogeneous ellipsoids of same density d;: the principal
moments of inertia of one homogeneous ellipsoid of mass m! and the same surface as the
outer boundary of the layer, less the principal moments of inertia of the homogeneous
ellipsoid of mass m! and the same surface as the inner boundary of the layer. Using the
semi axes (A.20) and ([A2])), and the masses ([A.23]), the principal moments of inertia can

be approximated to first order in the flattenings as

1 1
A= oml () = ol (4, + )
2 RI-RY, [ AWK AR 3AMRNe)) AR |
R M= -z -
5 "RF-R.,| R -R._, R -R., 2R-R_, R -R,
1 1
B, = gm; (a7 +¢f) — gm;-' (a7 1+ ¢ y)
2 R-RL [ AR ARED) 1 ARNE) AR

Q

s E—— | — = -2
"R R, | R_R, R_R, 2R _R., R_R,

)

G = (1) — gl (k) + )

7

L2 BR[O AR ARE) 1 A(RK) AR
5 'R} - R}, R}-R}, RI-R} 2R}-RY, R}—-R},|
(A.26)
and its differences are
a4~ o | AR ARKY)
o "R} -R_, R}-R.,
A(R%D)
Cz — Bz ~ 0172
m- R
A(RPD)
R

where A(f;) = fi — fi_1, denotes the increment of one function f;, between the inner and
the outer boundaries of this layer.
Using the same scheme used to calculate the mass and the principal moments of inertia,

the corresponding gravitational potential of this homogeneous triaxial layer at an external
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point r* is
Ui(I‘ ) = — e - 95 (393 —Tr )+T(32’ —-Tr )
Gm;  GC; A(RD) . GC; A(R ) .
X T T g T R?—1(3 cos? p* sin? 0* — 1) + 2~ R (3cos? 6 — 1),
(A.28)
or
, Gmi  3GC; ARYY) . o
U(r*) = — R sin” 0* cos 2¢* +
(i) ,
GO AR (5 +¢) o
: *—1). A2
+2r*3 BT, (3cos” 0 ) (A.29)
If we consider the static equilibrium figure, the flattenings are
e = Hyer; e = Grenr, (A.30)

where Hj and G; are the Clairaut numbers (see Eq. [ZI2). Then, the difference of the

principal moments of inertia can be approximated to first order in the flattenings as

Q

Y Cl(,CZGJ-f‘E;EM)

L

Q

L

A
A

&

PR Ciﬁiﬁ], (A31)

L

where the parameters £; and L] are

oo HR} —Hi R} | r— GiR; — gi*IRzil_

5 5 ? L 5 5
Ri - Ri—l Rz o Ri—l

(A.32)

The coefficients £; and L) play a role equivalent to the coefficients #; and G; for the
quantities C; — A;, C; — B; and B; — A;. In this case, the moments of inertia B; — A;
(resp. C; — B;) of the i-th layer can be written as the homogeneous moments multiplied
by the coefficients £; (resp. L), characteristics of this layer. The difference between L;
and L) comes from the fact that the body has a differential rotation. If we assume a rigid
rotation, then £ = £;(2/n)?.

The corresponding gravitational potential of this homogeneous triaxial layer at an ex-
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ternal point r* is

UZ(I'*) - _ TT - ( o5 )(393*2 - T*Q) 4 %(32*2 - 7“*2)
. L. L
~ —GTZ — GQCifl €7(3cos® o*sin? 0* — 1) + GQCifl rr(3cos® 0 — 1),
r r r
(A.33)
or
% . sz SGCZEl . 9 s « GCZ €y ’_ 2
Ui(r") = — T s €/sin 6" cos 2" + 503 (ElE—I-QEM) (3cos® 0" —1).
(A.34)

Although we do not calculate the principal moments of inertia when the inner and the
outer boundaries are not aligned, it is possible to calculate easily the gravitational potential
with the same scheme used to calculate the mass of the layer and the principal moments
of inertia. The potential of the layer, can be written as the subtraction of the potential of
two homogeneous ellipsoids of same density d;: the potential of one homogeneous ellipsoid
of mass m; and the same surface as the outer boundary of the layer, given by the Eq.
(A.22), less the potential of the homogeneous ellipsoid of mass m! and the same surface
as the inner boundary of the layer, given by the Eq. (A.23).

