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Matéria escura e bariônica em galáxias espirais: Uma

análise conjunta de observações e simulações

numéricas

Thesis presented to the Astronomy Depart-

ment at Instituto de Astronomia, Geof́ısica

e Ciências Atmosféricas da Universidade de

São Paulo as a partial requisite for obtaining

a PhD in Sciences.

Research Field: Astronomy

Advisor: Professor Claudia Mendes de Oli-

veira, PhD.

This is a corrected version; the original one

is available at the Astronomy Department.

São Paulo

2016





A mi familia.





Acknowledgements

I would like to thank,

My supervisor, Dra. Claudia Mendes de Oliveira, for her priceless support and kindness;

Scientific Collaborators Dr.Volker Springel, Dr. Chris Hayward, and Dr. Philippe

Amram, for their important contributions to this work and their inspiring love for science;
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Resumo

A estrutura interna dos halos de matéria escura de galáxias é uma questão amplamente

debatida. Enquanto as simulações cosmológicas ΛCDM predizem perfis de densidade cres-

cendo abruptamente em direção ao centro (cusps), as curvas de rotação das galáxias suge-

rem a presença de núcleos de matéria escura de densidade constante (cores). Entender a

origem desta contradição cuspy-core é importante para restringir cenários cosmológicos e

modelos de formação de galáxias. Nesta tese, apresento um conjunto de experimentos con-

trolados com simulações de N-corpos+hidrodinâmicas de galáxias e observações simuladas

para testar a precisão dos métodos observacionais na caracterização dos halos de matéria

escura. Partindo de galáxias anãs em halos de matéria escura do tipo cuspy, foram en-

contradas curvas de rotação mais compat́ıveis com a forma esperada para núcleos cored,

oferecendo assim evidência enganosa sobre a verdadeira natureza de seus halos. A principal

razão para isto é a pressurização do meio interestelar pelo feedback estelar, o que reduz a

velocidade circular do gás em ∼5 km s−1 no kiloparsec central. Os experimentos sugerem

que, mesmo com os dados de maior qualidade dos estudos atuais do problema cusp-core,

é extremamente dificil corrigir esse efeito. Dado que as análises das curvas de rotação

simuladas são muito consistentes com as observações, segue-se que os estudos observaci-

onais dessas curvas podem não ser uma evidência conclusiva contra os halos de matéria

escura cuspy. Outros fatos adicionais são examinados em detalhes, cuja maioria aponta

na mesma direção. Na parte final desta tese, simulações de galáxias espirais mais massivas

são utilizadas para introduzir uma metodologia para testar os metodos de determinação

da distribuição de massa estelar a partir de dados fotométricos, e alguns resultados pre-

liminares são apresentados. Globalmente, este estudo representa uma abordagem muito

detalhada e inovadora para estudar a precisão na recuperação das distribuições radiais da

matéria escura e bariônica a partir de observações fotométricas e cinemáticas.





Abstract

The inner structure of galactic dark matter haloes is a long-standing matter of debate.

While ΛCDM cosmological simulations predict cuspy density profiles (i.e steeply growing

towards the center), rotation curves of galaxies seem to indicate the presence of constant-

density dark matter cores. Understanding the origin of this cusp-core contradiction is

important to constrain cosmological scenarios and galaxy formation models. In this thesis

I present a set of controlled experiments to test the ability of observational methods in

recognizing cuspy dark matter haloes. For this purpose, I use N-body+hydrodynamical

simulations of late-type galaxies representative on the local Universe and realistic mock

observations. Starting with dwarf galaxies in cuspy dark matter haloes, I found their

mock rotation curves more compatible with the shape expected for dark matter cores, thus

offering misleading evidence about the true nature of their haloes. The main reason for this

is the pressurization of the interstellar medium by the stellar feedback, which lowers the gas

circular speed by ∼5 km s−1 in the central kiloparsec. The experiments suggest that even

with the highest-quality data from current cusp-core studies it is extremely challenging

–if not impossible– to effectively correct this effect. Given that the analyses from the

mock rotation curves are pretty consistent with those from observations, it follows that

rotation curve studies may not be a conclusive evidence against cuspy dark matter haloes.

Additional facts are examined in detail, most of which point in the same direction. In the

final part of this thesis I use simulations of more massive spirals to I introduce a framework

for testing the accuracy in the estimation of the stellar mass distribution from photometric

data, along with some preliminar results. Overall, this study represents a very detailed and

innovative approach to estimate the accuracy in the recovery of the radial distributions of

the dark and baryonic matter from photometric and kinematic observations.
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Chapter 1

Introduction

This thesis deals with the possibility of measuring the amount and distribution of dark

and baryonic matter in late-type galaxies. Galaxies are the building blocks of the large-

scale structure of the Universe and the ultimate product of ∼13.7 billion years of evolution

since the Big Bang. The population of galaxies is estimated to reach several hundreds of

billions in the observable Universe, but despite such astronomical number, we have found so

far many more intriguing questions than answers regarding the complex physical processes

driving their formation and evolution over cosmic time scales. The study of galaxies is a

fascinating and active matter of research in itself, which also provides key insights into the

cosmological history of the Universe.

In the first part of this introduction I present an overview of the current leading para-

digm of cosmology and galaxy formation. In the second part I describe how the dark and

baryonic matter distributions in rotating disc galaxies may be inferred from observational

data. Basicaly, this is achieved by modelling a galaxy as an ensemble of mass components

with a simplified geometry, which consistently resembles the observed baryonic configura-

tion and explains the observed internal kinematics. Such kind of procedure is sometimes

called mass modelling of galaxies, and I will refer to it in these terms.

1.1 The formation of structures and galaxies in a ΛCDM Universe

In order to understand how galaxies formed in the Universe, one can ask oneself where

everything came from. This question directly points to cosmology, the research area which

aims at describing the whole Universe, its beginning, and evolution. I shall now describe

some basic features of the cosmological standard model to discuss how structure formation
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happened.

The standard cosmological model is primarily based on the Big Bang scenario. The Big

Bang refers to an Universe dense and hot in the past, whereas it is firmly established in

three cosmological observables and one theory. The theory is General Relativity, the best

theory describing gravity, the dominant force on large scales, so far. The first observable is

the expansion of the Universe, first detected by Hubble in 1929 (Hubble, 1929). Basically

speaking, Hubble detected that the farther a galaxy is away from us, the faster this galaxy

is receding from us, regardless the direction on the sky we look at. As the phenomenon

is isotropic and we are “typical” observers (the Copernican Principle), we interpret the

recession as the expansion of the space between us and the galaxies. If we move in time

backwards, this means that eventually all the points in space were much closer, thus

generating hotter and denser regions, up to a point of infinity density and temperature,

which is called the Big Bang1.

The second observable is the abundance of light elements in the Universe. With a very

hot and dense environment, atom nuclei other than 1H were not able to form. As the

temperature dropped due to the expansion, a point was reached where hydrogen, helium

and lithium were formed. Heavier elements could not be formed due to the fast expansion

of the Universe, so they were formed mostly in stars. This prediction was first put forward

in the 1940’s (Alpher et al., 1948), although the first measurements took place in the

1960’s.

The third observable is the cosmic microwave background (CMB). In the hot and dense

early Universe, the radiation was entangled to baryons through the Compton scattering.

This coupling between the two components resulted in a black body spectrum for the

radiation. When the temperature dropped below ∼ 3, 000K, photons no longer were able

to ionize the hydrogen atoms, making the Universe transparent. This period is known as

decoupling, or recombination, and represents the time when the first atoms formed. This

radiation continued to decrease its temperature due to the expansion, where its emission

peak today is at the microwave range of the electromagnetic spectrum, therefore called the

cosmic microwave background. It was first predicted by Gamow and collaborators (Alpher

1 It is important to stress that this extrapolation back in time is only valid up to the Planck era

(∼ 10−43s), before this time it is necessary to use a quantum gravity theory, but there is no successful one

until now.
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and Herman, 1948) and detected by Penzias and Wilson in 1965 (Penzias and Wilson,

1965).

On top of the Big Bang scenario one has to introduce the inflationary paradigm. The

temperature fluctuations observed at the CMB today are of the order of 10−5 and isotropic.

The Big Bang is not able to explain why the CMB is so smooth and isotropic, since light

did not have time to interact and thermalize. In order to solve this issue (along with the so-

called monopole and flatness problems, which are not discusse here), Guth (1981) proposed

a mechanism where the Universe expanded in an accelerated way just after the Planck era,

thereby smoothing the density contrast of the material components of the Universe. This

acceleration was driven by the inflaton field, whose quantum fluctuations were stretched

by the accelerated expansion, providing the seeds for the posterior formation of structures

in the Universe.

Now I shall describe the components of the standard cosmological model. The two

dominant components today, in terms of their current energy density, are the cosmological

constant Λ and the cold dark matter (CDM). These two components give the name of

the model, known as the ΛCDM model. The cold dark matter existence was first inferred

by Zwicky in the 1930’s by analyzing the dynamics of galaxy clusters, where he saw that

the luminous matter was not able to match the mass calculated from the virial theorem.

However, CDM was more strongly accepted through the measurements of galaxy rotation

curves in the 1970’s by Vera Rubin and others (more on this topic in Section 1.3 and in the

remaining of the present thesis work). Basically, CDM is composed by a type of matter

which does not interact electromagnetically, so we can only infer its existence through

its gravitational interaction. It is cold because it has a low velocity dispersion, what is

necessary to explain the structure formation. On the other hand, the cosmological constant

was widely accepted only in 1998, when two type-Ia supernovae (SNe Ia) teams announced

that the expansion of the Universe is accelerating (Riess et al., 1998; Perlmutter et al.,

1999). They drew this conclusion by measuring the distances to high-redshift SNe Ia, which

can be calibrated into standard candles, and showed that they were much farther than in a

universe composed only by radiation and matter. The simplest way to explain the data was

to consider that an extra component in the Universe, known as the cosmological constant,

was providing the repulsive character to accelerate the expansion. This component is often

associated with the vacuum energy.
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These two components, Λ and CDM, have respectively approximately 69% and 26% of

the energy budget of the Universe. The other 5% is mainly baryons, with fractions much

smaller than 1% for radiation and neutrinos. These fractions represent the compilation

from several observations (e.g. Planck Collaboration et al., 2014, 2015, and references

therein).

The ΛCDM model has been extremely successful at explaining a myriad of observations.

For instance, they involve measurements of the fluctuations of the CMB by the Planck

satellite (Planck Collaboration et al., 2015), distances inferred from SNe Ia (Betoule et al.,

2014), the baryon acoustic oscillations imprinted on the distribution of galaxies used as a

standard ruler (Blake et al., 2011), and so on. This is the model considered in this thesis.

Let me now briefly describe how the structures we see today were formed.

As it was said before, the seeds for structure formation were generated during the infla-

tionary period, where the quantum fluctuations of the inflaton were extremely amplified.

At the end of inflation the field oscillated and decayed into the matter. The inflation

was followed by a period dominated by radiation. During this time it was not possible

for structures to grow. As the time passed and the temperature dropped, eventually the

Universe entered in the matter era. In this period the baryons were coupled to photons

so they could not agglomerate, but the CDM started to collapse and create the potential

wells where baryons fell later on. This process happened forming first the small objects,

followed by the bigger ones in a series of mergers, and is called the hierarchical scenario of

structure formation.

As the density contrasts were very small, a great part of the evolution of clustering

can be studied using linear perturbation theory, one example being the study of the CMB.

However, structures can grow above a point where the linear theory ceases to be valid. In

spite of theories describing the non-linear collapse, e.g. the Zel’dovich approximation, they

generally are not able to describe fully the physical phenomenon, and one has to resort to

cosmological simulations.

Cosmological simulations of galaxy formation represent a challenge both from a nu-

merical point of view and from a physical modelling point of view, given the tremendous

range in spatial scales that have to be simultaneously modelled to simulate the process of

structure formation. Notwithstanding that, they are the best tool at our disposal to gain a

better theoretical understanding of the complex and non-linear evolution of the Universe.
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Indeed, they now have reached a sufficient degree of maturity and reliability and are now

able to explain evolution of the structures in the Universe that we see from galaxy surveys,

as galaxy clusters, filaments and voids (Vogelsberger et al., 2014; Schaye et al., 2015a).

However, they are still affected by the uncertainties especially in the modelling of the so-

called baryonic physics. Although they are only a tiny fraction (5%) of the total energy

budget of the Universe, baryons are extremely important because it is through them, and

in particular through the electromagnetic radiation they emit, that we gather informa-

tion about the physical conditions of the Universe. Therefore a proper description of the

main physical processes governing their evolution is fundamental to completely describe

the evolution of the structures in the Universe.

The main goal of cosmological simulations is to model what happens after structure

growth goes beyond the linear theory, and in particular to describe what happens to the gas

after it falls into the potential wells formed by the dark matter (the so-called haloes). Put

in very simple terms, the gas now more dense can cool efficiently via emission of radiation,

reaching higher and higher densities where the necessary instabilities for self-gravitating

clouds finally develop. In the case of massive-enough structures, the gravitational collapse

ended up igniting the atomic fusion engine that pushed the gas against gravitational col-

lapse, thus forming stars. As star formation proceeds galaxies are born which subsequently

evolve in the structures that we can observe nowadays in the Universe. This evolution is

very complex because many physical processes come into play. For instance gas infall,

deposition of energy in the interstellar medium by supernova explosions and stellar winds,

the eventual formation of central black holes and the associated feedback onto the ac-

creting gas, stellar evolution, metal enrichment, etc (see e.g. Vogelsberger et al., 2013).

Morevoer, all these physical processes are strongly coupled in a non-linear fashion, and

much of the theoretical work in simulations is trying to clarify the role of each process and

its interrelation to the in the global galaxy formation picture.

Recently much attention has been drawn to the effects that feedback loops, and in

particular supernova explosions, can have on the dark matter distribution in the central

regions of galaxies (e.g. Pontzen and Governato, 2012). This thesis will focus on the

connection between dark matter and baryonic matter in spiral galaxies of several masses

by studying them at the small scales (< 1 kpc), where tensions between the standard

ΛCDM and the observations have been reported.
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1.2 Dark matter on galactic scales

The necessity for a dark matter component was first proposed by Zwicky (1933), based

on his studies of the Coma galaxy cluster. Nevertheless, it was only during the 80’s that

this hypothesis became popular, when the systematic study of extended galactic rotation

curves showed that in many cases they tended to remain flat well beyond the optical radius,

suggesting the presence of an invisible matter component with cumulative mass growing

linearly with radius (Roberts and Whitehurst, 1975; Rubin et al., 1978). Even though there

are some alternative theories of gravity which could explain this observation without dark

matter (Milgrom, 1983), they are unable to reconcile different observations at the same

time, like the gravitational lensing observations of the Bullet galaxy cluster (Bradač B.

and Bullet Cluster Collaboration, 2008; Ferreras et al., 2008), for instance. Additionally,

nowadays the ΛCDM cosmologic paradigm, which implies a considerable amount of dark

matter filling the Universe has succeeded in explaining many observations, from the power

spectrum of the cosmic microwave background (Komatsu et al., 2011) to the luminosity

curve of type-Ia supernovae (Perlmutter et al., 1999). In spite of that fact, we still do

not know much about the nature of this dark matter, and only its kinematic effects are

observed. In that regard, some clues may come from the inner part of late-type galaxies,

as I describe in the following.

1.3 The cusp-core problem

On galactic scales, mainly two methods have been used to infer the concentration and

shape of the dark matter halos: rotation curve fitting2 and numerical simulations.

The first attempts to determine the dark matter profiles in spiral galaxies were done

in 1985 (Carignan and Freeman, 1985a; van Albada et al., 1985a), and essentially the

same principles are applied to interpret observational data today. Basically, the idea

is to consider a galaxy as a sum of simplified building blocks: a stellar disk, a stellar

bulge, a gaseous disk, and a dark matter halo. All these components are assumed to be

axysymmetric and to share the same center and orientation. Then, using a given mass-

2 In smaller systems, i.e. dwarf spheroidal galaxies, the total mass is constrained using stellar velocity

dispersions instead of rotation curves. I remind the reader that this thesis is limited to disk-like galaxies

(e.g. spirals and dwarf irregulars), and that is why it is only concerned about rotation curves
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to-light ratio one can translate images and HI maps into baryonic mass distributions, and

finally infer the amount of dark matter necessary to account for the observed rotation

curve, assuming that the system is in dynamical equilibrium and therefore the centrifugal

forces exactly balance the gravitational pull. A detailed description of this type of studies

is given in Sec. 1.4

Using this kind of approach it has been claimed that several galaxies exhibit nearly

constant dark matter density profiles at their centres, i.e. cores following ρdminner
∼ r0,

a fact that contradicts the much steeper distribution expected from ΛCDM numerical

simulations, which anticipate cusps following ρdminner
∼ r−1 (Navarro et al., 1996a). This

fact is known as the cusp-core problem and remains one of the biggest problems for small

scale cosmology (for a recent review see de Blok, 2010).

Several hypotheses have been proposed to explain the CUSP/CORE controversy. Ini-

tially, the low resolution of the HI kinematic data and systematic errors related to the

long-slit spectroscopy technique used to build the rotation curves, as well as the presence

of non-circular motions and projection effects were pointed out as possible sources of un-

certainty masking cusps into cores (de Blok et al., 1996). Most of these problems have been

overcome in the last decade with the use of high resolution 2D velocity maps, neverthe-

less, most observational studies still favour flat dark matter distributions in the center of

galactic halos (Oh et al., 2011a)(Kuzio de Naray et al., 2009a), and it has been claimed

that if a cusp would really exist it should be possible to detect it (Kuzio de Naray et al.,

2008a).

Even though it seems that the existence of cored central dark matter distributions in

galactic halos is a well-stablished fact, there are several assumptions made in this approach

that may influence the results in unknown ways. For example, the baryonic components are

being modeled as axisymmetric, while it is definitively not the case for most galaxies, with

bars and spiral arms being the most obvious counterexamples. Secondly, the galaxies are

assumed to be in pure rotation; in some cases random non-circular motions are corrected

(Oh et al., 2008a), but there is no prescription about how to handle streaming motions by

bars and spiral arms. Additionally, there are several ways for translating a data cube into

a velocity map, and a velocity map into a final rotation curve. There are some attempts

to compare those methods in the literature (Simon et al., 2003a)(de Blok et al., 2008a),

but their overall impact on the cusp-core controversy is far from obvious.
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The other way to study the properties of dark matter haloes is using numerical simu-

lations of structure formation. From this approach, it was noticed that a cold dark matter

cosmogony tended to produce halos with the same radial density profile over a wide range

of masses, which can be well represented by the Navarro-Frenk-White formula (Navarro

et al., 1996a), hereafter NFW. This formula implies inner density profiles growing steeply

to the center, therefore in clear disagreement with the almost-flat distribution of the pseu-

doisothermal sphere model, the preferred formula to describe the cored profiles inferred

from observations. Nevertheless, it is important to say that the universal cusp-like density

profile was predicted by numerical simulations of dark matter only, and it has been shown

recently that the effect of baryonic feedback during the process of galaxy formation may

be able to change the shape of the hosting dark matter halos (Governato et al., 2010a).

This possibility is being actively debated in the literature but can not be considered yet

a definite answer about the real existence of DM cores in nature or about the way they

form.

1.4 Mass modelling of galaxies

In this section I present an overview of the fundamentals on mass modelling of late-

type galaxies (i.e. the estimation of their dark and baryonic matter distributions from

observations) which is the backbone of this work. The solely intention of this summary

is to serve as a quick reference handbook. It is necessarily incomplete, but several of the

concepts reviewed here will be covered in more detail in the next chapters as necessary.

I give special attention to the relevant aspects for the cusp-core problem, which was the

main driver during the seminal stage of this thesis, and echoes through all this manuscript.

Finally, at the end of this section I summarize the main sources of systematic uncer-

tainties that may affect the results of mass modelling studies, which is very important to

understand their true robustness and limitations. Particularly, note that galaxies are in

general very intricate systems in comparison with ideal geometrical models. This was the

principal motivation for this thesis, which is devoted to perform a suit of controlled expe-

riments with numerical simulations and mock observations of galaxies, in order to explore

the reliability and possible biases of observational results.
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1.4.1 Dark matter estimations from rotation curves

The nickname dark matter comes from the fact that this kind of matter does not pro-

duce, absorbe, or scatter electromagnetic radiation. For this reason, in general the amount

of dark matter in astrophysical objects can be only investigated in indirect forms3, for

example through its gravitational effect on the surrounding baryonic material and on the

geometry of space. Particularly, dark matter haloes of disc-like galaxies may be indirectly

studied from their observed rotation curves. This is possible because, in dynamical equi-

librium, the rotational motions are a reflection of the overall gravitational potential, from

which one may try to discount the contribution of baryons using reasonable proxies and

additional observations (see Section 1.4.2). This type of rotation curve analysis has been

largely employed to probe the dark matter haloes of galaxies, and even though a number

of details may vary from study to study, there is a general framework that I will try to

synthesize in the following bullet points.

i. Consider a test particle in the equatorial plane of a mass structure with vertical

and axial symmetries. If this particle rotates in equilibrium under only the effect of

gravity, then its velocity relates to the encompassing gravitational potential as

V 2
c

r
= ar = ∇Φtotal =

d

dr
Φ. (1.1)

ii. Now let’s assume that a disc galaxy can be modelled as an ensemble of axisymmetric

components: a stellar disc, a gaseous disc, possibly a spherical stellar bulge, and a

spherical dark matter halo. If it were possible to separate the components, equation

(1.1) would hold for a test particle rotating in the gravitational potential of any of

them, i.e.,

V 2
disc?

r
=

d

dr
Φdisc? ;

V 2
bulge?

r
=

d

dr
Φbulge?

V 2
gas

r
=

d

dr
Φgas ;

V 2
dm

r
=

d

dr
Φdm, (1.2)

where Vdisc? represents the circular velocity of a test particle in the gravitational

potential of the stellar disc, Vbulge? is the circular velocity of a test particle in the

potential of the stellar bulge, and so on.

3 Note that, even though several experiments on earth have tried to detect dark matter particles in a

direct form, none of them have obtained convincing evidence of such detections yet.



32 Chapter 1. Introduction

iii. Considering the total gravitational potential,

Φtotal = Φdisc? + Φbulge? + Φgas + Φdm, (1.3)

one sees that, if and only if all the galaxy components share the same center and ori-

entation, the set of equations (1.2) may be combined, demonstrating that the circular

velocity of a test particle in the equatorial plane of the full model, Vc, equates to the

quadratic sum of the circular velocities associated to the individual components,

V 2
c = V 2

disc? + V 2
bulge? + V 2

gas + V 2
dm. (1.4)

iv. Assuming that the observed rotation curve is equivalent to the circular velocity profile

Vc, the strategy to assess the pure dark matter term in equation (1.4) is to find

reasonable proxies for the mass distribution of the baryonic components, so one can

estimate Vdisc? , Vbulge? , and Vgas. There are two main ways to accomplish this task,

that I will present separately in v. and vi..

v. Dwarf late-type and LSB galaxies are known to have very small baryonic fractions,

and their dark haloes are expected to govern the dynamics at all radii. For this

reason, these types of galaxies are often studied under the so-called minimum disc

approximation, which consists in neglecting the baryonic terms in equation (1.4),

approximating,
V 2

c

r
≈ V 2

dm

r
=

d

dr
Φdm. (1.5)

Then the halo density profile can be explicitely computed using equation (1.5) in

conjunction with Poisson’s equation, which in the case of spherical symmetry is

reduced to,

4πGρdm =
1

r2

d

dr

(
r2 d

dr
Φdm

)
. (1.6)

Incidentally, this also puts forward that spherical systems exhibit a one-to-one cor-

respondence between any two terms of the triplet (ρ,Φ, Vc). Because it has played

a capital role in the cusp-core debate, I will provide more information about the

minimum disc approximation in Section 1.4.2.1.

vi. In normal spirals, on the other hand, the dynamical contribution of baryons in the

inner region is not negligible, so it has to be estimated from observations. The dis-

tribution of stars is normally assessed from optical and/or near-infrared images, and
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that of the neutral gas is mapped through the 21-cm emission. This information is

necessary to validate the approximation of the stellar and the gaseous aggregations

as axisymmetric discs, as well as to calibrate their mass profiles. Once the contribu-

tion of baryons to the gravitational potential is estimated, one can infer the unseen

distribution of dark matter that is needed to explain the observed rotation curve.

This kind of analysis is often referred to as rotation curve decomposition, a denomi-

nation that I will adopt in this text. In Fig. 1.1, I present a schematic diagram of

this approach, and more details about the modelling of the baryonic mass structures

from optical/NIR and radio observations are given in Section 1.4.2.

The bottom line of mass modelling studies is that rotation curves are fair, accurate tra-

cers of the underlying gravitational potential, which should be also markedly symmetric.

The mass modelling of galaxies has the advantage of relying in simple, straightforward the-

oretical principles, which at a first-order approximation look reasonable for non-perturbed,

rotating disc galaxies. Nonetheless, several caveats to this idealised picture exist, of which

I make a short list in Section 1.4.5. Particularly, note that if mass modelling is employed

to distinguish cusps from cores, its ideal framework must be well suited up to the very

center of galactic discs, where the cusp-core controversy is debated (quite often r ≤ 1 kpc).

Whether or not it is possible to accurately determine the inner density profiles of galactic

haloes from rotation curve analyses is a long-standing matter of debate, to which I expect

to contribute new evidences with this work.

1.4.2 Assessing the baryonic mass distribution

After introducing the concepts of mass modelling and rotation curve decomposition,

in this section I review how the contribution of baryons to the overall potential may

be inferred from observations, but first I present the special case of very dark matter

dominated systems, for which the baryonic potential may be simply neglected to a first

approximation.

1.4.2.1 The minimum disc approximation

Many observational investigations of the cusp-core problem have focused in low surface

brightness galaxies and late-type dwarfs (e.g. de Blok and Bosma, 2002; Spekkens et al.,
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Vmodel

V

Vgas

Vdm

Vmodel

RCobs
RCobs

Figure 1.1: Illustrative scheme of the mass modelling of galaxies. In the column on the left I present

the observables, which serve as input for the mass modelling analysis. From top to bottom I show the

R-band image of a galaxy, its 21-cm emission map, and its velocity map. The first two serve to create

axisymmetric models of the stellar and gaseous mass distributions, each one with an associated circular

velocity profile. This is depicted in the upper levels of the Galaxy models factory. In this “factory” it is

also created a spherical model for the dark matter halo, and the final product is an idealized geometrical

representation of the galactic system, which I label as the “Full model” on the right. As explained in

the main text, the circular velocity of a test particle in this ensemble can be estimated from the circular

velocities associated to each component. In a parallel branch, the velocity map is analyzed and reduced

to a rotation curve, which hopefully would represent the overall circular velocity of the system. Then the

circular velocity of the model is compared against the observed rotation curve, and the model is refined

iteratively until the best model, i.e. the one providing the best fit to the kinematic data, is found. In this

schematic example, the “data” comes from one of the simulations that I will describe in Chapter 2.
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2005; Adams et al., 2014; Oh et al., 2015). The reason for this is their comparatively

low amount of baryonic matter, which minimizes the concerns about the uncertainty in

the baryonic contribution to the observed rotation curve, and even endorse the assessment

of the dark matter distribution directly from the observed rotation curve, by assuming

Vdm ≈ Vc. Neglecting the baryons has the advantage of allowing a much simpler analysis,

which still seems to be meaningful to study the internal structure of the invisible dark

matter haloes in these systems. As already mentioned in Section 1.4.1, this is known

as the minimum disc approximation (e.g. de Blok and McGaugh, 1997; de Blok et al.,

2001). Besides the dominance of the dark matter component, there are additional reasons

to favour the study of low surface brightness galaxies. For instance, LSBs exhibit young

stellar populations, low interstellar medium metallicities, large gas fractions, and very small

or inexistent bulges; these observations support a quiescent evolution of the low surface

brightness discs, implying a smaller probability that the baryonic feedback effects may

have modified the dark matter distribution (e.g. Schombert et al., 1992; McGaugh and

Bothun, 1994; McGaugh, 1994; de Blok et al., 1995; Impey and Bothun, 1997; Schombert

et al., 2001; Du et al., 2015). In other words, low surface brightness galaxies are better

suited than normal spirals to study the pristine shape, acquired at formation, by dark

matter haloes, which makes them specially interesting for cosmological tests. Small bulges

are also important to guarantee the dominance of the dark matter potential in the very

center of the galaxy, both in low surface brightness galaxies as well as in late-type dwarfs.

The popularity of the minimum disc approximation raised considerably after the work

of de Blok and McGaugh (1997), where a sample of 19 LSBs was studied and the authors

concluded that the inferred structure of the dark matter haloes was barely dependent on

the assumed mass-to-light ratios, i.e., on the conversion factor used to calibrate the stellar

disc masses from their measured luminosities (see Section 1.4.2.2). Later in de Blok et al.

(2001) the inner logarithmic slopes of the halo density profiles inferred from the minimum

disc approximation, using an enlarged sample, were compared against the results obtained

by first subtracting the dynamical contribution of the baryons to the rotation curve, and

it was found that taking the baryons into account made the haloes appear shallower. In

consequence, many authors since then have assumed that the minimum disc approximation

serves to impose upper limits to how steep the halo density profiles are (e.g. Swaters et al.,

2003; Spekkens et al., 2005), an idea that results very attractive as some of them have
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inferred shallow central dark matter distributions in this way (e.g. de Blok and Bosma,

2002; Marchesini et al., 2002; Kuzio de Naray et al., 2006). This was interpreted as a

capital proof of the factual existence of dark matter cores at a time when the uncertainty

in the baryonic contribution to the rotation curves was the most stringent limitation to

study the properties of the dark matter haloes. The minimum disc approximation has

played a preponderant role in the history of the cusp-core problem and, because of that, I

will dedicate Chapters 2 and 3 of this thesis to study the robustness of cusp-core inferences

in this limit using controlled experiments.

In the case of normal spirals, which exhibit larger baryonic contents in the central region

than late-type dwarfs and LSBs, the minimum disc approximation is not applicable, and

rotation curve decompositions demand the assessment of the baryonic mass distribution

from auxiliary observations. In the following sections I introduce the more popular methods

used in the cusp-core literature to deal with this task, and in Chapter 4 I will propose some

experiments to evaluate their performance using mock photometric observations, along

with some preliminar results.

1.4.2.2 The stellar component

One of the most challenging steps in rotation curves analyses is to correctly account

for the gravitational potential of the stars (e.g. van Albada et al., 1985b; Bell and de Jong,

2001; Bershady et al., 2010). In general, it is assumed that the stellar mass distribution

follows the observed luminous distribution, such that they are linked through a constant

of proportionality known as the mass-to-light ratio (M/L). In posession of spectroscopic

data, nowadays this quantity would be likely estimated from forefront stellar population

synthesis (SPS) models as those discussed by Noll et al. (e.g. 2009); Conroy and Gunn

(e.g. 2010); Maraston and Strömbäck (e.g. 2011). Nevertheless, this is not usually the

case, and virtually all rotation curve studies which attempted to model the stellar mass

distribution relied on photometric data in a few bands. In the lack of adequate constraints,

early works used dynamical arguments to, for example, put an upper limit to the mass-

to-light ratio (e.g. Carignan and Freeman, 1985b; van Albada et al., 1985b), or treated

this quantity as a free parameter to be tuned along with the dark matter halo in order

to accomodate the best fit to the observed rotation curve (e.g. Côté et al., 2000; Barnes

et al., 2004). Unfortunately, as those approximations are built over physical models of
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the stellar components or of galaxy evolution, whether the inferred mass-to-light ratios

were consistent or not with the true stellar populations in the disc was always uncertain.

A decisive leap forward was possible after the work of Bell and de Jong (2001), which

established that the mass-to-light ratios of disc galaxies correlate with their colors, and

provided a number of conversion factors for different colors and bands. This was done by

simulating the spectro-photometric evolution of a large number of disc galaxy models, i.e.,

using an early version of the SPS algorithms and models available today. A corollary of the

work by Bell and de Jong is that the mass-to-light ratios are better constrained towards

redder bands. This is a result of extinction effects being less important here and the fact

that old stellar populations, which contribute more to the mass than the young population

dominate the emission in this part of the spectrum. Additionally, according to Bell and

de Jong (2001), the variation of the mass-to-light ratio as a function of a given color is

smaller in redder bands, making the effect of possible color gradients less important and

allowing the use of a single mass-to-light ratio for the whole disc. For that reason, images

in the I/R bands are typically preferred to constraint the stellar mass, and they are by

far the dominant source of photometric data in the cusp-core literature (e.g. Côté et al.,

2000; Marchesini et al., 2002; Gentile et al., 2004). Alternatively, some authors go for the

use of near-infrared data, including images in the K-band (2.19 µm) (e.g. Bolatto et al.,

2002) and in the more recently available 3.6µm band from SPITZER (e.g. Oh et al., 2015),

because the effects of dust extinction at these wavelengths are virtually null (e.g. Walter

et al., 2007). However, note that the emission in these bands may be contaminated by

polycyclic aromatic hydrocarbons (PAH), organic compounds present in the interstellar

medium which radiate through a prominent emission line centered at 3.3 µm (e.g. Meidt

et al., 2014).

After assessing the mass-to-light ratio, one has to recall that knowing the total mass

in the form of stars is not enough for rotation curve decomposition; in order to compute

the circular velocity profile of the stellar component, its spatial 3D gravitational potential

must be fully resolved, so one can estimate the circular velocity profile Vdisc? using equation

(1.2).

This is relatively straightforward in the case of spiral galaxies, as observations support

the view of these systems as flattened, rotating discs, many of which are highly axisymme-

tric. This is evidenced, for instance, by the isophotal contours of some canonical discs like
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UGC7045 (Fig. 1.2, left), which closely resemble concentric, parallel ellipses. Note that

a natural explanation for this apparent ellipticity is offered by the projection effects due

to the inclination of the disc in the sky, as ideal circular discs should exhibit intrinsically

round isophotes. This is schematically represented in Fig. 1.2 (right).

Figure 1.2: Left: R-band image of the disc galaxy UGC7045 with isophotal contours overplotted to

it (Image source: Barbosa, 2016). Right: Schematic representation of a disc galaxy and its projected

geometry in the plane of the sky.

Because of the simple geometry of galactic discs, they are commonly characterized by

fitting constant-brightness ellipses to the galaxy image, in order to ascertain its intrinsic

surface brightness as a function of radius (e.g. Jedrzejewski, 1987). This 1-dimentional

surface brightness profile (SBP) can then be used to quantify some galaxy properties like

the disc extent or the concentration of its light in the central region. Additionally, by

averaging values azimutally over the ellipses one obtains more meaningful information on

the global light distribution.

