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Lima, Antonio Mário Magalhães, Elisabete de Gouveia Dal Pino, Gastão Bierrenbach,

Laerte Sodre, Roberto Costa, Ronaldo Eustaquio, Silvia Rossi.

I acknowledge the staff of the Astronomy Department for all their support, in special:

Aparecida Neusa (Cida), Conceição, Marina Freitas, Regina Iacovelli, Ulisses Manzo, who

were always so attentive, flexible, and nice with me.

I acknowledge the staff of the IAG, in special the very efficient secretaries of the

Graduation Office: Ana Carolina, Lilian, Marcel Yoshio, and Rosemary Feijó.
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Abstract

In this thesis we investigated two major issues in astrophysical flows: the transport of

magnetic fields in highly conducting fluids in the presence of turbulence, and the tur-

bulence evolution and turbulent dynamo amplification of magnetic fields in collisionless

plasmas.

The first topic was explored in the context of star-formation, where two intriguing

problems are highly debated: the requirement of magnetic flux diffusion during the grav-

itational collapse of molecular clouds in order to explain the observed magnetic field

intensities in protostars (the so called “magnetic flux problem”) and the formation of

rotationally sustained protostellar discs in the presence of the magnetic fields which tend

to remove all the angular momentum (the so called “magnetic braking catastrophe”).

Both problems challenge the ideal MHD description, usually expected to be a good ap-

proximation in these environments. The ambipolar diffusion, which is the mechanism

commonly invoked to solve these problems, has been lately questioned both by observa-

tions and numerical simulation results. We have here investigated a new paradigm, an

alternative diffusive mechanism based on fast magnetic reconnection induced by turbu-

lence, termed turbulent reconnection diffusion (TRD). We tested the TRD through fully

3D MHD numerical simulations, injecting turbulence into molecular clouds with initial

cylindrical geometry, uniform longitudinal magnetic field and periodic boundary condi-

tions. We have demonstrated the efficiency of the TRD in decorrelating the magnetic

flux from the gas, allowing the infall of gas into the gravitational well while the field

lines migrate to the outer regions of the cloud. This mechanism works for clouds starting

either in magnetohydrostatic equilibrium or initially out-of-equilibrium in free-fall. We
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Abstract

estimated the rates at which the TRD operate and found that they are faster when the

central gravitational potential is higher. Also we found that the larger the initial value

of the thermal to magnetic pressure ratio (β) the larger the diffusion process. Besides,

we have found that these rates are consistent with the predictions of the theory, particu-

larly when turbulence is trans- or super-Alfvénic. We have also explored by means of 3D

MHD simulations the role of the TRD in protostellar disks formation. Under ideal MHD

conditions, the removal of angular momentum from the disk progenitor by the typically

embedded magnetic field may prevent the formation of a rotationally supported disk dur-

ing the main protostellar accretion phase of low mass stars. Previous studies showed that

an enhanced microscopic diffusivity of about three orders of magnitude larger than the

Ohmic diffusivity would be necessary to enable the formation of a rotationally supported

disk. However, the nature of this enhanced diffusivity was not explained. Our numerical

simulations of disk formation in the presence of turbulence demonstrated the efficiency of

the TRD in providing the diffusion of the magnetic flux to the envelope of the protostar

during the gravitational collapse, thus enabling the formation of rotationally supported

disks of radius ∼ 100 AU, in agreement with the observations.

The second topic of this thesis has been investigated in the framework of the plasmas

of the intracluster medium (ICM). The amplification and maintenance of the observed

magnetic fields in the ICM are usually attributed to the turbulent dynamo action which

is known to amplify the magnetic energy until close equipartition with the kinetic energy.

This is generally derived employing a collisional MHD model. However, this is poorly

justified a priori since in the ICM the ion mean free path between collisions is of the

order of the dynamical scales, thus requiring a collisionless-MHD description. We have

studied here the turbulence statistics and the turbulent dynamo amplification of seed

magnetic fields in the ICM using a single-fluid collisionless-MHD model. This introduces

an anisotropic thermal pressure with respect to the direction of the local magnetic field

and this anisotropy modifies the MHD linear waves and creates kinetic instabilities. Our

collisionless-MHD model includes a relaxation term of the pressure anisotropy due to the

feedback of the mirror and firehose instabilities. We performed 3D numerical simulations

of forced transonic turbulence in a periodic box mimicking the turbulent ICM, assuming
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different initial values of the magnetic field intensity and different relaxation rates of the

pressure anisotropy. We showed that in the high β plasma regime of the ICM where these

kinetic instabilities are stronger, a fast anisotropy relaxation rate gives results which are

similar to the collisional-MHD model in the description of the statistical properties of the

turbulence. Also, the amplification of the magnetic energy due to the turbulent dynamo

action when considering an initial seed magnetic field is similar to the collisional-MHD

model, particularly when considering an instantaneous anisotropy relaxation. The models

without any pressure anisotropy relaxation deviate significantly from the collisional-MHD

results, showing more power in small-scale fluctuations of the density and velocity field, in

agreement with a significant presence of the kinetic instabilities; however, the fluctuations

in the magnetic field are mostly suppressed. In this case, the turbulent dynamo fails

in amplifying seed magnetic fields and the magnetic energy saturates at values several

orders of magnitude below the kinetic energy. It was suggested by previous studies of the

collisionless plasma of the solar wind that the pressure anisotropy relaxation rate is of

the order of a few percent of the ion gyrofrequency. The present study has shown that if

this is also the case for the ICM, then the models which best represent the ICM are those

with instantaneous anisotropy relaxation rate, i.e., the models which revealed a behavior

very similar to the collisional-MHD description.
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Resumo

Nesta tese, investigamos dois problemas chave relacionados a fluidos astrof́ısicos: o trans-

porte de campos magnéticos em plasmas altamente condutores na presença de turbulência,

e a evolução da turbulência e amplificação de campos magnéticos pelo d́ınamo turbulento

em plasmas não-colisionais.

O primeiro tópico foi explorado no contexto de formação estelar, onde duas questões

intrigantes são intensamente debatidas na literatura: a necessidade da difusão de fluxo

magnético durante o colapso gravitacional de nuvens moleculares, a fim de explicar as in-

tensidades dos campos magnéticos observadas em proto-estrelas (o denominado “problema

do fluxo magnético”), e a formação de discos proto-estelares sustentados pela rotação em

presença de campos magnéticos, os quais tendem a remover o seu momento angular (a cha-

mada “catástrofe do freamento magnético”). Estes dois problemas desafiam a descrição

MHD ideal, normalmente empregada para descrever esses sistemas. A difusão ambipolar,

o mecanismo normalmente invocado para resolver estes problemas, vem sendo questio-

nada ultimamente tanto por observações quanto por resultados de simulações numéricas.

Investigamos aqui um novo paradigma, um mecanismo de difusão alternativo baseado em

reconexão magnética rápida induzida pela turbulência, que denominamos reconexão tur-

bulenta (TRD, do inglês turbulent reconnection diffusion). Nós testamos a TRD através de

simulações numéricas tridimensionais MHD, injetando turbulência em nuvens moleculares

com geometria inicialmente ciĺındrica, permeadas por um campo magnético longitudinal e

fronteiras periódicas. Demonstramos a eficiência da TRD em desacoplar o fluxo magnético

do gás, permitindo a queda do gás no poço de potencial gravitacional, enquanto as linhas

de campo migram para as regiões externas da nuvem. Este mecanismo funciona tanto
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Resumo

para nuvens inicialmente em equiĺıbrio magneto-hidrostático, quanto para aquelas inici-

almente fora de equiĺıbrio, em queda livre. Nós estimamos as taxas em que a TRD opera

e descobrimos que são mais rápidas quando o potencial gravitacional é maior. Também

verificamos que quanto maior o valor inicial da razão entre a pressão térmica e magnética

(β), mais eficiente é o processo de difusão. Além disto, também verificamos que estas

taxas são consistentes com as previsões da teoria, particularmente quando a turbulência

é trans- ou super-Alfvénica. Também exploramos por meio de simulações MHD 3D a

influência da TRD na formação de discos proto-estelares. Sob condições MHD ideais, a

remoção do momento angular do disco progenitor pelo campo magnético da nuvem pode

evitar a formação de discos sustentados por rotação durante a fase principal de acreção

proto-estelar de estrelas de baixa massa. Estudos anteriores mostraram que uma super

difusividade microscópica aproximadamente três ordens de magnitude maior do que a

difusividade ôhmica seria necessária para levar à formação de um disco sustentado pela

rotação. No entanto, a natureza desta super difusividade não foi explicada. Nossas si-

mulações numéricas da formação do disco em presença de turbulência demonstraram a

eficiência da TRD em prover a diffusão do fluxo magnético para o envelope da proto-

estrela durante o colapso gravitacional, permitindo assim a formação de discos sutentados

pela rotação com raios ∼ 100 UA, em concordância com as observações.