The corresponding gravitational potential is

Vi) = Gm; GC; A(R;r’egi)(?) cos? (¢* — ¢;) sin” 0" — 1))
(o= r* 273 R} — R? |
A(R2 e (3cos? 0" — 1
_A(Re (3cos )| (A.35)
Ry — R},
or
. Gm;  3GC; AR cos (20* — 2¢)) ., .
Ui(r") = — e R R sin” 0" +
O
CA(RI (2 + €
GG ARG + 7)) (3cos® 0 — 1). (A.36)



Appendix B

The contribution of the gravitational potentials to the

equilibrium equations

B.1 The equilibrium equations

In this Appendix, we detail the calculation of the contribution of each gravitational
potential to the 2NV equilibrium equations. For the sake of simplicity, due to the operators
XZ(-I) and Xz('2) are linear, the contribution of the gravitational potential of i-th homogeneous
layer can be calculated as the subtraction of the contributions of the two homogeneous
ellipsoids of same density d;: the contribution of one homogeneous ellipsoid of mass m;
and the same surface as the outer boundary of the layer, less the contribution of the
homogeneous ellipsoid of mass m! and the same surface as the inner boundary of the layer
(see Fig. [Ad]). Then, the contribution of the i-th layer to the equilibrium equations can

be written as

Xy = W -y

Xy = 2w - xPwy. (B.1)
B.2 The contribution of the outer layers

Let us consider the contribution by the j-th layer at one point r; = z;X + v,y + 2;Z on
the surface of the i-th layer, assumed interior to it. The gravitational potential U} of one

ellipsoid with density d; and the same surface as the outer boundary of the j-th layer is

UJ'- (r;) = U(')j + Ay w7 + Agyyf + A, 22, (B.2)
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where the coefficients Uy;, Ajp,, Ap, and A, are

. 2 00 dt
Uy = —mGdjc /0 V@ + at) (1 + Bit) (1 + ;)
0 dt
AI = Gd ]
0 dt
AI = Gd j
0y TGd;f; /0 (1+ B;t) \/(1 + a;t) (1 + Bt) (1 + 1)

dt

/0 (1+1)/(T+ ayt) (1 + Bit) (1 + y5t) (B.3)

ABZ = ﬂGdj’)’j

and G is the gravitational constant (see Tisserand, 1891, Chap. 8 and 13; Jardetzky, 1958,

Sec. 2.2). Then the derivatives of the potential are

19U o /°° dt
©; Oz TGN W agt)R(1 + Bit) (1 + 1)1
! [o¢]

1 oU; oGy, / dt

yi 0y; o (14 ayt)' 2(1+4 B;t)3/2(1 + t)/?

1 0U; 0 dt

——— = 271Gd, B.4

2 0% 8 ]/0 (L + a;t)2(1 + B0 2(1 + )37 (B4)
and its contribution to the first equation of equilibrium is

> (1 — )t + (o — )
Wy =2 Gd./ 2 ' U dt. B.5
xi () il o (L4 a;t)32(1 + B;t)/2(1 + t)3/? (B-5)

Neglecting terms of order 2 in the flattenings we can write

() ()
W =6, {2 (€ +e9) - 6(§>} - Lr

Similarly, if we consider the potential U} of the one ellipsoid with density d; and the
same surface as the inner boundary of the j-th layer, the contribution of this potential to

the first equilibrium equation, neglecting terms of order 2 in the flattenings, is

UV | 6971)) ]

- (B.7)

Wy — o3 [ 0 4 0y (
Then, the total contribution of the outer layers to the first equilibrium equation is

S Py =S P - S P, (B.8)

j=i+1 j=it+1 j=i+1
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and using the above results, we obtain

6, i 6/ ( ;
Z e —¢Z dz+15 (€ + ) = G~ > (dy - dj+1)g (€ + 7). (BY)