Once the surface brightness profile is determined, one can multiply it by the mass-to-

light ratio to define a proxy for the stellar surface mass density profile. In the list below I

present some of the more common approximations for the mass-to-light ratio that can be

found in the literature:

• The mass-to-light ratio can be assumed constant across the disc and calculated from

the relations of Bell and de Jong (2001) and Bell et al. (2003) using the colours of

the whole disc. This is by far the most accepted prescription in the recent literature,

and it is virtually always employed if the necessary data are available (e.g. Kassin

et al., 2006; Simon et al., 2005). Extrapolations of the Bell and de Jong relations for

additional bands have been also discussed; see for example de Blok et al. (2008a) for

an empirical derivation of the mass-to-light ratio in the 3.6µm band of SPITZER.
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• Eventually the color gradients in the disc are taken into account through a radially-

dependent mass-to-light ratio (e.g. Kassin et al., 2006).

• In the lack of a reasonable proxy, some times the (M/L) coefficient is let as a free

parameter during the fit of the mass model to the observed rotation curve (e.g. Spano

et al., 2008). Note that this is a purely dynamical argument and it may in principle

lead to unrealistic or simply unfaithful values of the stellar masses, not compatible

with the actual stellar populations in the disc.

• An upper limit to (M/L) can be also estimated from the so-called maximum disc ap-

proximation, by scaling Vdisc? to the maximum normalization that does not overshoot

the observed rotation curve. This approach was popular in the past as an indirect

way to put a lower limit to the dark matter content of spiral galaxies (e.g. van Albada

et al., 1985a; van Albada and Sancisi, 1986).

After evaluating the surface brightness profile, and choosing a prescription for the

mass-to-light ratio, the only missing ingredient to complete the 3D model of the stellar

disc is its vertical density profile. In this regard, there is a general agreement in using the

model of a locally isothermal sheet, sech2( z
z0

), which has been found to describe well the

vertical luminosity profile of edge-on galaxies with a scale height z0 effectively independent

of radius (e.g. van der Kruit and Searle, 1981).

Using these approximations, the structure of the stellar disc model can be parametrised

as,

ρ? (r, z) =
1

2z0

(
M

L

)
Σ? (r) sech2

(
z

z0

)
, (1.7)

where Σ? represents the radial surface brightness profile, and the extra factor 2z0 in the

denominator sets the normalization to guarantee the following identity at all radii,
∫ ∞

−∞
ρ? (r, z)dz =

(
M

L

)
Σ (r) . (1.8)

After defining the 3D density field, one needs to compute its gravitational potential,

in order to assess the circular velocity profile of a test particle in the potential of the disc

using equation (1.2). This is not a trivial step, but in principle it is achievable by solving

the integral,

Φ (r, ϕ = 0, z = 0) =

∫∫∫

All space

Gρ (r′, ϕ′, z′)√
z′2 + r′2 + r2 − 2rr′ cos (ϕ′)

dV ′, (1.9)
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where the square root in the denominator represents the distance between the point

where the potential is being evaluated (r, ϕ = 0, z = 0), and the differential volume element

at (r′, ϕ′, z′). For some parametrizations of Σ? this integral may be solved analytically, as

in the case of a thin exponential disc (Binney and Tremaine, 2008), but this is often not

feasible and a numerical evaluation of the potential is preferable because it can deal with

arbitrary shapes of the SBP (e.g. Barnes et al., 2004). However, it is worth noting that

according to the implementation and to the desired accuracy, the numerical integration

may demand considerable computer time on a regular desktop machine, which is a serious

concern for the analysis of large data sets. I learned this through experience after solving

equation (1.9) in PYTHON for a sample of galaxies from the GHASP survey at the be-

ginning of this investigation. An interesting alternative emerged during my work with the

numerical simulations, as it became clear that one can use an optimized N-body calculator

to measure the gravitational field of any target matter distribution, it suffices to sample

the density field with a large number of particles and pass their positions and masses to

the N-body code in the appropriate format. Ever since I realized this fact, I calculated

the radial accelerations (i.e. the circular velocities) of all the mass models in this work

using GADGET (Springel, 2005), taking advantage of its optimized capabilities to speed

up the accurate computation of the gravitational forces using multiple CPUs in parallel.

As to my knowledge, this is the first time that the circular velocities of the model galactic

components for rotation curve decompositions are computed in this fast-and-efficient way.

In the sake of completeness, it is important to say that the stellar discs of late-type

galaxies have been found to be well represented by exponential light profiles of the form,

Σ?(r) = Σ0 e
−r/h, (1.10)

where Σ0 represents the central surface brightness and h denotes the disc scale length

(e.g. van der Kruit and Freeman, 2011). When this model is adopted, often the vertical

scale height is taken to be a certain fraction of the radial scale length, e.g., z0 = h/5.

Even though this is supported by some observations (e.g. Edvardsson et al., 1993), it is an

intense matter of debate (e.g. van der Kruit and Freeman, 2011).

Galaxies of earlier morphological types, on the other hand, exhibit light profiles that

deviate from pure exponential discs and are commonly parametrized through the Sérsic

profile of equation (1.11), governed by the parameter n which is known as the Sérsic index
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and controles the curvature of the light profile (e.g. Sersic, 1968),

Σ?(r) = Σ0 e
−k r(

1
n)
. (1.11)

Alternatively, a combined analysis of the images and the shape of the SBP may suggest

the existence of an underlying exponential disc with a second component on top, often

a central stellar bulge that may be still parametrised via the Sérsic profile (e.g. Barbosa

et al., 2015a). In those cases, the bulge must be included in the mass model of the galaxy

as an additional spherical component with its own mass-to-light ratio.

So far I have discussed the case of ideal axisymmetric discs, in spite of the fact that

all real systems deviate from this scenario by different amounts. Yet, it is interesting

to note that for most non-ideal galaxies the elliptical isophotal analysis remain useful to

understand the main features of the light distribution, and it is often employed to study

even irregular galaxies or discs with substructures such as bars or strong spiral arms. In

those cases, the best-fit ellipses are chosen to follow the true light distribution on the image

without forcing them to be strictly parallel and concentric. This means that one may let the

geometrical parameters: ellipticity (ε), position angle (PA), and central position (x0, y0),

free to vary from ellipse to ellipse in order to get the best fit, and then the radial trends of

these parameters may be investigated to better understand the patterns on the 2D light

distribution. I show an example of the ellipse fitting to UGC1913 with all the geometrical

parameters free to vary in Fig. 1.3.

Figure 1.3: Example of an isophotal ellipse fitting model with the geometrical parameters free. Left:

image of UGC1913 with the best-fit elliptical contours on top. Right: radial variation of the elipticity and

position angle of the ellipses. Source of the image Barbosa (2016).

When it comes to rotation curve decompositions, the specific implementation of the
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isophotal-fit modelling of the disc is not homogeneous. According to the visible features in

the image, some authors prefer to fit the isophotal ellipses with all the geometrical para-

meters fixed (e.g. Simon et al., 2005), while others fix the center but allow the geometrical

parameters (ε, PA) to vary as a function of radius (e.g. de Blok et al., 2008a). The problem

with the latter approach is that, even if the 2D luminous structure is well explained, the

fundamental assumptions behind the simplified disc model of Fig. 1.2 can no longer be

assumed. In the lack of a highly axisymmetric mass ensemble with a well defined center

and orientation, the basis of the mass modelling algorithm described in Section 1.4.1 is

put into question, and it is hard to anticipate what the impact of this treatment in the

inferred dark matter density profiles could be.

1.4.2.3 The gaseous component

If one also wants to account for the gravitational potential of the gas, surface density

maps of the neutral HI are needed. The procedure is similar to the one described for the

stars, as the gaseous phase does also form axisymmetric discs, though they tend to be

thinner and much more extended than their stellar counterparts. Once the radial surface

brightness profile is obtained, the conversion from light to mass is straightforward because

the probability of a spontaneous spin flip which gives origin to the 21-cm emission, as well

as the energy of the emitted photon, can be calculated exactly from the quantum physics

of the hydrogen atom. Not uncommonly, the inferred masses are also multiplied by a

factor of about ∼1.25 to account for metals, as the mass in the form of heavier species is

much harder to be traced. In general the gaseous component is found to be dynamically

subdominant, and therefore it is often neglected by authors when HI data are not available.

1.4.3 Differentiating cusps from cores

As shown in Section 1.4.1, spherically symmetric haloes display an exact correspondence

between ρdm and Vdm. Exploiting this fact, there are two major approaches to infer the

intrinsic cuspyness of a dark matter halo: fitting diagnostic analytic models to the inferred

Vdm, or inverting this curve to explicitely approximate the density profile ρdm. In the

following paragraphs I will synthesise the modus operandi of these methods, and in the

next chapters I will thoroughly investigate their ability to recognize dark matter cusps as

such using mock observations of realistic simulated galaxies.



Section 1.4. Mass modelling of galaxies 43

1.4.3.1 Rotation curve fitting

This method consists in comparing the best fits to Vdm from a set of analytic models,

associated to cuspy and cored density profiles, by means of the reduced χ2
ν . This is es-

pecially interesting when there is available information beyond the central kiloparsecs, as

it allows to constrain the full halo density profile which may carry additional signatures

of the cosmology beyond the inner logarithmic slope (e.g McGaugh et al., 2007). The

more standard functional forms employed in this task are the Navarro-Frenk-White profile

and the pseudo-isothermal sphere model (hereafter ISO), whose analytic density profiles

are presented in equations (1.12) and (1.13). The NFW model is very representative of

the haloes traditionally formed in cosmological numerical simulations (e.g Navarro et al.,

1996a; Klypin et al., 2001; Vogelsberger et al., 2014), except for some recent, purpose-

specific implementations resorting to customized, violent stellar feedback models as a way

to induce the transformation of cusps into cores in the haloes of dwarf galaxies (e.g. Gover-

nato et al., 2010b). As for the ISO model, more than being motivated by physical models

of the dark matter dynamics, it was empirically found to provide good fits to a number of

observed rotation curves,

ρ
NFW

(r) =
ρ

0

(r/Rs)[1 + (r/Rs)]2
, (1.12)

ρ
ISO

(r) =
ρ

0

1 + (r/Rc)2
. (1.13)

In both cases ρ
0

is a representative density of the central region. More especifically,

it is the central density in the ISO model, and the density at ∼ 0.46 × Rs in the NFW

case. Rc and Rs represent the transition radii between the inner and the outer parts of the

density profiles, where they exhibit different asymptotic behaviours. The equivalent circu-

lar velocity profiles can be obtained by integration, as for spherical matter distributions,

the circular velocity in equation (1.1) can be expressed in terms of the enclosed mass as a

function of radius via,

Vc =

√
G
M(< r)

r
, (1.14)

where

M(< r) =

∫ R

0

4πr2ρ(r)dr. (1.15)
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An inspection of equation (1.12) reveals that the inner region of the NFW profile

increases steeply towards the center as ρ
inner
∼ r−1, which corresponds to the classical

definition of a dark matter cusp. The ISO model, on the other hand, has a central constant-

density core, ρ
inner
∼ r0, its size can be roughly approximated by Rc. Combining these

results with equations (1.14) and (1.15) one sees that the inner velocity profile of the ISO

model grows linearly as V
inner
∼ r, which matches that of a solid-body rotating model. As

for the NFW profile, a similar analysis yields V
inner
∼ √r, granting the central velocity

profile with a curved shape.

At very large radii these models differ. The NFW profile goes like ρ
outer
∼ r−3, while

the ISO one follows a ρ
outer
∼ r−2 dependence. This implies that, at some point, the

NFW circular velocity profile starts to decrease, as it is expected for any finite matter

distribution. However, this behaviour presumably occurs at a radial range that is not

covered by observations, as dark matter haloes are much more extended than their baryonic

discs. In fact, it does not play a role in the rotation curve fitting because the NFW model

is able to follow the flat part of observed rotation curves over their whole extent. As for the

ISO density model, its asymptotic behaviour would force the circular velocity profiles to

remain artificially flat to infinite, confirming that this model is an useful mathematical tool

to describe galactic rotation curves but it can not represent a plausible physical scenario at

large radii. All in all, as there are no sensible differences in the ability of both models to fit

the outer parts of rotation curves, they should, in principle, be well-suited for differentiating

cusps and cores in the central matter distribution.

The NFW velocity profile obtained from equations (1.12), (1.14) and (1.15) is commonly

expressed in an alternative parametrization to (ρ
0
, Rs), which provides more insights into

the overall physical structure of the halo, namely,

v
NFW

(r) = v200

√
log (1 + cx)− cx/(1 + cx)

x[log (1 + c)− c/(1 + c)]
, (1.16)

where r200 represents the radius at which the mean density of the enclosed dark matter

drops to 200 times the critical density for closure ρc, and it is an indicator of the halo

size; v200 is the circular velocity at r200, and it is also an indirect measurement of the halo

mass through M200 =
v3
200

10GH0
; the concentration parameter, c = r200/Rs, measures how

centrally packed the dark matter is; and x = r/r200 is simply a rescaled version of the

radial coordinate.
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As for the ISO model, its circular velocity profile computed from M(< R) can be

expressed as,

V
P-ISO

(r) =

√
4πGρ

0
R3
c

r

[
r

Rc

− tan−1

(
r

Rc

)]
. (1.17)

The fit with the analytic prescriptions must be performed after subtracting the contri-

bution of the baryonic components to the gravitational potential, i.e., the fit is done to Vdm

and not to the observed rotation curve, unless the minimum disc approach is to be invoked.

Yet another possibility arises when the mass-to-light ratio, which controls the amplitude

of Vdisc? , is expected to be non-negligible, but it can not be assessed. In this cases some

authors treat it as a free parameter to be fit simultaneously with the halo model in order

to recover the full observed rotation curve (e.g. Barnes et al., 2004).

An example of the rotation curve fitting procedure is shown in figure (1.4). By means

of this kind of analysis, several authors have found the pseudo-isothermal sphere formula

to provide better fits to the data, mainly because the NFW profile tends to overestimate

the circular velocities in the inner region of the rotation curves, where they look more

like solid-body rotators. This has been traditionally interpreted as an evidence of the

shallower central dark matter density profiles of real haloes with respect to those predicted

by traditional ΛCDM simulations. Nevertheless, the robustness of this conclusion has been

put into question by some authors, specially when the effect of systematic errors is taken

into account (e.g. Swaters et al., 2003). I will dedicate Chapter 2 of this thesis to study

the performance of the rotation curve fitting methods.

Figure 1.4: Example of a typical rotation curve fitting to differentiate cusps from cores.
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1.4.3.2 Rotation curve inversion

Due to the low baryonic content of LSB galaxies and dwarf spirals, dynamical analyses

of these objects often rely on the minimum disc approximation, according to which the

contribution of baryons to the total gravitational potential may be treated as negligible at

all radii, i.e., assuming Vdm ≈ Vrot. Resorting to the assumption of spherical symmetry,

this approximation motivated the use of Poisson’s equation to estimate the dark matter

density profile from the inversion of the observed rotation curve. Combining equations

(1.5) and (1.6) the inversion relation reads (see Section 1.4.1),

4πGρ
dm
≈ 2

Vc

r

d

dr
(Vc) +

(
Vc

r

)2

(1.18)

This technique has been regularly used in the cusp-core literature after the works of de

Blok et al. (2001) and de Blok and Bosma (2002), who used it to derive the density profiles

of a sample of LSBs and explicitely measure their inner logarithmic slopes. Assuming an

asymptotic behaviour, ρ
inner
∼ r−α, α can be assessed from a linear fit to the inner region

of the density profile in the log(ρ)-log(r) plane. These authors also plotted the inferred

slopes as a function of the innermost velocity measurement, roughly equivalent to the

spatial resolution of the observations, in order to compare them with the expectations from

the Navarro-Frenk-White and the pseudo-isothermal sphere models. Typifying the slopes

as a function of the position where they were measured is crucial, as the quoted models

anticipate a radial dependence for this parameter. In Fig. 1.5, I present an illustrative

example of the procedure just described.

Figure 1.5: Schematic example of the rotation curve inversion method to determine the cuspyness of the

dark matter halo. Left: mock rotation curve of a simulated galaxy. Middle: density profile obtained by

the inversion of the rotation curve using equation (1.18), plotted in logarithmic scale. The linear fit to

the first points serves to determine the inner slope α. Right: Logarithmic dark matter density slope as a

function of spatial resolution, compared to typical expectations from the NFW and ISO models.

The seminal works of de Blok et al. (2001) and de Blok and Bosma (2002) inspired a
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number of subsequent studies, as their framework was considered a straightforward way

to impose an upper limit to the true logarithmic slopes of the inner dark matter density

profiles. Along similar lines several authors have alleged the existence of cores in the

dark matter haloes of a multitude of dwarf spirals and LSB galaxies (e.g. de Blok et al.,

2001; Kuzio de Naray et al., 2006), posing an enormous challenge for ΛCDM cosmological

simulations of structure formation. For this reason, I will dedicate Chapter 3 of this

manuscript to thoroughly test the ability of rotation curve inversion methods to efficiently

recognize the steep density slope of dark matter cusps in realistic models of dwarfs and

LSB galaxies.

1.4.4 Kinematic observations and rotation curves for cusp-core studies

The neutral hydrogen in disc galaxies is a cold dynamical component and therefore

it is expected to settle down forming a thin, extended disc, which steadily rotates at the

circular speed of the total gravitational potential, and rotation curves extracted from radio

observations of the HI 21-cm emission have been used for decades to study the dynamics

of spiral galaxies, even playing a fundamental role in the formulation of the dark matter

hypothesis (e.g. Sofue and Rubin, 2001). In spite of that fact, most of the available HI data

are not well suited to probe the inner region of galactic haloes because of the so-called beam

smearing effect, which artificially smoothes out the velocity gradients in the rising part of

the rotation curves, biasing their inferred shapes towards the linear solid-body rotation

expected from dark matter cores. The beam smearing effect is caused by the low spatial

resolution of HI observations, which 20 years ago was of the order of ∼ 30 arcsec (the size

of the beam), as every velocity measurement is in reality an average from all the gas under

the finite area of the beam (e.g. van den Bosch et al., 2000).

Soon after beam smearing was demonstrated to be a problem for cusp-core studies

(e.g. Swaters et al., 2000), HI observations were systematically replaced by optical Hα

rotation curves with typical resolutions of ∼ 2 arcsec (seeing limited) (e.g. Swaters et al.,

2003). The enhancement in spatial resolution is remarkable but it comes at the cost of

probing reduced radial extents, as the ionising radiation is confined to the stellar disc.

For this reason, whenever kinematic information from both the neutral and the ionised

gas phases exist, the best solution is to join them into the so-called hybrid rotation curve,

which is simply an aggregation of the Hα data in the inner region and the HI data in the



48 Chapter 1. Introduction

outer part (e.g. Spano et al., 2008). In this way, one keeps the best available resolution

in the rising part of the rotation curve, minimising concerns about beam smearing, while

hopefully reaching the flat part of the rotation curve with the radio data, which may allow

imposing better constraints on the global shape of the dark matter halo. Nonetheless, as

for many objects with optical rotation curves there is no HI available data, many cusp-core

dynamical studies have been carried out using Hα data alone. Even though this seems

acceptable for the rotation curve inversion method, it is less robust when it comes to the

rotation curve fitting method, as Hα datasets frequently cover only the rising part of the

rotation curves.

Early Hα rotation curves were derived from optical spectra observed through a long-

slit placed along the major axis of the galaxy, where the line-of-sight component of the

rotational motions is maximized. Then in 2001 the first few high-resolution velocity maps

became available (Blais-Ouellette et al., 2001). 2D velocity fields are preferable over long-

slit data because concerns related to possible missalignements or misscenterings of the

slit disappear and, simultaneously, the enhanced spatial coverage leads to more robust

estimations of the rotation curve and allows the assessment of possible systematic errors

related to non-circular motions, loopsidedness, and possible shifts between the photometric

and the kinematic centers. More recently, high resolution HI velocity maps (6∼12 arcsec)

have also been obtained (e.g. Begum et al., 2008; Walter et al., 2008; Ott et al., 2012,

among others), and some of them have been used to study the dark matter haloes of very

nearby galaxies (D < 10Mpc) in order to keep the beam smearing effects under control (de

Blok et al., 2008a; Oh et al., 2011b),

After this brief summary on the more relevant characteristics of former and current

kinematic observations, I dedicate a few words to the way in which the “observed” rotation

curve is finally defined. Basically, the two-dimensional velocity map has to be resumed

into a 1D rotation curve, in close analogy to the reduction of 2D images and gas emission

maps into 1D surface brigthness profiles described in Section 1.4.2.2. This can be done

by resorting to a kinematic version of the tilted-ring method. Notwithstanding, note that

because we are observing the line-of-sight component of the velocities instead of the true

circular motions in the plane of the disc, ellipses representing points that lie at the same

physical radius in the disc will not correspond with the iso-velocity contours at all. Instead

of that, the velocities measured along the ellipses will resemble a sinusoidal behaviour as
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a function of the angular position. To better understand this fact, consider a point at

a radius r in the disc that moves with velocity components (Vr, Vrot, Vz) in the (r, φ, z)

directions; because of the projection geometry, the line-of-sight velocity that one would

observe can be expressed as,

Vlos = Vrot sin(i) cos(θ) + Vr sin(i) sin(θ) + Vz cos(i), (1.19)

where i represents the inclination of the disc relative to the plane of the sky (which

is perpendicular to the line of sight) and θ is the azimuthal angle with respect to the

major axis in the plane of the sky. After approximating a value for the inclination, one

could simply assume that the disc is in perfect rotation and take the mean value of the

de-projected velocities in order to partially cancel out random motions and non-circular

components. Alternatively, one can apply a more robust technique like fitting a Fourier

series to the measured projected velocities, including terms for the circular component,

possible radial expansion motions, a constant term absorving the systemic velocity of the

galaxy and any coherent component in the z direction, and high order terms which account

for the residuals. As in the case of the photometric analyses introduced in Section 1.4.2.2,

the ellipticity of the rings and their positions angles may be treated as constant at all radii

(e.g. Spano et al., 2008; Simon et al., 2005) or may be let free to vary from ellipse to ellipse

(e.g. de Blok et al., 2008a; Oh et al., 2011b). A common methodology is to build the

tilted-ring model in an iterative way, letting all parameters free to vary at the beginning,

and fixing them one by one after each iteration. Sometimes the iterations are not used to

fix the parameters, but to refine them until they exhibit only smooth changes as a function

of radius. It is uncertain which of these approaches is more accurate and whether they

might introduce systematic errors in the interpretation of the rotation curves as tracers

of the underlying gravitational potential in the very inner region. This question points in

the same direction of the use of the fixed/free geometrical parameters in the isophotal-fit

modelling, which I will go back to in Chapter 4.

1.4.5 Potential sources of systematics

After having stated the most common procedures and methods in the cusp-core li-

terature, it is worth mentioning that several sources of possible errors exist at different

layers of the analysis, which may affect the conclusions about the shape of dark matter



50 Chapter 1. Introduction

haloes. Below I present a list of some of the more important points, some of which will be

addressed in the next chapters.

Deviations from symmetry

The mass modelling method relies on the assumption that a galaxy can be modelled

as a set of perfectly symmetric components, which must also share the same center and

orientation. This is of course an idealised scenario, and real systems deviate from it by

different extents. In general, galaxies which are evidently far from equilibrium are avoided

in the samples studied in the literature, while less dramatic asymmetries such as sizable

spiral arms and soft bars are sometimes admitted (e.g. de Blok et al., 2008b). Irregular

dwarfs are also extensively used for cusp-core studies in the minimum disc limit given

that they are very dark-matter dominated systems (e.g. Oh et al., 2011). Nevertheless,

as the α slope is often estimated from very few points close to the galactic center, it is

not obvious that the effect of baryonic asymmetries in the measured velocities can be

ignored. Deviations from symmetry are also manifested in the tilted ring modelling of the

stellar discs, appearing as twists, shifts, or changes in the ellipticity of the fitting ellipses

as a function of radius. These radial trends are almost ubiquitous and different works

treat them in different manners. While some authors only consider galaxies where all

geometrical parameters can be approximated as constant with radius (e.g. Simon et al.,

2003a), in most cases these parameteres are let unconstrained (e.g. Oh et al., 2011), in

spite of the fact that such a treatment can not be formally reconciled with the idea of

simplified axisymmetric components that lie in the heart of the mass modelling technique.

The same comments are valid for the reduction of a 2D velocity map into a 1D rotation

curve. In fact, an ideal disc model should be well fit using the same constant value of each

geometrical parameter for the tilted-ring model of the photometry, of the gas intensity

map, and that of the kinematics, a constraint that is virtually never imposed and is only

sometimes checked out for consistency.

Pressure support and non-circular motions

When it comes to dynamical analyses, it is worth noting that observed rotation cur-

ves may deviate from the circular velocity profile of the gravitational potential for several

reasons. In first place, observations often target gaseous tracers which are subject to
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hydrodynamical forces in addition to the gravitational ones. Particularly, pressure gra-

dients may offer partial support against the gravitational collapse of the gaseous disc,

reducing the necessary rotational velocity for centrifugal equilibrium (e.g. Dalcanton and

Stilp, 2010). This so-called pressure support effect is usually neglected in rotation curve

studies, as some observational analyses suggest that it is generally very small (e.g. de Blok

and Bosma, 2002). Nevertheless, considering that observations are always biased at some

extent because they target a specific gas phase (neutral or ionised, for instance), and that

they may be affected by additional instrumental effects, I revisit the question of whether

or not pressure support can be accurately diagnosed and corrected in the central part of

gas-rich galaxies in Chapter 2.

Non-circular motions related to streaming velocities and random components injected

by, for example, super novae explosions, are also a concern. Even though the amount of

non-circular motions can be quantified from 2D velocity maps, this only serves to check

if they are low enough as to not interfere with the mass modelling approximation, but

their true effect on dynamical studies can not be modelled from first principles. This is

particularly concerning in the inner regions, where there are very few measurements per

elliptical ring and the stochasticity introduced by non circular motions may bias the final

rotation curve. The same is true for long-slit data, but in that case deviations may occur

at all radii, causing the noisy appearance and wiggles often present in long slit rotation

curves.

Beam smearing, distance, and inclination

Beam smearing is also a concern for optical data, in spite of the enhanced spatial

resolution of optical data with respect to early radio observations. This is because the

physical spatial resolution is not only given by the angular resolution of the instrument,

but also by the galaxy distance. Therefore, even in Hα, beam smearing may play a role

for the observations of distant galaxies (Swaters et al., 2003). However, there are many

examples of samples of galaxies more distant than 10 Mpc. Fig. 2 of Spekkens et al.

(2005), for instance, presents a sample including galaxies which are quite distant and were

used for the study of the cusp-core problem. It shows that there is only one galaxy closer

than 10 Mpc, seven galaxies inside 20 Mpc, and about 75% of the sample is beyond 50

Mpc, with a few galaxies as far as 200 Mpc. This is not an isolated case. Many of these
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galaxies came from Mathewson et al. (1992), whose data was later reprocessed by Persic

and Salucci (1995), and served for a number of cusp-core studies (e.g. Salucci and Burkert,

2000; Salucci, 2001). To avoid this complication, recent papers like Oh et al. (2011b)

have focused on very nearby galaxies (D < 5 Mpc), earning excellent spatial resolution

at the cost of keeping much smaller samples (∼ 10 galaxies). The beam smearing effect

is also exacerbated by projection effects due to inclination. Strikingly, the corresponding

histogram in Fig. 2. of Spekkens et al. (2005) shows that around 75% of their sample

galaxies are more inclined than 70◦. This paper is mentioned here again just because the

quoted histograms allow a quick-view assessment of the point in debate, but several other

cusp-core works included some highly inclined galaxies in their samples as well. This might

have unfairly increased the fame of the cusp-core problem.

Mass-to-light ratios and stellar bulges

Regarding the mass-to-light relations from Bell and de Jong (2001), which became a

standard tool in cusp-core studies, it is very important to raise awareness on several facts

that may limit their applicability in certain situations. For example note that they were

derived for late-type disc galaxies without bulges, and the authors explicitely mention that

their models are not expected to be useful to study galaxies of earlier morphological types.

Bell and de Jong also stated that their firmer constraint was given by the slope of the

correlations between mass-to-light ratios and the colours of the galaxy; the zero point of

these correlations was calibrated independently, studying rotation curves observations of a

sample of galaxies in the Ursa Major cluster under the maximum disc approximation. As

several authors suggest that submaximal discs are very common in the local Universe (e.g.

Martinsson et al., 2013), this implies that the masses assessed through the Bell and de

Jong relations are likely upper limits rather than exact indicators of their true values (de

Jong and Bell, 2007). Other concerns have to do with the models of spectrophotometrical

evolution of galaxies and the libraries of stellar population SEDs, which may lack sensible

ingredients even today. For example Meidt et al. (2014), who aim to draw accurate stellar

mass maps using SPITZER data, discuss the fundamental necessity of subtracting the

light contamination from PAHs, hot dust, and stars from the assymptotic giant branch

(AGB) and red supergiants (RSG), which have a small contribution to the mass but emit

considerable amounts of light, biasing the inferred mass-to-light ratios in infrared bands
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towards higher values. Uncertainties in the mass-to-light ratios are actively debated in the

literature without a strong consensus (see e.g. McGaugh and Schombert, 2014).

Regarding the mass modelling of galaxies with bulges, the problem is that they add a

layer of uncertainty to the inferred cuspyness of the dark matter haloes, mainly as a result of

the uncertain mass-to-light ratio of this component which strongly influences the dynamics

of the central region. Bulges also make the interpretation of the mass distribution more

uncertain because they force the analyses to assume that the exponential disc continues

all the way to the center of the galaxy, a fact that has been put into question.

Finally I would like to highlight that, in spite of the fact that many authors defend the

authentic existence of cored galactic haloes based on mass modelling studies, a considerable

number of studies find the observational data to be consistent with cuspy haloes as well,

particularly when the sources of systematic errors are take into account (e.g. van den Bosch

et al., 2000; Swaters et al., 2003; Barnes et al., 2004; Rhee et al., 2004; Spekkens et al.,

2005), and some works do also find intermediate slopes, e.g. α ∼ 0.7 (e.g. Simon et al.,

2005; Adams et al., 2014). For unclear reasons these conclusions have received much less

attention, and a large fraction of the astronomical community assumes that the existence

and prevalence of galactic dark matter cores is an unquestionable fact. Also note that,

given the number of potential errors related to distance, inclination, lack of symmetry,

etc., it is naive to expect that samples of hundreds of galaxies which can be modelled as

ideal even in the very center and for which the data is of sufficient resolution etc., can

be found. For these reason, I would say that those studies using massive samples such as

Spekkens et al. (2005) should be revisited carefully, as well as those which were based on

low-resolution HI data and long-slit observations, which are subject to even more sources

of problematic errors. Taking that into account, the number of studies and the number of

galaxies suitable to be considered as very robust for cusp-core studies, reduce dramatically.

1.5 This thesis

This project intends to gain new insights into the dynamics of galaxies by jointly using

numerical simulations and observational data. It tries to look for the best way to fairly
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compare these two approaches, incorporating up-to-date models and techniques from both

fields.

As I described in the former sections, even though the mass modelling of galaxies is

a very interesting and useful approach, there are a large number of possible systematic

errors which may affect observational studies, especially in the case of the cusp-core pro-

blem. Incidentally, some preliminary experiments that I performed at an early stage of my

PhD, modelling a small sample of galaxies for which CCD images and velocity maps were

available, show me how intricate real systems are in comparison with simple geometrical

models (see Appendix A). As a side effect, these tests brought me some doubts about the

suitability of mass modelling approaches to faithfully uncover the very inner structure of

the dark matter haloes of galaxies.

This was the paramount motivation for the main component of my PhD research in-

vestigation, which consists in a set of thorough controlled experiments, carefully designed

to validate the accuracy of mass modelling techniques using forefront, self-consistent nu-

merical simulations of isolated galaxies and radiative transfer models.

The structure of this thesis is the following.

In Chapter 2 I present part of my work with numerical simulations. There I present

an extensive, thorough study of the dynamics of 6 simulated dwarf galaxies for which I

created mock realistic kinematic observations of the gaseous component, that were later

analysed in the very same way as it is done with real data in the cusp-core context. Dwarf

spirals and low surface brightness galaxies have played a fundamental role in the the cusp-

core controversy because of their low baryonic content, which should in principle make the

measurement of their dark matter haloes structure more straightforward. The main aim of

Chapter 2 is to determine the accuracy of the rotation curve fitting methods to recognize

the signature of a cuspy dark matter halo, both from ideal theoretical measurements as

well as from mock realistic kinematic observations.

In Chapter 3 I present further theoretical analyses of the data set introduced in Chap-

ter 2. There I focus on the determination of the ability of rotation curve inversion methods

to determine the real logarithmic slope of a dark matter halo from the inner part of a

velocity profile, and on the possibility of correcting for pressure support effects from ob-

servationally accessible information. Several methods employed in influential works of the

cusp-core literature are studied in order to determine their strengths and drawbacks.
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In Chapter 4 I present numerical simulations of more massive spiral galaxies, for which

the minimum disc approximation is not suitable. The final goal of the work initiated

in Chapter 4 is to investigate if the radial distribution of the stellar component may be

truly estimated from multi-band images. For this I resort to forefront radiative transfer

models, which allow the creation of realistic images from simulated galaxies. The general

framework is introduced and I present some preliminary results.

Finally in chapter 5 I present a summary of this investigation, my conclusions, and

some perspectives of the future work that may be done in order to give continuity to this

line of research.



56 Chapter 1. Introduction



Chapter 2

May cusps be disguised as cores?

As discussed in the introduction, the mass modelling of galaxies is a very useful ap-

proach, but there are a number of difficulties that may prevent its application in real

systems. Unfortunately, in general the factual effect of deviations from ideal models can

not be determined theoretically, and even the study of non-perturbed galaxies with high-

quality observations has a considerable degree of uncertainty. The question is then: what

observations and methods have to be used in order to differentiate cusps from cores? An

interesting way of approaching this problem is by means of numerical simulations, as this

is the closest we will ever be of fabricating a galaxy in a laboratory. So, in order to learn

more about the true performance of rotation curves studies I run a set of controlled ex-

periments using mock observations of simulated galaxies. The results described here and

in the following chapter are focused in the minimum disc approximation, because it has

played a major role in the history of the cusp-core problem and because it dismisses the

estimation of the baryonic mass distributions, which is known to be a problematic source

of uncertainties. In this way, i.e. by starting from a scenario which is known to be the

least affected by errors, a comprehensive analysis disentangling individual effects is more

suitable. This chapter includes the largest body of interesting, original results obtained

during this thesis. They have been already put into a paper in collaboration with Dr.