O segundo tópico desta tese foi abordado no contexto dos plasmas do meio intra-

aglomerado de galáxias (MIA). A amplificação e manutenção dos campos magnéticos

observados no MIA são normalmente atribuidas à ação do d́ınamo turbulento, que é

conhecidamente capaz de amplificar a energia magnética até valores próximos da equi-

partição com a energia cinética. Este resultado é geralmente derivado empregando-se um

modelo MHD colisional. No entanto, isto é pobremente justificado a priori, pois no MIA

o caminho livre médio de colisões ı́on-́ıon é da ordem das escalas dinâmicas, requerendo

então uma descrição MHD não-colisional. Estudamos aqui a estat́ıstica da turbulência e

a amplificação por d́ınamo turbulento de campos magnéticos sementes no MIA, usando

um modelo MHD não-colisional de um único fluido. Isto indroduz uma pressão térmica

anisotrópica com respeito à direção do campo magnético local. Esta anisotropia modifica

as ondas MHD lineares e cria instabilidades cinéticas. Nosso modelo MHD não-colisional
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inclui um termo de relaxação da anisotropia devido aos efeitos das instabilidades mirror

e firehose. Realizamos simulações numéricas 3D de turbulência trans-sônica forçada em

um domı́nio periódico, mimetizando o MIA turbulento e considerando diferentes valores

iniciais para a intensidade do campo magnético, bem como diferentes taxas de relaxação

da anisotropia na pressão. Mostramos que no regime de plasma com altos valores de β no

MIA, onde estas instabilidades cinéticas são mais fortes, uma rápida taxa de relaxação da

anisotropia produz resultados similares ao modelo MHD colisional na descrição das pro-

priedades estat́ısticas da turbulência. Além disso, a amplificação da energia mangética

pela ação do d́ınamo turbulento quando consideramos um campo magnético semente, é

similar ao modelo MHD colisional, particularmente quando consideramos uma relaxação

instantânea da anisotropia. Os modelos sem qualquer relaxação da anisotropia de pressão

mostraram resultados que se desviam significativamente daqueles do MHD colisional,

mostrando mais potências nas flutuações de pequena escala da densidade e velocidade,

em concordância com a presença significativa das instabilidades cinéticas nessas escalas;

no entanto, as flutuações do campo magnético são, em geral, suprimidas. Neste caso, o

d́ınamo turbulento também falha em amplificar campos magnéticos sementes e a ener-

gia magnética satura em valores bem abaixo da energia cinética. Estudos anteriores do

plasma não-colisional do vento solar sugeriram que a taxa de relaxação da anisotropia na

pressão é da ordem de uma pequena porcentagem da giro-frequência dos ı́ons. O presente

estudo mostrou que, se este também é o caso para o MIA, então os modelos que melhor

representam o MIA são aqueles com taxas de relaxação instantâneas, ou seja, os modelos

que revelaram um comportamento muito similar à descrição MHD colisional.
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Chapter 1

Introduction

Magnetic fields and turbulence are known to be present in astrophysical flows of every

scale: stellar interiors and surfaces, molecular clouds, the warm and the hot phase of

the interstellar medium (ISM) of the Milk Way, the ISM of external galaxies, and the

intracluster medium (ICM). The specific role played by these two ingredients in different

branches of astrophysics is still highly debated, but it is generally regarded as important.

In particular, for the interstellar medium and star formation, the role of turbulence has

been discussed in many reviews (see Elmegreen & Scalo 2004; McKee & Ostriker 2007).

The opinion regarding the role of magnetic fields in these environments varies from being

absolutely dominant in the processes (see Tassis & Mouschovias 2005; Galli et al. 2006)

to moderately important, as in the turbulence dominated models of star formation (see

Padoan et al. 2004).

In most of the astrophysical environments, these two fundamental phenomena (mag-

netism and turbulence) are intrinsically related. The large scale dynamics of these en-

vironments is commonly described by the magnetohydrodynamic (MHD) theory, which

links the evolution of the magnetic fields and the bulk motions of the gas. In this theory,

the gas suffers a force perpendicular to the magnetic field (the Lorentz force), at the same

time the magnetic field lines are dragged and distorted by the gas motions perpendicular

to them; that is, the magnetic field and the gas perform work on each other through

motions normal to the magnetic field lines.
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One central concept regarding the evolution of the magnetic field in the MHD theory

is that, in the limit in which the electrical resistivity in the plasma is negligible, each

fluid element stays confined on the same imaginary field line over the system evolution.

Expressed in another way, the flux of the magnetic field B across a lagrangian closed

circuit does not change, for any configuration the system can assume. This matter-

magnetic field coupling is called “flux freezing” or “frozen-in” condition and the MHD

theory in this limit is called ideal MHD.

The frozen-in condition is usually thought as a good approximation for an MHD flow

characterized by a large value of the dimensionless parameter the magnetic Reynold’s

number Rm (whose definition is given in Chapter 2, Equation 2.12). When Rm À 1,

the time-scale for the diffusion of the large scale (i.e., the scale of the flow) magnetic field

through the gas is much larger than the dynamical times of the flow. In general, typical

flows in the ISM and ICM have huge values of Rm.

In star formation media, where Rm is generally high, without considering diffusive

mechanisms that can violate this flux freezing, one faces problems attempting to explain

many observational facts. For example, simple estimates show that if all the magnetic flux

remains well coupled with the material that collapses to form a star in molecular clouds,

then the magnetic field in a protostar should be several orders of magnitude higher than

the one observed in T-Tauri stars (this is the “magnetic flux problem”, see Galli et al.

2006 and references therein, for example).

In late phases of the star-forming process, another difficulty arises to explain the

observed protostellar disks. Theoretically, the flux freezing prevents the formation of

rotationally supported disks around protostars, in contradiction with the observations.

This is because flux freezing causes the loss of the angular momentum of the collapsing

cloud via the torques exerted by the magnetic field lines torsioned by the differentially

rotating gas. This problem is known as the “magnetic braking catastrophe”.

Does magnetic field remain absolutely frozen-in within high Rm flows? The answer to

this question affects the description of numerous essential processes in the interstellar and

intergalactic gas. A mechanism based on magnetic reconnection was proposed in Lazarian

(2005) as a way of breaking the frozen-in condition and removing magnetic flux from
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gravitating clouds, e.g. from star-forming clouds. That work referred to the reconnection

model of Lazarian & Vishniac (1999) and Lazarian et al. (2004) for the justification of

the concept of fast magnetic reconnection in the presence of turbulence. Through this

diffusion process, that we call ”turbulent reconnection diffusion” or TRD (Santos-Lima

et al. 2010, 2012, 2013a; Leao et al. 2013), we will demonstrate in this thesis that it is

possible to solve both the magnetic flux transport and the magnetic braking catastrophe

problems in star formation.

Another consequence from the MHD approximation is the ability of a driven turbulent

flow to amplify the magnetic fields until close equipartition between kinetic and magnetic

energies (Schekochihin et al. 2004). That is, once a weak magnetic field seed is present,

turbulent motions of the gas will “stretch” and “fold” the field lines until the magnetic

forces become dynamically important. In this equilibrium situation, the magnetic fields

have correlation lengths of the order of the largest scales of the turbulent motions. This

process is referred as turbulent dynamo or small-scale dynamo, and is a powerful mecha-

nism to amplify seed magnetic fields.

Although the origin of the seed fields is still a matter of discussion (see Grasso & Ru-

binstein 2001), the above turbulent dynamo scenario is amply accepted as the mechanism

responsible for amplifying and sustaining the observed magnetic fields in the ICM (de

Gouveia Dal Pino et al. 2013). This picture is supported by MHD simulations of galax-

ies merger showing the amplification of the magnetic field in the surround intergalactic

medium (Kotarba et al. 2011).

However, the applicability of the standard MHD model (and turbulent dynamo) to the

magnetized plasma of the intracluster media of galaxies needs to be revised. In these envi-

ronments, the hypothesis of local thermodynamical equilibrium behind the MHD theory

is not fulfilled due to the low collisionality of the gas there. Different gas temperatures (or

pressures) can develop in the directions along and perpendicular to the local magnetic.

Such an anisotropic pressure is known to develop electromagnetic kinetic instabilities

whose feedback on the plasma can relax the difference between the pressure components.

A modified MHD model should be used, which takes into account the development and

effects of an anisotropic pressure. Such models have been referred in the literature as col-
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lisionless MHD, or anisotropic MHD, or kinetic MHD models. How the turbulent dynamo

and the turbulence itself in these models compares with the more explored (collisional)

MHD approach is a new topic of research (Kowal et al. 2011) and will be also explored

here in depth in the framework of the intracluster medium (Santos-Lima et al. 2013b).

As remarked, this thesis focuses on the investigation of two main issues. One is to test

the turbulent reconnection diffusion mechanism (TRD) originally proposed by Lazarian

(2005) in the context of star-formation processes. For this aim, we have performed 3D

MHD numerical simulations of high Rm turbulent flows modeling interstellar clouds in

different phases of star-formation. We found that turbulent reconnection diffusion was

able to break the frozen in condition and to diffuse the magnetic fields, in consistency

with the observational requirements.

The second subject is the investigation of the turbulent dynamo amplification of seed

magnetic fields and the turbulence statistics in the ICM using collisionless MHD models

and comparing with the more explored collisional MHD approach. An MHD numerical

code was modified for this purpose and employed for performing 3D simulations of driven

turbulence with in an ICM-like domain. We found that the results are sensitive to the

rate at which the kinetic instabilities relax the pressure anisotropy of the system. For

values of this rate which are suitable to the conditions of the ICM, the overall behavior

of the turbulent flow, as well as the dynamo amplification of seed magnetic fields do not

seem to deviate significantly from the results obtained with the collisional MHD model.

Despite the limitations in our model, this result has the importance of giving support to

the employment of a collisional MHD description for studying the turbulence in the ICM

(Santos-Lima et al. 2013b).

The thesis is organized in the following way: Chapter 2 is devoted to present the

theoretical grounds which support the investigation of both subjects. We first present the

collisional MHD equations and its limit of validity. Since our focus are turbulent flows, we

also present an overview about MHD turbulence. Then, we briefly discuss the magnetic

flux transport problem in the framework of star formation and the proposed mechanism

of turbulent reconnection diffusion (TRD) for solving it. Next, we briefly describe the

conditions of the ICM and the turbulent dynamo magnetic field amplification in the
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context of collisonal MHD, as currently investigated. Finally we present the collisionless

MHD model which we use to model the ICM. In Chapter 3, we present the results of our

numerical studies of TRD in molecular clouds collapsing gravitationally (Santos-Lima et

al. 2010). In Chapter 4, we present the results of our numerical studies of the effects of

TRD on the formation of rotating protostellar disks (Santos-Lima et al. 2012, 2013a).

In Chapter 5 we discuss the results obtained from the collisionless MHD description of

the evolution of the turbulence and the dynamo amplification of seed fields in the ICM

(Santos-Lima et al. 2013b). Finally, in Chapter 6 we summarize the results of this thesis

and present our perspectives.