Jj=i+1 Jj=t+1

Analogously, the total contribution of the outer layers to the second equilibrium equa-

tion is
N
6 4 6
E Xz G dl+1 6 G? ' E (d — d]+1)g ) (BlO)
J=i+1 j=i+1

B.3 The contribution of the inner layers

The gravitational potential U} generated by one ellipsoid with density d; and the same
surface as the outer boundary of the j-th layer, at an external point r; = ;X + v,y + 2,2
on the surface of the i-th layer may be presented by Laplace series. Neglecting harmonics

of degree higher than 2 we have (see Eq. (A.13]))

Gm!. GO, . : GC’
UJ'-(rZ-) = — - l 27‘5] (egj) + egj)) (3:)1:12 - rf) o7 ( ) (3yl —7r: ) (B.11)

and its derivatives are

1 9U; _ ij+GC((J)_2€())+

z; O 3 2r?
5GCY . , 5GC"
+2—7](€E,J) + ) (322 — r?) + 577 ) (3y2 — r?)
T T
1 oU! Gm!, GC" )
won = o e -2+
5GC 5GC

27’7J (egj) + egj)) (3:1;22 — 7“22) +

1 0U; Gm!, GC% _ . ,
—— = = + 9(765)3)—1-469))4-

2 0z r; 2r?
5GC% . . 5GC" .
+ 5 7J (65,3) + egj)) (3xf — 7’22) + 5 7J6£J) (3yf — 7’22) ) (B.12)
7 T

(3 13
Making the approximation r; ~ R;, the contribution to the first equilibrium equation,

to first order in flattenings, is
4T R3 . . 6R2

Myrmry

; R3 ((9>+egf>) : (B.13)

Similarly, if we consider the potential U of the one ellipsoid with density d; and the

same surface as the inner boundary of the j-th, its contribution to the first equilibrium
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equation, neglecting terms of order 2 in the flattenings, is

Ar RS, . oy BRI -
) = G?# [2 (e +€) — 5}7%2 (V1D + €Y 1>)] : (B.14)
Then, the total contribution of the inner layers to the first equilibrium equation is
) A 6 i—1 3
1 i i
ZXE >(Uj) = Gg 2d; gdi + Z2(d] - dy+1)R3 (62) + 62)) -
7=1 j=1 ()
i—1 5
Am 6 o
—G5 ) 2 (d = dj) 35 () + ), (B.15)
j=1 '
or, using that
N 4 N 4 3 3
Z ?(dj - d]+1)R] = Z ?dj (R] - Ryfl) = mr, (B16)
7j=1 7j=1
we obtain
i N 3 3
1 4 3mT 6dz R — Rz i i
ZXZ(' (Uy) = G? w3 5 Z 2(d; _derl)]T (e + ) =
j=1 i j=i+1 i
i—1 5
4 6 R .. .
~G— > =(d; — de)R—f5 (e9) 4 €D). (B.17)
i=1 i

Analogously, the total contribution of the inner layers to the second equilibrium equa-

tion is
D) = G g =g - D0 2 ) e
=1 i Jj=i+1 ‘
i1 5
AT <6 R}
—G? Z g(dj _ dj+1)R_J56£])' (B18)
i=1 '

B.4 The contribution of the tidal potential

If r = rZ is the position of the mass M, the tidal potential, to second order, at a point
r; = 1;X + y;¥ + 2;z on the surface of the i-th layer is (Lambeck 1980)

GM7r?

Utid = — T3 ! Pg(f' : fz) (B]_g)

where P, is the Legendre polynomial of degree two. The differential acceleration of this
point is

r;
7“2

. M
— Vi, Uiia = oM l 3(ri 1) r] G

3 = —— Vi , (B.20)
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therefore their derivatives are

laUtid _ _2GM

x; Or; r3

laUtid _ GM

yi 0y; B

1 U4 GM

- azt. = (B.21)

Finally, the contribution of the tide in the equilibrium equations of the i-th surface is

1 3GM  4GM , ;
XS)(Utzd) = — 7’3 + 7’3 (65))4—62))
4GM

e, (B.22)

z

XZ(Q) (Utia)