Volker Springel, Dr. Chris Hayward, and Dr. Claudia Mendes de Oliveira, which has been

already accepted for publication (Pineda et al., 2016). Here I reproduce the text of the

paper –before the final editing by the MNRAS editorial team–, with the exception of one

section which fits better in the next chapter of this thesis. Some stylistic differences exist

in the text from the paper and the rest of the thesis, but I keep them in order to ensure

full consistency with the published work.
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2.1 Introduction

In the last decades, cosmological numerical simulations based on the ΛCDM concor-

dance model have substantially improved our understanding of the dynamical evolution of

the Universe on large scales (Davis et al., 1985; Springel et al., 2005; Boylan-Kolchin et al.,

2009; Angulo et al., 2012; Klypin et al., 2014). More recently, it has also become possible

to include baryons in large cosmological volumes and directly follow galaxy formation, with

very promising results (Vogelsberger et al., 2014; Schaye et al., 2015a). However, a number

of well documented small-scale discrepancies between ΛCDM and observations still remain

to be understood, including the so-called cusp-core problem concerning the inner structure

of galactic dark matter haloes (Flores and Primack, 1994; Moore, 1994). On one hand,

dark matter (DM) haloes assembled in cosmological simulations exhibit cuspy radial den-

sity profiles which steeply increase towards the center (Navarro et al., 1996b, 1997; Moore

et al., 1999; Klypin et al., 2001; Navarro et al., 2004; Diemand et al., 2005; Stadel et al.,

2009). They are fairly well represented by the Navarro, Frenk e White (1996b, hereafter

NFW) fitting formula, with an asymptotic behaviour of ρinner ∝ r−1. On the other hand,

kinematic observations of disc galaxies (via rotation curves) and dwarf spheroidals (via

stellar velocity dispersions) often seem to be more compatible with core-like DM haloes

ranging from ρinner ∝ r0 to ρinner ∝ r−0.3 (Flores and Primack, 1994; de Blok et al., 2001;

Salucci, 2001; de Blok and Bosma, 2002; Kuzio de Naray et al., 2006; Spano et al., 2008;

Oh et al., 2011b; Walker and Peñarrubia, 2011; Oh et al., 2015). A number of studies have

also inferred intermediate slopes, which do not evidence constant-density cores but still are

substantially shallower than canonical cusps from simulations (Simon et al., 2005; Adams

et al., 2014).

Several physical mechanisms have been proposed to reconcile these findings and explain

the origin of DM cores. The current leading picture invokes repetitive starburst episodes

and the associated SNe feedback to blow out central baryons and induce rapid changes in

the gravitational potential (Navarro et al., 1996b; Gelato and Sommer-Larsen, 1999; Read

and Gilmore, 2005; Mashchenko et al., 2008; Governato et al., 2010a, 2012; Pontzen and

Governato, 2014; Madau et al., 2014; Chan et al., 2015; Oñorbe et al., 2015). However,

many feedback implementations do not form cores (Lia et al., 2000; Gnedin and Zhao, 2002;

Ceverino and Klypin, 2009), which has not precluded the formation of realistic galaxies
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(Sawala et al., 2010; Marinacci et al., 2014) as well as realistic populations of galaxies at

z = 0 in fully cosmological runs (Vogelsberger et al., 2014; Schaller et al., 2015). Also,

there are lingering doubts (Garrison-Kimmel et al., 2013) regarding whether the available

supernova energy is actually sufficient to create cores of the alleged size.

From the observational point of view, a problematic issue of using rotation curves

to probe the DM density profiles is to accurately account for the stellar gravitational

potential, mainly because of the uncertain mass-to-light conversion factor (van Albada

et al., 1985b; Bell and de Jong, 2001; Bershady et al., 2010). One way around this problem

lies in studying dark matter-dominated systems, such as late-type dwarf irregulars and low

surface brightness (LSB) galaxies. For these systems, it is acceptable to use the minimum

disc approximation, i.e. to ignore the existence of baryons and use the observed rotation

curves at face value to derive an indicative upper limit on the amount of DM (de Blok and

McGaugh, 1997; de Blok et al., 2001; Spekkens et al., 2005; Kuzio de Naray et al., 2006).

Furthermore, different observations suggest that LSBs are characterized by a comparatively

quiescent evolution, which likely implies relatively unperturbed DM haloes, making them

very interesting for cosmology (de Blok et al., 1995; Impey and Bothun, 1997; Du et al.,

2015). Indeed, these kinds of galaxies have been a main target of observational studies and

represent some of the most acute challenges for the ΛCDM cosmogony, as their rotation

curves are interpreted by several authors as strong evidence for DM cores (de Blok et al.,

2001; de Blok and Bosma, 2002; Simon et al., 2003b; Oh et al., 2011b, 2015). However,

some studies find some dwarfs and some LSB galaxies to be compatible with CDM cusps or

claim that available data simply does not allow to differentiate cusps from cores (e.g. van

den Bosch et al., 2000; van den Bosch and Swaters, 2001; Swaters et al., 2003; Spekkens

et al., 2005; Simon et al., 2005; Valenzuela et al., 2007). The systematic uncertainties

involved in studying this problem are a matter of active debate in the literature.

A number of effects that may lower the inner rotation curves and potentially mask

cusps and make them appear as cores have been investigated over the years. For instance,

early H i rotation curves had poor spatial resolution and were considerably affected by

beam smearing. This motivated the gathering of high-resolution optical data for which

beam smearing is expected to no longer be a problem (Blais-Ouellette et al., 1999; Swaters

et al., 2000), though it may still play a role in the very inner measurements, specially

for distant galaxies (Swaters et al., 2003). More recently, some surveys of H i in very
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nearby galaxies, like THINGS (Walter et al., 2008) and LITTLE THINGS (Hunter et al.,

2012) (amongst others, e.g., Begum et al., 2008; Ott et al., 2012), have also reached the

necessary resolution to alleviate beam smearing concerns. The first H α rotation curves

were obtained from long-slit spectroscopy, with the associated risk of missing the kinematic

center of the galaxy or its major axis; fortunately, this is no longer an issue since high-

resolution velocity fields have become available (Blais-Ouellette et al., 2001; Garrido et al.,

2002). Other problems that can be assessed by means of 2D velocity maps are possible

offsets between the photometric and kinematic centers and the presence of non-circular

motions (Simon et al., 2005; Oh et al., 2008b). A detailed analysis of these effects for

a sample of 19 galaxies from THINGS was presented by Trachternach et al. (2008), who

concluded that these effects are rather small and the sample is hence suitable for the mass

modeling studies presented in de Blok et al. (2008a).

Projection effects related to the thickness of gaseous discs are also potentially proble-

matic because mixing of material along the line-of-sight tends to lower the inferred circular

velocity (Rhee et al., 2004). Additionally, pressure exerted by the gas can effectively lower

the gravitational radial acceleration, thus lowering the rotational velocity needed for sup-

port. With very few exceptions (e.g. Oh et al., 2011b), pressure support corrections are

usually neglected because they are expected to be small (de Blok and Bosma, 2002). Halo

triaxiality has also been considered as a possible explanation for the core-cusp discrepancy

(Hayashi et al., 2007), but using both observations and numerical modelling, other authors

have argued that this is not likely to be the case (Simon et al., 2005; Kuzio de Naray et al.,

2009b; Kazantzidis et al., 2010; Kuzio de Naray and Kaufmann, 2011). Besides all the

potential complications already mentioned, we note that galaxies are often irregular and

present substructures such as bars, bulges, and spiral arms. In addition, rotation curves are

often wiggled, warped, or lopsided. The interpretation of these features and their impact

on the cusp-core problem is not clear and cannot be modelled from first principles.

A powerful approach to study these systematic effects is by means of controlled ex-

periments with simulated data. The first attempts in this direction mimicked long-slit

observations of analytic velocity fields, including some uncertainties. In this way, de Blok

et al. (2003) concluded that it should be possible to recognize the real steepness of a DM

halo from its measured rotation curve and that no single systematic effect can account

for the cusp-core difference. However, following the same approach, Swaters et al. (2003)
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concluded that systematic effects tend to erase the signature of cusp-like haloes and that

rotation curve analyses cannot compellingly rule out the presence of cusps. Similarly,

Spekkens et al. (2005) found cuspy DM haloes to be consistent with the observed distribu-

tion of slopes once systematic effects are taken into account. Dutton et al. (2005) pointed

out that uncertainties inherent in mass modelling studies prevent them from setting firm

constraints on the shape of DM haloes. Kuzio de Naray et al. (2009b) did not use analytic

velocity fields but instead integrated orbits numerically. They mimicked 2D integral field

unit (IFU) data using a reference sample of observations and concluded that if present at

all, NFW haloes should be still recognizable. However, although these kinds of models pro-

vided useful insights into the problem, they were clearly oversimplifications. For instance,

with the exception of Dutton et al. (2005), these studies assumed infinitely thin massless

discs, and none included hydrodynamics.

Rhee et al. (2004) brought analyses of observations and simulations closer together.

They performed N-body simulations of stellar discs inside cuspy haloes and observed them

in a realistic manner, concluding that projection effects, small bulges, and bars can often

lead to false detections of DM cores. Valenzuela et al. (2007) confirmed these results using

simulated analogs of the dwarf galaxies NGC 3109 and NGC 6822. They also compared

a pure N-body simulation with hydrodynamical runs and suggested that pressure support

related to stellar and supernova feedback can also produce the illusion of cores. A different

result from similar simulations was presented by Kuzio de Naray and Kaufmann (2011).

They concluded that the signatures of cores, cusps, and triaxiality in DM haloes should

be clearly detectable in observed velocity fields. In recent work, Oh et al. (2011) analysed

mock observations of two dwarf galaxies formed in zoom-in cosmological simulations that

undergo the supernovae-driven cusp-to-core transformation (Governato et al., 2010a) and

compared them with a sample of dwarfs from the THINGS survey. Oh et al. (2011)

found that their mock observations trace the true rotation curves and true surface density

profiles of the simulated galaxies fairly well. They also state that their simulations are

a good match to real galaxies regarding these quantities, but Oman et al. (2015) showed

that the alleged agreement is only apparent in some cases. Moreover, Oman et al. (2015)

demonstrated that the diversity of dwarf galaxy rotation curves is much greater than that

of galaxies formed in cosmological simulations, posing a new challenge to any model trying

to solve the cusp-core problem. Recently, Read et al. (2016) addressed this question using
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mock observations from a suit of very high-resolution (4 pc) simulations and indicate that

at least part of the observed diversity can be explained from the starburst cycles of galaxies

and their influence on the dynamical state of the galaxy.

Given the body of in part contradictory conclusions in the literature, it is apparent that

further investigations of potential systematic effects in observational inferences about the

cusp-core problem are worthwhile. In this work, we carry out a comprehensive theoretical

study of the kinematics of a set of simulated dwarf galaxies by carefully creating synthetic

observations that are then analysed in exactly the same manner as real data. In this way,

we can determine the effects of different sources of error in the context of the cusp-core

problem and assess to what extent these errors can lead to misleading inferences about

the structure of the analysed galaxies. Here we focus on the minimum disc approximation,

exploting the fact that our models are dark matter dominated at all radii, and we only use

rotation curve fitting to classify cusps and cores; a complementary analysis using rotation

curve inversion methods will be presented in a separate paper, as they demand a different

approach.

The outline of the paper is as follows. In Sec. 2.2 we present our simulated galaxy sample

and summarize the simulation methodology. In Sec. 2.3 we introduce the methods we use to

analyse the information from the snapshots. In Sec. 2.4 we present the dynamical evolution

of the different components, the mock observed rotation curves, and the results from the

rotation curve fitting methods that aim to distinguish cusps from cores. In Sec. 2.5 we

discuss the systematic effects that influence these results, aiming to disentangle the effects

of spatial resolution, inclination, pressure support, etc. Finally, in Sec. 2.6 we present our

conclusions and a summary of our results.

2.2 Simulations

2.2.1 Physical characteristics of the simulated galaxies

We simulate six dwarf galaxies in isolation at high resolution using the N-body+smoothed-

particle hydrodynamics (SPH) code gadget-2 (Springel, 2005). Each simulation is com-

posed of a dark matter halo plus an exponential disc of stars and gas, as summarised in

Table 2.1. The methods for creating the numerical realizations of the initial conditions are

essentially the same as described in Springel (2005) and Cox (2004). Here we hence focus
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on the motivation for choosing the physical parameters of the galaxies and only briefly

mention the most relevant technical details.

Galaxy models ‘Dwarf1’ to ‘Dwarf4’ (or simply D1,..., D4) are representative of the

bulk of the properties of observed dwarf spirals and LSBs (e.g. de Blok and Bosma, 2002;

Spekkens et al., 2005; de Blok et al., 2008a; Kuzio de Naray et al., 2008b, 2009b; Stark

et al., 2009; Oh et al., 2011b). These four galaxies are constructed to lie on the stellar

and baryonic Tully-Fisher relations (TF) of Bell and de Jong (2001). Notice that if both

TF relations are required to be satisfied simultaneously, this puts a constraint on the gas

fraction as a function of the stellar mass. Using representative values from Bell and de

Jong (2001), we define the following target relations:

log (M?) = 0.83 + 4.34 log (Vflat), (2.1)

fg =
Mgas

Mgas +M?

= 1− M0.21
?

170
, (2.2)

where M? and Mgas are the total masses of the stellar and the gaseous discs, fg is the

gas fraction, and Vflat is the maximum circular velocity. The radial stellar and gaseous

distributions drop exponentially, with surface density profiles given by

Σ?(r) =
M?

2πh2
0

e−r/h0 , (2.3)

Σgas(r) =
Mgas

2πh2
gas

e−r/hgas . (2.4)

The stellar scale lengths are chosen to be relatively large (but still realistic) in order to

give our galaxies a low surface brightness. We make the gaseous discs three times more

extended than the stellar ones as suggested by observations (Broeils and van Woerden,

1994).

The vertical structure of the stellar discs follows a typical sech2(z/z0) model with the

scale height z0 equal to one fifth of the radial scale length h0, so their 3D density fields

read

ρ?(r, z) =
M?

4πh2
0z0

e−r/h0sech2(z/z0). (2.5)

For gaseous discs the vertical structure is self-consistently calculated considering the full

gravitational potential and assuming hydrodynamic equilibrium under a given equation of

state that we choose to be the multiphase model of Springel and Hernquist (2003).
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Dark matter haloes are modelled with the cuspy NFW density profile (Navarro et al.,

1996b). We did not simulate cored haloes because several mechanisms that might cause

cusps to appear as cores have been proposed, but no mechanisms that can cause cores to

appear as cusps are known. Moreover, to provide a potential solution to the cusp-core

problem, it is only necessary to demonstrate that cusps can be mistaken for cores. The

original NFW formulation is

ρ
NFW

(r) =
ρ0

(r/Rs)[1 + (r/Rs)]2
. (2.6)

In equation (2.6), ρ0 is a characteristic density and Rs represents a transition radius

between an inner and an outer exponential law (ρinner ∼ r−1; ρouter ∼ r−3). An alternative

parametrization that provides easier comprehension of the halo structure is obtained by

casting the enclosed mass into a circular velocity profile,

v
NFW

(r) = v200

√
log (1 + cx)− cx/(1 + cx)

x[log (1 + c)− c/(1 + c)]
, (2.7)

with v200 representing the circular velocity at r200, the radius at which the halo mean

density is 200 times the critical density for closure1. The parameter c ≡ r200/Rs measures

the central concentration of the mass distribution, and x ≡ r/r200.

For each galaxy, the halo mass is chosen as a function of the stellar mass following

the abundance matching relation of Guo et al. (2010). The concentrations are determined

using the halo mass-concentration relation at redshift zero (Ludlow et al., 2014), which

is a fundamental outcome of large cosmological simulations. Guo et al. (2010) used the

Chabrier (2003) initial mass function (IMF), whereas Bell and de Jong (2001) used a scaled-

down Salpeter (1955) IMF, giving rise to a systematic difference of 0.15 dex in stellar mass.

For this reason, we add 0.15 dex to the actual stellar mass when we use equations (2.1)

and (2.2) to define the target Vflat and fg, respectively. Compared to the stellar masses at

face value, this increment raises the target circular velocities by 8 per cent and the target

gaseous masses by 10 to 25 per cent.

Once we have defined an initial configuration, we create the corresponding initial con-

ditions file and check if Vflat actually satisfies the TF relations inside the expected scatter,

slightly adjusting the halo parameters otherwise. As a side effect of this tuning, the less

1 Notice that v200 encodes the halo mass through M200 = v3200/(10GH0); we use H0 = 70 km s−1

Mpc−1.
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massive galaxies, D1 and D2, end up with DM haloes that are less massive than predictions

from the abundance matching target relation. Nevertheless, through a comparison with

different samples from the literature, Oh et al. (2011b) has noted that this is not at odds

with observations of low-mass galaxies, for which the abundance matching relation of Guo

et al. (2010) is not directly constrained but rather represents an extrapolation to smaller

masses.

We also checked that our galaxies are consistent with the baryonic TF relation of Stark

et al. (2009), which was calibrated specifically using small, gas-rich galaxies (mainly dwarf

galaxies and LSBs). Additionally, we require Vflat to stay below 130 km s−1, following the

selection criterion of Spekkens et al. (2005) to characterize a galaxy as a dwarf. We note

that galaxy models D1 to D4 retain well-behaved discs throughout the simulation. There

are neither detectable signatures of central bulge-like mass concentrations nor formation

of bars, spiral arms, or other baryonic substructures (see Figs. 2.1 and 2.2).

Figure 2.1: Face-on stellar density maps of our simulated galaxies at half the simulation time (3 Gyr).

Note that with the exception of G1, the simulated galaxies do not exhibit non-axisymmetric structures

such as spiral arms or bars.

We also re-simulated two galaxies from the sample of Cox (2004). These models are,

by construction, representative of late-type galaxies in the local universe, as their main
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Figure 2.2: Edge-on stellar density maps after 3 Gyr of evolution. Our galaxies do not form bulge-like

central concentrations of matter. This fact is confirmed by the lack of central peaks in the circular velocity

profiles of the stellar component V? in Fig. 2.5.

properties, such as disc size, dynamical mass, and gas fraction, are consistent with a large

set of observations (Roberts and Haynes, 1994). From the sample of Cox (2004), we only

included the systems with Vflat < 130 km s−1, G0 and G1. The DM haloes exhibit NFW

density profiles with numerical parameters tuned to match the baryonic TF relation from

Bell and de Jong (2001). We note that these parameters are quite consistent with the

scheme we propose for Dwarfs 1 to 4 regarding the stellar mass-halo mass and halo mass-

concentration relations. G0’s halo mass is lower than the abundance matching prediction,

but it is consistent with observed galaxies of similar mass, as already discussed for D1

and D2. A major difference between our models and Cox (2004) is that we omitted the

bulge component in the initial set up. To minimize perturbations in the original target

relations we redistribute the bulge mass into the disc, conserving the total stellar mass.

Nevertheless, a central matter concentration builds up in the case of G1, resulting in the

formation of a strong bar (see Fig. 2.1).



Section 2.2. Simulations 69

2.2.2 Simulation technique and numerical parameters

The specific version of gadget-2 we use includes radiative cooling of the gas and a

sub-resolution multiphase model for the interstellar medium that models the effects of star

formation and stellar feedback (Springel and Hernquist, 2003). Neither black hole accretion

nor AGN feedback is included because we want to study highly symmetric galaxies with

non-perturbed kinematics, for which black hole growth is expected to be small.

Each galaxy is simulated for a period corresponding to six billion years, with snapshots

(i.e. time slices) stored every one hundred million years, which is comparable to the or-

bital time for particles inside the first few kiloparsecs. This means that there is enough

time between snapshots for the galaxy to undergo some small-scale morphological trans-

formations, and therefore we expect our average results not to be strongly biased by odd

individual cases with peculiar configurations. We exclude the first seven snapshots of each

simulation in order to discard possible transient states during the initial relaxation towards

a stable rotational configuration (this can arise because the initial conditions are not in

perfect equilibrium); we then still have a large number of snapshots per galaxy (∼54) in

order to identify and explore global trends.

A key parameter in N-body simulations is the gravitational softening length, which

is meant to keep two-body relaxation effects and orbital integration cost under control.

Since gravitational forces are smoothed for particles approaching shorter distances than

the softening length, the dynamics of structures smaller than this scale is artificially mo-

dified by this approximation. The spatial resolution of an N-body simulation is generally

considered to be two to three times its softening length. Given that we want to investi-

gate scales as small as 100 pc, we set the softening length to 25 pc in all our simulations.

The baryonic particle (i.e. gaseous and stellar particles) masses are chosen to ensure at

least 8 particles per softening volume within the central 2 kpc inside the disc. The DM

particle mass is set to guarantee a minimum of 150 particles inside the inner 100 pc in

order to have a relatively smooth DM distribution. Further, we impose an additional cons-

traint, namely
√
GMpart/εsoft � 16 km s−1, which ensures that perturbations induced by

two-body encounters are below the typical velocity dispersion of a warm interstellar me-

dium. The resulting baryonic particle masses in our simulations range from 1.2 × 103M�

to 1.6 × 104M�, and the DM particle masses range from 2 × 104M� to 4 × 104M� (see
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Table 2.1).

gadget-2 uses smoothed-particle hydrodynamics (SPH) to solve the hydrodynamic

equations of the gas component. This computational method simulates fluids as collections

of point-like elements. The SPH technique considers that each gas particle carries a certain

amount of every gas property, which is smoothed over a finite volume according to a given

kernel function. The value of a quantity at an arbitrary location is given by the sum of

the smoothed contributions from all those particles enclosing that point inside their kernel

volumes. The kernel employed by gadget-2 is a spline function with one parameter,

the smoothing length h, such that the value of every quantity outside a radius h is zero.

The numerical approximations made in SPH have been shown to be sometimes inaccurate,

especially for representing fluid instabilities such as the Kelvin-Helmholtz instability (e.g.

Agertz et al., 2007). However, we do not expect that these hydrodynamical accuracy issues

have a bearing on the questions studied in this paper, especially because Hayward et al.

(2014) found that the results of gadget-2 simulations of idealised isolated disc galaxies

are very similar to simulations of the same galaxies performed with the state-of-the-art

moving-mesh hydrodynamics code arepo (Springel, 2010).

2.3 Analysis methods

To fully understand the systematic differences that can arise between the real circular

velocity profile of the DM halo and the rotation curve that is actually inferred observatio-

nally, one has to go through a long chain of intermediate steps. In order to disentangle the

impact of each approximation on the deduced cuspiness of the halo, our general strategy

is to apply the same analysis methods to different circular velocity profiles, starting from

the most ideal case and adding one layer of approximation at a time. Sorted by the degree

of idealization involved, these circular velocity profiles are the following:

1. Dark-matter-only circular velocity (Vdm)

2. Total-mass circular velocity (Vtot)

3. True circular motions of the gas (Vcir)

4. Observed rotation curve (Vobs)
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The quantity Vdm represents the circular velocity of a test particle under the gravitatio-

nal potential of the dark matter halo alone. From a theoretical point of view, this velocity

profile is the only one that traces the exact DM distribution. Vtot represents the circular

velocity profile generated by the total gravitational potential (i.e. DM plus baryons) in

the plane of the disc. With this definition at hand, the minimum disc approximation can

be thought of as using Vtot instead of Vdm to directly estimate the cuspiness of the halo,

thus neglecting the baryonic contribution to the potential. In both cases, Vdm and Vtot do

not measure velocities but rather gravitational radial accelerations, as they translate into

rotational velocities via Vrot(r) =
√
arr.

In contrast, Vcir is a direct measure for the actual (circular) motions of the gas. Notice

that Vcir can lie below Vtot if the hydrodynamical pressure pushes the gas outwards, thereby

lowering the effective radial acceleration towards the center that needs to be balanced by

centrifugal forces. Finally, Vobs refers to our mock observed rotation curves, which mimic

several processes of real observations, such as projection effects and finite spatial resolu-

tion. This generic name comprises a large set of curves for each snapshot because we mimic

two types of observations, long-slit rotation curves and 2D velocity fields, at five different

inclinations and four different spatial resolutions (to mimick the effect of distance varia-

tions). It is worth emphasizing that Vdm, Vtot, and Vcir correspond to perfect theoretical

measurements from the simulations, whereas Vobs accounts for the limitations of real data.

However, we stress that because our simulations are constructed to be highly symmetric

discs in perfect rotational equilibrium, even Vobs does not fully capture the difficulties

inherent in inferring the DM profile shape from observations of real dwarf irregulars and

LSB galaxies. Instead, the analysis that we present here should be considered a best-case

scenario, at least given current observational limitations.

2.3.1 Snapshot preprocessing

Before we extract the relevant information from the snapshots, we process them to

make sure that the center of the gravitational potential and the galactic disc orientation

are robustly determined. This is very important because poorly constrained values can

introduce harmful effects in the forthcoming analysis. For example, note that an error

of 5◦ at low inclinations (∼15◦) can propagate to an error as high as 50 per cent in the

normalization of the observed rotation curves and that an incorrect determination of the
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center’s position may lead to a spurious flattening of the inner part of a spherically averaged

density profile.

We recenter the snapshots using an iterative version of the shrinking spheres method

described in Power et al. (2003). We first calculate the center of mass inside a large

sphere containing everything in the simulation and recenter all coordinates around this

point. Next we shrink the sphere by 1 per cent in radius, find the new center of mass, and

recenter the particles again. This is repeated until there are less than 10 particles in the

sphere. We also rotate the frame of reference to make the net angular momentum of the

gas component coincident with the z-axis.

2.3.2 Real density profiles

To determine the true DM density profiles and verify their steepness, we first measure

the DM cumulative mass as a function of radius and then we compute

ρ =
d
dr
Mdm(< r)

4πr2
. (2.8)

We use spherical shells equally spaced in logarithmic radius and a central finite-differences

scheme for the derivative. We test different steps, namely 0.05, 0.075, 0.1, 0.15, 0.2, and

0.3, and we adopt ∆ log(r) = 0.15, where r is in kpc, which is the smallest interval that

produces smooth profiles and is still largely affected by Poisson noise in the central region

(r < 150 pc). We note that the measured cuspiness of the halo does not depend on this

specific choice as variations in the density profiles are very subtle.

2.3.3 Theoretical circular velocity profiles

We refer to measurements that are calculated from detailed information in the snapshots

as theoretical quantities, disregarding the issue of whether or not they can be actually

assessed observationally. These quantities include the DM density profiles described earlier

as well as a subset of the circular velocity profiles introduced at the beginning of Sec. 2.3,

namely Vdm, Vtot, and Vcir.

(i) Dark-matter-only circular velocity, Vdm: Particles rotating at a constant speed satisfy

Vrot(r) =
√
arr, so it suffices to determine the mean radial acceleration attributed to the

DM halo as a function of radius to determine its equivalent circular velocity profile. To do
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this, we export all DM particles in the snapshot to a separate initial conditions file and run

gadget-2 for a single time-step to calculate the gravitational forces. Then, we measure

the mean radial acceleration in thin spherical shells and compute

Vdm(r) =
√
〈ar(r)〉 r

∣∣∣
gravity, dm only

. (2.9)

(ii) Total-mass circular velocity, Vtot: This velocity profile is related to the gravitational

potential of the whole system, i.e. dark matter plus baryons. It is interesting because a

joint analysis with the DM-only circular velocity profile allows one to assess the validity

of the minimum disc approximation without mixing in any other effect. Once again, we

compute the mean radial accelerations due to gravity using gadget-2. However, this time

we cannot assume spherical but rather axial and vertical symmetries instead. Therefore,

we compute the radial accelerations using thin cylindrical shells in the xy-plane (|z| ≤ 100

pc) and then determine the circular velocity profile using

Vtot(r) =
√
〈ar(r)〉 r

∣∣∣
gravity, all particles

. (2.10)

(iii) True circular motions of the gas, Vcir: In this case, we select the gas particles in the

equatorial plane (|z| ≤ 100 pc) and measure their circular (tangential) velocities, taking

the mean value in small radial bins:

Vcir(r) = 〈Vφ(r)〉|gas particles . (2.11)

We emphasize that for axisymmetric systems in rotational equilibrium, any difference

between Vcir and Vtot must be due to the fact that in addition to gravity, gaseous media

also experience hydrodynamical forces. The above velocity profile is one step closer to

reality because instruments do not detect gravitational potentials but rather velocities;

thus, Vcir can be thought of as the rotation curve that a perfect instrument under perfect

observational conditions would detect (neglecting projection effects).

Additionally, we calculate the circular velocity profiles associated with the gravitational

potentials of the stellar and the gaseous components separately, using the same procedure

as for Vtot. These curves are denoted as V? and Vgas in the text. This complementary

information is interesting for understanding the difference between Vdm and Vtot, as we

have that

V 2
tot = V 2

dm + V 2
? + V 2

gas. (2.12)
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The theoretical rotation curves were calculated using shells of 100 pc width, linearly

spaced every 100 pc, the first of which is centered at 125 pc in order to exclude particles

inside 3 times the softening length. Except for when calculating Vdm, we only consider

particles in the midplane because the assumption of vertical symmetry breaks down as

one moves above or below the equatorial plane, and this is likely to make particles rotate

slower (Rhee et al., 2004). We check that there is a large enough number of particles in

all bins, resulting in smooth velocity profiles without visible signs of shot noise. When we

explore the effects of spatial resolution associated with the distance to the galaxies, we use

re-sampled versions of the theoretical rotation curves matching the radial positions of the

corresponding mock observations. The error bars on the theoretical rotation curves are

fixed to 1 km s−1 where necessary.

2.3.4 Mock kinematic observations

We mimic different kinds of observations of the gas component, including optical long-

slit rotation curves and 2D velocity maps. We consider two different cases, labeled as H i

and H α, which represent some physical properties of the 21-cm and the H α emissions,

respectively.

We observe each galaxy at five different inclinations from 15◦ to 75◦ in steps of 15◦,

the smallest one being the closest to a face-on view. We also try four different distances,

namely 10, 20, 40, and 80 Mpc. Note that the truly important quantity is the spatial

resolution of the observations, but because we use typical values for the instrumental

angular resolutions, these distances are useful indicators. For our fiducial H α PSF of 2

arcsec, the corresponding spatial resolutions are ∼100, ∼200, ∼400, and ∼800 pc. Our H i

resolution is six times poorer, but as we use the radio observations only in the outer part,

the optical data is most important for differentiating cusps from cores. In the following,

we first describe the basic concepts and common approximations employed to create our

mock observations and then move on to more specific details as necessary.

We assume that some of the gas particles emit radiation through a spectrum composed

of a single emission line with a gaussian profile. In the H i case, we consider all gas particles

in the simulation to be radio emitters, and we make the amplitude of the 21-cm emission

line proportional to the mass of the gas particle. The broadenings are given by the intrinsic

velocity dispersions, σ, self-consistently calculated from the temperature of each particle
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as

σ =

√
kT

µmH

, (2.13)

where k is the Boltzmann constant, T is the temperature of the gas particle, µ is the

mean molecular weight, and mH the mass of a hydrogen nucleus. For moving particles, we

Doppler-shift the emission line without altering its width. This means that the intensity of

the emission from a gas element with a mean velocity vlos along the line of sight, detected

at a different velocity (frequency) v, is given by

IHI(v) ∝ Mpart

σ
e−

(v−vlos)2

2σ2 . (2.14)

In the H α case, we only include gas particles with ongoing star formation activity,

which is a good proxy for the spatial distribution of the ionized gas in H ii regions, though

it may miss the warm ionized gas pervading the rest of the ISM. The mock H α observations

defined in this way have a smaller radial extent than our fiducial mock H i data, consistent

with observations. Additionally, the disc of star-forming gas is thinner than our mock H i

disc, which makes our choice conservative, as our mock H α data will be less affected by

projection effects and will trace the disc kinematics more faithfully. Since H α emission

depends on the mass of the ionized gas, we make the H α intensity proportional to the mass

of the gas particles times their current star formation rate (SFR), which should roughly

correlate with the amount of ionizing radiation available from young, massive stars. The

H α intensity versus frequency is thus given by

IHα(v) ∝ SFR× Mpart

σ
e−

(v−vlos)2

2σ2 . (2.15)

Regarding the observational process itself, we simplify it to a combination of a spatial

and a spectral sampling of the emitted radiation field. The spatial sampling mimics the

pixels of the detector. To be consistent with the SPH approximation, the radiation flux

that a gas particle contributes to a certain pixel is inversely proportional to the projec-

ted distance between the particle and the center of the pixel, using the same kernel and

smoothing lengths as in the SPH simulation. Adding contributions from all neighbouring

particles, we obtain a resulting spectrum per pixel made up of individual shifted Gaussi-

ans. Then, we sample each spectrum in narrow velocity (frequency) channels to mimic the

spectral resolution of a given instrument. At the end of this process, we obtain a datacube

containing spatial and kinematic information about the gas component in the simulation
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box. Each slice of this datacube is an intensity map of the H α or H i radiation in a specific

velocity channel. Finally, a 2D Gaussian convolution is implemented across each slice to

mimic the effect of the optical seeing or the radio beam, and the cube is collapsed along the

spectral axis by means of a simple intensity weighted mean (IWM) scheme to determine

the observed line-of-sight velocity at each pixel,

〈v〉 =

∑
ch Ichvch∑

ch Ich

(2.16)

For the 2D observations, mock intensity and velocity dispersion maps are also generated

from the data cubes following Walter et al. (2008)

I =
∑

ch

Ich (2.17)

σ =

√∑
ch Ich × (vch − 〈v〉)2

∑
ch Ich

. (2.18)

Interesting comparisons of the IWM algorithm with alternative ways of defining a

velocity map from its parent data cube are discussed by de Blok et al. (2008a) and Oh

et al. (2011b). They show that IWM velocities are potentially biased in the presence of

non-circular motions as the emission lines become asymmetric or the spectrum may exhibit

secondary peaks (i.e., additional velocity components). Notwithstanding, our galaxies are

strongly dominated by rotational motions; thus, we find the IWM method good enough to

trace the disc rotation (see Fig. 2.6). Moreover, we will show in Sec. 2.4 that for nearby

galaxies, the final results obtained from our mock observations agree remarkably with those

obtained from perfect theoretical measurements of the gas kinematics. Therefore, there

is no need to employ more complex algorithms than the IWM. The same applies to more

sophisticated schemes, as modelling the H i distribution and kinematics directly from from

the datacubes (e.g. Bouché et al., 2015; Di Teodoro and Fraternali, 2015; Kamphuis et al.,

2015). Even though a comparison of these methods through our mock data set would be

interesting, it lies beyond the scope of this work.

We also address several numerical artifacts detected during the experiments. For exam-

ple, we noticed that in low-intensity pixels, outliers moving at arbitrary velocities can

dominate the velocity estimation and introduce spurious and sometimes enormous fluctu-

ations in the final rotation curve. To avoid this effect, we define an arbitrary luminosity
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threshold of 10−4 times the maximum detected intensity, which works well in suppressing

the fluctuations while filtering out just a few pixels. Another potentially harmful effect that

we detected is a systematic underestimation of the velocity at the last measured points.