The numerical methods of the codes employed in the simulations presented are briefly

described in Appendix A. The results presented in Chapters 3 and 4 have been published

in refereed journals and the articles are reproduced in the Appendices B, C, and D. The

results presented in Chapter 5 are in an article just submitted to publication, which is

reproduced in the Appendix E. Complementary material can be also found in Leão, de

Gouveia Dal Pino, Santos-Lima et al. (2012); and de Gouveia Dal Pino, Leão, Santos-

Lima et al. (2012).
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Chapter 2

MHD turbulence: diffusion and

amplification of magnetic fields

The magnetohydrodynamics (MHD) theory describes the evolution of electrically con-

ducting fluids and magnetic fields, in mutual interaction. These magnetic fields can have

origin in electrical currents internal or external to the fluid volume in question. The MHD

theory has a broad range of applicability in astrophysics because most of the astrophys-

ical environments are composed by fluids with some degree of electrical conduction, and

in addition they are observed to be pervaded by magnetic fields (see Chapter 1). The

intrinsic complexity of the interaction fluid - magnetic field in MHD flows is increased by

turbulence present in the astrophysical fluids, like the ISM and ICM. In particular, the

turbulence is sometimes fundamental to understand the evolution of the magnetic fields

in these fluids. Since MHD is actually a macroscopic description of plasmas, in this chap-

ter, we start by presenting the basic concepts of plasmas, then we present the collisional

MHD equations justifying their applicability range and next an overview of MHD turbu-

lence. We then discuss the problem of magnetic field diffusion in the framework of star

formation and a potential mechanism for solving it, the turbulent reconnection diffusion.

Finally, we discuss turbulence in the context of the ICM and argue that a collisional MHD

description is unsuitable in this case and then present a collisionless MHD model which

better describes the ICM plasma.
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2.1 Kinetic and fluid descriptions of a plasma

In a broad definition, plasma is a gas fully or partially ionized permeated by magnetic

fields. Most of the astrophysical environments are filled by plasmas. In fact, more than

90% of the visible matter in the Universe is believed to be in a plasma state (e.g. de

Gouveia Dal Pino 1995, and refs. therein; Goedbloed & Poedts 2004). For simplicity,

we will restrict our attention to non-relativistic gases obeying the Maxwell-Boltzmann

statistics, where quantum effects are negligible.

In a plasma, the charged particles in motion produce electrical currents and electro-

magnetic fields. These fields in turn, exert forces on the particles themselves. Therefore,

a complete description of the system (particles and electromagnetic fields) involves the

knowledge of the position and velocity of every particle, which is obviously impossible.

However, a statistical description of the plasma is still possible. For this, the plasma is

required to behave like an almost ideal gas: the electrostatic interaction energy between

particles must be small compared to their kinetic energy. For a plasma composed by

electrons of charge −e and positive ions of charge Ze, this condition is expressed by

kBT À e2/r̄ ∼ e2N−1/3, (2.1)

where T is the temperature of the plasma, kB the Boltzmann constant, r̄ ∼ N−1/3 is the

average distance between particles and N is the total number of particles per volume.

This condition is more commonly expressed in terms of the Debye length λD , defined as

λ2
D =

kBT

4π

[∑
s

Ns(Zse)2

] , (2.2)

where the summation is over the species denoted by the subscript s (s = i, e, for ions and

electrons respectively). Using λD ∼ (kBT/4πNe2)1/2, the condition for the almost ideal

gas behavior is

e2N−1/3/kBT ∼ r̄2/4πλ2
D ¿ 1. (2.3)

The above condition states the existence of many particles inside a sphere of radius

λD, the “Debye sphere”. Physically, the Debye length λD has the meaning of the distance
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at which an electrical charge is screened by oppositely charged particles in the plasma.

Over volumes with radii λ À λD, the plasma is quasi-neutral: |ZeNi− eNe| ¿ 1. This is

one of the fundamental properties of the plasma, the macroscopic quasi-neutrality.

Under this circumstance, the thermodynamic equilibrium properties of a plasma can

be obtained from the statistical mechanics, as in the case of neutral gases, and the out-

of-equilibrium phenomena can be described by kinetic theory.

In the kinetic theory, each species s of the plasma is described by a distribution function

fs(t, r,v) in the position r and velocity v spaces. The evolution of each distribution

function is given by the Boltzmann transport equation (Landau & Lifshitz 1980):

∂fs

∂t
+ v · ∂fs

∂r
+

es

ms

(
E +

1

c
v ×B

)
· ∂fs

∂v
= C(fs), (2.4)

where ms is the particle mass, c is the speed of light, and C(fs) is the collisional term

that includes the interactions with all the other species (also neutral species). The elec-

tromagnetic forces on the left-hand side are self-consistently obtained from the Maxwell

equations with source terms (charge and current densities) calculated by the distribution

function of all the species. However, they are “macroscopic” fields, in the sense that they

are averaged over a large volume compared to the particles distances, but small compared

to Debye length. The fluctuating components of the electromagnetic fields, eliminated

by the averaging, are responsible for the random scattering of the particles. This ran-

dom scattering is represented by C(fs) and leads the system to relax to thermodynamic

equilibrium. It is responsible for the increase of entropy.

Although the kinetic approach provides a more complete description of a plasma,

its intrinsic complexity makes it very hard to employ it in the study of the large scale

plasma dynamics. In this sense, the commonly adopted simplification comes from the

fluid approximation.

In a fluid model, the plasma is described by a set of macroscopic fields, like: density,

temperature, and velocity field. These fields can be formally defined as statistical moments

of the particles velocity. The equations of evolution for these fields can be obtained by

taking successively high order velocity moments of the Boltzmann equation. This chain

of equations composes the so called moments hierarchy. The evolution for each moment
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depends on higher order moments, and, of course, on the electromagnetic fields. The

electromagnetic fields, in turn, are obtained from the Maxwell equations, with the source

terms determined by the velocity moments.

The advantage of the fluid approach comes from restricting the number or moments

describing the plasma, by stopping the moments hierarchy at some level. The highest

moment is then considered as null, or modeled in terms of the lower moments, that is,

the macroscopic variables. This is the closure of the moment hierarchy.

Depending on the problem characteristics and formulation, the fluid description may

be an one-fluid, a two-fluid, or many-fluid. In the one-fluid description, one set of macro-

scopic variables represent all the species of the plasma. In the two- or many-fluid descrip-

tion, two or more sets of macroscopic variables are employed.

For astrophysical plasmas which are the focus of this work, a macroscopic fluid de-

scription is generally more appropriate because of the large scales involved. In the next

section, we present the basic MHD equations which describe the one-fluid model for the

plasma, together with the assumptions necessary for its validity. Before, we will introduce

a few time and space scales, which are important for defining the plasma regime.

The mentioned process of screening of an electrical charge inside the plasma occurs at

a time-scale related to the inverse of the plasma frequency ωps

ωps =

(
4πNsZ

2
s e

2

ms

)1/2

. (2.5)

This is the harmonic frequency at which the species oscillate when the quasi-neutrality

is perturbed. Due to the difference in masses, ωpe À ωpi that is, the electrons move faster.

The plasma can be considered quasi-neutral for processes having frequencies ω larger than

≈ ωpe.

Next, let us consider the frequency ωs1,s2 of collisions between the species s1 and

s2. The collisionality regime of a plasma depends on the frequency ω of variation of

the electromagnetic fields appearing in the Boltzmann equation (2.4). In the limiting

case where ω ¿ ωs1,s2 for any s1, s2, the plasma is considered collisionless, and the

right-hand side of the equation (2.4) is not important. Collisions are also considered

unimportant if the mean-free-path of the particles are large compared to the distances at
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which the fields vary. In the opposite limit, when the collision frequencies are higher than

the frequencies of the processes under consideration, the species have time to relax to the

local thermodynamical equilibrium and their distribution functions are well approximated

by the Maxwell-Boltzmann distribution.

Other important scales are introduced by the presence of the magnetic field in the

plasma. In the presence of a magnetic field of intensity B, the particles orbit the magnetic

field lines with the Larmor frequency Ωs, given by:

Ωs =
ZseB

msc
. (2.6)

The radius of this orbit is the Larmor radius Rs = v⊥
Ωs

where v⊥ is the component of

the particle velocity perpendicular to the magnetic field line.
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2.2 Basic MHD equations

Here we describe the basic equations for the simplest MHD model which describes a

plasma as one-fluid model. The time and spatial scales described by this basic model

must be larger than the times associated with the Larmor and plasma frequencies of the

species, and the scales of the Debye length and Larmor radius of the species. This model

is non-relativistic and assumes the plasma to be in local thermodynamical equilibrium:

that is, the collision rate between particles is assumed to be faster than the frequency

of the macroscopic phenomena, and the mean-free-path of the particles smaller than the

macroscopic lengths.

When convenient, we will point the modifications on the equations in specific physical

situations.

The plasma is macroscopically described by eight fields: a mass density ρ, a scalar

pressure p or temperature T , three components of the velocity u, and three components

of the magnetic field B. These fields are evolved by a set of eight equations, the MHD

equations. In the absence of external forces, the basic MHD equations in differential form

are (see, for example, de Gouveia Dal Pino 1995):

• The continuity equation describing the conservation of mass:

∂ρ

∂t
+∇ · (ρu) = 0. (2.7)

• Equation of motion describing the momentum evolution:

ρ

(
∂

∂t
+ u · ∇

)
u = −∇p +

1

c
J×B + ρν∇2u + ρ

(
ζ +

1

3
ν

)
∇∇ · u, (2.8)

were c is the light speed, J is the current density given by the Ampère’s law

J =
c

4π
∇×B, (2.9)

ν and ζ are the coefficients of kinematic viscosity (shear and bulk viscosity, re-

spectively). Normally ν À ζ. In the absence of the Lorentz force (J×B)/c, this

equation is called the Navier-Stokes equation. Observe that the electric field term

(Maxwell’s displacement current) is not included in the last equation. It comes from

the assumption of non-relativistic regime.
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• Faraday’s law or induction equation, describing the magnetic field evolution:

∂B

∂t
= ∇× (u×B) + η∇2B. (2.10)

where η = c2/(4πσ) is the Ohmic magnetic diffusivity and σ is the electrical con-

ductivity given by

σ =
nee

2τei

me

, (2.11)

where ne and me are the electron density and mass, respectively, and τei is the time

interval between electron-ion collisions. In the limit η = 0, the induction equation

describes the evolution of the magnetic field in the ideal MHD approach.

The relative importance between the term advecting the magnetic field and the

dissipative term is given by the magnetic Reynold’s number

Rm =
LU

η
, (2.12)

where L is now the characteristic scale of variation of the magnetic field, and U is

the characteristic velocity of the system. When Rm À 1 (which is the case of most

astrophysical flows) the ideal MHD approach is adopted.

In this situation, the magnetic flux ΦB through some surface S fixed to the fluid

particles is conserved:

dΦB

dt
=

d

dt

∫

S

B · n̂dS = 0. (2.13)

with n̂ the unitary vector normal to the surface.