3
However, we discard terms which containing eE,i), eg), because when we calculate the
flattenings of each layer, they appear multiplied by a factor of the same order as ef,k), egk),
therefore we obtain
B 3GM
3
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Appendix C

The relaxation factor

Let us consider the equilibrium surface p;(¢,6) between two adjacent homogeneous
layers of the body m whose densities are d; (inner) and d;1; (outer). We consider that at
a given instant, the actual surface between the two layers (;(¢,6) does not coincide with
the equilibrium surface (Fig. [C)). In some parts, the separation surface is above the
equilibrium surface (as in region I) and in other parts it is below the equilibrium surface
(as in the region II). Let us now consider one small element of the equilibrium surface in
region I. The pressure in the base of this element is positive because the weight of the
column above the element is larger than its weight in the equilibrium configuration. Note
that the column is now partly occupied by the fluid with density d; and d; > d;;. The
pressure surplus is given by

where Aw = (d; — d;y1)g is the difference of the specific weight of the two columns in
the neighborhood of the separation surface, and h is the distance of the element of the
equilibrium surface to the actual separation surface. g is the local acceleration of gravity.

The radial flow in the considered element is ruled by the Navier-Stokes equation:
0= F..; — Vpr +n;Au (C.2)

where Fpy; is the external force per unit volume (equal to zero if no other external forces are
acting on the fluid), u is the radial velocity and »; is the viscosity of the layer i (assuming
n; > ni+1). We notice that A is operating on a vector, contrary to the usual A. Actually
in this pseudo-vectorial notation, the formula refers to the components of u and means the

vector formed by the operation of the classical A on the three components of the vector
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diJrl

d;

Figure C.1: Interface between two adjacent homogeneous layers of m whose densities are d; (inner) and
di+1 (outer). (i(¢,0) and p;(¢,8) are the actual and the equilibrium surfaces, respectively, of the outer
boundary of the i-th layer. I (resp. II) is the region where the actual surface is above (resp. below) the
equilibrium surface. F; (resp. Fyy) is the force acting on one small element of the equilibrium surface in

the region I (resp. region IT) due to the pressure surplus (resp. pressure deficit).

u. We assume that the flow, respect to the equilibrium surface, is radial and thus u is

restricted to its radial component u,. That is

0~ Aw +n; Viu,. (C.3)
Then
Ou, 20u, 2u Aw

Viu, = T T T = . C4
“ or?  r or r? M (C-4)

The general solution of this equation is

CQ Aw

H(r)=Cir+— — ? C5
u, (1) 4+ = 4772'T , (C.5)

where C'; and C5 are integration constants. The task of interpreting and determining its
integration constants becomes easier if the solution is linearized in the neighborhood of

r=p; (le. h=0):

un(r) = u(pi) + uy(pi) (r = pi) + %U;'(Pi)(r —pi)" + (C.6)

Hence u,(p;) = 0, that is, there is no pressure surplus (or deficit) when the actual
separation surface coincides with the equilibrium and the linear approximation of the

solution is obtained when we assume v (p;) = 0.

Therefore

Ci = pAw/6m;
Cy = p*Aw/12n;. (C.7)
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Hence u!(p;) = p;Aw/2n;, and the linear approximation corresponding to the Newto-

nian creep of the fluid is

u (1) = 7i(r — pi), (C.8)
where
/ _ Awpz’
W= h(p) = S 9)

In the region II the calculation is similar; however, instead of a pressure surplus we
have a pressure deficit because the equilibrium assumes one fluid with density d; below the
equilibrium surface, which is now occupied by fluid of density d;;; < d;. The equations
are the same as above. We note that in the new equations, the adopted viscosity conti-
nues being 7; since we assumed it larger than 7,,;. The relaxation of the surface to the
equilibrium will be governed by the larger of the viscosities of the two layers.