We find the main cause of this to be related to the use of the SPH approach, as this implies

that in principle, one can define velocities at points that are beyond all gas particles. To

remove this artifact, we impose the maximum radius for velocity estimations to be the

radius enclosing 99 per cent of the emitting particles. A further comparison between the

mock observations and the theoretical rotation curves confirmed that imposing this ma-

ximum radius solved the problem. We only report rotation curves for radii beyond 75 pc

plus the seeing/beam such that possible contamination from inner points affected by the

softening is virtually absent even after the PSF/beam convolution. This places the first

kinematic measurement at approximately 0.17, 0.27, 0.46, and 0.85 kpc for galaxies viewed

at 10, 20, 40, and 80 Mpc, respectively.

2.3.4.1 H α long-slit rotation curves

In this case, we only consider pixels inside a virtual slit placed along the major axis of

the disc. We use square pixels and enough spectral channels to sample the whole range of

line-of-sight velocities. We choose instrumental parameters consistent with the majority of

observational studies. The slit width is 1.4 arcsec, the pixel size is 0.7 arcsec, the FWHM

of the PSF is 2 arcsec, and the spectral resolution is 47 km s−1, equivalent to a 20 km s−1

channel separation. The spatial resolution corresponds to ∼ 100 pc at a distance of 10 Mpc,

matching the size of the radial bins that we used to define the theoretical rotation curves.

For mock observations at 20, 40, and 80 Mpc, the corresponding physical resolutions are

∼200, ∼400, and ∼800 pc, respectively. Given that the slit width is resolved into two

pixels, we add them together before collapsing the cube to have a single velocity estimate

at each position along the slit. Next, we fold the rotation curve to put the approaching and

receding sides together, and we average both the radial and velocity information in bins

of 1 arcsec (∼ 50 pc at 10 Mpc), i.e. using 2 points per seeing, as is common practice for

this kind of data. We adopt the standard deviation of individual velocity pixels in the bin

as the error bar, and we check that this is perfectly consistent with taking the difference

between the approaching and receding sides.

Similar to de Blok and Bosma (2002), we impose a minimum error of 2 km s−1 (they
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used 4 km s−1). Finally, we de-project the observed line-of-sight velocities to get the actual

rotation curve,

vrot(r) =
vlos(r)

sin (i)
, (2.19)

where i represents the galaxy inclination. We use the true inclination and major axis of the

gaseous disc, and we assume the galactic center to coincide with the center of the overall

gravitational potential. In a forthcoming paper, we will present mock photometric data of

these galaxies and demonstrate that classical photometric estimators can recover the center

of the gravitational potential with an accuracy of 1 arcsec (half the spatial resolution) and

the inclination and position angle with typical errors of less than 10◦. As we commented

in Sec. 2.3.1, small inclination errors can induce large differences in the normalization of

the rotation curve for discs that are near to face-on. However, it is not clear whether such

errors can cause the inferred cuspiness of the halo to be incorrect or they can be safely

ignored; regardless, errors of this magnitude would certainly be considered acceptable in

actual observational studies. In any case, in this work, we focus on the best case and do

not include the effects of errors in the geometrical parameters.

2.3.4.2 H α velocity fields

To construct H α velocity fields, we map the entire H α emission across the galaxy.

The instrumental parameters (pixel scale, seeing, and spectral resolution) are the same as

above. The velocity field is computed using the IWM scheme defined in equation (2.16)

and the rotation curves are extracted using the kinemetry software package (Krajnović

et al., 2006). kinemetry performs a harmonic decomposition of the line-of-sight velocity

field in elliptical rings as a function of the position angle θ, performing a least-squares

minimization of

Vlos(θ) =
∑

j

Aj sin(jθ) +
∑

j

Bj cos(jθ) (2.20)

to find the best set of coefficients for each ring. In the case of pure circular motions, we

have

Vlos(θ) = Vrot sin(i) cos(θ). (2.21)

Therefore, in the kinemetry expansion, the net amount of rotation would be proportional

to the coefficient B1, with all other components representing non-circular motions. We

calculate the rotation curves in radial bins of 1 arcsec and adopt as final errors the formal
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Figure 2.3: Example data products obtained from G0 at 3.0 Gyr, 45◦ inclination, and 10 Mpc distance.

From left to right, we present the optical long-slit spectrum, the H α velocity field, and the H i velocity field.

The H i velocity map extends over 7 kpc, reaching a maximum radius of 3.5 kpc into the receeding and the

approaching sides, which is roughly the optical radius. The H α map barely reaches ∼3 kpc, corresponding

to the region with non-negligible emission. Velocities are colour-coded equally in both maps according to

the shown scale. Iso-velocity contours are drawn every 10 km s−1. The long-slit spectrum also extends over

7 kpc. Pixels in the horizontal direction represent the spectral axis, coloured according to the intensity of

the emission in each velocity channel.

errors of the fit reported by kinemetry. Even though kinemetry is in principle able to

treat the ellipticity and position angle of the ellipses as free parameters during the fitting,

we kept them constant and fixed to their real values in order to avoid one additional source

of potential error.

2.3.4.3 H i velocity fields

We also create H i velocity fields following the same prescription. The instrumental

parameters are chosen according to the H i survey THINGS (Walter et al., 2008), which,

along with LITTLE THINGS (Hunter et al., 2012), represents the best-quality H i data
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ever used in the cusp-core context. We use a 5.2 km s−1 channel separation, a pixel scale

of 1.5 arcsec/pixel, and a Gaussian beam of 12 arcsec at FWHM, such that the spatial

resolution is ∼ 580 pc for galaxies at 10 Mpc. Final rotation curves are determined using

kinemetry in elliptical rings of 6 arcsec width. We note that the spatial resolution of

THINGS is better by a factor of 2 in the velocity maps reduced with the robust weighting

scheme instead of the natural weighting (see Walter et al., 2008, for details). This fact

is exploited to emphasize the advantages of using THINGS velocity maps for cusp-core

studies, although it is sometimes not properly stated. For example, Oh et al. (2011b)

mentioned the higher spatial resolution in their introduction, but then the poorer resolution

(∼12 arcsec) was actually used. This mixup was propagated into Oh et al. (2011), in which

a spatial resolution of 6 arcsec was used to construct the mock kinematic observations of

the simulated galaxies. On the other hand, the data cubes used in those studies had a

spectral resolution of 2.6 km s−1 (a factor of 2 better than ours), but most of the velocity

maps in a related study by de Blok et al. (2008a) had 5.2 km s−1 resolution. Regardless,

we have checked that measured rotation curves are insensitive to the assumed spectral

resolution as long as the Gaussian emission lines are properly sampled.

2.3.4.4 Hybrid rotation curves

Optical rotation curves have a better spatial resolution than radio observations, but

the latter usually cover much larger radii. For this reason, it is very convenient to mix both

kinds of data when they are available for the same object, using the H α measurements

in the inner region and appending the H i velocities in the outer part. In this manner,

one minimizes concerns about beam smearing while hopefully reaching the flat part of the

rotation curve with a high enough number of points in order to put meaningful constraints

on the overall shape of the DM halo using rotation curve fitting methods (Sec. 2.3.5).

We create hybrid rotation curves by joining the H i data to both the long-slit and the

kinemetry H α rotation curves. Given that H i rotation curves are clearly affected by

beam smearing in their inner parts, we implemented an automatic algorithm to discard

the first H i data points, as needed to get a continuous rotation curve with a positive,

monotonically decreasing radial derivative at the H α/H i interface. The hybrid rotation

curves are truncated at ∼2 times the optical radius, which is approximated as ∼3.2 times

the scale-length of the stellar disc (Persic and Salucci, 1995), thus yielding radial extents
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between 5 and 19 kpc, which are representative of real observations.

2.3.5 Differentiating cusps from cores via rotation curve fitting

When there is kinematic information available beyond the rising part of the rotation

curve, the typical method to differentiate cusps from cores is fitting different analytic

models to the dataset and choosing the best one on the basis of the minimum χ2
ν of the

fits. Among the variants presented in the literature, the most common models are the

cuspy NFW model (see equations 2.6 and 2.7), for which ρinner ∼ r−1, and the cored

pseudo-isothermal sphere (hereafter ISO), for which ρinner ∼ r0 and the full profile is given

by

ρ
ISO

(r) =
ρ0

1 + (r/Rc)2
, (2.22)

V
ISO

(r) =

√
4πGρ0R3

c

r

[
r

Rc

− tan−1

(
r

Rc

)]
, (2.23)

where ρ0 represents the central DM density and Rc the core radius.

We note that regarding the structure of DM haloes, another criticism of ΛCDM si-

mulations is that the few acceptable NFW fits to observations tend to violate the tight

cosmological relation between the free parameters (c, V200) predicted by the simulations

themselves. Some authors explicitly use the cosmological mass-concentration relation as

a constraint for the NFW fits in order to highlight this additional facet of the cusp-core

problem (Kuzio de Naray et al., 2008b). We do not impose such a restriction. Instead,

we let both parameters vary freely and later investigate the range of values covered by the

fits.

When we fit the models to the theoretical velocity profiles Vdm, Vtot, and Vcir, we first

re-sample these curves to the same positions at which the mock hybrid rotation curves

are measured so that we can properly compare the results and interpret the differences.

These radial positions depend on the spatial resolution and the extents of the H α/H i

components of each galaxy. Note that at 10 Mpc, the inner theoretical velocity profiles

are oversampled because they were created in steps of ∼100 pc, whereas the mock H α

rotation curves are defined every ∼50 pc (2 points per seeing). However, this is not a

concern because we find the results at 10 and 20 Mpc to be essentially identical, as we will

show in Sec. 2.4.3 and Sec. 2.5.2. We assume constant error bars of 1 km s−1 when fitting

the theoretical curves.
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We recall that this work is focused on the minimum disc approximation; thus, we do

not attempt to explicitly account for the baryonic contribution to the rotation curves. In

other words, we fit the different analytic models proposed for the DM halo directly to the

observed data or to the theoretical circular velocity profiles. To avoid spurious results, we

do not try fits to rotation curves with less than 8 points, which in practice only filters out

the velocity profiles from the Dwarf1 and G0 simulations at 80 Mpc.

2.4 Results

Here, we describe the theoretical velocity profiles of our simulated galaxies, their mock

kinematic observations, and some statistics regarding the fits with the NFW and the ISO

analytic models. We give special attention to the differences amongst the various velocity

profiles and to the effects of spatial resolution and inclination. When reporting on general

trends based on observations at all inclinations, we use the term Vkin to refer to hybrid

rotation curves where the H α part was extracted with kinemetry from the velocity maps,

and Vls to refer to those hybrids where the H α portion uses the mock long-slit data.

2.4.1 Density profiles

In Fig. 2.4, we present a compilation of the real DM density profiles in our simulations.

Remarkably, we see that our DM haloes remain basically unchanged2, even in the case

of G1, which develops a relatively strong bar. The simulated galaxies’ DM profiles can

be accurately represented with the NFW formula, and there is no ambiguity about their

cuspy nature. We emphasize this point by including in each panel an inclined straight line

with a slope of −1 to facilitate a visual comparison, recalling that a core would appear

here as a horizontal line.

2 This is likely the case because our simulations use the Springel and Hernquist (2003) effective equation

of state to model the effects of supernova feedback and do not include explicit feedback-driven outflows;

as a result, the simulated galaxies form stars steadily, in contrast with the very bursty star formation

exhibited by simulations that explicitly include multi-channel stellar feedback (e.g. Hopkins et al., 2014;

Sparre et al., 2015). As detailed in Sec. 2.1, strong bursts of star formation and the associated supernova

feedback-driven outflows may be able to transform cusps into cores. Thus, it is desirable not to include

this still-uncertain effect in our simulations because we wish to test whether cusps can be mistaken for

cores, not whether cusps can be transformed into cores via baryonic processes.
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Figure 2.4: Real DM density profiles in the simulations. The solid cyan lines represent the mean of all the

snapshots, and the shaded cyan regions denote the 1-σ scatter. In each panel, the short dashed black line

is the mean of the best NFW fits to the real density profiles. The hatched, grey shaded regions indicate

the central region between 0.17 kpc (the position of our first velocity measurement) and 1 kpc, where the

core-cusp discrepancy has been more debated. Straight diagonal lines (long dashed) with a slope of −1

(i.e. the cusp profile expected for an NFW profile) are shown for comparison. All of the simulated galaxies

clearly retain central DM cusps throughout their evolution.

2.4.2 Rotation curves

In Fig. 2.5, we present a compilation of the theoretical velocity profiles for all galaxies

and snapshots. Recall that Vgas, V?, and Vdm represent the circular velocity profiles ge-

nerated by the gravitational potential of the individual components, Vtot is their sum in

quadrature, and Vcir is the actual circular speed of the gas in the disc. The negligible scatter

demonstrates that our target configurations remain highly stable for all galaxies but G1.

Apparently the formation of the bar induces time evolution in the azimuthally averaged

velocity profiles, even if the DM structure does not change much. A visual inspection of

the face-on stellar maps confirms a smooth, stable morphology without substructures for

galaxies D1 to D4. Some minor distortions in the central part of G0 are observed, but

they are not a concern because the initial potential-velocity structure remains the same.

In the following, we present results for the whole sample, excluding G1 at first, and we

then comment on this system afterwards.
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Fig. 2.5 shows that baryons are dynamically sub-dominant in all cases. Inside the

first kiloparsec, Vtot exceeds Vdm by less than 6 km s−1 for galaxies D1 to D4 and less than

10 km s−1 for G0. The mean difference 〈Vtot − Vdm〉 is less than 3 km s−1 in this inner region.

Beyond the first kiloparsec, the baryonic contribution to Vtot is ∼10 per cent in galaxies D1,

D2, and D3 and ∼20 per cent in D4 and G0. It is also apparent in Fig. 2.5 that Vcir closely

follows Vtot in the outer region, but it is slightly less than Vtot in the center. The general

agreement demonstrates that our systems are in a rotational equilibrium that is mainly

sustained by gravity. Nevertheless, as the rotational speed of the gas nearly coincides with

the expectation from its radial acceleration (see Sec. 2.5.1), the small differences in the

centres of the galaxies imply that the radial acceleration experienced by the gas component

is smaller than that expected from the gravitational potential, which can be interpreted

as evidence for pressure support. The residual (Vtot − Vcir) peaks between 6 and 8 km

s−1 at 0.17 kpc and linearly decreases to ∼1-2 km s−1 at 1 kpc, which implies a mean

pressure support correction of ∼ 4-5 km s−1 to be added to Vcir over this radial range. The

importance of this small difference in the cusp-core scenario will become clear in the next

sections.

In Fig. 2.6, we present some of the rotation curves and the non-circular motion profiles

extracted from the mock H α and H i velocity maps using kinemetry for the simulated

galaxies placed at 10 and 80 Mpc and viewed at an inclination of 45◦. We also show the

theoretical Vcir to facilitate the comparison. It is clear from the figure that our galaxies

are completely dominated by rotational motions, with the non-circular component being

less than 5 km s−1 at all radii (except for G1). Fig. 2.7 shows the mean (taken over all

simulations and snapshots) 〈Vcir − Vkin〉 residual as a function of spatial resolution for the

simulated galaxies viewed from multiple inclinations, considering only the inner region with

H α emission. These figures demonstrate that H α observations of the simulated galaxies

at a 100-pc spatial resolution (placed at a distance of ∼10 Mpc) almost perfectly trace

the actual circular motions of the gas (〈Vcir − Vkin〉 < 2 km s−1). The residual increases

as the spatial resolution diminishes and reaches as much as ∼ 5 km s−1 for a 800-pc

resolution (∼80 Mpc distance) and inclination of 75◦. The H i rotation curves (the red

lines in Fig. 2.6) underestimate the true rotational velocities in the central few kiloparsecs

of the galaxies (even when the galaxies are placed at 10 Mpc) but are in agreement with

Vcir at larger radii. The effect of beam smearing is stronger with distance, but because we
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use the H i data only to extend the optical rotation curves into the flat part, this is not

a primary concern for our discussion.

G1 qualitatively differs from the other simulations. In this simulation, the stellar

component dominates the gravitational potential within the first 2 kpc. As a result, Vtot

exceeds Vdm by 27±5 km s−1 at 1 kpc (see Fig. 2.6), which represents a discrepancy of ∼50

per cent. In the outer region, this excess is about 30-40 per cent. The residual (Vtot−Vcir)

is 15±5 km s−1 at 0.17 kpc, 8±5 km s−1 at 1 kpc, and 2 km s−1 at ∼ 2.5 kpc. However, in

this case, the difference is not simply attributable to the effect of pressure support because

of the presence of the bar and its associated non-circular motions, which invalidate the

axisymmetric approximation. We emphasize that G1 resembles classical dwarf galaxies

and LSBs in terms of several properties, such as the maximum circular velocity and stellar

mass; for this reason, we keep it in our sample even though it is not close to the ideal case.

Modelling the complex kinematics of barred potentials is far from simple and beyond the

scope of this work.

The mock H α rotation curves obtained from the 2D velocity maps underestimate

the circular motions of the gas more severely in less-inclined (i.e. more face-on) galaxies.

Despite the differences being small, they are systematic, as shown in Fig. 2.7. On a case-

by-case basis, some scatter and random small-scale fluctuations are visible. In particular,

the rotation curves for galaxies viewed at an inclination of 15◦ often exhibit prominent

shape distortions that are not seen at other inclinations.

We find the same trend with spatial resolution but not with inclination in the mock

long-slit data. In this case, the rotation curves of galaxies viewed at an inclination of 75◦

exhibit the most underestimated circular velocities, followed by galaxies at 15◦; for other

inclinations, the long-slit rotation curves are effectively independent of inclination (see

Fig. 2.7). The long-slit rotation curves are a bit noisy and exhibit more scatter than those

from the 2D velocity maps, mainly at low inclinations and high spatial samplings (small

distances). Nevertheless, the average difference 〈Vcir − Vls〉 is comparable to the previous

case. The only exception is G1 viewed at an inclination of 75◦, for which the average

velocity underestimation at 80 Mpc increases to ∼ 11 km s−1 because of the galaxy’s lack

of symmetry during the second half of the simulation.
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Figure 2.7: Mean H α velocity residuals 〈Vcir − Vkin〉 (top), and 〈Vcir − Vls〉 (bottom) as a function of

distance (spatial resolution) and inclination for all galaxies and snapshots. The mean is taken over all

galaxies and snapshots. Some markers are slightly shifted horizontally to make the plot more readable.

The residual increases as the spatial sampling gets coarser, reaching as much as ∼5 km s−1. The rotation

curves from the kinemetry analysis exhibit larger residuals because the galaxies are viewed more face-on.

In the long-slit case, the largest residual occurs in discs inclined at 75◦.

2.4.3 Rotation curve fitting

In Fig. 2.8, we compare the reduced χ2
ν of the best-fitting NFW and ISO models for

the various types of rotation curves for the D2 simulation placed at 10 Mpc. This is a good

example of the general trends in the whole sample, so we use it to introduce our main

findings before going into a more detailed analysis.

Points that lie below the one-to-one line in Fig. 2.8, represent better agreement of the

data with the NFW model, and points above the diagonal indicate that the ISO model

provides a better description of the data. We see that the NFW profile fits the theoretical

Vdm and Vtot curves much better, as expected because by construction the central potential

of the galaxy is dominated by the DM, which obeys an NFW profile. The results from

fitting Vtot are somewhat closer to the line of equality between models than those from Vdm
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because of the effect of the baryonic contribution to the rotation curve. Surprisingly, Vcir

is better fit by the ISO model than the NFW model. The fits to the mock rotation curves

tend to favour the ISO model, especially when the galaxies are viewed at high inclinations.

Figure 2.8: Distribution of χ2
ν obtained by fitting the NFW and ISO models to the various types of

rotation curves for the Dwarf2 simulation placed at 10 Mpc. The shapes, colours, and sizes of the markers

are coded according to the specific rotation curve used, as detailed in the legend. Background semi-

transparent symbols correspond to the results for individual snapshots, the solid symbols in the front

denote the centroids of the corresponding clouds of points, and the error bars represent the 1-σ scatter in

the horizontal and vertical directions. The black diagonal line represents equality between the goodness of

the fits. For this simulation, the theoretical rotation curves Vdm and Vtot are better fit by the cuspy NFW

model. However, the theoretical rotation curve Vcir is better fit by the ISO model because pressure support

causes Vcir to be less than Vtot in the central ∼ 1 kpc. The mock rotation curves obtained using kinemetry

are generally better fit with the ISO model, especially when the galaxies are viewed at inclinations of 45◦

or greater. These results demonstrate that rotation curve fitting can indicate the presence of a core when

the true DM profile is cuspy.

We now discuss the results for all of the galaxies and snapshots. In Fig. 2.9 and

Table 2.2, we show the fraction of cases in which one of the models is preferred over
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the other for each type of circular velocity profile.3 We estimate a lower limit on these

fractions by demanding one χ2
ν to be at least 1.5 times smaller than its counterpart and

stating that both models are equally good otherwise. For this reason, the sum of the NFW

and ISO fractions is not always unity. Upper limits are obtained by relaxing our threshold

on the χ2
ν ’s ratio from 1.5 to 1.1. We find 100 per cent of the Vdm rotation curves to be

better represented by the cuspy NFW model for all the tested spatial samplings (≤ 400

pc for D ≤ 80 Mpc) in perfect agreement with the underlying DM distributions in the

simulations.

Using Vtot, we find that between 52 and 61 per cent of the rotation curves are better

fit with the NFW profile, whereas between 35 and 39 per cent of the cases are better fit

by the ISO model. This means that the signature of the NFW haloes is still detectable,

although the inclusion of the baryonic contribution to the potential without an explicit

correction included in the fit introduces considerable errors. In particular, we note that

the NFW model is always better for D1, D2, and D3, but it is disfavoured for D4 and G0.

In the case of G1, both models provide comparable fits to Vtot. Strikingly, the Vcir rotation

curves for simulated galaxies viewed at D ≤ 40 Mpc, i.e. whose inner parts are sampled

every ≤ 200 pc, are better fit with the ISO model for 74-95 per cent of the sample. Such

a result would be typically interpreted as proof of the ubiquitous presence of cores in the

central region of galactic haloes, but because there are no cores in our simulations, this

conclusion would be incorrect. This fact is particularly shocking because Vcir is a perfect

theoretical measurement of the gas rotational velocity, and it occurs even when the galaxies

are viewed at 10 Mpc (i.e. the spatial resolution is optimal). When viewed at 80 Mpc, the

difference between models decreases, although the illusion of DM cores does not vanish

entirely; the NFW profile is preferred in 25-44 per cent of the cases, and the ISO model

provides a better fit in 42-49 per cent of the cases.

Regarding the mock observations and considering all distances and inclinations, the

ISO model provides a better fit to Vkin for 73-90 per cent of the sample, and the NFW

3 We remind the reader that the theoretical rotation curves (Vdm, Vtot, and Vcir) are resampled to the

same positions of the mock observations; consequently, the results depend on the assumed distance. Also

recall that we observe the curves at a rate of two points per seeing. So, at a distance of 80 Mpc, the spatial

resolution of the mock observations is ∼800 pc, but they are sampled at a rate of ∼1/400 pc−1, and this

is what matters for the theoretical velocity profiles.
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Figure 2.9: Fraction of galaxies that are better represented by the NFW or ISO models based on the

best-fit χ2
ν values. Solid lines are established by demanding that one of χ2

ν values is at least 1.5 times bigger

than the other one. The upper limit of the shaded regions represents the upper limits on the NFW/ISO

fractions, which were obtained using a threshold of 1.1 instead of 1.5. Vdm is always better fit by the

NFW model, as expected because the DM profiles of the simulations obey an NFW profile. In contrast,

Vtot is sometimes better fit by the ISO model because of the baryonic contribution to the potential. In

the vast majority of cases, the cored ISO model provides a better fit to the theoretical circular velocity

profile Vcir and the mock rotation curves, despite the simulations containing cuspy dark matter profiles by

construction.

model is preferred for only 5-21 per cent of the sample. Thus, this type of analysis applied

to our observed rotation curves would provide strong evidence of the widespread existence

of cores in the DM haloes of dwarf galaxies and LSBs, which is in tension with the cuspy

nature of the DM haloes in our simulations. This effect is more misleading for more nearby
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Table 2.2 - Percentages of rotation curves that are better represented by the NFW or ISO models

according to the type of rotation curve fit and the spatial resolution (assumed distance).

H α PSF (pc) ∼100 ∼200 ∼400 ∼800

D (Mpc) 10 20 40 80

Vdm

NFW 100 (100) 100 (100) 100 (100) 100 (100)

P-iso 0 (0) 0 (0) 0 (0) 0 (0)

Both 0 (0) 0 (0) 0 (0) 0 (0)

Vtot

NFW 56 (61) 57 (61) 54 (61) 52 (56)

P-iso 38 (39) 39 (39) 39 (39) 35 (35)

Both 6 (0) 4 (0) 6 (0) 13 (9)

Vcir

NFW 0 (2) 2 (5) 4 (14) 25 (44)

P-iso 87 (95) 81 (91) 74 (81) 42 (49)

Both 13 (3) 17 (4) 22 (6) 33 (8)

VKIN
a

NFW 5 (8) 6 (9) 6 (11) 13 (21)

P-iso 85 (90) 82 (88) 80 (87) 73 (77)

Both 10 (2) 12 (3) 14 (2) 14 (2)

VLS

NFW 6 (11) 9 (15) 16 (23) 33 (39)

P-iso 78 (85) 74 (81) 68 (73) 41 (56)

Both 16 (4) 17 (4) 16 (4) 26 (6)

Note: The fiducial NFW/ISO fractions are estimated by demanding that one of the χ2
ν

values to be at least 1.5 times smaller than the other one. Values in parentheses require a

minimum ratio of 1.1 between the χ2
ν values. The rows labeled ‘Both’ correspond to cases

for which the χ2
ν values of the NFW and ISO fits differ by less than a factor of 1.5 (1.1).

a The values for Vkin and Vls are for the mock rotation curves at all inclinations.

galaxies. It is worth emphasizing that whatever the reason for the ISO model being a better

fit to the mock observations, the effect is already evident when we analyse the theoretical

circular motions of the gas, Vcir. We note the same trend in the results from long-slit data

as for the 2D velocity maps. The only difference occurs at 80 Mpc, where the ISO model

is preferred by a much smaller margin and the number of unresolved cases is larger when

the long-slit rotation curves are used.

In Fig. 2.10 and Table 2.3, we categorize the results from the 2D mock observations

according to the inner spatial resolution and inclination. We see that the NFW profile is

virtually never preferred when the galaxies are viewed at an inclination of 75◦. Considering

specific combinations of distance and inclination, we see that the NFW model sometimes



Section 2.4. Results 93

provides better fits, but these are limited to a maximum of 24 per cent of the sample,

whereas the ISO profile fits the data better in 65-99 per cent of the cases. In Fig. 2.10,

note that the blue (ISO) and red (NFW) regions never overlap, reflecting the fact that the

fraction of rotation curves that are better fit with the ISO model is always greater than

the fraction better fit with the NFW model. The difference between the two fractions

increases with inclination. Finally, we note that the gap between the coloured stripes

becomes narrower at 80 Mpc, as the samplig gets poorer.

Figure 2.10: Fraction of mock rotation curves that are better described by the NFW/ISO models as a

function inclination for the mock 2D observations analysed with kinemetry. The different rows corres-

pond to different assumed distances (from top to bottom: 10, 20, 40, and 80 Mpc). The symbols and

colours are the same as in Fig. 2.9. Independent of inclination and distance, the rotation curves derived

from the 2D velocity maps are always better fit by the cored ISO model than the cuspy NFW model.
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Table 2.3 - Similar to Table 2.2, but for the rotation curves obtained by analysing the mock 2D velocity

maps with kinemetry (Vkin) and classified according to the assumed distance and inclination.

H α PSF (pc) ∼100 ∼200 ∼400 ∼800

D (Mpc) 10 20 40 80

15◦
NFW 14 (18) 15 (18) 13 (20) 19 (24)

P-iso 73 (78) 71 (76) 72 (79) 65 (72)

Both 13 (3) 14 (6) 14 (2) 16 (4)

30◦
NFW 10 (13) 11 (15) 9 (15) 17 (24)

P-iso 81 (85) 77 (83) 77 (83) 71 (75)

Both 9 (2) 11 (2) 14 (3) 12 (1)

45◦
NFW 2 (6) 3 (9) 4 (11) 15 (24)

P-iso 85 (91) 81 (88) 82 (86) 75 (75)

Both 13 (3) 16 (3) 14 (3) 11 (1)

60◦
NFW 1 (2) 1 (3) 2 (5) 13 (19)

P-iso 89 (95) 87 (94) 83 (90) 80 (81)

Both 10 (3) 12 (3) 15 (4) 7 (0)

75◦
NFW 0 (0) 0 (1) 2 (3) 0 (13)

P-iso 97 (100) 94 (98) 84 (96) 75 (84)

Both 3 (0) 6 (1) 14 (1) 25 (2)

In Fig. 2.11 and Table 2.4, we repeat the exercise for the long-slit data. At 10 Mpc

(∼100 pc inner spatial resolution), we see the same trend with inclination as before, i.e.

more-inclined galaxies appear more cored. This tendency becomes weaker at 20 Mpc, and

it does not hold beyond that. Regarding the trend with distance, the ambiguity between

models increases more rapidly compared with when the 2D velocity maps were used. In

particular, when the galaxies are placed at 80 Mpc, of order half the sample appears to

contain cores and a major fraction of the other half appears to contain cusps. Finally, it

is worth noting that these general results are not biased by the inclusion of G1, i.e. they

do not change substantially if we exclude this simulation.

2.5 Discussion

So far we have presented strong evidence that rotation curve fitting can yield qualita-

tively incorrect conclusions regarding the inner curvature of the density profiles of galactic

DM haloes. Here, we discuss the origin of the errors based on the differences amongst
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Figure 2.11: Fraction of mock rotation curves that are better described by the NFW/ISO models as a

function of distance and inclination for the hybrid RCs using mock H α long-slit data. The symbols and

colours are the same as in Fig. 2.9. Except for an assumed distance of 80 Mpc, the ISO model is incorrectly

preferred in the majority of cases. For 80 Mpc, of order half of the rotation curves are better fit with the

cored ISO model despite the galaxies having cuspy profiles.

the theoretical velocity profiles, check the dependence of the results on the radial range

covered by the rotation curves, and compare the coefficients of our best fits to a collection

of results from the literature to demonstrate that our mock observed rotation curves are

in fact representative of real galaxies. We also compare our main findings against other

works which analysed synthetic observations from numerical simulations in the core-cusp

context.



96 Chapter 2. May cusps be disguised as cores?

Table 2.4 - Similar to Table 2.2 but for Vls, the hybrid rotation curves using the mock H α long-slit data,

classified according to the assumed distance and inclination.

H α PSF (pc) ∼100 ∼200 ∼400 ∼800

D (Mpc) 10 20 40 80

15◦
NFW 14 (20) 16 (22) 16 (22) 31 (41)

P-iso 66 (76) 67 (76) 69 (74) 51 (56)

Both 20 (4) 17 (3) 16 (4) 18 (3)

30◦
NFW 9 (14) 11 (17) 15 (20) 32 (40)

P-iso 75 (82) 74 (79) 68 (75) 34 (53)

Both 15 (3) 15 (4) 17 (5) 33 (7)

45◦
NFW 3 (10) 9 (14) 15 (22) 34 (38)

P-iso 80 (86) 76 (81) 69 (74) 34 (53)

Both 17 (4) 15 (4) 16 (4) 31 (9)

60◦
NFW 1 (6) 5 (9) 15 (19) 36 (37)

P-iso 84 (91) 78 (87) 72 (79) 40 (59)

Both 16 (4) 17 (3) 13 (2) 24 (4)

75◦
NFW 1 (4) 5 (12) 19 (31) 32 (37)

P-iso 85 (92) 75 (80) 63 (64) 43 (58)

Both 14 (4) 20 (8) 18 (5) 25 (5)

2.5.1 Unraveling the illusion of DM cores

First, we focus on the real shapes of the different velocity profiles, i.e. we refer to

rotation curves of simulated galaxies placed at 10 Mpc, for which the spatial resolution

is high (∼ 100 pc). The explicit effect of poorer spatial resolution is commented on in

Sec. 2.5.2. We recall that 100 per cent of the Vdm profiles are better described by the

NFW model. Consequently, in principle, rotation curve fitting can recognise a cuspy DM

distribution from its true circular velocity profile given sufficient spatial sampling (≤ 400

pc).

As for Vtot, we have seen that NFW profiles are more favoured in the sample as a

whole, although the ISO model fits the velocity profiles from D4 and G0 better, and

for G1, the two models provide superior fits for similar fractions of the rotation curves.

Additionally, for D1, D2, and D3, the confidence with which the rotation curve fitting

detects the cuspy haloes, as judged based on the χ2
ν values of the fits to Vtot, is somewhat

reduced compared with Vdm. These results challenge the widespread assumption that
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the contribution of baryons to the potential will tend to make the DM profile inferred

under the minimum disc assumption cuspier than the true DM profile.4 These results also

imply that the minimum disc approximation is unacceptable for some dwarf galaxies. To

better understand this result, in Fig. 2.12 we plot the inner velocity profiles expressed as

fractions of Vtot. Noting that the circular velocity profile of a spherical halo is given by the

enclosed mass as a function of radius, which can be estimated from the density profile by

integration, it can be shown that ρ ∝ r0 cores result in linear inner circular velocity profiles,

Vinner ∝ r1, whereas ρ ∝ r−1 NFW cusps lead to Vinner ∝ r0.5. In other words, cuspier

density profiles produce more curved velocity profiles characterized by smaller exponents,

but always inside the interval [0.5, 1] for the limits we are considering. Because the fraction

Vdm/Vtot systematically decreases with radius, this quotient has a negative exponent when

expressed as a power law, which implies that the exponent of Vtot is larger (closer to 1)

than that of Vdm. Consequently, the dark matter distributions inferred from Vtot are less

cuspy than those inferred from Vdm. In other words, the contribution of baryons to the

potential tends to make the circular velocity profile flatter rather than cuspier. This result

may not hold for all galaxies, but the salient point is that there is no justification to claim

an universal ability of the minimum disc approximation to make the inferred dark matter

density profiles appear cuspier than they truly are. More likely, the resulting cuspiness of

Vtot will depend on the relative curvatures and normalizations of the dark and luminous

components. Also note that in Fig. 2.12, the inner, negative slope of the Vdm/Vtot profile

is shallower in D1, D2, and D3 than in the other simulations, and these simulated galaxies

have the smallest baryonic-to-DM ratios amongst our sample. Consequently, the inner

curvatures of Vdm and Vtot must differ the less in these galaxies.

In the case of Vcir, the rotation curve fitting analysis is completely misleading because

the cored ISO model provides better fits to most of the rotation curves. Thus, the core-

like shape that we infer from the mock rotation curves is already imprinted in Vcir and is

therefore not (only) a consequence of observational errors (e.g. projection effects). Fig. 2.12

provides insight into this issue. We see that in all galaxies, Vcir is approximately ∼ 50 per

cent of Vtot in the very center and progressively increases until it reaches a fractional

contribution of order unity just outside the first kiloparsec. This systematic trend is

4 This is usually expressed in other words, i.e. stating that the minimum disc approximation puts an

upper limit on the steepness of the DM halo density profile (e.g. de Blok et al., 2001).
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opposite to the one that we found in the case of Vdm and necessarily implies that the

inner curvature of Vcir is much less pronounced than that of Vtot (i.e. the mass distribution

inferred from Vcir is less cuspy than the true mass distribution).