This induction equation can have a more general form, accounting for special phys-

ical situations, with more terms appearing in the rhs. One term we should mention

is the Biermann battery term

− c

n2
ee

(∇ne)× (∇pe), (2.14)

which can generate seed magnetic fields in the plasma (see Section 2.4), important

in the context of origin of the cosmic magnetic fields.
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When the plasma is weakly ionized, a term accounting for the Ambipolar Diffu-

sion effect is usually invoked as dissipative mechanism (which in astrophysics is

particularly important during star-formation processes). This term is given by:

∇×
{

(J×B)×B

cγinρρi

}
(2.15)

where ρi is the mass density of the ions (¿ ρ), and γin is the rate of momentum

exchange between ions and neutrals (see for example Shu et al. 1983).

• Equation of energy conservation:

∂e

∂t
+∇ · q = 0, (2.16)

with the energy density e given by

e =
1

2
ρu2 +

B2

8π
+ w,

where w is the internal energy of the gas, given by the relation w = p/(γ − 1)

(assuming the equation of ideal gas with the adiabatic exponent γ), and the energy

flux vector q is given by1

q =

(
e + p +

B2

4π

)
u +

η

c
J×B− u ·B

4π
B− ρν

∑
i

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3
δik∇ · u

)
viek.

Depending on the problem, several further simplifications can be done. For example,

we can consider the scalar pressure p given simply by the equation of state of a politropic

gas:

p = Aργ (2.17)

where A is in general a function of the entropy S.

Another simplification, usually adopted when the flow is subsonic (i.e., when u is much

smaller than the sound speed cs =
√

γp/ρ) is to assume incompressibility: ∇ · u ≈ 0.

1We note that in this work we are not considering radiative cooling or heat conduction, which can be

important in many astrophysical situations (see however comments on these issues in Chapters 5 and 6).
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The dimensionless number which characterizes the compressibility of a flow is the sonic

Mach number

MS =
U

cs

. (2.18)

When MS > 1, the flow is said supersonic, when MS = 1 it is trans-sonic, and when

MS ≈ 1 it is subsonic.

The set of collisional MHD equations above will be employed in most of the studies

undertaken in this thesis. In particular, in Chapters 3 and 4 they will be used to describe

the gravitational collapse of turbulent interstellar clouds and protostellar disk formation,

respectively.

2.2.1 Linear modes

Considering the collisional ideal MHD equations in the adiabatic regime (i.e. with con-

stant entropy which implies no radiative cooling, viscosity or resistivity), a linear analysis

in an homogeneous background reveals the existence of three propagating waves: the

Alfvén, fast and slow magnetosonic waves. The propagating velocities of these three

waves are respectively (de Gouveia Dal Pino 1995):

vA =

(
B2

4πρ

)1/2

cos θ (2.19)

cf =

{
(c2

s + v2
A) +

√
(c2

s + v2
A)2 − 4c2

sv
2
A cos2 θ

2

}1/2

(2.20)

cs =

{
(c2

s − v2
A) +

√
(c2

s + v2
A)2 − 4c2

sv
2
A cos2 θ

2

}1/2

(2.21)

where θ is the angle between the direction of propagation of the wave and the local

magnetic field B.

The Alfvén wave is incompressible (it implies no change in density), while the fast and

slow magnetosonic modes are compressible.

An useful dimensionless number characterizing the regime of an MHD flow is the

Alfvénic Mach number

MA =
U

vA

. (2.22)
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When MA > 1, the flow is called super-Alfvénic, otherwise sub-Alfvénic. In the inter-

mediary case, the flow is called trans-Alfvénic.

In Section 2.5 below, we will see how these modes are modified when considering a

collisionless MHD model.
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2.3 MHD turbulence: an overview

The notion of a turbulent flow is associated with a random or chaotic velocity field in

space and time. This randomness arises when the velocity field evolution is strongly non-

linear. In oposition, a flow is called laminar when it has an organized or deterministic

velocity field, again in space and time (see for example, Landau & Lifshitz 1959).

Consider, for example, a hydrodynamic incompressible flow (∇·u = 0). The equation

describing the evolution of the velocity field is

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + ν∇2u. (2.23)

The advection term in the left-hand side shows the intrinsic non-linearity of the equa-

tion. On the right-hand side we have the viscous force ν∇2u which has the effect of

damping “irregularities” in the velocity field. When viscosity dominates, the flow tends

to be laminar; when the non-linear term dominates, turbulence can develop. The relative

importance between these two terms is estimated by the Reynolds number Re of the flow

Re =
LU

ν
, (2.24)

where L is the characteristic scale of changes in the velocity field, and U is the charac-

teristic speed of the flow. The higher Re, the more unstable to perturbations is the flow.

That is, at very high Re (Re À 1), a flow probably develops turbulence.

Turbulence is ubiquitous in astrophysical environments as it follows from theoretical

considerations based on the high Reynolds numbers of astrophysical flows and is strongly

supported by studies of spectra of the interstellar electron density fluctuations (see Arm-

strong, Rickett, & Spangler 1995; Chepurnov & Lazarian 2010), as well as of HI (Lazarian

2009 for a review and references therein; Chepurnov et al. 2010) and CO lines (see Padoan

et al. 2009).

No complete quantitative theory on turbulence exists yet, but many important quali-

tative results are known. Keeping this in mind, the physical quantities in the arguments

and results presented bellow are to be considered in order of magnitude. We first intro-

duce some results and hypotheses about hydrodynamical turbulence theory and extend

them to the more general MHD case.
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2.3.1 The hydrodynamic case

A turbulent flow can be depicted as a superposition of eddies of several scales. For eddies

of a given scale l a speed ul is associated. A Reynolds number can be attributed to the

eddies of each scale: Rel = ull/ν. The biggest eddies are produced by the largest scales

L of the flow and have speeds U . These eddies are unstable (high Rel) and produce a

number of smaller eddies with smaller speeds. This process of cascading of kinetic energy

(Richardson cascade) to smaller eddies continue, until the size and speed of the eddies

are such that the molecular viscosity dominates (Rel ∼ 1) and their kinetic energy is

dissipated into heat (Landau & Lifshitz 1959).

The scale L of the largest eddies is called the external or injection scale of the tur-

bulence. The scale lν for which the motions are dissipated by the viscosity is called the

internal or dissipative scale.

In the situation in which a source of energy and momentum stirs the fluid generating

the largest eddies continually and this cascade proceeds in the statistically steady state,

the turbulence is said to be fully developed. We will focus on this case here, instead of the

transition to turbulence or of the decaying of turbulence. The constant energy injection

rate will be denoted by ε (with dimension of energy per mass per time).

Kolmogorov’s 1941 theory (K41) assumes that at a very high Re, the statistical prop-

erties of the eddies of scales l (L À l À lν) are homogeneous and isotropic: they do not

depend on the mean velocity of the flow or the specific characteristic of the mechanism

injecting turbulence. Also, they do not depend on the dissipation mechanism. This range

of scales is called the inertial range. Using self-similarity and dimensional arguments, the

following relation is satisfied in the inertial range:

ul ∝ (εl)1/3, (2.25)

(Kolmogorv and Obukhov’s scaling law, 1941). This law is interpreted in the following

way: the energy ∼ u2
l contained in eddies of all scales < l is dissipated (after cascading

until the dissipation scale) in the turnover time l/ul, at a rate ε (equal to the energy

injection rate in the cascade).
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From dimensional arguments, or using the Kolmogorov law at the end of the inertial

range, the dissipative scale lν is given by

lν ∼ (ν3/ε)1/4, (2.26)

(Kolmogorov, 1941).

One is usually interested in characterize the inertial range by the knowledge of the

amount of energy carried by eddies at each scale. This energy distribution is usually

represented in the Fourier space by the energy spectrum E(k). Thus, E(k)dk represents

the energy of the eddies of the scale l ∼ 1/k. For the incompressible hydrodynamic

turbulence, the energy spectrum following from the Kolmogorov law is:

E(k) ∝ k−5/3. (2.27)

2.3.2 Alfvénic turbulence, weak cascade

Now we will consider the situation when magnetic fields are present.

If the magnetic fields are not dynamically important at the injection scale L, that is,

MA = U/vA À 1, turbulence at these scales will be essentially hydrodynamic. As cascade

of energy proceeds, the eddy velocities will reduce until ul ∼ vA at the scale lA. Using

Kolmogorov’s law, lA ∼ LM−3
A . Henceforth, we will consider the scales l < lA.

The presence of a mean magnetic field introduces a preferential direction and so the

hypothesis of isotropy of the hydronamic turbulence should be abandoned. The eddies in

incompressible MHD turbulence are formed by Alfvén wave packets. The velocity parallel

to the magnetic field lines associated to eddies of any length l‖ is obviously the vA given

by the local mean magnetic field. The local magnetic field felt by an eddy of scale l is the

magnetic field averaged over a scale a few times greater than l. It should be remembered

that for an Alfvén wave, the fluctuations in velocity and magnetic field are u2 = b2/4πρ.

Therefore, the fluctuating magnetic field energy contained in eddies of scales smaller than

l is b2
l ∼ ρu2

l .

The cascade of energy is considered to occur by the non-linear interaction of Alfvén

wave packets traveling in opposite directions which are colliding. From this interaction,
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energy is transferred to smaller scales. This interaction is assumed to occur between

eddies of the same scale.

This cascade proceeds until the end of the inertial range. For the hydrodynamic case,

we defined the viscous dissipation scale lν as the one for which the associated Reynolds

number Rel achieves unity. Now we define the resistive dissipation scale lη as that for

which the associated magnetic Reynolds number Rml ≡ lul/η is of the order of unity.

The inertial range has scales L À l À max(lν , lη).

If the non-linear interaction between the Alfvén wave packets is assumed to be weak,

that is, a large number of collisions is required for the energy of a single wave packet to

be transferred to smaller scales, the turbulence is called weak.

The non-linearity can be measured as the ratio between the collision crossing time of

the wave packets ∼ l‖/vA (inverse of the linear frequency of the eddies) and the turnover

time of the eddie ∼ l⊥/ul⊥ (the inverse of the non-linear frequency associated with the

eddies). The non-linearity parameter χ(l⊥) is defined as

χ(l⊥) =
l‖
vA

ul⊥
l⊥

. (2.28)

For the hypothesis of weak turbulence to be valid, it is necessary that at the injection

scale U < vA.