In the homogeneous case we have one layer body (N = 1). If we consider dy,; = 0
(neglected the density of the atmosphere), we recover the expression of the relaxation

factor of FM13 and FM15
’LURN

: C.10
2 (C.10)

IN =

where w = dyg is the specific weight and py ~ Ry.
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Appendix D

The integral of section B.7

Proposition:

o[ a\*4
— Q; (—) sinv dl = 0. (D.1)
2m J, r

To prove (D.I), we consider only the tidal force. Introducing the adimensinals variables

and time
v = 2 v=nt=1 (D.2)
Vi

the rotational system can be written as

(y1 + Piy) cos (jx) + sin (jx)
1+ (y1 + Pu)?

. *
Yy = _T11 E EZ,kE2,k+j
k,jEZ

- *
v = —15 E E2,kE2,k+j
kjez

£
+T5 Z Es B g+
k,jeZ

(y2 + Pay) cos (jzx) + sin (jz)
1+ (y2 + Pax)?

(y1 + Pyix) cos (jz) + sin (jz)
1+ (y1 + Pu)?

(yn + Pyy) cos (jz) + sin (jx)
1+ (yn + Pn)?

- *
yv = Iy E :EQ,kEQ,kJrj
k,je7

£
+Tyn 1 E Es i Fa g
k,jE7

(yN—l + PN—lk) COS (jﬂ?) + sin (jﬂ?)
1+ (yn—1 + Pn_1i)? .

(D.3)

where the constants
. 2T H;R kn
i = 5 pp Py, = .
vin By — R, Vi

In low-7 approximation (y; < n), we can neglet the terms k # 0. If we consider only

(D.4)
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the terms j = 0, the system becomes

. _T1*1E22,03/1
N 1+
by = _T2*2E22,03/2 n T2*1E§,0y1
2 1+ y2 1+ y?
P _TITINE%,OyN i T]th—lEg,OyN—l‘ (D.5)

L+yy L+yk
In the same way in Ferraz-Mello (2015a), each solution of this system tends to zero.
The role of the terms j # 0 that are periodic fluctuations which are the harmonics of the
orbital period are added to the solution. If we consider the terms j # 0, we have that

y; < 1, and the rotational system is

Y Kysin(jz), (D.6)

JEL jF#0

where Kij = (T:;; —T

ii—1

)E20Es,;.
The solution of this differential equation is
Kij .
Yi(r) = yio — K + Z —~2 cos (jx), (D.7)
JEL j#0

or, in term of the angular velocity, we obtain

Qi = Qig — Z— Z ,YZ i COS jnt) (DS)

JEL j#0

Therefore, the square of the angular velocity of the j-th layer can be written as
QF = ZAjk cos k. (D.9)

Finally, the integral (D.I) is

N 0%95 (%) sinw de =
S A (L[ v L[ s ) =
0 0

(D.10)
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In high-vy approximation (v; > n), we can neglet Py, then, the system can be written

as

Y1 cos (jx) + sin (jz)
L+y7

n o= —T§ Z Ey i Eo gy

kjEz

g = T3, Y EapBapy;

kjEr

+T5, ) EagBapy;

k,jEL

Yo cos (jx) + sin (jz)
5 +
L+,

Y1 cos (jx) + sin (jz)
1+y?

yn cos (jx) +sin (jz) N

v = —Tnn Z By 1 Eo kg 112
N

k,jEZ

*
+Tnn Z Es 1 Eo ot j
k,jEL

YN_1 COS (]x) -+ sin (]x)
1+ yN 1

If we consider only the terms j = 0, the system becomes

. * Y1
no= -1 Z E22,k72
keZ L+u
Y2 = —TI Z By + Ty Z By
k€Z ‘1 + Y2 keZ T+u
. * * N—-1
Yn = _TNNZ kT 5 T Inne 1ZE21¢7
kEZ I + Yn kEZ L yia

(D.11)

(D.12)

which is identical to the system [D.3, with ), , 3, instead of E3,. Therefore, each

solution of this system tends to zero. As in low-v approximation, the role of the terms

j # 0 are periodic fluctuations which are the harmonics of the orbital period are added

to the solution. If we consider the terms j # 0, we have that y; < 1, and the rotational

system is
Z K sin (
JEZ j#£0

where Kz{j = (T;; = T;_) ZkEZ Es kB gyj

Using the solution of the low-v approximation, then, the angular velocity is
Vil Vil .
——cos (ynt
+ > F (jnt),

jez jzo I

Qi = Qi —

and the integral (D.I)) is zero.