Why is Vcir typically less than Vtot, especially at small radii? Our tests indicate that

it is the result of pressure support, i.e. an effective decrease in the radial acceleration

because of an outward force of the gas on itself, which is the result of a negative radial

pressure gradient. To illustrate this point, we include in Fig. 2.12 the circular velocity

corresponding to the radial acceleration experienced by the gas component, i.e.
√
argas r,

which closely corresponds to the actual circular velocity of the gas, Vcir. This correspon-

dence demonstrates that the gas component is in rotational equilibrium but also shows

that within the first kiloparsec, the radial acceleration experienced by the gas particles is

less than that experienced by the stellar ones (which is used to define Vtot). Because the

overall gravitational potential is the same for gas and stars, the only physical phenomenon

we identify that is capable of causing the difference is pressure support associated with the

high gas density in the galactic centres and the injection of thermal energy from stars into

the interstellar medium (ISM).

Regarding the mock observations, we know that for galaxies placed at 10 Mpc, the

mock rotation curves perfectly follow the theoretical Vcir curve (Fig. 2.6); thus, their cored

shapes simply reflect the curvature of the true circular motions of the gas, as determined

by the full hydrodynamics and not only by gravity. Moreover, careful inspection of Fig. 2.9

reveals that the gap between the ISO and NFW fractions is less for Vls than for Vkin. After

a thorough review of the fitting procedure, we concluded that this difference is a result

of the size of the error bars, which are larger for the long-slit observations than for the

rotation curves obtained from the 2D velocity maps with kinemetry. Consequently, the

individual points of the mock H α long-slit rotation curves, which determine the inner

curvature of the profiles, have a smaller weight during the fits than the outer points from

the mock H i rotation curves, thus reducing the significance of the core detections.

2.5.2 Dependence on spatial resolution and inclination: beam-smearing and projection

effects

Recalling that our theoretical rotation curves for galaxies at D > 10 Mpc are simply

re-sampled versions of the 10-Mpc curves and noting that the NFW model fits better all
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the Vdm profiles independent of distance, we conclude that rotation curve fitting methods

can distinguish the signature of an ideal cuspy NFW profile even at a sampling rate of

∼400 pc in the rising part (1 arcsec at 80 Mpc) with the first measurement at ∼ 0.9 kpc,

at least for the (c, V200) parameter space covered by our models.

The situation is a bit different for cores. We know from the former sections that the

intrinsic shape of Vcir is close to the ISO profile, which is favoured in more than 80 per cent

of the fits for galaxies placed at 10. However, the fraction of cores steadily declines as the

galaxies are placed further away, with a simultaneous increase in the number of preferred

NFW fits and ambiguous cases. At 80 Mpc, the number of galaxies catalogued as cusps

is comparable to the number of galaxies catalogued as cores. This is partially explained

by the small sizes of the fake cores (∼1 kpc), whose signature is progressively washed out

as the sampling gets poorer and the first measured point moves to larger radii. Yet we

note that this is only true for D2, D3, and mildly for G1. Fits to Vcir in the other galaxies

favour the ISO model at all distances, showing that the outcome of the fits depends on

more subtleties than just the sampling rate.

It is important to note that undersampling the curves is not sufficient to fully model the

impact of spatial resolution. Beam smearing, i.e. the smoothing of the velocity gradients

in the rising part of the rotation curves caused by averaging over large PSF/beam areas, is

also a resolution effect. The measured velocities are further lowered by projection effects

related to the fact that, in inclined discs of finite thickness, any line of sight targeting an

inner position mixes information from tracers at larger radii, whose line-of-sight velocity

component is very small because of the inherent geometry of the rotating disc (Rhee et al.,

2004). Note that the volume of gas crossed by a single telescope pointing increases as

the spatial resolution becomes coarser and as the galaxy inclination and disc thickness are

increased; thus, in order to assess these entangled effects properly, we must confront our

mock kinematic observations with the theoretical velocity profiles.

Comparing the results from Vkin with those from Vcir (Fig. 2.9), we see that they are very

similar at D ≤ 40 Mpc, i.e. the effect of beam smearing and projection effects is mild for

inner spatial resolutions ≤ 400 pc, though they effectively introduce the dependence with

inclination discussed in Sec. 2.4.3. At 80 Mpc, in contrast, beam-smearing and projection

effects cause a significant difference between the results from Vkin and Vcir, as a large

fraction of the mock observations are better explained by a cored profile. In this case, the
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signature of the fake core does not vanish with the poor sampling in any case because the

additional effects considerably lower the inner measured velocities, thereby reinforcing the

illusion of a DM core (Fig. 2.6).

As can be seen in Fig. 2.10 and Table 2.3, the effect of distance on Vls is to progressively

reduce the fraction of cases that are better fit by the ISO model, while augmenting those

which are better fit by the NFW profile. The increasing ambiguity, which is more noticeable

than in the case of Vkin, results from the larger size of the H α long-slit error bars in

comparison to the H i error bars reported by kinemetry and illustrates the sensibility of

the rotation curve fitting analyses to the specific details in the treatment of the data. Using

Vls, we only observe systematic effects with inclination at 10 and 20 Mpc; we suspect they

are strongly dependent on the existence of inner measurements and their relative weights

during the fits.

2.5.3 Dependence on the extent of the rotation curve

In Fig. 2.13, we show the average value of the ratio χ2
νISO

/χ2
νNFW

after truncating the

10-Mpc theoretical velocity profiles at different radii and repeating the fits. We quantify

the extent of a curve by the number of points inside the truncation radius, Npoints, which

we vary from 10 to approximately 3.3 times the optical radius, roughly corresponding

to 65 points in Dwarf1 and to 182 points in Dwarf4, the most extended galaxy in our

sample. According to Fig. 2.13, Vdm is always better represented by the NFW formula

independently of the truncation point. Vtot is also better represented by the NFW profile

but still marginally consistent with the ISO model. In contrast, Vcir is better fit by the

ISO profile for any truncation radius, although for small values of Npoints, the difference

between models is more extreme because the fake inner core dominates the fits. We do

not plot equivalent profiles for the mock observations to avoid overcrowding the figure,

but we note that they behave in the same manner as Vcir. Thus, the underestimation

of the first points of the rotation curves determines the outcome of the rotation curve

fitting analysis (i.e. the detection of spurious DM cores), regardless of the extent of the

kinematic observations. Consequently, our specific choice to truncate the velocity profiles

at approximately two times the optical radius does not affect the main conclusions of this

work. At larger distances, we observe exactly the same qualitative results and the same

shape for the χ2
νISO

/χ2
νNFW

radial profiles.
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We remade the main plots presented in Sec. 2.4 but with the truncation radii of all the

curves varying between ∼1 and ∼3 times the optical radius, and we observed only minor

differences in the results. In particular, we noted that when using more extended rotation

curves, the fits to Vls less often preferred the ISO model than when the fiducial truncation

radius was used. Once again, this is due to the fact that in the long-slit case, the H α

error bars are larger than the H i error bars, such that the effect of the inner core on the

fit is progressively diminished as more outer points are used in the χ2
ν calculation.

Figure 2.13: Dependence of the χ2
ν ratio on the extent of the rotation curves. Npoints represents the

number of points considered for the fit. The horizontal line represents equality between the models. We

show the results for Vdm (magenta, solid line), Vtot (green, dashed line), and Vcir (black, dot-dashed line)

for galaxies placed at 10 Mpc (∼100 pc inner resolution). The reported lines denote the mean trends from

all galaxies (or those reaching a given radial extent), whereas the shaded regions represent the 1-σ scatter.

Beyond 134 points the only contributor is D4, which is why the scatter is much smaller than at smaller

radii. This plot demonstrates that the conclusion that Vdm and Vtot are better fit with the NFW model

(in the sample as a whole), whereas Vcir (and the mock observed rotation curves, which are not shown) is

better fit with the ISO model, is effectively independent of the truncation radius employed.

2.5.4 Comparison with the literature

2.5.4.1 Comparison with observational results

In Fig. 2.14 (left), we present the coefficients (c, V200) of the best NFW fit obtained

for each velocity profile in our study, along with a collection of observational results from

the literature based on high-resolution rotation curves. We fit our rotation curves trying

all possible extents from 1 to 3 times the optical radius (typical of observations) in order
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to approximate the stochasticity of real data. This is equivalent to maximum extents of

between 2.6 and 29 kpc and Npoints between 42 and 180, depending on the size of the

galaxy.

We note that the coefficients c and V200 from the fits appear correlated both in our

simulations and in the observational data and, more importantly, that our fits are very

consistent with the parameter space spanned by observations. Strikingly, this is only true

when our results consider different truncation radii and different distances together, as the

fits to our fiducial mock data (truncated at 2 times the optical radius) at 10 Mpc cover just

a narrow subset of the whole parameter space, roughly log(V200) ≤ 2 and log(c) ≥ 0.8, as

indicated with the shaded gray region in the plot. The agreement between observations and

the fits to our mock data is enhanced by the inclusion of fits to less-extended versions of our

rotation curves, probably because many observational studies use only H α information,

and they often do not reach the same radial extent as our fiducial mock dataset. This

is related to another facet of the core-cusp problem pointed out by observational studies,

according to which the few reasonable NFW fits to real galaxies prefer large values of V200

and very low concentrations, which are not compatible with the mass-concentration relation

predicted by cosmological simulations. As our results illustrate, this might originate in the

large dependence of the observational analyses on subtle details and thus may not represent

a genuine discrepancy between ΛCDM cosmological simulations and observations.

We repeat the same experiment with the ISO model and present the results and a

comparison with the literature in Fig. 2.14 (right). The shaded region encloses the subset

of the parameter space covered by the fits to galaxies at 10 Mpc using the fiducial extent of

the rotation curves (2×Ropt). The full set of results includes fits to the mock rotation curves

truncated at different radii, ranging from 1 to 3 times Ropt. Our fits populate a region of the

ρ0-Rc parameter space that is consistent with the observational works, although they do

not fully cover the low ρ0-high Rc end of the observed relation. This time the disagreement

is only slightly alleviated by the use of different distances and truncation radii, i.e., despite

the fact that the effects we discuss in this work offer a plausible explanation for the cusp-

core discrepancy in terms of logarithmic density slopes, they are not sufficient to explain

the largest cores inferred from ISO fits to real galaxies, associated with the large diversity

of dwarf galaxy rotation curves, as discussed by Oman et al. (2015). It is also interesting to

note that our fits naturally produce a correlation between ρo and Rc that agrees extremely
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well with that evident from observations. More specifically, both “free” parameters

lie on a straight line with a slope close to −1, which corresponds to a relation of inverse

proportionality (the product ρo × RC is approximately constant). This observation has

been used to argue that DM haloes are cored and exhibit a constant inner surface density

as some sort of universal property (see Spano et al., 2008; Kormendy and Freeman, 2016,

and references therein); however, the physical meaning of this conclusion is clearly put into

question by our results5.

2.5.4.2 Comparison with simulation works employing similar methodologies

We now put our work into context by means of a brief comparison with other studies

that have investigated how well the inner shape of DM profiles can be extracted from

synthetic observations of simulated galaxies6. We start with the pioneering work of Rhee

et al. (2004), which found that bars, small bulges, and projection effects induce underesti-

mates of the inner circular velocities that can prevent the detection of cuspy DM haloes,

making them look cored. The authors mention that the individual effects lead to velocity

errors of only a few km s−1, but their cumulative effect can result in qualitatively incorrect

conclusions.

This result is consistent with our study, but we note that the reason for this agreement

is not straightforward because Rhee et al. (2004) did not simulate the gaseous phase.

The velocity underestimation they observe is partially due to the dynamics of the stellar

component (the so-called asymmetric drift effect)and to projection effects. Fig. 19 of Rhee

et al. (2004) suggests that in axisymmetric systems, the inferred DM density profile slightly

flattens, although it does not present a strong core. In contrast, in the presence of small

bulges and bars, the combination of the former effects and non-circular motions makes the

inferred density profiles artificially cored.

5 Note that Spano et al. (2008) and Kormendy and Freeman (2016) did not use the pseudo-isothermal

sphere model but a variant known as the non-singular isothermal sphere, but Kormendy and Freeman

(2016) found the core radius and the central surface density estimated from one model to be proportional

to the corresponding quantities in the other model, so, our discussion regarding the alleged ∼constancy of

ρ0 ×Rc is straightforward.
6 Here we refer to N-body numerical simulations, not to synthetic observations generated via analytic

models. The advantage of the former is that they are more suitable for studying the three-dimensional

dynamical evolution of galactic systems in a self-consistent way.
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Interestingly, Rhee et al. (2004) show with convincing observational evidence that stars

and ionized gas rotate similarly in the inner region, contrary to the general belief that the

gas rotates faster because it is a dynamically colder component. The authors list possible

explanations for this behaviour that have been suggested in the literature, including pres-

sure support. In our simulations, the rotational velocities of the stellar and the gaseous

particles inside the first kiloparsec are indeed similar, but not identical. In general we

find the gaseous rotation curves to be more lowered in the very centre, whereas beyond

∼ 0.5 − 1 kpc, the stellar component rotates more slowly. This means that the matter

distribution recovered from the gaseous Vcir will tend to be flatter, explaining why we infer

the presence of spurious cores even in systems without bulges or bars.

Valenzuela et al. (2007) further investigated the impact of systematic effects and pre-

sented detailed mass modelling of the dwarf galaxies NGC 3109 and NGC 6822. They

compared collisionless N-body simulations and full hydrodynamical runs with and without

star formation and stellar feedback and found that without feedback, the gas rotational

speed is similar to the true circular velocity of the gravitational potential. In contrast,

once injection of thermal energy from stellar processes into the ISM is included, the ga-

seous phase rotates considerably more slowly as a result of pressure support. This effect

creates a notable flattening of the inferred density profile, which is further accentuated

by the presence of a small bar and projection effects. Valenzuela et al. (2007) clearly il-

lustrated how non-circular motions related to small asymmetries in the baryonic matter

distribution, which might be easily overlooked, can bias the measured rotational velocities

towards core-like profiles. An exhaustive analysis of asymmetric drift and pressure sup-

port corrections is also presented; Valenzuela et al. (2007) conclude that it is possible to

recover the true circular velocity from the observed gaseous rotation curve in their models,

but this requires very careful, detailed corrections for numerous systematic effects, even

for axisymmetric discs. They also emphasize that observing low-rms velocity dispersions

(∼10 km s−1) in a galaxy does not mean that such corrections can be safely neglected.

Overall, we find our results to be in very good agreement with those of Valenzuela et al.

(2007) and Rhee et al. (2004).

Kuzio de Naray and Kaufmann (2011) analysed mock observations of simulated gala-

xies embedded in cuspy, cored, and triaxial DM haloes. They generated realistic mock

observations by choosing the spatial resolution, spatial coverage, and inclination according
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to the observational sample studied in Kuzio de Naray et al. (2006) and Kuzio de Naray

et al. (2008b). Kuzio de Naray and Kaufmann (2011) found that typical rotation curve

analyses are able to efficiently recognise the cuspiness of a DM halo and that it should be

possible to observe the characteristic signature of a DM cusp in velocity maps. Particu-

larly, in cored spherical haloes, the iso-velocity contours appear parallel in the center of the

galaxy, whereas in spherically symmetric cuspy DM haloes, the central velocity contours

are “pinched”. The authors present examples of mock velocity fields in which such features

are evident. They also found that stellar feedback had little effect on the mock velocity

fields and observed RCs.

Why these results are so different from those referenced earlier is difficult to unders-

tand, especially noting that Kuzio de Naray and Kaufmann (2011) used the same code as

Valenzuela et al. (2007). In the latter, stellar feedback was proven to be an efficient source

of pressure support; thus, we speculate that the specific feedback implementation might

have been different in Kuzio de Naray and Kaufmann (2011), leading to weaker pressuri-

sation of the ISM. Alternatively, the simulations of Kuzio de Naray and Kaufmann (2011),

which were initially composed only of gas and DM, might not have formed a sufficient

number of stars for stellar feedback to pressurize the ISM significantly. We highlight the

fact that using a different code with an independent stellar feedback implementation, our

own simulations, which represent real galaxy populations in terms of the amount of gas

and stars in the disc, reproduce the previous findings of Valenzuela et al. (2007) regarding

the role of pressure support. We also note that our velocity fields are not pinched in the

centre; instead the iso-velocity contours appear parallel there (see Fig. 2.3).

Oh et al. (2011) analysed mock velocity fields and images of two dwarf galaxies formed

in cosmological simulations in the same manner as a sample of dwarfs previously studied

in Oh et al. (2011b). The authors did not use the minimum disc approximation but

rather attempted to subtract the contributions of gas and stars from the mock rotation

curve. They were able to approximately recover the true DM density distribution from

the mock observations using typical tilted-ring modelling, and they state that pressure

support effects and non-circular motions did not hamper this recovery. Nevertheless, one

of their two recovered DM density profiles underestimated the true density by a factor

of 3 in the central region, but they associated this to errors in the estimation of the

gravitational potential of the gas. Oh et al. (2011) found good agreement between their
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simulation results and observations. They concluded that DM cores likely exist in the

sample of real galaxies and that the mechanisms which transform DM cusps into cores

in their cosmological simulations (i.e. violent outflows of gas caused by repetitive, intense

starburst episodes) are plausible. However, an important cautionary note is that Oh et al.

(2011) only analysed mock observables when the DM haloes were already cored; therefore,

this work does not lend insight into the possibility of identifying DM cusps via the same

type of analysis. Regardless of whether it is possible to infer the presence of cores via

rotation curve fitting, our results (and others mentioned above) suggest that cusps may be

mistaken for cores and thus the cusp-core problem may be an illusion.

2.6 Conclusions

Our results demonstrate that pressure support effects can easily make DM cusps appear

as cores in kinematic observations. Small errors of ∼ 5 km s−1 within the central kiloparsec

are sufficient to completely remove the signature of a DM cusp if they coherently decrease

the measured velocity. Thus, not correcting for pressure support can be catastrophic in

the cusp-core context, even for high-resolution data generated from perfectly symmetric

rotating discs. We highlight the fragility of this type of rotation curve analysis: small

errors can lead to qualitatively incorrect conclusions regarding the shape of the inner DM

profile. Because multiple sources of errors (e.g. beam-smearing, non-circular motions,

small bulges, and projection effects) act in a similar manner as pressure support (i.e. they

tend to cause the observed circular velocity to underestimate the true circular velocity),

even if the amount of pressure support present in our simulations differs in detail from

reality, our main conclusion would still hold.

Strikingly, increasing the spatial resolution does not lead to more reliable conclusions.

Instead, the ISO model is preferred more often when the simulated galaxies are placed at

smaller distances because the signature of the fake core is better sampled. We also note

that the coefficients of the best-fitting NFW profile strongly depend on the spatial extent

of the rotation curve. Best fits to data that do not extend into the flat part of the rotation

curve (which is often the case for H α-only data) tend to prefer larger V200 values and

lower concentrations. Our data are very consistent with the literature once we account for

the different rotation curve truncation radii employed; this agreement pre-empts criticism
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regarding possible inconsistency between the coefficients of the NFW fits of real galaxies

and the ΛCDM mass-concentration relation predicted by N-body simulations.

Our best ISO fits also lie in the region of parameter space spanned by the results of

observational studies and naturally reproduce the observed inverse proportionality between

ρ0 and Rc. This result suggests that this correlation may be an artefact of the fitting

process rather than a real physical property of DM haloes. It is interesting to note that

beam-smearing can dramatically impact H α rotation curves of galaxies at ∼80 Mpc. This

is not a surprise because linear resolution depends not only on the angular resolution

but also on the distance at which a galaxy is located. Nonetheless, this result must be

emphasized because the high angular resolution of optical data is often interpreted as

providing sufficient protection against beam-smearing. This is evidenced by the large

amount of galaxies more distant than 50 and even 100 Mpc that have been employed

in some cusp-core studies. Projection effects also play an important role, making false

detections of cores more likely in galaxies at high inclinations, especially at larger distances.

Our model galaxies do not support the widely accepted claim that the minimum disc

approximation yields an upper limit on the true steepness of a dark matter halo density

profile. In all our galaxies, whose properties are carefully modeled after observations of

real dwarf galaxies in the local Universe, the addition of baryons to the gravitational

potential of the dark matter haloes makes the true circular velocity profiles flatter rather

than cuspier. Thus, the minimum disc approximation would cause one to infer that the

dark matter profile is flatter than it actually is.

The analysis presented here has highlighted the difficulties involved in reliably inferring

the central dark matter structure in a rotation curve analysis of observational data. In

particular, we have shown that it is comparatively easy to mistake a DM cusp for a DM

core, even with high-quality data. This certainly suggests that previous observational

claims of core detections need to be taken with a grain of salt and should be followed-up

further.

Our simulations have limitations, of course, the most important ones being that they are

idealised compound galaxy models that lack a self-consistent cosmological context and that

they do not include explicit supernova ‘blast wave’ feedback, which some simulations have

suggested can transform cusps into cores. It would thus be interesting to repeat a similar

analysis with galaxies extracted from full cosmological hydrodynamic simulations of galaxy
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formation, which now have sufficiently high resolution to study the cusp-core problem (e.g.

Vogelsberger et al., 2014; Marinacci et al., 2014; Hopkins et al., 2014; Oñorbe et al., 2015;

Chan et al., 2015; Schaye et al., 2015b; Sawala et al., 2016). Such models could then also

account for perturbations in the circular motions of the gas due to central black holes,

galaxy encounters, and cosmological torques. However, we stress that the idealised nature

of our simulations (which contain strong, unperturbed NFW cusps by construction and,

with the exception of G1, are highly axisymmetric) should make it easier to detect cusps

than would be the case if fully cosmological simulations with explicit stellar feedback were

employed. For this reason, in reality, it may actually be more difficult to observationally

identify cusps via rotation curve fitting than suggested by our work.



Chapter 3

Additional remarks on the cusp-core problem

Regarding the cusp-core problem, in the former chapter I demonstrated that rotation

curve fitting methods may be not completely robust in the presence of physical or instru-

mental effects that systematically modify the curvature of the very inner velocity profiles.

In the set of simulations studied here, pressure support effects inducing an average velocity

underestimation of 4∼5 km s−1 in the first kiloparsec were able to completely mask the

signatures of the dark matter cuspies, making them appear as cores.

In this chapter I exploit the same set of simulations, theoretical density/velocity profi-

les, and mock observations, to explore further the cusp-core controversy, addressing some

additional questions of high interest. First, I test the performance of several rotation curve

inversion methods from the literature, which make use of the Poisson’s equation to direc-

tly approximate a dark matter density profile from the inversion of the observed rotation

curve. Afterwards I present some theoretical analyses to demonstrate that at least two out

of the three methods considered are affected by systematic biases that make them unsui-

table for cusp-core studies. Finally, an entire section is dedicated to explore the question

of whether or not pressure support effects as those observed in the simulations considered

here may be corrected from observationally accessible information.

3.1 The halo steepness as seen by rotation curve inversion

As discussed in Sec. 1.4.3.2, in the minimum disc limit one can invoke Poisson’s equation

to approximate the halo density profile from the observed rotation curve using equation

(1.18), which I reproduce here to facilitate the discussion,



112 Chapter 3. Additional remarks on the cusp-core problem

4πGρ
dm
≈ 2

Vc

r

d

dr
(Vc) +

(
Vc

r

)2

. (3.1)

By performing this rotation curve inversion, several studies observe a “break radius”

in the resulting log(ρ) − log(r) plane, separating a shallow inner density profile from a

steep outer region (e.g. de Blok et al., 2001; de Blok and Bosma, 2002; Spekkens et al.,

2005; Kuzio de Naray et al., 2008b; Oh et al., 2011b). A linear fit inside the break radius

then provides a rough measurement of the inner logarithmic density slope that is the

matter of discussion in the cusp-core problem, which is equivalent to using a power law

approximation of the form,

ρ
inner
∼ r−α, (3.2)

where α close to 0 implies a dark matter density core while α equal to 1 recovers the

original cuspy shape of the NFW profile.

3.1.1 Three different methods from the literature

Note that, because of the derivative, the implementation of equation (3.1) is not trivial,

and for that reason several approximations have been tried in the literature. In order to

make a comprehensive study of the performance of the rotation curve inversion methods,

I mimic three different solutions applied in influencial reported investigations of the cusp-

core problem. Two of this methods explicitly assess the density profile from equation

(3.1). In the first one I calculate the velocity derivative using a forward-difference scheme,

roughly,
dv

dr
(rn) =

vn+1 − vn

rn+1 − rn

. (3.3)

Applying this procedure to the publicly available smoothed rotation curves from de Blok

and Bosma (2002) I closely recover their published density profiles, so I think this is a good

approximation to their original method 1. Note that de Blok and Bosma first replace the

observed velocity points with a smooth analytical function to minimize the impact of the

scatter and small-scale noise, but this is not necessary in the case studied here because all

the rotation curves are already smooth. From now on I refer to this method as finit-diff.

1 The detail about the estimation of the derivative is not explicitly mentioned in the paper.
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The second alternative that I will explore is the one proposed by Spekkens et al. (2005).

They fit the data with a smooth empirical formula they call the polyex function,

Vpe(r) = Vo(1− e−r/rpe)(1 + βr/rpe), (3.4)

which thereafter they use to calculate the velocity, its derivative, and the corresponding

density at every point analytically. I will refer to this method as polyex.

Once a dark matter density profile is determined by means of the finit-diff or the polyex

methods, the quoted authors amongst others (e.g. Oh et al., 2011b), identify the break

radius by eye in the log(ρ) − log(r) space, and they fit a straight line to the inner points

to determine the logarithmic slope α. Additional straight lines are fit to the same set of

points plus/minus one point, and the error is defined as the mean difference between their

slopes and the fiducial one. Hereafter I will refer to the number of points inside the break

radius as Nbreak, or simply to the number of points used in the linear fit in those cases

when a sharp break is not detected. Typically the inner slope is reported as a function of

the position of the first measurement in the rotation curve, which I will identify as Rinner

in the text.

Measuring α without inversion

As an interesting third case I want to bring attention to the method introduced in

Bolatto et al. (2002); Simon et al. (2003b, 2005). As these authors highlight, a power-

law matter distribution generates a power-law circular velocity profile, so they fit power-

law models to their whole optical rotation curves to estimate α without performing the

inversion, exploiting the equivalence relation,

ρ ∝ r−α ⇐⇒ Vc ∝ r(2−α)/2, (3.5)

which can be easily computed from equations (1.14) and (1.15). I will refer to this method

as power-law throughout the text.

3.1.2 Steepness of the real density profiles

After computing the spherically-averaged dark matter density profiles in the simulations

as described in Sec. 2.3.2, I define their logarithmic slopes at a given radius through a
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central-difference scheme,

α(rn) = −d log(ρ)

d log(r)
≈ − log(ρn+1)− log(ρn−1)

2 ∆ log(r)
, (3.6)

where the radial logarithmic step is the same employed in the determination of ρ(r),

namely ∆ log(r) = 0.15, where r is in kpc. An appropriate selection of this parameter is

crucial, as smaller values of ∆ log(r) may produce undesirable fluctuations in the resulting

α profiles. I illustrate this with an example in Fig. 3.1 (top). Additionally, in order to

minimize the uncertainty from the discretization process I perform a sanity check using the

circular velocity of the halo as estimated from the enclosed-mass profile (equation (1.14))

computed in the same radial bins from which the theoretical density profile and its slope

are being determined. I invert this circular velocity profile into a density profile using the

finit-diff method, and I compute its steepness as a function of radius from equation (3.6).

To check for self-consistency, in Fig. 3.1 (bottom) I plot the difference between the slope α

calculated in this way and the fiducial one, for different values of ∆ log(r). The residuals

are mostly consistent with zero, as they should, but notice the steep increment in the inner

region when the bin is too large (∆ log(r) ≥ 0.2). In order to minimize systematic errors,

as well as the spurious fluctuations observed for ∆ log(r) ≤ 0.1, I adopt ∆ log(r) = 0.15

as the fiducial value and I report a conservative error of ±0.1 in αtrue to account for the

remainning uncertainty in the numerical scheme.

3.1.3 Inferred logarithmic slopes and errors

In Fig. 3.2 I compare the true dark matter density profiles with those obtained by the

inversion of Vdm, Vtot, and Vcir by means of the finit-diff method. In Fig. 3.3 I compare the

true dark matter density profiles with those obtained using the polyex method. Regarding

the finit-diff method, it can be seen that the density profiles computed from Vdm closely

follow the true dark matter density profiles. The density profiles obtained by the inver-

sion of Vtot in some cases exceed those from Vdm because of the addition of baryons (as

expected), albeit a visual inspection of Fig. 3.2 indicates that the inner steepness does not

change much. This confirms that in idealized circumstances a discretized implementation

of equation (1.18) is handy for catching the inner slope of the halo density profile, that a

sampling of ∼100 pc is acceptable, and that the simulated galaxies are suitable for the mi-

nimum disk approximation. What is much more stunning in Fig. 3.2 is that the inversion
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Figure 3.1: Top: theoretical α slope as a function of radius from the dark matter density profiles calculated

using different logarithmic shell widths in equation (3.6). Different colours represent different values of

∆ log(r) as specified in the labels in the right-hand side. They refer to r values expressed in kpc. The

shaded region represents ±0.1 around the estimation made with the fiducial value, ∆ log(r) = 0.15.

Bottom: ∆α residual between estimations from the density profiles obtained in slightly different ways

(see main text). The shaded region encloses ±0.1 around 0. This example is for galaxy Dwarf1 at 4.3

Gyr simulation time. The vertical lines indicate the position of the first measured point in the mock

observed rotation curves traced at different spatial resolutions (i.e. viewed at different distances), namely

Rinner = 0.17, 0.27, 0.41, 0.84 kpc.

of Vcir leads to the illusion of a dark matter core in all galaxies, which is in contrast with

the cuspy haloes in the simulations. This is a further confirmation of the main result of

Chapter 2, i.e. that the intrinsic curvature of Vcir has been modified with respect to Vdm,

masking the true nature of the dark matter haloes in the simulations. Results from the

polyex method look similar to those of finit-diff in the outer parts of the galaxies. In the

inner part, however, the profiles calculated by the inversion of Vdm and Vtot are somehow

flattened. They also exhibit clear artificial cores for Vcir.

In order to estimate the inner logarithmic slope of the density profiles using the finit-

diff or the polyex methods one needs to define a break radius, and then perform the linear

fits described in Sec. 1.4.3.2. At this point is important to mention that the rotation curve

inversion methods have been often used to study dwarf galaxies or LSBs using long-slit ob-

servations, which a tipical radial sampling of 1 point per spatial resolution element, instead

of 2, as it is commonly the case for the tilted-ring analysis of velocity maps. For consis-

tency with this large fraction of the literature I followed the same prescription, sampling

the rotation curves at a spatial rate of 1 point every 2 arcsec. This is likely not causing
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Figure 3.2: Dark matter density profiles obtained by the inversion of the theoretical velocity profiles using

the finit-diff method. The results from all snapshots are stacked together. Solid lines represent the mean

density profiles, and shaded regions their 1-σ dispersion. The true density profile appears in cyan. The

density profiles obtained by the inversion of Vdm are shown in magenta, those from Vtot in green, and the

ones from Vcir in black.

any difference in the main conclusions, which depend on trends that are clearly visible for

galaxies at 10 Mpc, where the spatial sampling is quite good (∼100 pc). Nevertheless,

even though the motivation for this choice came from long-slit data, all the results of this

section were obtained from rotation curves extracted using KINEMETRY , as they are

more regular and allow a better assessment of the intrinsic biases of the methods that I

will introduce later in this chapter.

As there are no strong core-like features in the density profiles corresponding to Vdm and

Vtot, for these I adopt Nbreak = 2 at all distances. To study the density profiles derived from

Vcir and from the mock H α observations at 10 Mpc I choose Nbreak = 4 after examining

the profiles, as all of them exhibit shallow inner regions extending over 2∼7 points, but

Nbreak = 4 is the most common case. Additionally, I note that in those cases where the

fake core looks more extended, the slope inferred with Nbreak = 4 is often the same as
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Figure 3.3: Dark matter density profiles obtained by the inversion of the theoretical velocity profiles using

the polyex method. The results from all snapshots are stacked together. Colours and symbols are the

same as in Fig. 3.2

using the entire core size, and in those cases where Nbreak = 2, 3 is a better description of

the data, Nbreak = 4 leads to a conservative estimation of the error, as including points

ouside the core makes the linear fits get steeper, partially compensating for the artificial

flattening of the inner density profile. A similar analysis supports Nbreak = 3 at 20 Mpc.

At 40 and 80 Mpc the only acceptable choice is Nbreak = 2 as the signature of the fake core

dilutes, because it is undersampled by the comparatively low spatial resolution (∼400/800

pc).

Now I introduce the compiled α inferences yielded by the different methods. First I

present a qualitative overview of the results, and then I quantify the overall performance

and typical errors. In Fig. 3.4 I show the probability distribution function (PDF) of

α as inferred from each combination of circular velocity profile, method, distance, and

inclination. To create the total PDFs I combine the results from all simulations and

snapshots. From each individual measurement I draw a gaussian centered at αmeasured,



118 Chapter 3. Additional remarks on the cusp-core problem

Figure 3.4: Probability distribution function of α from the different circular velocity profiles. Each panel

is for a different distance and subplots are for the different methods. Purple dotted line (and shaded area

below it) represents the real distribution of slopes in the simulations, measured at the same position of the

first point in the mock H α rotation curves. Inferences from theoretical Vdm and Vtot appear as dashed

lines in magenta and green respectively. Slopes inferred from theoretical Vcir are represented by the black

solid line, and from the mock observed rotation curves by the solid thin lines colour-coded by inclination.

with a standard deviation given by its error, and then I add them up all together. To

avoid unrealistically small uncertainties I impose a minimum error of 0.05 to individual

values of αmeasured.

In Fig. 3.4 it can be seen that the probability distribution function of the true slopes is

cuspy, and perfectly consistent with the target NFW profiles of the haloes in the simulati-
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ons. It also shows that, independently of the distance, the application of finit-diff method

to Vdmrecovers a set of slopes that is very consistent with the true distribution of slopes

in the simulation The same method slightly underestimates α when it is applied to Vtot.

Strikingly, when Vcir is inverted using finit-diff at 10 Mpc, a severe underestimation of α

occurs, creating the strong illusion of dark matter cores that was formerly observed from

the analysis of the rotation curve fitting methods in Chapter 2. The error diminishes with

distance until it becomes unimportant at 80 Mpc. The results from the mock observed

rotation curves are similar to those from Vcir, except for two facts. First, the α PDFs are

more extended, i.e., the spread of the slopes inferred from the mock observations is larger.