By assuming the transfer of energy in the cascading process as being spatially isotropic

(l‖ ∼ l⊥), Iroshnikov (1963) and Kraichnan (1965) (IK) derived the scaling law ul ∝ l1/4.

The corresponding energy spectrum is E(k) ∝ k−3/2, known as the Iroshnikov-Kraichnan

spectrum. With this scaling law, χ(l⊥) ∼ l
1/4
⊥ , and the hypothesis of weak turbulence

keeps consistent for all the inertial range.

However, more recent observational and numerical evidences have shown that the

transfer of energy in weak MHD turbulence is much faster in the direction perpendicular

to the magnetic field, being therefore anisotropic. The predicted scaling from new theories

(Goldreich & Sridhar 1997, Ng & Bhattacharjee 1997) is

ul ∝ l
1/2
⊥ , (2.29)

corresponding to an energy spectrum E(k) ∝ k−2. Practically all the energy is transferred

in the perpendicular direction.
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This last scaling law results in χ(l⊥) ∼ l
−1/2
⊥ . If turbulence is weak at the injection

scale, it will become strong at the scale lstrong for which χ ∼ 1, given by

lstrong ∼ LU2/v2
A = LM−2

A , (2.30)

if the inertial range is sufficiently broad.

2.3.3 Strong cascade

The strong turbulence is treated phenomenologically with the assumption of the critical

balance: χ ∼ 1 through the cascade (Goldreich & Sridhar 1995, GS95 hereafter). The

GS95 theory predicts a scaling law and energy spectrum

ul ∝ l
1/3
⊥ , (2.31)

E(k⊥) ∝ k
−5/3
⊥ , (2.32)

and an anisotropy scale-dependence for the eddies:

l‖ ∝ l
2/3
⊥ , (2.33)

which means that the smaller eddies have shapes more elongated in the direction of the

local mean magnetic field.

Numerical simulations support the above scale dependent anisotropy for strong MHD

turbulence (Cho & Vishniac 2000, Maron & Goldreich 2001, Cho et al. 2002, Beresnyak

& Lazarian 2010, Beresnyak 2011); however, sometimes the energy spectra are better

approximated by the Iroshnikov-Kraichnan spectrum E(k) ∝ k
−3/2
⊥ rather than by the

Kolmogorov spectrum E(k) ∝ k
−5/3
⊥ (Maron & Goldreich 2001, Müller, Biskamp & Grap-

pin 2003, Müller & Grappin 2005, Mason, Cattaneo & Boldyrev 2008), and the matter of

strong MHD turbulence is still debated (see for example Boldyrev 2005, 2006).

Bellow, Table 2.1 summarizes some results from theories of incompressible turbulence.

2.3.4 Compressible MHD turbulence

If MS > 1 at the injection scale, compressible modes can also be produced in the plasma.

The weak turbulence treatment of compressible MHD for fast and Alfvén waves suggests
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Table 2.1: Scaling laws, anisotropy, and energy spectra for different models of incompress-

ible MHD turbulence

Theory ul E(k) anisotropy scales range

Hydrodynamic (K41) ∝ l1/3 ∝ k−5/3 no L > l > lA

Weak, isotropic (IK) ∝ l1/4 ∝ k−3/2 no -

Weak, anisotropic ∝ l
1/2
⊥ ∝ k−2

⊥ (only perpendicular cascade) lA > l > lstrong

Strong, anisotropic (GS95) ∝ l
1/3
⊥ ∝ k

−5/3
⊥ l‖ ∝ l

2/3
⊥ lstrong > l > max(lν , lη)

that only a small amount of energy is transferred from magnetosonic fast waves to Alfvén

waves at large k‖ models (Chandran 2006).

Cho & Lazarian (2003) performed numerical simulations of strong turbulence and

analysed the energy spectrum and anisotropy relation for each mode (Alfvén, slow, and

fast) separately. They found that: (i) the Alfvén modes follow the GS95 energy spectrum

E(k⊥) ∝ k
−5/3
⊥ and the anisotropy scale dependence l‖ ∼ l

2/3
⊥ ; (ii) the slow mode also

follows the GS95 energy spectrum and the anisotropy relation when β is high, and a

steeper spectrum for highly compressible and low β regime; and (iii) the fast modes show

an isotropic cascade with the energy spectrum E(k) ∝ k−3/2. Besides, in these numerical

simulations (Cho & Lazarian 2002, 2003) the coupling between the Alfvén mode and the

compressible modes was verified to be weak.

Therefore, the picture of the Alfvén wave cascade from the incompressible MHD theory

is not expected to change when compressive modes are present. Nonetheless, this is still

an open research topic.

Despite the fact that MHD turbulence is still a theory in construction, several phe-

nomena in astrophysics, such as magnetic field diffusion and dynamo amplification rely

on it. In the next paragraphs of this chapter and all along this thesis, the theoretical

grounds discussed in this section will be invoked in different contexts.
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2.4 The role of MHD turbulence on magnetic field

diffusion during star-forming processes

As remarked before, the role played by MHD turbulence in the ISM and star formation

is still highly debated, but generally regarded as important. This has been discussed

in many reviews (see Elmegreen & Scalo 2004; McKee & Ostriker 2007) and in general

magnetic field dynamics is regarded as dominant (see Tassis & Mouschovias 2005; Galli et

al. 2006) or at least moderately important, as in super-Alfvénic models of star formation

(see Padoan et al. 2004).

The vital question that frequently permeates these debates is the diffusion of the

magnetic field. The conductivity of most of the astrophysical fluids is high enough to

make the Ohmic diffusion negligible on the scales involved which means that the “frozen-

in” approximation is a good one for many astrophysical environments. However, without

considering diffusive mechanisms that can violate the flux freezing, one faces problems

attempting to explain many observational facts. For example, simple estimates assuming

magnetic flux conservation show that if all the magnetic flux is brought together with the

material that collapses to form a star in molecular clouds, then the magnetic field in a

protostar should be several orders of magnitude higher than the one observed in T-Tauri
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stars (this is the “magnetic flux problem”, see Galli et al. 2006 and references therein).2

To address the problem of the magnetic field diffusion both in the partially ionized

ISM and in molecular clouds, researchers usually appeal to the ambipolar diffusion concept

(see Mestel & Spitzer 1956; Shu 1983). The idea of the ambipolar diffusion (see Eq. 2.15)

is very simple and may be easily exemplified in the case of gas collapsing to form a star.

As the magnetic field acts on charged particles of the gas only, it does not directly affect

neutrals. Neutrals move under the gravitational pull but are scattered by collisions with

ions and charged dust grains which are coupled with the magnetic field. The resulting flow

dominated by the neutrals will be unable to drag the magnetic field lines and these will

diffuse away through the infalling matter. This process of ambipolar diffusion becomes

faster as the ionization ratio decreases and therefore, becomes more important in poorly

ionized cloud cores.

Shu et al. (2006) have explored the accretion phase in low-mass star formation and

concluded that there should exist an effective diffusivity about four orders of magnitude

larger than the Ohmic diffusivity in order to allow an efficient magnetic flux transport

to occur. They have argued that ambipolar diffusion could work, but only under rather

special circumstances like, for instance, considering particular dust grain sizes. In other

words, currently it is unclear if ambipolar diffusion is really high enough to solve the

2This point can be further illustrated by the use of the induction equation in its ideal form. One can re-

write Eq. (2.10), neglecting the resistive term in the following way: ∂B
∂t = −B(∇·v)+(B ·∇)v−(v ·∇)B.

Using the continuity Equation (2.7) one obtains

d

dt

(
B
ρ

)
=

(
B
ρ
· ∇

)
v.

From this equation, it is easy to see that if a cloud permeated by an uniform magnetic field has velocity

gradients in the direction perpendicular to B (in the parallel direction the plasma motion does not affect

the magnetic field) , the final |B| will scale with the final density ρ inside the cloud. For collapse in

arbitrary geometries, the evolution of |B| with the density of the cloud can be parameterized as |B| ∝ ρκ

(e.g. Crutcher 2005). For example, for collapse parallel to the field lines, κ = 0. When the magnetic

field is initally weak and does not impose a preferred direction on the collapse, it can proceed spherically

symmetric in which case the relation κ = 2/3 is predicted, provided that there is flux conservation (e.g.

Mestel 1966).
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magnetic flux transport problem in collapsing flows.

Does magnetic field remain absolutely frozen-in within highly ionized astrophysical

fluids? The answer to this question affects the description of numerous essential processes

in the interstellar and even in the intergalactic gas.

First, one has to note that Richardson’s diffusion in turbulent flows (Richardson 1926;

Lesieur 1990) indicates that the particles suffer spontaneous stochasticity, as a conse-

quence there is an explosive separation into larger and larger turbulent eddies that cause

an efficient turbulent diffusion in the flow. An important implication of this result is

that magnetic flux conservation in turbulent fluids is violated! It is only stochastically

conserved, as claimed by Eyink (2011).

Magnetic reconnection was appealed in Lazarian (2005) as a way of removing magnetic

flux from gravitating clouds, e.g. from star-forming clouds. That work referred to the

reconnection model of Lazarian & Vishniac (1999) and Lazarian et al. (2004) for the jus-

tification of the concept of fast magnetic reconnection in the presence of turbulence. The

advantage of the scheme proposed by Lazarian (2005) was that robust removal of magnetic

flux can be accomplished both in partially and fully ionized plasma, with only marginal

dependence on the ionization state of the gas3. The concept of “turbulent reconnection

diffusion” (TRD) introduced in Lazarian (2005) is relevant to our understanding of many

basic astrophysical processes. In particular, it suggests that the classical textbook de-

scription of molecular clouds supported both by hourglass magnetic field and turbulence

is not self-consistent (see Leão et al. 2012). Indeed, turbulence is expected to induce

“reconnection diffusion” which should enable fast magnetic field removal from the cloud.

However, in the absence of numerical confirmation of the fast reconnection, the scheme of

magnetic flux removal through “reconnection diffusion” as opposed to ambipolar diffusion

stayed somewhat speculative.