(D.13)

(D.14)
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Appendix E

Fluid Love’s number of the i-th layer

E.1 The tidal fluid Love number of the i-th layer

The disturbing potential generated by the :-th homogeneous ellipsoidal layer, deformed

only by the tide due to a mass point M of mass M orbiting at a distance r, at an external

point r* is
; GC,L; 15GMR3,C;L; )
6Uz~(t 9 (r*) = — py €7(3cos® p*sin? 0* — 1) = — 8mTT?]’\;“*3 (3cos? ¢*sin? §* — 1),
(E.1)
(see Eq. (A34)).
On the other hand, the tidal potential at the same point r* is
GM *2
Upia(r") = —Tg(scos? o sin2 0" — 1). (E.2)
r

The Love’s theorem says that (Munk and MacDonald, 1960; Correia and Rodriguez,
2013)
SU (Ry) = kiUyia(R), (E.3)

2

therefore, we obtain

15C; LR

= 159G Lilty B4
IR (E-4)

The constant k; is tidal fluid Love number of the i-th layer, and can be rewritten as
ki = kiLi, (E5)

where £; is given by Eq. (A32), and

(E.6)
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E.2 The rotational fluid Love number of the i-th layer

The disturbing potential generated by the i-th homogeneous ellipsoidal layer, deformed

only by the rotation with angular velocity €2;, at an external point r* is

(cen) % . GCZ,C;_ - 9 s . 15R§’Vn201£; - 2 s 5R§Vn2C'Z£;
U (") = — 53 ér(3sin” 0 _2)__8m—Tr*38m 0 —|—W
5R3n>C L]
U™ (r¥) 4 SN i E.7
)+ (E7)
(see Eq. (A34).
The centrifugal potential at the same point r* is
* 1 2 %2 .2 Nk
Uecen(r*) = —iQir sin” 6*. (E.8)
The Love’s theorem say that
SU™ (R;) = KiUeen(Ry), (E.9)

therefore

15C; n’LR3
k= . LN E.1
iR R (E.10)

The constant £} is rotational fluid Love number of the i-th layer, and can be rewritten

as
2 1
k’_@n_ﬁi
i T e 2
Qz'

where £} and %, are given by Egs. (A.32) and (E.Q), respectively.

(E.11)

E.3 Potential of the tidally deformed layer

Finally, using Eqs. (E.D) ana (EII]) in the disturbing potential (A.34]), we obtain

GMR5 02 R5 2
sU (%) = — GMIB g 2 gy BT <sin2 o — §> | (E.12)

Qr*3p3 23




Appendix F

The Cayley functions

In this appendix we complete some calculations used in chaptersBland 6. We also show

the Cayley coefficients Ey and Esy, for |k] < 4.

F.1 Auxiliary formulas

In this section we complete some calculations used in the Eqgs. (3:38) and (6.26). For

this sake, we use the Fourier expansion given in the Online Suplement of Ferraz-Mello

(2015):

(g) sin (qu+ (p— @)l + ®) = ZEqpﬂsm —jb),

j=—00

and

a\"m - n .
(;) cos(qu+ (p— )l + ®) = Z E‘g’p)ﬂ cos (@ — jo),

where the more general Cayley function is defined as:

1 27 a\
(M) (p) = - _
E)(e) = 277/0 (r) cos (qu + (p — ¢)¢) dt.

We also use the auxiliary formulas:
p®_ 3¢ (pw _ p
k 0,k — 2m 1,1—k — 1,14k |>
and

3 3e (4 11— 2
(Q_k)Eé,lz 2\/1_7< 3(,12 - L IZ 1) +2 62E2k7

(see Online Suplement of Ferraz-Mello (2015) for more details).