Second, even though the slope underestimation also declines with distance, this time it is

notorious even at 80 Mpc.

According to Fig. 3.4, at 10 Mpc the polyex method underestimates the true halo

density slopes in all cases, regardless of the circular velocity profile being inverted. Yet

the errors appear to decrease with distance. Surprisingly, the inferences from Vdm only

partially agree with the true distribution of slopes at D≤20 Mpc, a fact that can not be

explained by any of the effects that I have discussed to this point so far, and that seriously

put into question the ability of the polyex method to accomplish the task for which it was

designed. The polyex inversion of Vtot produces a distribution of slopes very similar to

those from Vdm, but always a bit flatter. The slopes inferred from these curves with polyex

are flatter than the true ones at D≤20 Mpc, but slightly overestimate αtrue at D≥40 Mpc.

The inversion of Vcir yields flatter slopes than Vdmand Vtotat all distances, underestimating

αtrue at all distances except for 80 Mpc. From the mock observations at 10 Mpc the polyex

method got very similar results to those from Vcir, but more underestimated slopes at larger

distances, being the only case for which there is a considerable error even at 80 Mpc.

The results from the power-law method look quite different from the former two

methods discussed. The steepness inferred from all the velocity profiles slightly overes-

timates the true distribution of α’s at 10 Mpc, and progressively gets to an stunning

agreement at larger distances. The results from Vcir and from the mock observations over-

lap the true α PDF already at 20 Mpc. Despite this remarkable success in recovering the

α slopes, these results look suspicious, as a large body of evidence shows that the inner

curvature of the velocity profiles is not the same for all of them.

I quantify the net committed error in α estimation through the difference ∆α = αtrue−
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αmeasured, and the uncertainty in this quantity as the quadratic sum of both uncertainties.

Drawing individual gaussians and suming them up one can compute the PDF of ∆α, which

serves to report a characteristic error for each combination of circular velocity profile,

method, and distance. In Fig. 3.5 and in Table 3.1 I report the mean error < αtrue −
αmeasured > as the first moment of the ∆α distribution, with an uncertainty that I define

as the radius around the mean error enclosing 67% of the PDF area.

Figure 3.5: Net error in the estimation of the logarithmic slope α. Each panel is for a different method.

Squared markers are for theoretical rotation curves and dots for the mock observations. Colours are the

same as in Fig. 3.4. Small horizontal shifts between data points are used to facilitate the visualization.

Fig. 3.5 and Table 3.1 confirm the previous qualitative analysis. Method finit-diff in

combination with Vdm successfully recovers the dark matter slopes at all distances. The

same method applied to Vtot somewhat underestimates α at 10 Mpc by 0.24±0.21, but

errors get steadily more consistent with 0. The inversion of Vcir leads to severe underesti-

mations of α at all distances but 80 Mpc. Errors are more pronounced for closer galaxies,

reaching 0.62±0.21 at 10 Mpc. Applying finit-diff on Vkin errors are larger than those from

Vcir at D≥ 20 Mpc. Interestingly, note that at no distance the combination of finit-diff and

Vkin recognizes the cuspy nature of the haloes in the simulations, with underestimations

diminishing with distance from 0.64±0.25 to 0.35±0.24.

At 10 Mpc, the polyex method applied to any of the circular velocity profiles underesti-

mates the true value of α, though errors systematically decrease as a function of distance.

Strikingly, inverting Vdm at 10 Mpc the density slope is underestimated by 0.35±0.21;

agreement is good only at D≥40 Mpc, and at 80 Mpc the value of α is actually overesti-

mated by 0.16±0.13. In comparison to Vdm, the errors that occur when the polyex method

is used slightly increase for Vtot (by less than 0.1), but they grow considerably for Vcir,
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Table 3.1 - Mean error < αtrue − αmeasured > committed by the different methods.

finit-diff

D Vdm Vtot Vcir Vkin
a

(Mpc)

10 0.03 ± 0.15 0.24 ± 0.21 0.62 ± 0.21 0.64 ± 0.25

20 0.06±0.13 0.14±0.14 0.47±0.22 0.56±0.31

40 0.05±0.12 0.08±0.16 0.34±0.22 0.54±0.34

80 0.01±0.13 -0.01±0.18 0.06±0.16 0.35±0.24

polyex

10 0.35±0.21 0.42±0.19 0.48±0.16 0.48±0.19

20 0.19±0.23 0.27±0.23 0.44±0.17 0.45±0.22

40 -0.01±0.2 0.04±0.24 0.35±0.22 0.42±0.26

80 -0.16±0.13 -0.15±0.2 -0.05±0.18 0.31±0.28

power-law

10 -0.26±0.17 -0.26±0.2 -0.15±0.22 -0.15±0.25

20 -0.15±0.15 -0.15±0.18 -0.04±0.21 -0.05±0.24

40 -0.1±0.13 -0.11±0.16 0.01±0.19 0.01±0.24

80 -0.05±0.14 -0.07±0.18 0.0±0.18 0.14±0.32

Note: a Results in the last column are obtained taking mock 2D observations at all incli-

nations together.

reaching between 0.46±0.16 and 0.32±0.22 at D≤40 Mpc, and suddenly drop to ∼0 at 80

Mpc. Results from Vkin systematically underestimate α at all distances, producing errors

between 0.48±0.19 and 0.31±0.18.

As for the power-law method, it overestimates the logarithmic slope by 0.26±0.17

when applied to Vdm or Vtot at 10 Mpc, but the excess diminishes with distance and gets

progressively more consistent with 0. Vcir allows a slightly better job; it overestimates α

by 0.15±0.22 at 10 Mpc, but get errors that are fairly consistent with 0 at D≥ 20 Mpc.

As for the mock observations, note that the α PDFs overestimate the real slopes at 10

Mpc by 0.15±0.25, to match them at 20,40 Mpc, and to underestimate them at 80 Mpc

by 0.14±0.32.

I find a tendency for more inclined galaxies to mimic flatter density profiles with all

the methods. The effect is mild at 10 Mpc but it gets more pronounced with distance. At

80 Mpc the difference between errors at 15◦ and 75◦ is up to 0.2, although measurements
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at all inclinations still agree within error bars.

3.2 Successes, drawbacks, and possible biases

3.2.1 The intrinsic curvature of the theoretical velocity profiles

To better understand the meaning of the results described up to here, I investigate

the intrinsic curvature of the inner velocity profiles at 10 Mpc through their logarithmic

versions, presented in Fig. 3.6. I only consider the first 5 points of each profile, in order to

determine the inner slope without mixing information from the outer parts.

I also include a linear fit to each dataset, and two red lines representing the cuspy

NFW profile (α = 1) and the cored pseudo-isothermal sphere (ISO) model (α = 0) for

comparison. Every curve is shifted in the horizontal and vertical directions as to place

the first measurement at the origin. This is possible because the degree of curvature of a

velocity profile is given solely by the slope of its linear fit in the logarithmic space, which

I designate as β;

V ∼ rβ ⇐⇒ log(V ) ∼ β log(r). (3.7)

Recalling the velocity-density equivalence of equation (3.5), one can estimate the logarith-

mic density slope from the linear fit to the logarithmic velocity as,

α = 2(1− β). (3.8)

Note that higher values of β correspond to lower α density slopes. This equation shows

clearly that cored dark matter haloes (α = 0) exhibit solid-body circular velocity profiles

(β = 1), while the canonical NFW cusps (α = 1) display curved inner velocity profiles

(β = 1/2).

The values of α computed in this way from each circular velocity profile are quoted in

Fig. 3.6. It is immediate that the curvature of Vdm reflects the target NFW density profiles,

as the estimated α ranges from 0.85 to 0.94. The intrinsic curvature of Vtot slightly deviates

towards a flatter density profile, lowering the inferred α’s by ∼0.1. As for Vcir, I find its

inner curvature to be much better represented by the cored ISO model, with α’s between

0.16 and 0.35. Therefore I can say that the main trends observed in Sec. (2.4), regarding

the finit-diff method, are actually imprinted in the velocity profiles themselves. Vdm in
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fact looks “cuspy”2, Vtot is a bit “flatter”, and Vcir looks “cored”. This is an important

verification of the different inner curvatures amongst the profiles.

In the case of Vtot, I find the addition of baryons to lower the inferred value of α

in comparison to the dark matter-only velocity profiles. As can be seen in Fig. 3.6, the

intrinsic curvature of Vstar and Vgas is characterized by higher β slopes than that of Vdm,

which will result in βtot > βdm when the quadratic sum is performed. This implies that

the density profiles inferred from Vtot will look flatter than those inferred from Vdm (i.e.

αtot < αdm). Nonetheless, the difference is small because the dark matter component is

largely dominant in the simulated galaxies, even at the very centre. Let me stress that

the baryonic spatial distribution in the simulations was carefully tuned to follow widely

accepted models based on observations, so, either this effect may be present in real galaxies

as well, or simple models such as perfect exponential discs are excessively idealized for

cusp-core studies. I explore this result further in Sec. 3.2.2.

In Chapter 2, I presented evidence pointing at pressure support as the origin of the

lowering of Vcir with respect to Vtot in the inner part, characterized by mean residuals

< Vtot − Vcir > of 4∼5 km s−1 in the first kiloparsec for all galaxies but G1. Such a

correction is typically considered small, given the size of the velocity error bars, and it is

often ignored because of that. Strikingly, I find it to play a major role in the determination

of the halo density slopes, creating the illusion of inexistent dark matter matter cores. The

reason why such small errors can impact the curvature of the velocity profiles is that they

are not stochastic, but systematic. In the galaxies simulated here I find the difference

in the velocities driven by pressure support, (Vtot − Vcir), to monotonically decrease as a

function of radius. Dividing that difference by Vtot, which grows with radius, it follows that

the term (1 − Vcir

Vtot
) diminishes monotonically as a function of radius, which implies that

the fraction Vcir

Vtot
, on the contrary, must increase (see Fig. 2.12). If one approximates both

velocity profiles as power laws, Vcir ∼ rβcir , Vtot ∼ rβtot , this necessarily implies βcir > βtot.

Combining this result with the former one leads to αdm > αtot > αcir, which explains why

the sequence Vdm → Vtot → Vcir moves away from the NFW model towards the ISO one in

Fig. 3.6.

2 i.e. the intrinsic curvature of the velocity profile is consistent with that expected for a cuspy dark

matter density profile.
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3.2.2 How reliable is the minimum disc approximation?

The fact that Vtot leads one to infer density profiles that look flatter than those inferred

from Vdm is in open contradiction with the bottom-line of the widely accepted minimum

disc approximation. Even though the difference is not so large (∼0.1), it is a result that

deserves further consideration, because it appears systematically in all the simulations,

and because the combination of small errors can easily add up and conduct the cusp-core

traditional analyses to misleading results (e.g. Rhee et al., 2004).

Let me start by mentioning that the expectation of the observed rotation curves being

suitable to put an upper limit to the dark matter density slope does not lie on the basis of

first principles, but it is the consequence of some empirical comparisons between fits with

and without baryons. This result was originally obtained by de Blok and Bosma (2002)

and it has been mistaken as a granted property from then on. It is clear that neglecting

the baryons during the inversion of the rotation curve will lead to an overestimation of the

true dark matter content at all radii, as Vtot is always larger than Vdm. In my opinion, it

seems that a loose interpretation of this fact has caused the erroneous general impression

that the minimum disc approach also serves to place an upper limit to the steepness of the

inferred density profiles, which is not necessarily true. As a dummy illustrative example,

note that in the radial range [0.2, 1.8] both of the following inequalities are true,

2 r1/2 > r1 ; r1/2 < 3 r1, (3.9)

which demonstrates that the relative amplitude of two functions does not depends

solely on their steepness, but also on their individual normalizations and on the radial

range where the comparison is performed.

It is worth mentioning that different authors than de Blok and Bosma have also found

steeper slopes from the minimum disc approximation than the slopes they found after

explicitly discounting the contribution of baryons to the rotation curves(e.g. Simon et al.,

2005), but this is no more than a necessary cross check that has to be done in every

new study, and it ought to be considered circumstantial evidence rather than a universal

property of disc galaxies. In spite of that fact, several cusp-core works quote this “property”

of the minimum disc approximation to justify the use of this approach without a thorough

verification.

Besides that, recall that the difference between Vtot and Vdm is basically a reflection
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of the baryonic density profiles, which in the simulations studied here are modelled after

the typical exponential discs observed in many late-type galaxies, and experience very

small transformations along the simulated time. All this evidence suggests that either

exponential discs are not an appropriate description of the baryonic density profiles all the

way up to centre, or that the observational analyses may be offering misleading evidence

as a result of an incorrect shape of the central part of the velocity profiles or of the surface

brightness profiles. If ideal exponential discs are to be blamed for this unexpected result

in the simulations of this work, then it would be a double-edge sword, as this model is

largely exploited in observational analyses of rotation curves. A third possibility is that

dark matter haloes were actually cored, and because of that the addition of baryons would

make the profiles appear cuspier. In that case, the comparison of fits with and without

baryons would be providing further evidence of the existence of cores, but then one has

to be absolutely sure of being tracing the circular velocity related to the gravitational

potential, which seems to be a much harder task than previously assumed according to

the evidence presented in Chapter 2. In conclusion, I can not establish the exact origin

of the discrepancy at this stage, but I want to emphasize that rotation curve studies in

the cusp-core context seem to be extremely sensitive to the details in the inner part of the

galaxies, which poses serious concerns to the reliability of their conclusions.

As an instructive exercise I revisit the case of a thin disc with an exponential surface

density profile of scale-length h, whose circular velocity profile has a well-known analytic

solution (see Binney and Tremaine, 1987) that can be written in logarithmic form as,

log(V ) ∝ log(r) (3.10)

+
1

2
log[I0(r/2h)K0(r/2h)− I1(r/2h)K1(r/2h)],

where the functions I0, K0, I1, K1 are the Bessel functions of first and second kinds.

Fitting straight lines to this analytic expression over 1 kpc I find the slope β to lie between

0.65 and 0.86 for scale-lengths between 0.5 and 9 kpc, respectively. That is equivalent to α

slopes between 0.7 and 0.27, and therefore it means that the combination of a NFW dark

matter halo and a thin exponential disc will necessarily exhibit a lower steepness than that

of a perfect NFW profile.
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3.2.3 The intrinsic bias of the polyex method

In Sec. 3.1.3 I showed that the polyex method fails to recover the true cuspyness of

the haloes from the inversion of Vdmat its highest spatial resolution. This is an enormous

concern regarding the suitability of this proposed solution to study the cusp-core problem.

Recalling that in this case the inner quantities depend on the fit of the entire velocity

profile to a polyex model, I decided to explore the mathematical properties of this function

to determine the origin of the observed bias in the inferred slopes. To probe the intrinsic

shape of the polyex family of curves I combined equations (3.1), (3.6), and (3.4) to derive

an exact analytical expression for the α slope as a function of radius,

α = −r
ρ

dρ

dr
= α(r, Rpe, β). (3.11)

Note that, for the intrinsic logarithmic nature of this derivative, the dependence with

the amplitude coefficient Vo vanishes. To have a feeling of the relevant space of parameters

covered by (Rpe, β) in a realistic scenario, note that at a radius of 2∼3 times Rpe the

rotation curve must be turning flat, because the negative exponential goes to zero in

equation (3.4). Therefore a reasonable value of this parameter should be between a fraction

of a kiloparsec and a few kiloparsecs. Secondly, note that for r � Rpe the polyex model

tends to a linear relation

Vpe(r) ≈ Vo +

(
βVo

Rpe

)
r. (3.12)

If the velocity profile extends beyond the rising part, this means that Vo must be repre-

sentative of Vflat, and the slope βVo/Rpe must be close to zero. Using limiting values for

Vo and Rpe I estimated an extreme upper limit at |β| < 2. As a matter of fact, all the

polyex fits to my circular velocity profiles, and also those found by Spekkens et al. (2005)

to their observed rotation curves lie in a narrower subset of the parameter space, namely

|β| ≤ 0.5.

In Fig. 3.7 I present a contour plot of the intrinsic slope α associated to the polyex

formula at 20 Mpc (i.e. evaluated at Rinner = 0.27) as a function of the coefficients

(Rpe, β). I also include the set of parameters (β,Rpe) obtained from the polyex fits to

all my theoretical velocity profiles, and to the mock observations truncated at different

positions. Here I consider not only the H α data, but also the hybrid H α + H I rotation

curves. I did this to verify how the polyex parameters behave in those cases where the flat

part of the rotation curves is effectively reached with a considerable number of points. I
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also overplot a subset of the fits to the observed rotation curves published by Spekkens

et al. (2005), filtering out those galaxies beyond 100 Mpc or excessively inclined (> 80◦).

Figure 3.7: Shaded areas in the background show the intrinsic slope α as a function of (Rpe, β) at 20 Mpc

using the polyex method. I include individual results from the polyex fits to high-resolution H α rotation

curves of Spekkens et al. (2005) closer than 100 Mpc and with inclinations below 80◦, differentiating

galaxies at ∼20 Mpc (red stars) from the rest (grey stars). I show the mean result and the 1-σ scatter for

the theoretical Vdm (magenta square), Vtot (green triangle), and Vcir (black down-pointing triangle). Small

blue dots correspond to polyex fits to the mock observed rotation curves trying different truncations, from

10 points to the whole hybrid rotation curve. The mean and the 1-σ scatter of the fits to the entire H α

rotation curves is shown as a cyan circle with a blue dot in the centre. The same quantity for the hybrid

H α + H I case is shown as a yellow circle.

The main take-away from Fig. 3.7 is that, for any plausible combination of β and Rpe,

the polyex function intrinsically imposses a flattened slope α ≤ 0.5. Even for Vdm and Vtot

the polyex method biases the slope α towards flatter values than the true ones. The only

way to get steeper slopes than 0.5 is by forcing Rpe to stay below 0.5 kpc, but this means

that the corresponding rotation curve must have completed the rising part and should have

turned a steady linear profile before reaching 2 kpc, which can by no means be reconciled

with the large diversity of observed rotation curve shapes. Virtually all the fits to the mock

rotations curves lie in regions of the parameter space with intrinsic α slopes flatter than



Section 3.2. Successes, drawbacks, and possible biases 129

0.5. The results from the entire H α rotation curves are quite similar to those from Vcir, but

not very consistent with the sample from Spekkens et al. (2005). The agreement is better

if I consider the whole hybrid rotation curves. This is probably explained by the fact that

the H α emission in the galaxies observed by of Spekkens et al. (2005) reached the flat

part of the rotation curves in many cases, while my fiducial mock H α-only observations

do not. At 10 Mpc the situation is more delicate as the contours slightly shift towards

the left, making it more difficult to get steep α’s. This explains why the polyex method

fails to recover the real distribution of dark matter density slopes at 10 and 20 Mpc in my

simulations, even from Vdm. At larger distances the α contours move to the right, so this

method is able to recover the steepness of the dark matter density slopes from Vdm and

Vtot, but never from the mock observed rotation curves. At such large distances the fits do

also shift slightly to the right, towards larger values of Rpe, but the shift just improves the

agreement with the fits found by Spekkens et al. slightly. It is worth performing further

analyses to determine exactly the cause of the differences, and to find out if the results

from Spekkens et al. are in fact affected by the bias demonstrated in Fig. 3.7 or not.

3.2.4 Dependence of the inferred α slope on the assumed distance

A striking result from Fig. 3.5 is that, in those cases where a fake core is inferred at 10

Mpc, the agreement between the true and the inferred α slopes improves as the galaxies

are placed farther away. I investigate this effect using the theoretical velocity profiles,

through a comparison of the recovered density profiles as a function of distance. In the

case of polyex the inverted density profiles, which can be estimated analytically from the

(Vo, Rpe, β) coefficients of the polyex fit to the rotation curve, overlap. There are no changes

to the inferred densities, except for a poorer sampling of the profiles at larger distances.

In the case of the finit-diff method, one can only evaluate the density at the positions

where the velocity profiles were measured. By overplotting all the densities inferred by

inversion of the velocities at the different distances, I see the most inner points to slightly

shift as a function of distance, but this effect by itself seeems unimportant regarding the

steepness of the density profiles.

The former discussion implies that the sampling rate of the velocity profiles does not

alter considerably the shape of the inverted density profiles. I find the primary cause of the

trend with distance to be in the radius at which α is measured and reported (Rinner), which
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systematically moves out of the artificial cores in farther galaxies, as the spatial resolution

of the associated mock observations gets poorer. Additionally, the undersampling of the

inverted density profiles artificially steppens the slopes inferred from the linear fit to the

data points inside the break radius, with respect to the steepness that would be inferred

from an ideal measurement of the derivative at the same position, if one had a continuous

profile instead of discrete and sparse points. I illustrate this in Fig. 3.8. There it can

be seen that the slopes inferred from the linear fit inside the break radius artificially get

steeper with distance; the linear fits systematically move from the ISO model towards the

NFW one for the reasons described.

Figure 3.8: Effect of the distance in the determination of α. Thick grey lines represent the mean density

profile obtained by the inversion of Vcir in galaxy Dwarf4 using the polyex method, which has exactly the

same shape independent of the distance. I plot the same density profile four times, identifying each one to

a distance from 10 Mpc (top) to 80 Mpc (bottom), in order to clearly show the effects introduced by the

corresponding sampling in each case. Black dots mark the measurements used to perform the linear fit at

different distances. Every set has been shifted vertically to make all linear fits coincident. ISO and NFW

characteristic slopes are also shown for comparison. In the legend I indicate the slope α inferred from the

straight line fit, and in parentheses I show the true slope of the dark matter density profile at the position

of the first measurement, as evaluated analytically using the polyex formula.
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3.2.5 Dependence with Nbreak and a comment on the power-law method

In order to test the robustness of the results, in Fig. 3.9 I present the dependence of

the compiled average error, < αtrue − αmeasured >, as a function of a variable definition of

the break radius, determined by the number of points in the linear fit to log(ρ) − log(r),

Nbreak, for methods finit-diff (top) and polyex (middle) at 10 Mpc. The main conclusions

do not change substantially if I increase Nbreak by one point. The inferred slopes are

raised by 0.15 or less if one uses Nbreak = 3 for Vdm and Vtot, and Nbreak = 5 for Vcir and

Vkin. Those profiles that were already identified as cusps or cores, remain on the same

side of this bimodal categories, including the soft cores, oddly estimated from Vdm and

Vtot by polyex. Increasing Nbreak further would be incompatible with the shape of the

inverted density profiles, as one would be adding points that are definitively outside of

any reasonable definition of the break radius, as can be seen in Figs. 3.2 and 3.3, or in

Fig 3.8. Particularly, if one wants to make the polyex or the finit-diff methods to recover

the correct steep slopes from the simulations, from the inversion of Vciror Vkin, this would

require to use Nbreak ≥ 10, which is completely at odds with the data.

In Fig. 3.9 I show the results from the power-law method, after truncating the velocity

profiles at different positions that I identify by the number of points included in the fit,

Npoints. There it can be seen that the α slopes inferred from the fits to the velocity

profiles exhibit the same qualitative behaviour than the slopes obtained by means of the

finit-diff method (top panel). For a small number of points, the error committed from

Vdmis consistent with 0, the error committed from Vtotis small (∼0.2), and the α error from

Vcirand Vkinpeaks at ∼0.8, making the cusps in the simulations to be mistaken by cores. As

the number of points being fit increases, the errors from Vdmand Vtotturn slightly negative,

indicating a small overestimation of the true distribution of slopes, and the error from

Vcirand Vkindiminishes, making the inferred slopes progressively more consistent with the

real ones. The main difference is that, by estimating α from the inverted density profile as

done by finit-diff , an error consistent with 0 is reached for Nbreak ∼10, while Npoints ∼15

is necessary to achieve the same result from the power-law method. This roughly means

that, in this regime, the α estimation from the finit-diff method is always a bit steeper

(by ∼ 0.1) than that from power-law , though this difference by itself would not be able

to mask a cusp into a core, neither the other way around.
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Figure 3.9: Mean errors in the estimation of α as a function of the number of points considered in the

fits. Each panel is for a different method. Top: finit-diff , centre: polyex , bottom:power-law . In the first

2 cases the number of points refers to Nbreak, and the fit is performed in the log (ρ)− log(r) space. In the

power-law method the nomber of points refers to Npoints, which is the number of points of the velocity

profiles to be directly fit with the power-law model without performing the inversion. These results are a

compilation from all galaxies and snapshots at 10 Mpc. Solid lines with points represent the mean error

for each value of Nbreak or Npoints, and shaded regions denote the 1-σ dispersion.

Therefore, at least for small radii for which the single power-law approximation is best

suited, the equivalence expressed by equation 3.5 is verified in practice at a first appro-

ximation, as it was already mentioned in Sec 3.2.1 from the linear fits to the logarithmic

velocity profiles. In other words, if the inner density profile is to be modelled as a single

power-law, the result may be directly obtained from a power-law fit the corresponding

velocity profile, which may be seen as a linear fit in logarithmic space. I suggest that
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the latter, which is an easier implementation, is less prone to errors introduced during

the inversion of the velocity profile, as those evidenced in the intrinsic bias of the polyex

function, or others more subtle related to the specific numerical implementation of the ve-

locity derivative (specially for poor samplings) or the propagation of the error bars, which

may be the origin of the small systematic bias of ∼0.1 comented in the former paragraph.

Still the visualization of the logarithmic density profile remains a very important tool of

analysis for determining the possible presence of a break radius, but the fit itself may be

more straightforward in the log (v)− log(r) plane than in the density space.

The bottom panel of Fig. 3.9 also shows that, as one allows larger numbers of points in

the fit, the α slopes estimated from Vcirand Vkinusing the power-law method grow quickly

(i.e. the error in α decrease), until they reach and eventually exceed the true values of

the distribution of slopes in the simulations. Considering that the fiducial results from the

power-law method were obtained from fits to the whole extension of the H α velocity profi-

les, which have of the order of 20∼40 points, this explains the results observed in Figs. 3.4,

3.5, i.e. that the power-law method somehow overestimates the true α distribution from

all the velocity profiles, although the error is less noticeable from Vcirand Vkin, from which

it is partially consistent with 0. Nevertheless, note that this would be equivalent to make

a fit to the inverted density profile using a large number of points, i.e. including a lot of

data from outside the break radius, which will make the inferred slope necessarily steep,

but will not tell us anything about the very inner structure of the velocity/density pro-

files. Therefore, even though the results from power-law look promising in Fig. 3.9 and

Table 3.1, the reason is completely misleading.

3.2.6 Comparison with the literature

Finally, I compare the results obtained from the mock observations to some influential

observational studies from the literature, which also relied on the minimum disc approxi-

mation to estimate α. In Fig. 3.10 I plot the inferred α slope as a function of the position

of the first velocity measurement (Rinner), along with the expectations from some typical

NFW and ISO models employed in the literature to differentiate between cusps and cores

(e.g. de Blok and Bosma, 2002), and the true values of α as a function of radius of the

target NFW configurations of the simulated haloes. This plot clearly shows that the re-

sults from the simulated galaxies are very consistent with observational findings discussed
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in the literature. Typically, the analysis of Fig. 3.10 would lead to the wrong conclusion

that the observed galaxies live inside cored dark matter halos, whose density profiles are

more consistent with the ISO profile than with the NFW model.

Figure 3.10: Measurements of α as a function of the position of the first velocity measurement. All grey

symbols come from the literature (dots: Swaters et al. (2003), squares: de Blok and Bosma (2002), stars:

de Blok et al. (2001)). Blue circles represent the mean results from the mock rotation curves and error

bars indicate the interval enclosing 67% of the area of the α PDF. I also show the ISO and NFW models

used by de Blok et al. (2001) to discriminate cusps from cores in the original formulation of this plot, as

well as the target NFW models chosen for the galaxies simulated here.

For a more detailed comparison, in Fig. 3.11 I plot an histogram of a subset of the α

slopes collected from the literature, to compare it against the results obtained from the

mock rotation curves studied here. To make the comparison meaningful, I only consider

observations with 0.1 ≤ Rinner ≤ 1 kpc, and inclinations between 10◦ and 80◦. Additionally,

I count the number of galaxies having Rinner in different radial bins, namely between 0.1

and 0.22 kpc, between 0.22 and 0.34 kpc, between 0.34 and 0.62 kpc, and between 0.62 and

1 kpc. Then I randomly extract some of the results from mock observations, demanding

that the number of galaxies at 10, 20, 40, and 80 Mpc, conversely with Rinner at 0.17,

0.27, 0.41, and 0.84 kpc, is proportional to the number of observations in the radial bins

mentioned before, and I calculate the correspoding α PDF. I repeat this 100 times and I

take the mean PDF for the comparison, shown in red in Fig. 3.11. The similarity of both
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α distributions is remarkable, the more notable difference being a secondary peak at α =

0.85 from observations that is not reproduced by the PDF of the slopes I observed from

the simulations. Nevertheless, notice that this comparison should not be taken literally for

all the details, because there are still many possible sources of differences. In particular,

note that the observational histogram might be affected by low-number statistics, specially

given the fact that the simulated galaxies are perfectly-symmetric discs, which is not the

case of real systems for which a considerable random scatter is likely affecting the shape

of the histogram.

Figure 3.11: Compilation of slopes α from the literature. The histogram considers galaxies with Rinner

between 100 pc and 1 kpc and inclinations between 10◦ and 80◦. The red line represents the total PDF of

a sub-sample of the results ontained in this work, selected to match the distribution of Rin of the observed

galaxies; the thick line is the mean PDF from 100 realizations (thin lines).
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3.3 Can pressure support effects be corrected?

Now that we have demonstrated the crucial role of pressure support in cusp-core stu-

dies, we address the matter of whether its effect may be corrected using observationally

accessible information. Please note that this section is also part of the paper presented in

the former chapter (Pineda et al., 2016), and that is the reason for the small differences in

the style of the text with respect to the rest of the thesis.

3.3.1 Pressure support vs. asymmetric drift

First, we would like to clarify the theoretical concepts related to the physics of pressure

support, as there is some ambiguity in the literature. Our main concern is the use of the

terms pressure support and asymmetric drift as interchangeable expressions despite the

fact that they represent different physical properties. This common mix up was recently

pointed out by Dalcanton and Stilp (2010), but it still deserves further attention, as we

will demonstrate below.

One can start by stating what pressure support truly means and its proper formulation.

Consider the Euler momentum conservation equation for a gas element in an external

gravitational field,
dV

dt
= agrav −

1

ρ
∇P. (3.13)

If this gas element moves on a circular orbit in the midplane of a system with axial and

vertical symmetries, the three terms of equation (3.13) are aligned in the radial direction,

leading to the scalar relation
v2
φ

r
=
v2
c

r
+

1

ρ

dP

dr
, (3.14)

where vφ represents the rotational speed of the gas; vc is the expected circular velocity from

the gravitational potential; and the second term on the right is the radial acceleration due

to pressure gradients, ρ being the gas density and P its pressure. The sign inversion on

the right hand side is because centripetal accelerations point inwards, i.e. in the negative

r direction. Note that if pressure falls off as a function of radius (as it is often the case in

galactic discs), the gradient becomes negative, making vφ < vc; this is pressure support.

Also note that equation (3.14) is valid in the equatorial plane for any combination of

spherical and disc-like components, so the approximation of a spherical potential (argrav ≈
GM(<r)

r2 ) used by Dalcanton and Stilp (2010) is not necessary.
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The sources of pressure typically mentioned (if any) in the cusp-core literature are

thermal pressure and turbulence. Other possible sources, such as magnetic fields or cosmic

rays, are rarely mentioned, although they may be important for the dynamics of the ISM

(Boulares and Cox 1990; Ferrière 2001; but cf. ?). Dalcanton and Stilp (2010) highlight

that turbulence dominates the random motions of the gas and for that reason the pressure

relates to the 1-dimensional velocity dispersion as

P = ρσ2. (3.15)

Substituting equation (3.15) into equation (3.14), rearranging terms, and expressing

the velocities in our notation, the pressure support correction can be written as

V 2
tot = V 2

cir − σ2 d log (ρσ2)

d log r
. (3.16)

Furthermore, assuming that the vertical structure of the disc does not depend on radius,

one can express the logarithmic derivative in terms of the mass surface density of the gas

Σ, which is the observable quantity

V 2
tot = V 2

cir − σ2 d log (Σσ2)

d log r
. (3.17)

This is equivalent to equation (11) of Dalcanton and Stilp (2010). We have omitted

the subindex r in the velocity dispersion to emphasize that turbulence is classically treated

as an isotropic source of pressure3. Dalcanton and Stilp (2010) argue that the distinctive

boundary conditions in the vertical direction and in the equatorial plane likely invalidate

the assumption of isotropy in the velocity dispersion, which is indeed a relevant concern for

the macroscopic scales probed by observations. Nevertheless, in practice, σ is in general

treated as isotropic, mostly due to the difficulty of disentagling its radial component from

the observed projection along the line of sight.

Asymmetric drift, on the other hand, is a phenomenon experienced by collisionless

particles. Its origin is succinctly presented in Binney and Tremaine (2008), to which we

refer the reader for details. In brief, the Jeans equations for a stellar population rotating

in the equatorial plane of a smooth potential with axial and vertical symmetries yield

v2
c − vφ2 = σ2

φ − v2
r −

r

ν

∂(νv2
r)

∂r
− r∂(vrvz)

∂z
, (3.18)

3 This seems to be a good approximation when the dominant contribution comes from microturbulence

at much smaller scales than the size of the region being considered (Mac Low and Klessen 2004; but cf.

Elmegreen and Scalo 2004)
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where vc represents the circular velocity associated with the gravitational potential, vr,

vφ, and vz are the three components of the actual stellar velocity, σφ is the azimuthal

velocity dispersion, and ν is the probability of finding a star at a certain position. The

last quantity is proportional to the mass density of the tracers and can be replaced by the

mass surface density Σ if the vertical structure of the stellar distribution does not vary

with radius. Assuming no net radial motions (v2
r = σ2

r) and using our notation, equation

(3.18) becomes

V 2
tot = V 2

cir + σ2
φ − σ2

r − σ2
r

d log (Σσ2
r)

d log r
− r∂(vrvz)

∂z
. (3.19)

The similarity of equations (3.19) and (3.17) is remarkable, but further assumptions

are needed if one wants to make them look identical. These are (1) that there are no

tilts in the velocity ellipsoid, so the last term of equation (3.19) vanishes, and (2) that the

velocity dispersion of the stars is isotropic. Neither of these assumptions is straightforward,

so, in spite of the fact that the Euler and the Jeans equations can be obtained from the

Boltzmann equation in similar fashions, they are not physically equivalent.