Fortunately, it has been shown numerically (see Kowal et al. 2009, 2012) that three-

dimensional magnetic reconnection in turbulent fluids is indeed fast, following the predic-

tions of Lazarian & Vishniac (1999). Motivated by this result, we present in Chapter 3

3The rates were predicted to depend on the reconnection rate, which according to Lazarian et al.

(2004) very weakly depends on the ionization degree of the gas.
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numerical studies aiming to gain understanding of the diffusion of magnetic field induced

by turbulence. We will apply this study to interestellar clouds and compare “reconnec-

tion diffusion” with the ambipolar diffusion as described in Heitsch et al. (2004). The

latter study reported the enhancement of ambipolar diffusion in the presence of turbulence

which raised the question on how important is the simultaneous action of turbulence and

ambipolar diffusion and whether turbulence alone, i.e. without any effect from ambipolar

diffusion, can equally well induce de-correlation of magnetic field and density.

What are the laws that govern magnetic field diffusion in turbulent magnetized flu-

ids? Could these laws affect our understanding of basic interstellar and star formation

processes? These are the questions that we will address in Chapter 3 and 4. We will ex-

plore an alternative way of decreasing the magnetic flux-to-mass ratio without appealing

to ambipolar diffusion. We claim that since turbulence in astrophysics is really ubiquitous,

our results should be widely applicable.

2.4.1 Mechanism of fast magnetic reconnection in the presence

of turbulence

The dynamical response of magnetic fields in turbulent fluids, as we discussed above,

depends on the ability of magnetic fields to change their topology via reconnection. We

know from observations that magnetic field reconnection may be both fast and slow.

Indeed, a slow phase of reconnection is necessary in order to explain the accumulation of

free energy associated with the magnetic flux that precedes eruptive flares in magnetized

coronae. Thus it is important to identify the conditions for the reconnection to be fast.

Different mechanisms prescribe different necessary requirements for this to happen.

The problem of magnetic reconnection is most frequently discussed in terms of solar

flares. However, this is a general basic process underlying the dynamics of magnetized

fluids in general. If the magnetic field lines in a turbulent fluid do not easily reconnect,

the properties of the fluid should be dominated by intersecting magnetic flux tubes which

are unable to pass through each other. Such fluids cannot be simulated with the existing

codes as magnetic flux tubes readily reconnect in the numerical simulations which are
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currently very diffusive compared to the actual astrophysical flows.

The famous Sweet-Parker model of reconnection (Sweet 1958; Parker 1958; see Fig-

ure 2.1, upper panel) produces reconnection rates which are smaller than the Alfvén veloc-

ity by a square root of the Lundquist number, i.e. by S−1/2 ≡ (LxVA/η)−1/2, where Lx in

this case is the length of the current sheet and η is the magnetic diffusivity. Astrophysical

values of S can be as large as 1015 or 1020, thus this scheme produces reconnection at a

rate which is negligible for most of the astrophysical circumstances. If Sweet–Parker were

the only model of reconnection it would have been possible to show that MHD numerical

simulations do not have anything to do with real astrophysical fluids. Fortunately, fast

reconnection is possible.

The first model of fast reconnection proposed by Petschek (1964) assumed that mag-

netic fluxes get into contact not along the astrophysically large scales of Lx, but instead

over a scale comparable to the resistive thickness δ, forming a distinct X-point, where

magnetic field lines of the interacting fluxes converge at a sharp point to the reconnection

spot. The stability of such a reconnection geometry in astrophysical situations is an open

issue. At least for uniform resistivity, this configuration was proven to be unstable and

to revert to a Sweet–Parker configuration (Biskamp, 1986; Uzdensky & Kulsrud, 2000).

Recent years have been marked by the progress in understanding some of the key

processes of reconnection in astrophysical plasmas. In particular, a substantial progress

has been obtained by considering reconnection in the presence of the Hall-effect (Shay et

al., 1998, 2004). The condition for which the Hall-MHD term becomes important for the

reconnection is that the ion skin depth δion becomes comparable with the Sweet-Parker

diffusion scale δSP. The ion skin depth is a microscopic characteristic and it can be viewed

as the gyroradius of an ion moving at the Alfvén speed, i.e. δion = VA/ωci, where ωci is

the cyclotron frequency of an ion. For the parameters of the ISM (see Table 1 in Draine

& Lazarian 1998), the reconnection is collisional (see further discussion in Yamada et al.

2006).

To deal with both collisional and collisionless plasma Lazarian & Vishniac (1999,

henceforth LV99) proposed a model of fast reconnection in the presence of weak turbulence

where magnetic field back-reaction is extremely important.
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Figure 2.1: Upper plot: Sweet–Parker model of reconnection. The outflow is limited by a

thin slot ∆, which is determined by Ohmic diffusivity. The other scale is an astrophysical

scale Lx À ∆. Middle plot: reconnection of weakly stochastic magnetic field according to

LV99. The model that accounts for the stochasticity of magnetic field lines. The outflow

is limited by the diffusion of magnetic field lines, which depends on field line stochasticity.

Low plot: an individual small-scale reconnection region. The reconnection over small

patches of magnetic field determines the local reconnection rate. The global reconnection

rate is substantially larger as many independent patches come together. From Lazarian

et al. (2004).

The middle and bottom panels of Figure 2.1 illustrate the key components of the

LV99 model4. The reconnection events happen on small scales λ‖ where magnetic field

lines get into contact. As the number of independent reconnection events that take place

4The cartoon in Figure 2.1 is an idealization of the reconnection process as the actual reconnection

region also includes reconnected open loops of magnetic field moving oppositely to each other. Never-

theless, the cartoon properly reflects the role of the three-dimensionality of the reconnection process, the

importance of small-scale reconnection events, and the increase of the outflow region compared to the

Sweet–Parker scheme.
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simultaneously is Lx/λ‖ À 1 the resulting reconnection speed is not limited by the speed

of individual events on the scale λ‖. Instead, the constraint on the reconnection speed

comes from the thickness of the outflow reconnection region ∆, which is determined

by the magnetic field wandering in a turbulent fluid. The model is intrinsically three

dimensional5 as both field wandering and simultaneous entry of many independent field

patches, as shown in Figure 2.1, are three-dimensional effects. In the LV99 model the

magnetic reconnection speed becomes comparable with VA when the scale of magnetic

field wandering ∆ becomes comparable with Lx.
6

For a quantitative description of the reconnection, one should adopt a model of MHD

turbulence (see Iroshnikov 1963; Kraichnan 1965; Dobrowolny et al. 1980; Shebalin et al.

1983; Montgomery & Turner 1981; Higdon 1984, and also Section 2.3). Most important

for magnetic field wandering is the Alfvénic component. Adopting the GS95 (see Section

2.3.3) scaling of the Alfvénic component of MHD turbulence extended to include the case

of weak turbulence, LV99 predicted that the reconnection speed in a weakly turbulent

magnetic field is

VR = VA(l/Lx)
1/2(vl/VA)2 (2.34)

where the level of turbulence is parameterized by the injection velocity vl; the combination

VA(vl/VA)2 is the velocity of the largest strong turbulent eddies Vstrong, i.e., the velocity at

the scale at which the Alfvénic turbulence transfers from the weak to the strong regimes.

Thus Equation (2.34) can also be rewritten as VR = Vstrong(l/Lx)
1/2; vl < VA and l is the

turbulence injection scale.

The scaling predictions given by Equation (2.34) have been tested successfully by

three-dimensional MHD numerical simulations in Kowal et al. (2009). This stimulates us

to adopt the LV99 model as a starting point for our discussion of magnetic reconnection.

5Two-dimensional numerical simulations of turbulent reconnection in Kulpa-Dybel et al. (2009) show

that the reconnection is not fast in this case.
6Another process that is determined by magnetic field wandering is the diffusion of energetic particles

perpendicular to the mean magnetic field. Indeed, the coefficient of diffusion perpendicular to the mag-

netic field in the Milky Way is just an order of unity less than the coefficient of diffusion parallel to the

magnetic field (see Giacalone & Jokipii 1999, and references therein).

29



MHD turbulence

How can λ‖ be determined? In the LV99 model, as many as L2
x/λ⊥λ‖ localized re-

connection events take place, each of which reconnects the flux at the rate Vrec, local/λ⊥,

where Vrec, local is the velocity of local reconnection events at the scale λ‖. The individual

reconnection events contribute to the global reconnection rate, which in three dimensions

becomes a factor of Lx/λ‖ larger, i.e.,

Vrec,global ≈ Lx/λ‖Vrec, local. (2.35)

The local reconnection speed, conservatively assuming that the local events are hap-

pening at the Sweet–Parker rate, can be easily obtained by identifying the local resistive

region δSP with λ⊥ and using the relations between λ‖ and λ⊥ that follow from the MHD

turbulence model. The corresponding calculations in LV99 provided the local reconnection

rate vlS
−1/4. Substituting this local reconnection speed in Equation (2.35) one estimates

the global reconnection speed, which is larger than VA by a factor S1/4. As a result, one

has to conclude that the reconnection is fast in presence of turbulence and is not sensitive

to the resistivity.

In this work, we will address problems which are relevant to the reconnection in a

partially ionized, weakly turbulent gas. The corresponding model of reconnection was

proposed in Lazarian et al. (2004, henceforth LVC04). The extensive calculations sum-

marized in Table 1 in LVC04 show that the reconnection for realistic circumstances varies

from 0.1VA to 0.03VA, i.e., is also fast, which should enable fast diffusion arising from

turbulent motions.

The fact that magnetic fields reconnect fast in turbulent fluids ensures that the large-

scale dynamics that we can reproduce well with numerical codes is not compromised

by the difference in reconnection processes in the computer and in astrophysical flows.

This motivates our present study in which we investigate diffusion processes in turbulent

magnetized fluids via three-dimensional simulations.

2.4.2 Magnetic diffusion due to fast reconnection

A natural consequence of the fast reconnection in turbulent flows is that it provides an

efficient way by which magnetic flux can diffuse through the turbulent eddies, particularly
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when the turbulence is super-Alfvénic. The theoretical grounds of this “reconnection

diffusion” mechanism in turbulent flows have been described in detail in several recent

reviews (Lazarian 2005; Lazarian 2011; Lazarian et al. 2011; de Gouveia Dal Pino et al.

2011; 2012; Eyink et al. 2011).