(F.3)



146 Appendix F. The Cayley functions

Proposition 1:

4 5
F = 2\/%_62 <g) sinvsin (2v + (k — 2)¢) — V1 — ¢? <%) cos (2v + (k — 2)0)
1 o @]
= -3 32—k —§)EY) cos . (F.6)
j=—00

Using Eq. (E.2)), with @ = 0, we obtain

4 1 4
(9) sinvsin (2v + (k —2)0) = 3 (Q) (cos (v+ (k—2)¢) — cos (3v+ (k — 2)6))
r r
[ 4 4 ,
-~ 75 Z <E§,12+j+1 - E§,12+j—1> cos jt, (F.7)
j=—00
and
ay\® — 0) ,
(;) cos (2v + (k — 2)¢) = Z By jcos gl (F.8)
j=-—00
Then
1 4 SN ,
! ( (B - E, ) +2vT=E B Es,,zﬂ.) cos,
j=—o00 j=—o00
(F.9)
or, using ([EL3)), with the transformation & — k + j
! ES) cos je. F.10
=5 > @k~ B cos) (F.10)
‘]_700
Proposition 2:
F: 5 ( >4s cos (2v + (k —2)0) + V1 2( ) sin (20 + (k — 2)¢)
= — ] sinw v —e in (2v —
’ 2\/1 — ¢
= — Z - 2,2sm]£ (F.11)
]_—oo

Using Eq. (E.]), with @ = 0, we obtain

<2)4 sinvcos (2v + (k —2)0) = ! (2>4 <sin (Bv+ (k —2)¢) —sin (v + (k — 2)6))

r 2 \r
1« 4 4 o
) <E§,12+j+1 - E£,2+j71> sin jt, (F.12)
j=—00
and
5 oo
(%) cos (2v + (k — 2)¢) Z Eg’gﬂ sin j/. (F.13)

‘]_700
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Then

Y 4 = 5 o
=3 ( (Eé ;2+]+1 - Ei,iiﬂﬂ) +2V1 —e? Z Eé’lzﬂ.) sin j/,

j=—00 j=—00

or, using ([EL3]), with the transformation & — k + j

:——Z — Z,Zsm]é

‘]_700

Proposition 3:

oo

A NI 1 3)
(;) s1nvs1nk€:§ Z (k +j)Eg, cos jL.

j==00

3e
21 —¢?
Using Eq. (E.2)), with @ = 0, we obtain

F3:

(2>4 sinvsinkl =

r

a

<—)4 <Cos (v —kl) — cos (v+ k€)>

r

4 4 .
Z (Ei,l)—k—j - E§,1)+k+j) cos jL.

j=—00

N — N

Then

! ‘ 4) .
B S (L Bl o
’ 22@7‘:—00 L1—k=j 1i+k+j ) COSJ

or, using ([E24]), with the transformation k — &k + j

o0

1 N (3 .
F3 = 3 Z (k +])Eé’,2 cos jl.

j=—00
Proposition 4:
3e
Fp=—
ao/i-e
Using Eq. (E.l), with @ = 0, we obtain

AN RS ®
(;) s1nvcosk€:§ Z (k +j)Eg, cos jL.

j==00

(%>4sinvcos k¢ = % (%)4 (sin (v+ k) +sin (v — ké))
= -3 Z ( L14k+5 §41)fkfj) sin j¢.
J—_OO

Then

L g (1 -
Fa= iﬁZ(llk] E11+kﬂ)sm]€.

j=—00

or, using ([E.4]), with the transformation k — &k + j

oo

Fy= Y (k+j)E) sin jC.

j=—o0
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148 Appendix F. The Cayley functions

F.2 Cayley coefficients

Eyo = 1+§62+18—564

Ey: = ;e+i—ge3

Eyp = §e2+£e4 (F.24)
53

Eys = %—’?63

Eyys = 1—664

Table F.1 - Cayley coefficients Eg ; to O(e*). Eg_r = Fo .

Ey 4 = 51—??64
Ey_3 = %8563
By = Heto 12
Ey , = ge — %63
By = 1- 262 + %64 (F.25)
By = —%e + 11—663
Ey,» = 0
Eys = %863
Eyy = 21—464

Table F.2 - Cayley coefficients E» ; to O(e?).
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