Some authors explicitly suggest that ionized gas might actually experience the effects

of asymmetric drift if it is clustered into individual clouds which dynamically behave

like collisionless particles (e.g. Cinzano et al., 1999; Verdoes Kleijn et al., 2000; Weijmans

et al., 2008). Invariably, all the studies addressing this hypothesis are focused on early-type

galaxies which are dynamically hot, exhibiting internal velocity dispersions of hundreds of

km s−1 that are hard to reconcile with thermal agitation and small-scale turbulence. On the

other hand, late-type galaxies such as those regularly studied in the cusp-core literature are

comparatively cold systems, with reported H i velocity dispersions of the order of ∼12 km

s−1. These small velocity dispersions can be naturally explained by thermal and turbulent

pressures. Therefore, there is no need to invoke alternative scenarios. Note also that a

large fraction of the 21-cm emission comes from the warm (6000−10000◦K) neutral gas in

the disc, which, in contrast with the clumpy, cold (100◦K) H i phase, is a diffuse medium

with a large spatial extent (Ferrière, 2001). The same applies for the warm (∼8000◦K)

ionized medium responsible for the diffuse H α emission outside of H ii regions (Cox, 2005).

In light of these facts, it seems more likely that the dominant source of non-centrifugal

support in gaseous discs of late-type galaxies is pressure support, not asymmetric drift.

Incidentally, we note that equation (3.17), which describes pressure support, is the universal

recipe employed to correct gaseous rotation curves affected by random motions in cusp-core
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studies, but it is often improperly named “the asymmetric drift correction”. Sometimes

equation (3.19) is invoked, but then the precise supplementary approximations to reduce

it to (3.17) are invariably assumed.

The trouble with conflating pressure support and asymmetric drift is that this may

lead to an erroneous assessment of the magnitude of the correction. Note that in equation

(3.19), all the quantities refer exclusively to the stellar population that is being traced,

while in equation (3.17), they refer to the gaseous medium as a whole. One may argue that

according to the classic pictures of the ISM (Field et al., 1969; McKee and Ostriker, 1977),

the different phases are expected to coexist in thermal pressure equilibrium; if so, tracing

a single phase (for instance, the warm H i) provides information about the global thermal

state of the ISM. Nevertheless, this scenario is an oversimplification, and thermal pressure

imbalances have been observed even in the local ISM (Bowyer et al., 1995; Berghöfer et al.,

1998). This implies either that pressure equilibrium must include non-thermal sources that

are dynamically important, such as turbulence, magnetic fields, and cosmic rays (Ferrière,

2001; Cox, 2005), or that pressure imbalances may exist locally as a result of complex events

such as recent supernova explosions, for instance. Therefore, a comprehensive assessment

of the dynamical state of the gas through multiple observational tracers is highly desirable.

Some authors have expressed concerns about the estimation of the gas velocity dis-

persion and the gas surface density profiles from a single tracer, as this may bias the

measurements in regions with significant fractions of other ISM components (e.g. Simon

et al., 2003b; Dalcanton and Stilp, 2010). Regrettably, these biases are most often simply

overlooked, and the majority of the cusp-core literature considering pressure support only

vaguely states that random motions may provide support to the gas when they are com-

parable to the rotation velocity. A fraction of this subset of studies argues that pressure

support corrections are known to be unimportant, increasing the magnitudes of rotation

curves by only a few km s−1, and do not attempt any sort of correction. The remaining

fraction applies equation (3.17) to the data at hand, normally from only a single tracer,

often without considering the uncertainties in this correction. As we will demonstrate be-

low, effective corrections for pressure support effects may be much more challenging than

has been traditionally assumed.
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3.3.2 Ideal and realistic pressure support corrections

We here study the feasibility of pressure support corrections in our models, first based

on ideal theoretical measurements and then using observationally accessible information,

i.e. the surface density profiles (Σ) and the velocity dispersion profiles (σ), obtained from

the corresponding mock maps by taking azimuthal averages along the same elliptical rings

used to analyse the velocity maps.

We start by checking the validity of equation (3.16) directly in the simulations. We

measure σ and ρ from all gas particles in the equatorial plane using the same radial bins

as for the theoretical velocity profiles. The velocity dispersion is calculated using equation

(2.13), recalling that the code indirectly models the effect of the turbulence induced by

stellar and supernova feedback by employing an effective equation of state that is stiffer

than isothermal, thereby enhancing the pressure and thus temperature in high-density,

star-forming gas. By means of equation (3.16), we find exceptional agreement between

Vtot and the corrected version of Vcir for all galaxies, as we illustrate with an example in

Fig. 3.12. Moreover, the results of the NFW/ISO fits to the corrected version of Vcir are

in stunning agreement with those of Vtot, as we report in Table 3.2. The correction is

performed using the theoretical profiles in radial bins of 100-pc width. The fits reported

at distances D = 20 Mpc in Table 3.2 are done after resampling the corrected curves to

the corresponding poorer spatial resolution.

Notwithstanding, even though the pressure corrections work properly in the ideal case, a

number of difficulties prevent effective correction of the mock observations. After applying

equation (3.17) to our mock rotation curves using the observed Σ, σ profiles, the cuspy

dark matter haloes still appear disguised as cores to the rotation curve fitting method, as

we also show in Table 3.2. To understand this result, we need to discuss in detail several

aspects of the implementation of equation (3.17).

The first difficulty in correcting for pressure support based on observed quantities is

that virtually all the cusp-core studies considering this effect use H i data alone, with very

few exceptions that use kinematic data from the ionized gas but then lack the H i extension

(Simon et al., 2003b; Chemin et al., 2016). Extrapolating a sort of “standard” observational

correction for our case, we correct the inner H α velocities using the σHα velocity dispersion

and the outer H i velocities using σHI. For the gas surface density profile, we take ΣHI at
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Figure 3.12: Theoretical verification of the pressure support effect in galaxy Dwarf1 at half the simulation

time. The solid green line with circles represents Vtot, the black solid line with points represents Vcir, and

the long-dashed red thick line in the background is the corrected version of Vcir after adding the term on

the right-hand side of equation (3.16). The correction exactly recovers Vtot from Vcir, confirming pressure

support as the cause of their difference.

Table 3.2 - Percentages of corrected rotation curves that are better represented by the NFW or ISO

models. For comparison, we include the results from Vtot, which were already presented in Table 2.2. We

do not correct the mock observations at 40 or 80 Mpc because the H i spatial resolution is too low.

H α PSF (pc) ∼100 ∼200

D (Mpc) 10 20

Vtot

NFW 56 (61) 57 (61)

P-iso 38 (39) 39 (39)

Both 6 (0) 4 (0)

Vcir (corrected)

NFW 57 (61) 58 (60)

P-iso 37 (39) 36 (38)

Both 6 (0) 6 (2)

VKIN (corrected)

NFW 15 (21) 13 (20)

P-iso 67 (74) 69 (77)

Both 18 (5) 17 (4)

all radii. Because the H i spatial resolution is coarser than that of the H α observations,

it is necessary to extrapolate the ΣHI profile in the center. We achieve this by fitting

a polynomial-plus-gaussian function to the first 10 kpc of ΣHI, checking that it follows
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the data well and that it exhibits reasonable asymptotic behaviour in the inner region.

Then, we calculate the pressure support correction at each point of the rotation curves by

evaluating the derivatives in equation (3.17) with a finite-difference scheme. In Figs. 3.13

and 3.14, we present an example of the mass surface density profile and of the velocity

dispersion profile as traced by different gas phases, along with the true quantities from

all the gas in the equatorial plane of the simulations. Because our mock H i observations

use all the gas particles regardless of their physical state, we also show for comparison

the profiles extracted from the cold gas (T < 104 ◦K) alone, which may be a better proxy

for real H i observations. We note that unlike the H i case, our mock H α emission is not

only proportional to the mass but also the star formation rate of the emitting particles,

making the conversion factor between the intensity maps and the gaseous mass uncertain.

For this reason, we plot the mock H α luminosity profile in Fig. 3.13, rescaled as necessary

to facilitate the comparison with the surface mass density profiles. These plots are for a

specific observed galaxy, but similar trends are observed for the rest of the sample.

Figure 3.13: Gas surface density profiles for G0 at 3 Gyr, 45◦ inclination, and a distance of 10 Mpc. The

thick dashed gray line represents the true mass surface density profile as measured from the simulation.

The dotted blue line is the H α surface brightness profile, re-scaled to have a central amplitude similar

to that of the true mass profile. The solid red line shows our fiducial ΣHI mass surface density profile,

extrapolated in the very center with an analytical function represented by a thin dashed line. The red dots

represent the alternative observation from the cold gas alone, ΣHI−cold. The low spatial resolution smoothes

the ΣHI profile and leads to an underestimation of the central gas concentration. Observations from the

cold H i phase would be more strongly biased in the center, where most of the gas in our simulations is

hot and forming stars.

Recalling that our mock H α emission traces only the star-forming gas, a joint analysis

of Figs. 3.13 and 3.14 reveals that there are three different regimes in the disc. In the very
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Figure 3.14: Velocity dispersion profiles for G0 at 3 Gyr, 45◦ inclination, and a distance of 10 Mpc.

Colours and symbols are the same as in Fig. 3.13, identifying the true profile in the simulation and those

inferred from our mock H α, H i, and H Icold observations. This plot shows that in areas where hot and

cold gas coexist, measurements based on a single tracer differ from the true values.

inner region, within ∼0.6 kpc, virtually all of the gas is forming stars, and both the ΣHα

and σHα profiles follow well the true theoretical quantities. At intermediate radii (between

∼0.6 and ∼3.5 kpc), there is a mix of star-forming and non star-forming gas, with the

H α emission steeply going to zero while the cold gas density steadily grows. Taking into

account that the star-forming gas is systematically hotter than average, this explains why in

this intermediate regime, σHα increasingly overestimates the true global velocity dispersion,

while σHI-cold stays below the true σ profile but systematically approaches it as the fraction

of cold, non-star forming gas starts to dominate. We also note that in this intermediate

region, the slope of σHα, which will influence the pressure correction term, is shallower than

that of the true total velocity dispersion profile. Beyond ∼3.5 kpc, virtually all the gas in

the simulation is cold and passive, there is no mock H α emission and the measurements

from the cold gas phase coincide with our fiducial H i observations. In general the fiducial

mock H i observations follow the true theoretical quantities well, though the low resolution

makes the observed profiles appear smoother and σ slightly overestimated. This smoothing

propagates and introduces a bias during the extrapolation of ΣHI to the very center, leading

to an underestimation of the true total surface density and also of its steepness.

We have shown that there are biases in both the amplitude and the slope of the ob-

servationally inferred Σ and σ profiles at different radial ranges and from different tracers.

Regarding posterior cusp-core analyses, in which direction will these biases act? The
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answer depends largely on the logarithmic slope of the product Σσ2, i.e. on its curvature,

which can not be simply inferred from our qualitative analysis. After evaluating equati-

ons (3.16) and (3.17) we found that, for our particular experiment and for the choices we

made, the observational correction exhibits the right radial profile but it falls behind the

theoretical expected value. We show this in Fig. 3.15, where we present the net difference

between the corrected velocity profiles and the original ones, ∆V , as a function of radius

and inclination. The mean difference between the theoretical and the observational cor-

rections is never larger than 4 km s−1, falling between 1 and 2 km s−1 over most of the

first kiloparsec. However, this small difference is enough for the intended observational

correction to fail because the curvature of the “corrected” rotation curves is still more

compatible with the ISO model in at least 67% of the sample (see Table 3.2). In spite of

the fact that the tension is slightly less critical than before the correction, the inferences

from the rotation curve fitting continue to be misleading compared with those from Vtot,

largely overestimating the fraction of “observed” cores because of the inaccurate pressure

support corrections.

Fig. 3.15 and Table 3.3 also demonstrate that the magnitude of the pressure support is

more underestimated, i.e. the correction is less effective, in more inclined discs. This is as a

result of projection effects and the low spatial resolution, which make the Σ and σ profiles

flatter, thus lowering the inferred logarithmic slope of the product Σσ2. We do not correct

the mock observations at 40 or 80 Mpc because the observables are extremely biased by

the effect of the spatial resolution. Particularly, note that at 40 Mpc, the first ΣHI data

point lies at 2.4 kpc, ruling out any possibility of performing an accurate correction inside

the first kiloparsec.

It is very interesting to note that the observationally inferred ∆V values peak at ∼3.5

km s−1 and quickly drop to ∼1 km s−1, in agreement with typical corrections estimated

from observations, which are sometimes interpreted as a reflection of the insignificant

role of pressure support. This conviction is often supported by the observed low velocity

dispersions, typically ∼10 km s−1. However, note that this estimate regularly comes from

H i data alone, and that in general, the ionized gas is expected to have a larger velocity

dispersion, one of the reasons why it tends to form thicker discs than the neutral gas (Fathi

et al., 2007). Fig 3.14 reveals that the cold dynamical component in our simulations looks

similar to many H i observations in this regard, peaking at ∼13 km s−1 and exhibiting a
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Figure 3.15: Theoretical and observational pressure support corrections for galaxy Dwarf2 viewed at 10

Mpc. We plot the net velocity excess ∆V to be added to the observed rotation curves (or to Vcir) to

get their corrected versions. Solid lines represent the mean correction as a function of radius, and the

shaded regions enclose the 1-σ scatter of the profiles. The observational corrections are colour-coded by

inclination as indicated in the legend. This plot shows that observational corrections underestimate the

theoretical correction as a result of biased estimates for Σ and σ; even though the difference seems small,

it prevents faithful recovery of the inner curvature of the observed rotation curves, which still appear more

compatible with the ISO model after the attempted correction.

smooth radial gradient; however, we know that this tracer is extremely biased relative to

the full velocity dispersion of the whole gas, which is the necessary quantity for accurate

pressure support corrections4. The true value of σ in our simulations peaks at ∼25 km

s−1 and steeply decreases, dropping to ∼10 km s−1 at ∼2 kpc. This is compatible with

the few reported H α observations we could find in cusp-core works. For example, Simon

et al. (2003b) observed a linewidth of 34 km s−1 for the dwarf spiral NGC 2976, Epinat

et al. (2010) mentions an average velocity dispersion of 24 km s−1 for a local sample of

153 nearby disc galaxies of mixed morphological types extracted from the GHASP survey

(Epinat et al., 2008,?), and Chemin et al. (2016) found a velocity dispersion profile peaking

at 25 km s−1 and dropping to ∼19 km s−1 at 2 kpc for the grand-design spiral M99.

Note also that according to Fig. 3.13, the cold gas strongly underestimates the true

gas density in the center. Moreover, the inferred ΣHI−cold profile has a positive slope there,

which would partially reverse the sign of the pressure support correction term if it were

4 Interestingly, at inclinations ≤ 30◦, the σHI-cold profile is even flatter and stays below 10 km s−1.
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Table 3.3 - Percentages of rotation curves extracted from the 2D maps that are better represented by

the NFW or ISO models after the observational pressure support corrections.

H α PSF (pc) ∼100 ∼200

D (Mpc) 10 20

15◦
NFW 22 (31) 19 (28)

P-iso 55 (63) 57 (66)

Both 22 (6) 24 (6)

30◦
NFW 24 (31) 20 (28)

P-iso 57 (64) 61 (69)

Both 19 (5) 19 (3)

45◦
NFW 19 (26) 17 (24)

P-iso 61 (70) 63 (71)

Both 20 (4) 20 (5)

60◦
NFW 8 (15) 8 (14)

P-iso 70 (78) 74 (82)

Both 22 (7) 18 (4)

75◦
NFW 1 (3) 0 (0)

P-iso 93 (96) 98 (99)

Both 6 (1) 2 (1)

inserted in equation (3.17). Even though this modelling may be too simplistic to explain

the complexity of real H i observations, it is interesting to note that central “holes” in

the ΣHI profiles are not rare, and they are treated in different ways when performing

pressure support corrections; some authors use ΣHI as is, while others extrapolate the

external exponential disc behaviour to the center to try to compensate for the ionized and

molecular hydrogen mass contributions, which are very difficult to assess.

It is not absolutely clear if the gas in our simulations may be over-pressurized compa-

red with real systems, but we consider that the very good agreement between our mock

data and real observations, as well as the agreement in the best-fit coefficients presented

in Figure 2.14, should motivate further scientific discussion and careful review of some

observational results. Independent of the possible differences between our models and real

dwarf irregulars and LSBs, the exercise performed here suffices to demonstrate the intrin-

sic difficulties in properly assessing the effect of pressure support (amongst others), and it

underlines the sensitivity of rotation curve fitting methods to very small errors or biases
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in the central parts of galaxies.

3.4 Summary and discussion

The study of the rotation curve inversion methods performed in this chapter has further

confirmed that pressure support is able to erase the signatures of cusps in our models. The

fit of straight lines to the logarithmic version of Vcir shows that its inner curvature is

indeed more alike with an ISO dark matter core than with a cuspy NFW model in the

simulations. I have also found that the intrinsic curvature of the velocity profile associated

to a exponential disc is somewhere in the middle of the two extreme cases discussed here

(NFW/ISO). Because of that, its quadratic addition to a cored Vdm will make this profile

become “cuspier”, but it would also make a cuspy Vdm appear more “cored”. This result

seriously question the traditional interpretation of the minimum disc approximation as a

safe way to impose an upper limit to the cuspyness of the haloes.

Two out of the three methods tested here to measure the cuspiness of the halos from the

cuspiness (curvature) of the inner velocity profiles were proven to be affected by intrinsic

biases, which prevent them to report reliable logarithmic density slopes. The third method,

which resorts to a simple evaluation of the velocity derivatives using a finite difference

scheme, is able to recover the true logarithmic velocity density at a good approximation,

proven that sufficient spatial resolution is given and that the velocity profile is smooth.

I also studied in detail the amount of pressure support in the simulations and the

possibility of correcting for it using observationally accessible information. The evidence

suggests that, even using observations typically considered of high-quality for cusp-core

studies, it is very unlikely that pressure support effects can be properly estimated and

corrected. This is partially due to spatial resolution issues and to projection effects, but also

at a large extent because a proper prescription of the pressure state of the gas would require

a detail assessment of the state of the different phases (e.g., neutral, ionized, molecular)

and their interplay.
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Chapter 4

Simulations part II: Estimating dark and baryonic

matter in spiral galaxies

In this chapter I present an early version of a second set of controlled experiments with

numerical simulations. Its ultimate goal is to test the suitability of surface photometry

analyses to calibrate mass models of the stellar component in spiral galaxies. As extensively

commented in Chapter 1.4, this step is mandatory in cusp-core studies of galaxies for which

the minimum disc approximation is not admissible

In this chapter I introduce additional simulations to those formerly analysed in Chap-

ters 2 and 3, modelling larger galaxies with more massive discs for which I mimic realistic

photometric observations using the multiwavelenght radiative transfer code SUNRISE .

Then I analyse the mock images in the very same manner as it is typically done for obser-

vations of late-type galaxies, i.e. fitting elliptical isophotal contours. The final goal of this

work is to compare the inferred stellar matter distributions with the real ones as measured

directly from the simulations, as a function of different physical and observational para-

meters. In this thesis I will introduce the general framework and the results from some

initial experiments, that may be hopefully completed in future work.

4.1 Radiative transfer in simulated galaxies with SUNRISE

I have used the multiwavelength radiative transfer code SUNRISE (Jonsson et al.,

2006, 2010) to model the spectral energy distribution of the light that would be observed

with a telescope/camera from the simulated galaxies. SUNRISE has proved to be able

to produce realistic results concerning morphologies, dust extinction, spectral lines, and

integrated magnitudes and colours of late-type simulated galaxies, showing itself useful to
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study simulations of galactic systems both in mergers as well as in isolation (Rocha et al.,

2008; Jonsson et al., 2010; Snyder et al., 2011). In the following, I will briefly summarize

the principal methods and models implemented in the current version of SUNRISE . For

a more detailed description of the code and its capabilities, please refer to the quoted

references.

Basically, SUNRISE performs the calculation of the resulting SED coming out from the

galaxy, and reaching a virtual telescope/camera, in three steps.

First step: The source SED of stellar particles including HII and PDR regions.

In the first step, the code assigns to each stellar particle, depending on its age and

metallicity, a given SED from a library of single stellar populations. As young stars are

expected to be surrounded by thick envelopes of gas and dust associated to their parenting

clouds, their light will experience a differential, large extinction, as a sizable fraction of its

energy in the optical and the UV will be consumed in the photoionization of the hydrogen

atoms and the heating of dust. The resulting HII regions and photodissociation regiosn

(PDR), are also known to be responsible for a large number of narrow emission lines, but

all these processes related to the physics of the star-forming regions are normally occuring

at spatial scales below the spatial resolution of galaxy simulations. To deal with this,

SUNRISE resorts to the MAPPINGS III code (Groves et al., 2004), specifically developed to

calculate the radiative transfer trough HII regions and PDRs (Dopita et al., 2005; Groves

et al., 2008). At the end of the first step, SUNRISE has calculated the SED of the bare

stellar population as well as its modified version, replacing the light from young stellar

particles by the SED of the MAPPINGS III models. The latter version is the one that will

be actually used as input for the next stage.

Second step: Absorption and scatter of the stellar light

In the second step SUNRISE initiates the radiative transfer calculations, estimating the

expected amount of spectral energy absorbed and scattered in different directions, accor-

ding to the spatial geometry of the gaseous material in the simulation and to the assumed

composition of the ISM. Roughly, from the gaseous density field SUNRISE creates a three-

dimensional grid, locally refined to enhance the spatial resolution in high-density regions.

The amount of interestelar dust is assumed as a constant fraction of the metals in the
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gaseous phase, and the distribution of silicates and carbonates grain sizes, which deter-

mines the cross section of interactions with the radiation field at different wavelengths,

is modelled to follow observations of the Milky way and of the large and small magella-

nic clouds, including polycyclic aromatic hydrocarbon molecules (PAH) (Weingartner and

Draine, 2001; Draine and Li, 2007). From these models and the dust masses, a characte-

ristic opacity and albedo can be attributed to each cell, and finally translated into optical

depths which will determine the probability of radiation-dust interactions.

Then SUNRISE employs a multi-wavelenght, ray-traced montecarlo technique, and a

so-called forced scattering approach. In brief, SUNRISE draws a large number of individual

rays from the stellar sources in random directions, in order to sample the global stellar

radiation field, and it follows the journey of these rays through the interstellar medium,

tracking the interactions (absorption, scattering) with the galactic dust and updating the

spatially-resolved radiation field accordingly.

The forced scattered approach refers to the fact that, instead of actually reproducing

the whole “brownian” path of every ray (which may be scattered several times and, in

most occasions, leave the galactic system in a different direction than that of the virtual

observer), SUNRISE will “force” the radiation-dust interactions to happen (in a statisti-

cal sense), in order to reproduce the correct probability distribution function of photons

reaching the camera in an efficient way. It works in the following manner.

In first place, after choosing the sourcing position for a new ray, SUNRISE computes

the probability that it goes towards the camera (1/4π for isotropic distributions), and

what would be the intensity this ray had if it reached the camera without being neither

absorbed nor scattered, but just attenuated by the optical length of the material in its

way. This virtual direct contribution is effectively recorded in the camera. Then a random

direction is selected for the “true” journey of the ray, and SUNRISE computes in each

cell along this path what is the probability that the ray would interact there. The sum

of these probabilities serves to estimate the overall chance that the ray would interact

with ISM or that it would escape without interacting at all. Then the forced scattered

is applied, actually splitting the ray into two rays, a escaping one and an interacting

one, with relative intensities given by the probabilities determined before. The interacting

ray is forced to scatter at a random point, using the cumulative optical depth to define

the probability distribution of this event as a function of the travelled distance. Then
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the albedo of the corresponding grid cell is used to determine the fraction of the ray

energy that would be absorbed, which is recorded in the “memory” of the cell, in order

to self-consistently calculate the dust temperature later on. The remaining fraction of the

energy in the ray would be scattered in an arbitrary direction given by the scatter phase

function. Yet, before picking an angle SUNRISE estimates the probability that the new

ray goes towards the camera, and the contribution of this hypothetical ray, dimmed by

the probability of having that direction and by the optical length it would have to cross

to reach the camera, is effectively recorded as a detection there. After tracking this first-

order scattered contribution, the “true” scattered ray may be indeed drawn in a random

direction, repeating the whole process until a given number of high-order forced scatterings

is reached. In the end, by using a large enough number of rays, this algorithm effectively

reconstructs the true distribution function of the photons reaching the telescope, and also

the spatially-resolved photoheating of the dust in the grid cells in an optimized way.

Contrary to former, simpler implementations, the rays traced by SUNRISE are not

monochromatic but carry information of the whole espectral range at once. This means

than, instead of having a scalar intensity value, each ray has an associated vector of

intensities related to the different wavelengths. Yet there is a reference wavelength which

is used to calculate the probability of interactions at a given cell of the grid. As this

probability is not uniform, but wavelength-dependent according to the distribution of sizes

of the dust grains, SUNRISE modulates each element in the vector of intensities, after

an interaction occurs, according to the ratio between probability of interaction of every

wavelength and the probability of interaction of the reference wavelength. This so-called

bias scheme is fully correct from a statistical point of view, and it allows an enormous gain

in computation time. This is one of the major improvements of SUNRISE in comparison

with other radiative transfer codes, which allow it to make a fully panchromatic treatment

of the radiative transfer problem in a single run.

Third step: Thermal dust emission

In the third step, the temperature of the dust in each grid cell is computed out of

the total energy absorbed from the stellar radiation field. This allows the estimation of

the corresponding thermal dust emission, modifying the interestelar radiation field in the

infrared part of the spectrum. This excess of radiation induces a further heating of the
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dust due to self-absorption, therefore driving a new update of the radiation field, and so on.

This computation is iterated until the dust temperature converges to a state of thermal

equilibrium, and the total contribution of this thermal emission to the SED that would

reach the camera is additioned.

Finally, having determined the SED at every pixel of the camera, dimmed according to

the assumed distance, SUNRISE creates the images by performing a spectral convolution

with the user-defined filters, which may belong to any desired photometric system ranging

from the ultraviolet to the submillimetre.

4.2 Simulations

The experiments presented in this chapter are relevant for the dynamical analyses of

galaxies with relatively massive discs, for which the minimum disc approximation is not

suitable. Therefore, a different sample of galaxies than the one studied in Chapters 2 and

3 is necessary. I found an optimal solution in re-simulating some of the galaxy models

presented by Cox (2004), and further studied in other works (e.g. Cox et al., 2006; Jonsson

et al., 2006; Lotz et al., 2008; Rocha et al., 2008). This set of simulations spans a wide range

of masses, sizes, and morphologies, as it was modelled after the main structural properties

of a large sample of local observed late-type galaxies. This was already mentioned in

Sec. 2.2.1 where the galaxy models G0 and G1 were introduced, as they actually belong

to the sample of Cox (2004). Another reason to work with these galaxy models is that

they have been previously imaged using SUNRISE , which served to demonstrate that their

integrated magnitudes and colours as estimated from the model SEDs effectively match

several scaling relations from observations of galaxies in the local universe (Jonsson et al.,

2010).

As galaxies G0 and G1 represent a well-suited low-mass and low-size end of a monotonic

sequence with the rest of the sample that I extracted from Cox (2004), and given that the

physical models regarding the stellar ages and metallicites required by SUNRISE have been

already proposed for these systems (Rocha et al., 2008; Jonsson et al., 2010), these are the

only two galaxies from the sample of dwarfs that I will retain in this chapter. Amongst

the other galaxies in this sample, there are two normal massive spirals, labeled as G2 and

G3, and two giant Sbc-type spirals, labeled Sbc- and Sbc. The sample of (Cox, 2004) was
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designed to reproduce several properties of galaxies in the local Universe, being disc size,

dynamical mass, and gas fraction, the most important parameters. The smaller systems,

marked as “G”, are based on median properties of galaxies observed by the SDSS and

correspond to spiral galaxies with gas contents between 20 per cent and 40 per cent of

the total baryonic mass, exhibiting bars and moderate bulges. Disc scale lengths and gas

fractions as a function of the stellar mass were obtained from Shen et al. (2003) and Bell

et al. (2003). The Sbc’s systems correspond to gas-rich late-type spiral galaxies bigger

than the “G” systems, forming much smaller bulges, prominent spiral arms, and no bars.

Sbc was modeled using median properties of the sample of Sbc galaxies from Roberts and

Haynes (1994). Sbc- follows the lower quartile of the parameters distribution of parameters.

All the models studied here follow basically the same prescriptions already discussed for

the sample of dwarfs in Sec. 2.2.1, i.e. they are composed by a NFW dark matter halo and

an exponential disc of stars and gas, and they are simulated in isolation using GADGET

and very similar numerical parameters. This sample was simulated two times, as I will

describe in the following.

4.2.1 First run

The first run of simulations presented in this chapter used a hybrid mix of softening

lengths, namely 25 pc for stellar and gaseous particles, and 100 pc for the dark matter

particles. Note that a lower resolution of the dark halo allows the use of more massive

particles. In these simulations each dark matter particle has 1.25× 105 M�, compared to

2 ∼ 5× 104 M� that was used for the sample of dwarfs, where the softening length was 25

pc for all species. Using a coarser resolution for the dark component is a common practice

because the haloes encompass, by far, the largest mass fraction in galactic systems, and

this choice was justified for these simulations because they were used for preliminar tests

and to analyse the correspondence between mass and light in the disc, i.e. in a scale of one

to several kiloparsecs, for which the details of the dynamics of the dark matter inside the

first ∼300 pc (3 times the softening length, roughly the expected spatial resolution) should

not be a concern. In this first run the galaxies were simulated including a bulge component,

as it was the case in the original models of Cox (2004). They were characterized through

a Hernquist profile of the form:
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ρ
b

=
Mb a

2πr(r + a)3
, (4.1)

where M represents the total mass in the bulge, and a is its scale length. The original

sample of Cox (2004) and posterior analyses of the same models (e.g. Jonsson et al., 2006)

have resorted to the Hernquist model, so I use the same for consistency. In any case, as I

am not intending to study specific properties of real bulges, this choice is fair enough for

the purposes of this work.

The principal structural properties of the galaxies simulated in the first run are reported

in Table 4.1, and an example of the mock images created with SUNRISE appear in Figs. 4.1

and 4.2.

After some early experiments with the set of simulations just described I concluded that,

for a comprehensive analysis of the systematics in mass modelling studies, one should start

by using simpler models, in order to be able to disentangle the individual effects before

mixing them all up. For that reason the bulge components where excluded in the initial

conditions of the second run of simulations. Incidentally, this was also the motivation to

make up the sample of dwarf galaxies later on, and to perform the analyses of the minimum

disc approximation presented in Chapters 2 and 3, which are free of the uncertainties

related to the mass modelling of the baryonic components.
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Figure 4.1: Example of the mock images created with SUNRISE for the simulated galaxies. These images

correspond to face-on (left) and edge-on (right), for galaxies G0, G1 and G2 of the first simulation run at

3 Gyr. These images mimic the r band from SDSS, assuming a distance of 40 Mpc. The spatial scale is

indicated for each system.
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Figure 4.2: Same as Fig 4.1 for galaxies G3, Sbc- and Scb.
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4.2.2 Second run

Two differences were introduced in the second run of simulations. First, the galaxies

were simulated without bulges, but redistributing the mass in the bulge fo the former

simulations into the stellar discs, i.e. preserving the total mass of the stellar component

unchanged in order to minimize deviations from the target scaling relations defined by

Cox (2004). Second, I increased the resolution of the dark matter halo by using a 25-pc

softening length, i.e., the same of the stellar particles, and resorting to particle masses of

2 ∼ 5× 104 M�. Having a high spatial resolution of the halo is very important if the data

is intended to be used for cusp-core studies.

The properties of the simulations on this second run principal structural properties of

the sample of galaxies employed in this chapter can be found in Table 4.2. Some examples

of the SUNRISE mock images are shown in Figs. 4.3 and 4.4. The main simulations

were run with the same spatial resolution of the former sample of dwarf galaxies, i.e.

approximately at 50∼75 pc, according to the chosen softening length of 25 pc for baryonic

end dark matter particles. This high spatial resolution will allow the use of these models

and the results obtained from them in further studies of the cusp-core problem beyond

the minimum disc limit. For technical reasons G3 was not resimulated, as it requieres a

long computation time for the desired resolution and higher demands in storage and post-

processing. Additionally, G3 develops a very massive bar and is the system which deviates

the most from the simple picture of an underlying axysimmetric disc, being therefore not

well-suited for the kind of study developed here.

Table 4.2 - Properties of the models in the second simulation run. Galaxies did not contain bulges, and

the spatial resolution of the halo was increased (softening length = 25 pc).

Model Mhalo
a Nhalo

b cc M?
d N?e h0

f z0g Mgas
h Ngas

i hgas
j fgk Vflat

l

(M�) (×106) (M�) (×106) (kpc) (kpc) (M�) (×106) (kpc) (km s−1)

G0 5.1×1010 1.3 14 1.0×109 0.2 1.1 0.22 6.1×108 0.1 3.3 0.38 67

G1 2.0×1011 5.0 12 5.0×109 0.3 1.5 0.3 2.0×109 0.1 4.5 0.29 103

G2 5.1×1011 12.8 9 1.5×1010 1.0 1.9 0.38 4.6×109 0.3 5.7 0.76 139

Sbc- 3.6×1011 14.4 8 2.4×1010 1.5 4.0 0.2 2.6×1010 1.6 12 0.25 155

Sbc 8.1×1011 16.2 8 4.9×1010 3.1 5.5 0.28 5.4×1010 3.4 16.5 0.25 195

Note: aHalo mass; bNumber of particles in DM halo; cHalo concentration; dStellar mass; eNumber of stellar particles; fStellar

disc scale length; gStellar disc scale height; hGas mass; iNumber of gas particles; jGaseous disc scale length; kGas fraction

relative to baryonic mass; lMaximum rotation velocity.
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Figure 4.3: Example of the SUNRISE images for the second simulation run. G0, G1, and G2, are shown

face-on (left) and edge-on (right), assuming a distance of 10 Mpc, after 3 Gyr of simulation time.



Section 4.3. Mock photometry 161

Figure 4.4: Same as Fig. 4.3 for galaxies Sbc- and Sbc.

4.3 Mock photometry

I create mock images in the gri bands from the Sloan Digital Sky Survey (SDSS) and the

3.6-micrometer band of the SPITZER telescope using SUNRISE . In addition to determine

the spatially-resolved spectral energy distribution of the light coming out of the galaxy,

SUNRISE may perform the spectral convolution with provided filters to generate idealized

images, which then I modify to simulate some relevant instrumental effects, namely: a

spatial convolution with a model PSF and the addition of random sky fluctuations. The

necessary parameters to model these effects were chosen after the characteristics of a sample

of actual SDSS observations. I keep the noise level to a conservative estimation in order

to not introduce numerical artifacts or systematic effects. For some experiments, I create,

for each combination of galaxy and photometric band, images at different distances and

inclinations of the galaxy in the sky, ranging from face-on (0◦) to edge-on (90◦).
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As mentioned in section 2, infrared photometry is preferred over its optical counterpart

because the obscuration of stellar light by the interestellar dust is minimal. Recently, the

3.6 µm SPITZER band has become very popular because dust extinction is virtually null,

even though a small contamination from the emission of PAHs is still possible. In spite

of this fact, the 3.6 µm band is considered nowadays the best proxy to trace the stellar

mass, and so, it is commonly used in the recent literature of the cusp-core problem (e.g.

de Blok et al., 2008b; Elson et al., 2010; Oh et al., 2011). The K-band from 2MASS is also

considered a good choice for similar reasons, but as this band largely overlaps the spectral

range covered by the quoted SPITZER band, one shall not expect notable differences

between the resulting surface brightness profiles. Therefore I only simulated the 3.6 µm

photometry in the infrared.