Figure 2.36 shows a schematic representation of how interacting turbulent eddies can

mix the gas and exchange parts of their magnetic flux tubes (through reconnection)

favoring their diffusion. This theory predicts a turbulent reconnection diffusivity ηt which

is much larger than the Ohmic diffusivity at the turbulent scales (Lazarian 2005; Santos-

Lima et al. 2010; Lazarian 2006; 2011; Lazarian et al. 2012; Leão et al. 2012):

ηt ∼ linjvturb if vturb ≥ vA ,

ηt ∼ linjvturb

(
vturb

vA

)3

if vturb < vA ,
(2.36)

where linj = L/kf and vturb = vrms. The relations above indicate that the ratio (vturb/vA)3

is important only in a regime of sub-Alfvénic turbulence, i.e. with the Alfvénic Mach

number MA ≤ 1. We also notice that when vturb ≥ vA the predicted diffusivity is similar

to Richardson’s turbulent diffusion coefficient, as one should expect.

Figure 2.2: Schematic representation of two interacting turbulent eddies each one carrying

its own magnetic flux tube. The turbulent interaction causes an efficient mixing of the

gas of the two eddies, as well as fast magnetic reconnection of the two flux tubes which

leads to diffusion of the magnetic field (extracted from Lazarian 2011).
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Visualization of turbulent diffusion of heat or any passive scalar field is easy within the

GS95 model, which can be interpreted as a model of Kolmogorov cascade perpendicular

to the local direction of the magnetic field (LV99 and more discussion in Section 2.3

above). The corresponding eddies are expected to advect heat similarly to the case of

the hydrodynamic heat advection. The corresponding visualization of the magnetic field

diffusion is more involved. Every time that magnetic field lines intersect each other,

they change their configuration draining free energy from the system. In the presence of

self-gravity this may mean the escape of magnetic field which is a “light fluid” from the

self-gravitating gaseous “heavy fluid”. Naturally, if the turbulence gets very strong the

system gets unbound and then the mixing of magnetic field and gas, rather than their

segregation is expected. In Chapters 3 and 4 we will test these ideas numerically.
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2.5 Magnetic field amplification and evolution in the

turbulent intracluster medium (ICM)

The ICM is turbulent and magnetized (see for example Govoni & Ferreti 2004; Ensslin &

Vogt 2005). Understanding how the magnetic fields evolve in connection with the turbu-

lent motions of the plasmas permeating the ICM inevitably involves the turbulent dynamo

amplification of these fields. This is a broad and active topic of research. Excellent revi-

sions on the subject can be found in Brandenburg & Subramanian (2005); Brandenburg

et al. (2012), Schekochihin et al. (2007), and de Gouveia Dal Pino et al. (2013).

The large scale dynamics of the magnetized plasma in the ICM, commonly links the

evolution of the observed magnetic fields and the bulk motions of the gas. In this context,

one of the most important outcomes from the MHD approximation is the ability of a

driven turbulent flow to amplify the magnetic fields until close equipartition between

kinetic and magnetic energies (Schekochihin et al. 2004). That is, once a magnetic field

seed is present, turbulence will stretch and fold the field lines until the magnetic forces

become dynamically important. In this equilibrium situation, the magnetic fields have

correlation lengths of the order of the largest scales of the turbulence. While the origin

of the seed fields is still a matter of discussion (Grasso & Rubinstein 2001), the above

turbulent dynamo scenario is amply accepted as the mechanism responsible for amplifying

and sustaining the observed magnetic fields in the ICM (de Gouveia Dal Pino et al.

2013). This picture is supported by MHD simulations of galaxy mergers, showing the

amplification of the magnetic field in the intergalactic medium (Kotarba et al. 2011).

However, examining more carefully the typical physical conditions in the ICM (see

Tables 2.3 and 2.2), it seems that the applicability of the standard collisional MHD ap-

proximation to the description of the turbulence and the dynamo magnetic field amplifi-

cation there should be revised. This is due to the small collision frequency of the protons

compared to the frequencies of the turbulent motions and to the gyrofrequency of these

particles around the field lines. The typical time and distance scales involved are: (i) for

the injection scales of the turbulence: τturb = lturb/vturb ∼ 100 Myr considering lturb ∼ 500
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kpc and vturb ∼ 103 km s−1 (e.g. Lazarian 2006a); (ii) for the proton-proton (electron-

electron) collision: τpp ∼ 30 Myr (τee ∼ 1 Myr) and the mean free path is lpp ∼ 30 kpc

(lee ∼ 1 kpc); (iii) for the proton (electrons) gyromotion: τcp ∼ 103 s (τce ∼ 1 s) and

the Larmor radius lci ∼ 105 km (lce ∼ 103 km). This makes the proton-proton collision

rates negligible, disabling the thermalization of the energy of their motions in the different

directions (see more details in Section 2.1), if we consider only binary collisions. As a

consequence the particles velocity distributions parallel and perpendicular (gyromotions)

to the magnetic field lines are decoupled.

Table 2.2: Typical plasma parameters inferred from observations of the ICM

Parameter Notation Value

Particle density n 2× 10−3 cm−3

Temperature T 10 keV

Magnetic field B 1 µG

Under these circumstances, a kinetic description of the collisionless plasma should be

invoked. The unavoidable occurrence of temperature (and thermal pressure) anisotropy

is known from kinetic theory to trigger electromagnetic instabilities (see, for instance

Kulsrud 1983). These electromagnetic fluctuations in turn, redistribute the pitch angles

of the particles, decreasing the temperature anisotropy (Gary 1993). This instability

feedback is observed in the collisionless plasma of the magnetosphere and the solar wind

(Marsch 2006 and references therein), in laboratory experiments (Keiter 1999), and kinetic

simulations (e.g. Tajima et al. 1977; Tanaka 1993; Gary et al. 1997, 1998, 2000; Qu et

al. 2008). On the other hand, a fluid-like model is desirable for studying the large scale

plasma phenomena in the ICM, as well as the evolution of turbulence and magnetic fields

there.

Fortunately, it is possible to describe a collisionless plasma still using an MHD model

with some constraints. The simplest collisionless MHD approximation is the CGL-MHD

model (Chew, Goldberger & Low 1956; see Section 2.5.4). A modified CGL-MHD model

taking into account the anisotropy constraints due to kinetic instabilities has been used
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Table 2.3: Plasma and turbulence parameters estimated for the ICM

Parameter Notation Value

Debye length λD 1.7× 106
( np

10−3 cm−3

)−1/2
(

Tp

10 keV

)1/2

cm

Largest scales of the turbulence lturb 500 kpc

Turbulent velocity (at the lturb) vturb 108 cm/s

Thermal velocity (e,p) vTe,Tp = (kTe,p/me,p)
1/2 4.2× 109 / 9.8× 107

(
Te,p

10 keV

)1/2

cm/s

Alfven velocity vA = B/(4πnpmp)
1/2 6.9× 106

(
B

1 µ G

)( np

10−3 cm−3

)−1/2

cm/s

Thermal to magnetic energy ratio β = 8πnkT/B2 8.0× 102

(
n

2× 10−3 cm−3

)(
T

10 keV

)(
B

1 µ G

)−2

Sonic Mach number MS ∼ vturb/vTp 1.0

(
vturb

108 cm/s

)(
Tp

10 keV

)−1/2

Alfvénic Mach number MA = vturb/vA 14.0

(
vturb

108 cm/s

) (
B

1 µ G

)−1 ( np

10−3 cm−3

)1/2

Turbulence cascade time τturb = lturb/vturb 1.5× 1016

(
lturb

500 kpc

)(
vturb

108 cm/s

)−1

s

Larmor period (e,p) τce,cp 3.6× 10−1 / 6.6× 102

(
B

1 µ G

)−1

s

Collision time (ee,pp) τee,pp = 1/νee,pp 1.7× 1013 / 1015
( ne,p

10−3 cm−3

)−1
(

ln Λ

20

)−1 (
Te,p

10 keV

)3/2

s

Turbulent diffusivity ηturb ∼ vturblturb 1.5× 1032

(
vturb

108 cm/s

)(
lturb

500 kpc

)
cm2/s

Kinematic viscosity1 ν 9.6× 1030
( np

10−3 cm−3

)−1
(

ln Λ

20

)−1 (
Tp

10 keV

)5/2

cm2/s

Magnetic diffusivity2 ηOhm 16

(
ln Λ

20

)(
T

10 keV

)−3/2

cm2/s

1 due to the ions viscosity.

2 due to the Spitzer resistivity.

In all the formulas, the plasma is assumed to be fully ionized, constituted only by electrons and protons in charge neutrality.

for modeling the solar wind in numerical simulations (Samsonov et al. 2007; Chandran et

al. 2011; Meng et al. 2012a,b).

In the next sections we describe briefly the fundamental grounds of the turbulent

dynamo process in the context of the standard collisional MHD. Then, we discuss a fluid

model which better describes a collisionless plasma like the ICM, i.e., a collisionless MHD

model.

2.5.1 Turbulent dynamos in astrophysics

As stressed above, the turbulent dynamo is a process by which turbulent flows of con-

ducting fluids amplify seed magnetic fields. The theory of turbulent dynamos provides a
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plausible physical explanation for the origin and maintenance of the observed magnetic

fields in different astrophysical media.

The magnetic fields in astrophysical objects can be divided into two classes: large-scale

fields, which have coherent scales of the size of the astrophysical object, and small-scale

fields, with scales associated to the turbulence of the system. Both magnetic field classes

can be dynamically important.

Large-scale dynamos (LSDs) are generated when statistical symmetries of the turbu-

lence are broken by large-scale asymmetries of the system such as a density stratification,

differential rotation and shear (Vishniac & Cho 2001; Käpylä et al 2008, Beresnyak 2012).

Turbulent flows possessing perfect statistical isotropy cannot generate large-scale magnetic

fields. The so-called twist-stretch-fold mechanism introduced by Vainshtein & Zeldovich

(1972) was conceived for generating large-scale fields.

Large-scale dynamos can also be referred to as mean-field dynamos since the field

evolution can be obtained from the mean field theory, namely, by averaging the governing

equations, particularly the induction equation. LSDs can be excited by helical turbulence

and are expected to generate magnetic fields in astrophysical sources such as the sun and

stars, accretion disks, and disk galaxies.