I imaged the simulated galaxies in the SDSS optical bands for two reasons. In first place,

to check whether the use of optical or infrared photometry induces sensible differences in

the results. Secondly, because at the time the cusp-core controversy was put forward, the

SPITZER telescope did not exist, and the researchers in this field had to rely on results

from images in other bands including Sloan, though the most common sources of data were

the I and R bands. The red end of the optical espectrum was usually preferred because it

traces mainly the old stellar populations, which are the major contributors to the galaxy

mass. Together with the lower extinction at longer wavelenghts, these facts derive into a

smaller uncertainty in the mass-to-light relations from Bell and de Jong (2001); Bell et al.

(2003) for redder bands. Noting that the I/R bands basically overlap the same range of

wavelengths as the Sloan riz, one is allowed to use the SDSS set of filters expecting only

small differences in the inferred stellar density distribution. More than that, I favour the

use of SDSS data because this makes this work much more standard and reproducible,

given that the instrumental parameters are well characterized and publicly available. This

is not the case for the I/R bands in the literature of the cusp-core problem, where the

instrumental setup is quite different in each case. Signal-to-noise ratio (SNR) is also not a

concern because I will use a lower-limit noise contribution for the Sloan mock observations,

as it is described in the following. Yet I imaged only the gri bands, dropping the u, z

bands which have the lowest SNR. Finally, let me mention that the even though the SDSS

photometric system is not the most popular, it has actually been used in some papers in

the context of this work (e.g. Kassin et al., 2006).



Section 4.3. Mock photometry 163

For the mock images in the SDSS bands I modeled a plate scale of 0.4 arcsec/pixel

and a typical psf of ∼ 3.2 arcsec at FWHM (modelled as a gaussian). A gaussian noise

component representing sky fluctuations was added, with σ = 5 ADU in the gr bands

and σ = 7 ADU in the i band. These values correspond to a lower limit, as I have

directly confirmed from the set of one hundred SDSS images of galaxies used by Barbosa

et al. (2015b), against which I expect to make meaningful comparisons in future work.

To convert the physical units returned by SUNRISE into ADUs I followed the dr7 SDSS

documentation, and I used the average instrumental parameters from the headers of the

images in the same reference sample. In Appendix B I provide some examples of the

instrumental parameters from the whole SDSS sample of Barbosa et al. (2015b), including

those related to noise characteristics and the PSF of each observation. The filter transfer

functions were those reported in Doi et al. (2010), which are representative of the survey

as a whole. In the case of the SPITZER images I used a plate scale of 1.2 arcsec/pixel, a

gaussian noise component with σ = 0.03 MJy sr−1 following Kennicutt et al. (2003), and

the filter transfer function and PSF reported in the SPITZER handbook.

4.3.1 models of metallicity and age

To determine the stellar radiation field, SUNRISE attributes to each stellar particle a

emerging SED from a stellar population library depending on age and metallicity. These

informations are not self-consistently determined from the simulations I presented here

because these are not fully cosmological runs; yet the age and metallicity profiles of the

simulated galaxies have been already modelled after typical properties of late-type galaxies

by Rocha et al. (2008) resulting in very realistic photometric properties (Jonsson et al.,

2010), so, I used exactly the same prescription. Basically, a central metallicity and a radial

metallicity gradient are put by hand following observational measurements (see Rocha

et al., 2008, for details). As for the ages, it is assumed that the stars were formed following

an exponential star formation rate from the past to the time of the first snapshot, while it is

assumed that all stars in the bulge were born at the same time and exhibit a characteristic

age at the beginning of the simulation. Then SUNRISE can pick up an age-metallicity

pair for each stellar particle from a probability distribution function determined by the

parameters mentioned above. In Fig. 4.5 I present some of the mock images obtained in

the different bands for G3 and Sbc- at 2 different inclinations.
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Figure 4.5: Mock SUNRISE images in different bands. First two rows correspond to galaxy Sbcm,

face-on and inclined at 75◦. Next two rows are the equivalent for G3. I present images in the following

bands: g (blue), r (green), and 3.6 µm from Spitzer (red).
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4.4 Photometric analysis with ELLIPSE

I used the IRAF task ELLIPSE to create Surface Brightness Profiles for each image

in the mock catalog. ELLIPSE fits elliptic isophotal contours on an image using a χ2

minimization technique optimized for this purpose. Each isophotal contour is defined by

an intensity value and a set of geometrical parameters, i.e, ellipticity, position angle (P.A),

and the coordinates of the center. ELLIPSE is capable to optimize each parameter from

ring to ring, or can be also run with fixed values.

As it was mentioned in Sec. 1.4.2.2, it is more meaningful to choose a fixed, constant

value of the geometrical parameters of the galaxies rather than letting them vary from

radius to radius. I consider that it is the fairest approach from the point of view of

rotation curve decompositions, because those methods implicitely assume that a galaxy

can be decomposed as a sum of simple geometrical mass components exhibiting axyal

symmetry and sharing the same center and orientation. So, the first question I addressed

using the mock images is whether the true single values of the geometrical parameters can

be recovered from typical photometric analyses based in the fit of elliptical isophotes.

In order to perform elliptical isophotal analyses and to build Surface Brightness Profiles,

first it is necessary to determine the center of the images. The most common approaches

in the literature are to fix the center to the brigthtest pixel (e.g. Kassin et al., 2006), or to

run ELLIPSE with the center as a free parameter, then choosing the mean value to which

the inner isophotes are converging to (e.g. Simon et al., 2005). I tried both approaches and

compared the results, finding that they tend to the same position inside the errors (i.e.,

the size of the seeing).

Nevertheless, even though both estimatives agreed well, this does not mean that they

are actually showing the central position of the whole gravitational potential, which is the

center around which the disk material should rotate. So, I calculated the center of the

gravitational potentials in order to compare with the photometric center, and I found that

both centers are in good agreement inside the expected resolution of these simulations

(∼ 100 pc). In figure (4.6) there is an example of the histogram of errors between the

brightest pixel and the real center of the potential. It shows that the typical error is about
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2 pixels, i.e, less than 1 arcsec which is really good compared to the PSF. Then I decided

to keep the centers fix to their real positions in the subsequent analyses for simplicity.

Figure 4.6: Example histogram of the errors commited calculating the center of the galaxies. Here I present

the error committed by the “brightest-pixel” method with respect to the true center of the gravitational

potential. This is for galaxy Sbcm- of the first simulation run, considering all the snapshots viewed at 75◦

in the r band.

These results also suggest that miss-centers can be ruled out as a source of problematics

in this case. Nevertheless, it is worth remembering that the galaxies simulated here are the

best possible case; they are born in dynamical equilibrium and perfect symmetry, without

mimicking any perturbation from their formation history or from closeby encounters with

other galaxies, and they do not experience any asymmetrical force from the cosmic web.

Whether miscenters can still be present in real systems remains as a question to be further

explored.

After fixing the center I tried to determine the mean position angle and inclination

(ellipticity) of the simulated galaxies using an iterative method similar to that of Simon

et al. (2003b). The whole process is done for each image independently. Basically, after

fitting the center I run ELLIPSE with the position angle and inclination free to vary as a

function of radii. From an inspection of the best position angle adopted for the “outer”

isophotes (i.e. those excluding the bulge, reaching the exponentical disc, but extending

only over regions with enough SNR), I fix this parameter to its average value. Please note

that I only accept a value for these parameter if it converges in the outer isophotes. If

it otherwise exhibits a dispersion larger than 15◦ in individual isophotes, then the galaxy

is rejected, in an attempt to keep in the mock sample only those galaxies that probably
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observers would not exclude from a photometric inspection. An additional run of ELLIPSE

is done to try to determine the average inclination of the galactic disc, following exactly

the same criteria.

In Fig. 4.7 I show the error in the photometrically estimated geometrical parameters

with respect to their real values in the simulations, as a function of inclination. Different

colors represent different galaxies. For every galaxy and inclination I am plotting the mean

value of the error over all the snapshots, with error bars representing the 1-σdispersion

over all snapshots. It is apparent in Fig. 4.7 that the automatic algorithm explored in

this experiment is able to properly recover the real values of the geometrical parameters,

producing errors smaller than 10◦, which is normally considered a good estimation in

observations. That figure also shows that the error in position angle strongly diminishes

at larger inclinations, and that the algorithm often fails for low-inclined galaxies (close to

face-on), as it is harder for the fitting routine to converge to a single value of the position

angle. It can be seen that for 15◦ inclinations, the failure rate is extremely high (∼ 80%)

Errors in inclination show a systematic trend with inclination itself, reaching an optimum

point at 45◦. For lower inclinations there is a tendency to overestimate the real value,

while the opposite happens for higher inclinations.

Figure 4.7: Results from the photometric analyses of the mock images using ELLIPSE to try to recover

the true position angle and inclination in an iterative automatic way. On the left I show the typical

errors commited from the isophotal analysis; the symbols represent the average error and error bars the

1-σ dispersion over all snapshots using the r-band images. On the right I represent the failure rate of

the algorithm as a function of galaxy and inclination, i.e., the fraction of images for which the automatic

algorithm was not able to converge towards a definite value of P.A or inclination.
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4.5 Concluding remark

In this chapter I have presented some early experiments intended to offer a whole new

way of testing the ability of typical surface-photometry analyses to accuratly trace the

stellar mass distribution in late-type discs.

It was shown that isophotal analysis allows a reasonable determination of the average

geometrical parameters in well-behaved discs. In future work it should be tested whether

the resulting surface brightness profiles indeed follow the radial profiles of the stellar mass

surface density, and whether the mass-to-light ratios from Bell and de Jong (2001) among

others are consistent with the models employed by SUNRISE , or what are the possible

physical resons for any observed difference.

Those future experiments will be better performed with the second sample of simulated

galaxies, which do not exhibit bulges, and furthermore have the necessary spatial resolution

in the baryonic and dark matter components as to allow the use of the mock photometric

data in cusp-core experiments going beyond the minimum disc approximation.
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Conclusions and perspectives

In this thesis, I have investigated the ability of typical observational methods that

try to differentiate cusps from cores in the dark matter distribution of late-type dwarfs

and low surface brightness galaxies. For this, a set of specific purpose experiments were

designed using up to date numerical simulations of isolated galaxies. In addition to that,

mock realistic observations of the photometry and the kinematics of the simulated galaxies

were introduced, and a whole framework to perform thorough theoretical analyses of the

different dynamical components in the simulations was established, which may be further

exploited in future works.

As it has been extensively discussed, there are a large number of potential sources

of systematics affectting observational studies, and that is the reason for the necessity

of further and improved controlled experiments with simulations. In order to afford a

comprehensive study, which allows the disentangling of the numerous possible effects, I

started from the scenario that is less affected by systematic errors, i.e. by modelling

late-type dwarfs and low surface brightness galaxies in isolation, modelled after idealized

axisymmetric discs in pure rotation, without bulges or notorious sub-structures. Strikingly,

this study shows that even in such idealized scenario different sources of small errors exist

which can modify the intrinsic curvature of a velocity profile, potentially making a whole

population of cuspy dark matter haloes appear cored.

Among such errors I found pressure support –due to the injection of thermal and

turbulent energy from the stars into the ISM– to be the most important, systematically

lowering the inner rotation velocities of the gas component and effectively changing the

curvature of the profile, creating the illusion of ubiquitous cores that are very well described

by the typical parameters inferred from observations. Surprisingly, the average velocity
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underestimation responsible for such a dramatic change in the results from rotation curve

analyses is just of 4∼5 km s−1 in the first kiloparsec. These results suggest that the overall

body of evidence for the existence of dark matter cores should be revisited in detail. It is not

absolutely clear if the gas phase in the simulations may be over-pressurized in comparison

to real galaxies, but the very good agreement between the mock data and real observations

should motivate further scientific discussions and a careful revision of several observational

results.

Overall, independently of the possible differences between the physical models in the

simulations and the real nature of the ISM in dwarf irregulars ans LSBs, the exercise

developed through these pages suffices to demonstrate the intrinsic difficulties in properly

assessing the effects of pressure support (amongst others effects) and, more than that, it

evidences the fragility of rotation curve fitting methods to return faithful information about

the presence of cusps or cores in face of very small errors in the central part of galaxies,

which may efficiently -and catastrophically- alter the curvature of a rotation curve by

inducing errors of a few km s−1.

Thinking of the future scientific work, the methodology established here opens up the

possibility of extending these kind of analyses to more generalized models. Testing different

codes and different physical implementations of the interestelar medium and the stellar

feedback is worthy, as it is going beyond the perfect axisymmetric case. Re-simulating

galaxies formed in a cosmological context with high-enough resolution has become feasible

in the last few years, and it is a perfect chance to explore more realistic scenarios than the

idealized discs in isolation presented here.

Additionally, the preliminary experiments that were carried out with the radiative

transfer models delimite a very promising way for testing the potential systematic errors

in the determination of stellar mass models based on surface photometry, which may impact

several areas of research in astrophysics beyond the cusp-core problem.
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Côté S., Carignan C., Freeman K. C., The Various Kinematics of Dwarf Irregular Galaxies

in Nearby Groups and Their Dark Matter Distributions, AJ, 2000, vol. 120, p. 3027

Cox D. P., The Three-Phase Interstellar Medium Revisited, ARA&A, 2005, vol. 43, p. 337

Cox T. J., Star formation and feedback in simulations of interacting galaxies, University

of California, nta Cruz, California, USA, 2004, Ph.D. Thesis

Cox T. J., Jonsson P., Primack J. R., Somerville R. S., Feedback in simulations of disc-

galaxy major mergers, MNRAS, 2006, vol. 373, p. 1013

Dalcanton J. J., Stilp A. M., Pressure Support in Galaxy Disks: Impact on Rotation

Curves and Dark Matter Density Profiles, ApJ, 2010, vol. 721, p. 547

Davis M., Efstathiou G., Frenk C. S., White S. D. M., The evolution of large-scale structure

in a universe dominated by cold dark matter, ApJ, 1985, vol. 292, p. 371

de Blok W. J. G., The Core-Cusp Problem, Advances in Astronomy, 2010, vol. 2010, p. 5

de Blok W. J. G., Bosma A., High-resolution rotation curves of low surface brightness

galaxies, A&A, 2002, vol. 385, p. 816



Bibliography 175

de Blok W. J. G., Bosma A., McGaugh S., Simulating observations of dark matter domi-

nated galaxies: towards the optimal halo profile, MNRAS, 2003, vol. 340, p. 657

de Blok W. J. G., McGaugh S. S., The dark and visible matter content of low surface

brightness disc galaxies, MNRAS, 1997, vol. 290, p. 533

de Blok W. J. G., McGaugh S. S., Bosma A., Rubin V. C., Mass Density Profiles of Low

Surface Brightness Galaxies, ApJ, 2001, vol. 552, p. L23

de Blok W. J. G., McGaugh S. S., Rubin V. C., High-Resolution Rotation Curves of Low

Surface Brightness Galaxies. II. Mass Models, AJ, 2001, vol. 122, p. 2396

de Blok W. J. G., McGaugh S. S., van der Hulst J. M., HI observations of low surface

brightness galaxies: probing low-density galaxies, MNRAS, 1996, vol. 283, p. 18

de Blok W. J. G., van der Hulst J. M., Bothun G. D., Surface photometry of low surface

brightness galaxies, MNRAS, 1995, vol. 274, p. 235

de Blok W. J. G., Walter F., Brinks E., Trachternach C., Oh S.-H., Kennicutt Jr. R. C.,

High-Resolution Rotation Curves and Galaxy Mass Models from THINGS, AJ, 2008a,

vol. 136, p. 2648

de Blok W. J. G., Walter F., Brinks E., Trachternach C., Oh S.-H., Kennicutt Jr. R. C.,

High-Resolution Rotation Curves and Galaxy Mass Models from THINGS, AJ, 2008b,

vol. 136, p. 2648

de Jong R. S., Bell E. F., Comparing Dynamical and Stellar Population Mass-To-Light

Ratio Estimates, Astrophysics and Space Science Proceedings, 2007, vol. 3, p. 107

Di Teodoro E. M., Fraternali F., 3D BAROLO: a new 3D algorithm to derive rotation

curves of galaxies, MNRAS, 2015, vol. 451, p. 3021

Diemand J., Zemp M., Moore B., Stadel J., Carollo C. M., Cusps in cold dark matter

haloes, MNRAS, 2005, vol. 364, p. 665

Doi M., Tanaka M., Fukugita M., Gunn J. E., Yasuda N., Ivezić Ž., Brinkmann J., de Haars
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Walker M. G., Peñarrubia J., A Method for Measuring (Slopes of) the Mass Profiles of

Dwarf Spheroidal Galaxies, ApJ, 2011, vol. 742, p. 20

Walter F., Brinks E., de Blok W. J. G., Bigiel F., Kennicutt Jr. R. C., Thornley M. D.,

Leroy A., THINGS: The H I Nearby Galaxy Survey, AJ, 2008, vol. 136, p. 2563

Walter F., Cannon J. M., Roussel H., Bendo G. J., Calzetti D., et al. Dust and Atomic

Gas in Dwarf Irregular Galaxies of the M81 Group: The SINGS and THINGS View,

ApJ, 2007, vol. 661, p. 102
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Initial experiments

The short article presented in the following pages correspond to some preliminar work

developed at the early stages of this thesis, which was published in the proceedings of the

VIII International Workshop on the Dark Side of the Universe, Buzios, Brasil, 2012.
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1. Introduction

It has been claimed for a long time that there is a mismatch between the shape of dark matter
galactic haloes predicted by ΛCDM cosmological simulations of structure formation, and the shape
inferred from observations of late type rotating spiral galaxies. The former approach suggests a
density profile becoming extremely sharp towards the center (cusp) (e.g Dubinski & Carlberg 1991;
Navarro et al. 1996b, 1997), while the latter indicates a flat density profile (core) in the central
region (e.g. Athanassoula et al. 1987; e.g., Begeman et al. 1991). This apparent contradiction is
known as the cusp/core problem and it is considered as one of the greatest challenges for current
numerical cosmology (for an up-to-date review see de Blok, 2010).

Nevertheless, some important facts should be noticed before considering this contradiction a
problem for the ΛCDM cosmological paradigm. First, we should keep in mind that this problem
was noticed using dark-matter-only numerical simulations; it means that the effect of baryons dur-
ing the galaxy assembly process was completely neglected. Today it is widely accepted that in
some cases baryonic feedback in the form of star formation, supernovae explosions, and galactic
winds, for instance, could play a significant role in modeling the potential well and density profiles
of the different components of a galactic system (e.g. Navarro et al. 1996a), even transforming
cusps into cores (Governato 2012).

On the other hand, the analysis of observational data has some inherent uncertainties which
are not always properly taken into account. For example, most of the works fitting rotation curves
of disk galaxies implicitly consider that late-type spiral galaxies are fully-rotating systems, even
though many of these systems exhibit non-negligible random motions. Most typical approaches
assume axial symmetry as well, although this is not the case in general, spiral arms and bars being
the most evident counter-examples. Thus, it is possible to say that the cusp/core controversy has
not been definitively solved yet, and that there are still several facts which could be influencing the
possible scenarios.

In this paper we revisit the cusp/core controversy using the galaxies and data from the GHASP
survey. The main focus is the comparison between the results obtained when velocity fields are
treated in two different ways: considering that all velocities are circular, or disentangling non-
circular motions via a harmonic decomposition.

2. Mass models of galaxies

In order to derive the shape and concentration of dark matter haloes of real spiral galaxies, the
typical approach is to assume that rotation curves/velocity fields are fair tracers of the underlying
potential, so that vc(r) =

√
−∇φ · r holds. This method implicitly assumes that deviations from

axial symmetry in mass and velocity distributions are low, and that the whole system is in a state
of dynamical equilibrium. Then one creates a mass model of the galaxy using building blocks rep-
resenting the real observed components (a stellar bulge, a stellar disk, or a gas disk, for instance, as
given by the photometry), and possibly a model for the unseen dark matter halo. Given the linearity
of the gravitational potential and the gradient operator, then it follows that velocity components can
be added in quadrature v2

c(r) =V 2
Disk +V 2

Bulge +V 2
Gas +V 2

Halo +V 2
··· · · · .

2
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name D Spatial Resol. Incl. P.A Vsys Type Ref.
Mpc pc deg deg km s−1

ugc3876 - 14.5 ∼239 59±5 178±3 854±2 SA(s)d Sp08
ugc5842 ngc3346 15.2 ∼258 47±9 112±2 1245±1 SB(rs)cd Sp08
ugc7045 ngc4026 11.4 ∼116 68±2 99±2 758±1 SA(s)c Sp08
ugc7876 ngc4365 14.5 ∼211 53±9 944±1 164±3 SAB(s)d Sp08
ugc8334 ngc5055 9.8 ∼109 66±1 100±1 484±1 Sbc dB08
ugc9866 ngc5949 7.4 ∼248 56±6 148±2 430±1 SBc dP12/S05

ugc11300 ngc6689 8.4 ∼151 70±3 168±2 482±1 SABc dP12/S05

Table 1: Sample information. Spatial resolution is measured from the average psf of the observatory. The last column
lists at least one article where the galaxy was published in the context of the cusp/core problem. References: Sp08 =
Spano et al. 2008, dB08 = de Blok et al. 2008, dP12 = del Popolo 2012, S05 = Simon et al. 2005.

3. Observations and data reduction

3.1 The GHASP Survey

The data used in this work comes from the GHASP (Gassendi Hα survey of SPirals) project,
a compilation of Hα data cubes obtained with a scanning Fabry-Perot mounted on the 1.93 m
telescope at the Observatoire de Haute-Provence, for a large sample of nearby spiral and irregu-
lar galaxies (http://fabryperot.oamp.fr/PerotFabry/). From these data cubes, the GHASP team has
derived Hα maps, velocity fields, position-velocity diagrams, rotation curves and kinematical pa-
rameters as reported in (Epinat et al. 2008). The accuracy is about 5 km s−1 on average in velocity
and 2 arcsec in spatial resolution (limited by seeing) (Garrido et al. 2003).

Additionally, images in the Rc band were obtained for a sub-sample of galaxies including
those analyzed here, using a 1.2 m telescope at the same observatory between 2002 and 2009. Data
are described elsewhere (Barbosa et al. 2013, in preparation).

3.2 Sample selection

For this comparison we have chosen a sample of 7 spiral galaxies published by other authors
in the context of the cusp/core problem (i.e. considered as suitable for mass modeling procedure).
These galaxies are close enough as to allow probing the first inner kiloparsec of the rotation curve,
where the cusp/core discrepancy is more severe. Additionally, we require that the galaxies have
moderate inclinations 70◦ > i > 30◦ and high-quality velocity maps. The source for the distance
measurement to each galaxy and morphological type can be found in Epinat et al. (2008). The
geometrical parameters are those determined from the kinematics by the GHASP team and reported
in the same paper. Basic information is summarized in table 1.

3.3 Stellar Rotation Curves

Images in the Rc band of our galaxies were used in order to determine the stellar contribu-
tions to the rotation curve. After applying the instrumental zero point calibration, sky subtraction,
and galactic extinction corrections, surface brightness profiles were drawn using the task ELLIPSE
within the IRAF package. Then we run a typical decomposition of the profiles into a Sérsic bulge
and an exponential disk, even though our images suggest the existence of more or different com-
ponents in some cases. We insist in doing it in this way for simplicity, and because we are just

3
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interested in the impact on the results owed to the way the velocity field is treated. Thus, some of
the bulge/disk decompositions presented here could be a poor physical description, fact that will
be further explored in a forthcoming paper using 2D image decompositions instead of 1D surface
brightness profiles.

Once we had the bulge/disk decompositions we created generic rotation curves for each com-
ponent assuming mass-to-light ratios γ equal to one (in M�/L�), assuming spherical symmetry for
the Sérsic component, and a thick stellar disk with a vertical structure governed by a sech 2

(
z

2z0

)

model. To take into account other values of γ different from one we simply need to multiply the
velocity amplitudes by

√γ .

4. Methodology

4.1 From Velocity Maps to Rotation Curves

In the past, rotation curves were built using long-slit spectroscopy along the major axis. Even
though these points have the lowest velocity uncertainties, the lack of two-dimensional information
rules out the possibility of measuring and correcting for non-circular motions. Additionally, slits
used to be placed along the photometric major axis which does not necessarily match the kinemat-
ical one. For these reasons, several authors now use high resolution velocity fields (e.g. Spano et
al. 2008; Kuzio de Naray et al. 2009), which is also the case for this work.

Here we propose to build the final rotation curve in two different ways. The first one consists
in assuming perfect circular velocities in a thin disk, so the inferred circular velocity and the line-
of-sight measured component would be simply related by

vlos(r) = vsys + vc(r)
sin(i)cos(Ψ)√

cos2 (ψ)+ sin2 (ψ)
cos2 (i)

where vlos represents line-of-sight velocity component, vc the interpreted circular velocity, vsys

is the systemic velocity of the galaxy as a whole, i holds for inclination and Ψ is the polar angle
from the major axis in the plane of the sky. This method will be referred everywhere in this work
as the “pure rotation” assumption, and could be considered as the natural extension of the long-slit
spectroscopy technique, except for the fact that now we include in the fit a much higher number of
velocity points and misalignment uncertainties disappear. We have defined the final uncertainty as

σV rot =
σV los

cos(θ)sin(i)

where θ holds for the polar angle in the plane of the disk. We have excluded an angular region
of 22.5◦ around the minor axis due to large errors when θ is large. We end up not with a rotation
curve but a cloud of velocity points as those showed in blue in Figure 1 for ugc8334. We avoided
to bin this cloud because this would introduce an uncertainty in the radius, and it is not necessary
for the fitting procedure.

On the other hand, we will define our alternative rotation curve by means of a harmonic de-
composition of the whole velocity field based on the Kinemetry package by Krajnović (2006),
which allows us to separate non-circular motions from the pure rotating component using

Vlos = a0 +∑
i

ai sin(iψ)+bi cos(iψ)

4
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Figure 1: Kinemetry rotation curve for ugc8334 (red). “Pure rotation” velocity cloud (blue) and its binned version
(black). Velocities are in km s−1.

In this equation, the a0 coefficient will be related to Vsys and to coherent motions out of the
galactic plane, b1 to the circular velocity, a1 to the coherent expansion velocity, and all other coef-
ficients will absorb the effect of random motions.

In this case we will define the uncertainty in a different way, adding in quadrature the sta-
tistical uncertainty from the kinemetry fitting procedure and the systematic uncertainty due to the
uncertainty in the geometrical parameters, because it seems that the statistical uncertainties alone
are unrealistically low as pointed out by Simon et al. (2005). In fact, they are much lower than the
uncertainties defined for the “pure rotation” velocity cloud, so this is an attempt to make them com-
parable. Nonetheless, it should be noted that reduced χ2’s found later on for both rotation curves
can not be compared directly in a statistical sense, given that uncertainties have been defined in
these different ways.

To calculate the systematic uncertainty we follow Simon et al. (2005), drawing a Gaussian
probability distribution function for each geometrical parameter, picking 1000 combinations and
drawing the resulting 1000 rotation curves. Then we take their mean as the final RC and their stan-
dard deviation as the systematic uncertainty. The final kinemetry rotation curve for our canonical
example is shown in red in Figure 1. The black line represents a binned version of the blue velocity
cloud, just to give an impression of its global behavior. Note that the black line is systematically
offset to higher velocities than the red one, which is expected from the fact that in the former case
we are overestimating the real pure circular velocity component.

4.2 Rotation Curves Fitting and DM Halo Density Profiles

We will just consider the stellar disks and bulges described above, and two different models
for the dark matter halo: a Navarro-Frenk-White profile (NFW) and an Isothermal Sphere model
(ISO). The first one is a good description of dark matter haloes in numerical simulations (Navarro,
1996b), and it grows as steep as ρ ∝ r−1 towards the center. The second is flat in the central region
(ρ ∝ r0) and has been successfully used in the literature to fit real data (e.g. Athanassoula et al.
1987). Both of them are characterized by two parameters, a central density ρ0 and a characteristic
radius R0.

We run two very simple tests. The first one is known as the zero disk fit, and consists in fitting
the rotation curve using the DM halo alone, i.e. neglecting the contribution of stellar components,
therefore giving an upper limit on the concentration of the halo density.

5
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The second test is known as the maximal disk fitting, and consists in allowing the maximum
contribution of baryons to the rotation curve before fitting the mass model, in order to put a lower
limit on the concentration of the DM halo. In our case we have included a bulge component, so
we call this approach the maximal stars fitting instead of maximal disk. To make the following
procedures comparable for the kinemetry RC and the “pure rotation” velocity cloud, the latter was
binned at the same radii where its kinemetry counterpart is defined, and a smoothing was applied
in order to avoid spurious fluctuations, specially in the inner part where the number of pixels per
bin is small. To determine the maximum stars contribution we followed a modified version of the
method described in Simon et al. (2005), looking for the values of γdisk and γbulge that minimize the
χ2

ν without overpassing any point of the rotation curve. The very first point of each rotation curve
was excluded because it may strongly affect the results and its uncertainty is large.

5. Results
5.1 Zero Stars

In table 2 we present the results of the zero disk test using the isothermal sphere model for the
DM halo. We see that parameters ρ0 and R0 were similar for each galaxy for both RCs, but never
remain the same. In order to check whether or not this change is statistically significant we should
compute χ2

ν in a grid of values around this best solution, but this analysis is still in progress. Same
comments apply to the case of NFW profiles whose results are not shown.

Zero Stars ISO

’Pure Rotation’ ’Kinemetry’
ρ0 R0 χ2

ν ρ0 R0 χ2
ν

10−3M�/pc3 kpc 10−3M�/pc3 kpc

ugc3876 202 1.9 3.05 182 1.57 1.83
ugc5842 92 2.9 4.22 63.7 2.5 0.74
ugc7045 422 1.9 3.13 570 1.41 7.56
ugc7876 159 1.9 2.23 107 1.7 2.36
ugc8334 1764 1.3 4.93 1808 1.12 44.7
ugc9866 924 0.96 1.56 854.4 0.72 1.21
ugc11300 229 1.7 3.56 247.2 1.38 5.15

Table 2: Comparison of best isothermal halo parameters obtained for each galaxy using both rotation curves.

More interesting results are those shown in table 3. It compares the quality of the fit for the ISO
and NFW model. Those values of χ2

ν highlighted in green indicate the best model for each galaxy
and rotation curve. If no model is highlighted in green, it means that both of them are equally
good. In the case of the Kinemetry RC there is a favorite model for each galaxy, and one would
conclude that there are 4 cuspy haloes and 3 flat haloes in our sample. On the other hand, results
obtained using the “pure rotation” velocity cloud hardly allowed us to select a best option between
the models. Only in two cases the NFW DM halo fits the RC much better than the Isothermal
sphere, while the opposite never happens.

5.2 Maximal disk

Concerning the Maximal disk test, we present in table 4 the maximum values of γbulge and γdisk

allowed by each rotation curve. As can be seen, this time there is a big difference between the

6
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χ2
ν Zero Stars - Best Model

Pure Rotation Kinemetry
ISO NFW ISO NFW

ugc3876 3.05 2.99 1.83 0.8
ugc5842 4.22 4.32 0.74 11.85
ugc7045 3.13 2.64 7.56 2.26
ugc7876 2.23 2.32 2.36 7.05
ugc8334 4.93 3.2 44.7 4.75
ugc9866 1.56 1.52 1.21 3.24
ugc11300 3.56 3.31 5.15 0.85

Table 3: Zero Stars - Best Model.

values obtained using kinemetry or “pure rotation”. For instance, in the case of ugc7045 the “pure
rotation” case allows the existence of a massive bulge in the center while kinemetry produces a very
light central component, and even a smaller γdisk which means a much smaller overall baryonic
mass content. As a general trend we notice that all γdisk are higher in the “pure rotation” case than
in the kinemetry one, ugc8334 showing the biggest difference between them. Maximum bulges
allowed tend to be more massive when one uses kinemetry, but the differences are less strong in
general, so it seems that an overall higher baryonic content is allowed for the “pure rotation” RC.
This fact is not really unexpected, given that the “pure rotation” RC tends to reach higher velocities
than the kinemetry, by definition.

Maximal stars comparison

’Pure Rotation’ ’Kinemetry’
γdisk γbulge γdisk γbulge

ugc3876 7.19±0.67 0.00+1.60 5.31±0.82 0.32±1.06
ugc5842 1.86±0.61 0.00±0.00 0.74±0.30 0.00±0.00
ugc7045 3.32±0.01 4.45±0.88 2.93±0.50 0.23±0.39
ugc7876 1.81±0.83 0.00±0.00 0.41±0.56 0.00±0.00
ugc8334 2.55±0.18 0.18±0.15 0.80±0.13 1.54±0.29
ugc9866 3.29±0.06 0.06±0.28 2.14±0.47 0.00+0.50
ugc11300 2.01±0.34 0.17±0.36 1.98±0.12 0.52±0.41

Table 4: Comparison of mass-to-light ratios obtained when a maximal contribution from stars is allowed, in the “pure
rotation” and kinemetry cases. All the values are expressed in M�/L�

6. Summary and Conclusions

Mass models of galaxies combining photometry and kinematics is currently the main way of
probing galactic dark matter haloes. Here we present simplified mass models for a sample of seven
galaxies previously studied in the context of the cusp/core problem, using their high-resolution
velocity maps in two different ways. Our tests suggest that assuming pure rotation or effectively
correcting for non-circular motions strongly affect the conclusions about the cuspiness of the DM
halo and about the maximum baryonic content allowed by the data. Thus it is very important to
study in more detail at which extent it is possible to recover true information about the shape of
DM haloes from velocity fields, and what is the best way of using the data for this purpose.
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Appendix B

Instrumental parameters used to mimic the SDSS

photometry

To create the mock images of the simulated galaxies using SUNRISE a set of instrumen-

tal parameters need to be set, in order to go from physical fluxes in Jansky to a number of

counts in the detector following the prescription given in the SDSS documentation. These

parameters include the airmass, the brightness of the sky, typical noise values, the psf, etc.

This was done extracting the values reported by the SDSS dr7 from the headers of ∼100

images of galaxies in the local Universe. I assumed as a typical value of each parameter

its average across the whole sample. In the next plots I show the values measured in the r

band, highlighting the mean value of each parameter with a solid line and its 1-σ scatter

with a shaded region.
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