Small-scale dynamos (SSDs) on the other hand, can be excited by homogeneous and

isotropic turbulence and are believed to be a key dynamo process, for instance, in the ICM

(Subramanian et al. 2006). They are based on the fact that three-dimensional, random

(in space and time) velocity fields are able to amplify small-scale magnetic fluctuations

due to the random stretching of the field lines.

It should be noted that in general mean-field theories for LSD treat the small-scale

magnetic fluctuations as perturbations of the mean field originated by the turbulence.

Therefore, such small-scale fields disappears in the absence of the mean-field, and they

are different from the small-scale fields generated by the SSD.

SSDs are faster than LSDs in most astrophysical environments and the magnetic

energy grows in the beginning exponentially up to equipartition with the kinetic energy

at the eddy turnover timescale of the smallest eddies (Subramanian 1998). Later, it grows

linearly at the turnover timescale of the larger eddies (Beresnyak 2012), with the largest
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scales of the resulting field being a fraction of the outer scale of the turbulence. Both time

scales are typically much shorter than the age of the system. For instance, in the case of

galaxy clusters, the typical scale and velocity of the turbulent eddies are around 100 kpc

and 100 km/s, respectively, implying a growth time ∼ 108 yr which is much smaller than

the typical ages of such systems. This means that SSDs should operate and are actually

crucial to explaining the observed magnetic fields on the scales of tens of kiloparsecs in

the intracluster media. Besides, according to Subramanian et al. (2006), it would be hard

to explain magnetic fields on larger scales in such environments because the conditions

for LSD action are probably absent.

2.5.2 The small-scale turbulent dynamo

Three-dimensional laminar flows with chaotic trajectories can have dynamo action if the

magnetic Reynolds number Rm is above a certain critical value Rm,c. Batchelor 1950

realized that this amplification of the magnetic fluctuations would occur as a consequence

of the random stretching of the field lines and would occur exponentially at the rate of

strain of the flow.

In a turbulent flow, while the magnetic field is dynamically weak (MA ¿ 1) and the

turbulence is Kolmogorov-like, the highest rate of strain ∼ δul/l ∼ l−2/3 occurs at the

viscous scale lν . Therefore, the fastest amplification would occur at this scale.

The repeated random stretching and shearing of the magnetic field by the flow pro-

duces magnetic field structures with reversals in small scales (limited by the resistive

dissipation), giving origin to a “folded” structure of the field. An analytical demonstra-

tion of this dynamo property of a laminar random flow and of the formation of this

magnetic field folded structure can be found in Zel’dovich et al. (1984) and Schekochihin

et al. (2007).

This dynamo property of random flows is the base of the SSD mechanism. Following

Maron et al. (2004), we describe below a heuristic model for the growth of the magnetic

field due to the action of the SSD.

Consider a flow with the turbulence injected at the scale lf with velocity uf , with
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timescale tf = lf/uf . While the magnetic field is weak, turbulence is essentially hydro-

dynamic, and we can use the Kolmogorov scale relations.

This model is based on the assumption that, at a given time, there is only one scale

where the magnetic field is being amplified. This scale will be designed by ls, the shearing

scale. The speed in this scale is us, and its dynamical timescale ts = ls/us. The magnetic

field is amplified at a rate γ ∼ t−1
s , and dissipated at the resistive scale lη, where the

growth is counterbalanced by the resistive difusivity, ts ∼ l2η/η. Hence,

lη ∼ (ηts)
1/2 ∼ lfRm−1/2 (ts/tf )

1/2 . (2.37)

During this stage when the magnetic field is dynamically unimportant, the eddies of

the viscous scale amplify the field more quickly, and therefore ls = lν , and the growth rate

of the field is γ ∼ t−1
s ∼ t−1

ν . Going to smaller scales, the field decreases in a rate similar

to the exponential. At the end of this stage, the field is strong enough for affecting the

eddies at the shearing scale, B2/8π ∼ 1
2
ρu2

ν . The field structures have lengths ∼ lν and

reversal scales ∼ lη.

Now the magnetic field starts to be strong enough to become dynamically important.

It is supposed that for l < ls the velocity is too weak to shear and amplify the field.

For l > ls the velocities are weakly affected and turbulence remains Kolmogorov. The

shearing scale is then the smallest scale (= highest rate of strain) capable to deform the

field, 1
2
ρu2

s = B2/8π. The field evolution is given by

d

dt

(
B2

8π

)
∼ us

ls

B2

8π
∼ 1

2
ρ
u3

s

ls
∼ ε, (2.38)

where ε is the constant energy flux of the Kolmogorov cascade. The previous equation

states that at the scale ls, a significative fraction of the energy of the cascade is converted

into magnetic energy. Solving the previous equation with B2/8π = 1
2
ρu2

ν in t = 0 gives

B2

8π
=

1

2
ρu2

ν + εt (2.39)

and (ts/tf ) = B2/(4πρu2
f ). As expected, the time and scale of shearing grows during

the non-linear stage. At the same time, the folded structures are elongated (with lengths

of the order of the stretching scale ls) and are “enlarged” (the reversal scales are of
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the order of the resistive scale lη, which increases because the stretching rate decreases:

ls ∼ u3
s/ε ∼ ε1/2t3/2, and lη ∼ (ηts)

1/2 ∼ (ηt)1/2).

When t ∼ tf ∼ (lf/uf ), a dynamical time of the turbulence, the shear scale achieves

the forcing scale and B2/8π ∼ ρu2
f/2. At this point, the growth ceases when the shearing

in every scale is suppressed by the field.

2.5.3 Saturation condition of the magnetic fields in SSDs

In the description of the SSD of the previous session, the magnetic Prandtl number was

assumed Prm > 1.

This number is given by the ratio between the magnetic Reynolds number (Rm) and

the Reynolds number Re. In a turbulent flow, Re = vrms/kinjν, while Rm = vrms/kinjη,

where vrms is the root mean square of the turbulent velocity, ν is the kinematic viscosity

and η is the magnetic diffusivity, so that Prm = Rm/Re = ν/η.

Typical values of Prm, Rm, and Re for astrophysical systems have been compiled

by Brandenburg & Subramanian (2005) using the microscopic (Spitzer) values for both

the magnetic resistivity and the kinematic viscosity. In most of the cases Re and Rm

are very large because of the large scales involved in astrophysical systems, and Prm is

generally different from 1. For partially ionized gas, one finds that (e.g., Brandenburg &

Subramanian 2005) Prm < 1 in dense environments, such as stars (for which Prm ∼ 10−4)

and accretion disks. In these cases lη > lν , where lη corresponds to the scale at which

the turbulent magnetic fields diffuse and lν corresponds to the scale where turbulence

dissipates. While Prm > 1 in small density environments, such as galaxies (Prm ∼ 1014)

and clusters of galaxies, implying lη < lν .

The different regimes above will determine the scale at which an SSD saturates. For

instance, for a system with Prm À 1 and Re ∼ 1, Schekochihin et al. (2004) have found

that the SSD spreads most of the magnetic energy over the sub-viscous range and piles

up at the magnetic resistive scales resulting in a very folded magnetic field structure.

However, this does not seem to be the case when Re À 1.

For systems with Prm À 1 and Re À 1 (typical of galaxies and clusters), numerical
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Figure 2.3: Folded structure of the magnetic field at the saturated state of the SSD

(Extracted from Schekochihin et al. 2004).

simulations indicate that both folded and non-folded magnetic field structures should

coexist (Brandenburg & Subramanian 2005).

Consistent with the results shown in the previous paragraph, for systems with Prm ∼ 1

(implying Re = Rm), numerical studies by Haugen et al. (2003, 2004) have shown that

the magnetic field correlation lengths at the saturated state are of the order of 1/6 of the

velocity correlation scales and therefore much larger than the magnetic resistive scale.

For systems with Prm ¿ 1 and Re À 1 (as one expects in the case of stars and

accretion disks), since kη ¿ kν most of the energy is dissipated resistively leaving very

little kinetic energy to be cascaded and terminating the kinetic energy cascade earlier

than in the case of a system with Prm = 1.

2.5.4 Collisionless MHD model for the ICM

As mentioned in the beginning of this section, the ion-ion collision time in the ICM is

comparable to the dynamical timescales of the turbulence. This makes the application of

a standard (collisional) MHD formulation inappropriate in this case. A way to solve this

problem is to apply a kinetic description for the ICM, however, such an approach is not

appropriate either for studying the large scale phenomena in these environments and, in

particular, the evolution of the turbulence and magnetic fields.

Fortunately, it is possible to formulate a fluid approximation for collisionless plas-

mas, namely, a collisionless-MHD approach. The low rate of collisions in the fluid leads

to anisotropy of the thermal pressure. In this case, it is possible to assume a double

Maxwellian velocity distribution of the particles in the directions parallel and perpendic-
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ular to the local magnetic field which result in distinct pressure terms in both directions.

The pressure tensor ΠP assumes the gyrotropic form:

ΠP = p⊥I + (p‖ − p⊥)bb, (2.40)

where I is the unitary dyadic tensor and b = B/B.

The simplest collisionless-MHD approximation that introduces this pressure anisotropy

in the MHD formulation was first proposed by Chew, Goldberger & Low (Chew et al.

1956), the so called CGL-MHD model. In this model, the evolution of the two compo-

nents of the pressure tensor are given by the conservation of the magnetic moment of the

particles and the conservation of the total entropy of the gas. The CGL closure is also

called the double-adiabatic law. The formal derivation from the statistical moments of

the Vlasov-Maxwell equations can be found, for example, in Kulsrud (1983).

The CGL-MHD equations are:

dρ

dt
= −ρ∇ · u (2.41)

ρ
du

dt
= −∇⊥p⊥ −∇‖p‖ +

p‖ − p⊥
B

∇bB +
1

4π
(∇×B)×B (2.42)

dB

dt
= −B(∇ · u) + (B · ∇)u (2.43)

d

dt

(
p⊥
ρB

)
= 0

d

dt

(
p‖B2

ρ3

)
= 0 (2.44)

where ∇‖ = b(b · ∇) and ∇⊥ = ∇ − b(b · ∇) are the gradients in the parallel and

perpendicular direction (to the local magnetic field).

First, we observe that the CGL-MHD equations have no diffusive terms, in analogy

with the ideal MHD equations. Second, we wrote the momentum equation in such a

way as to identify the peculiar force arising from the pressure anisotropy (the rhs term

containing the difference between the pressure components in Equation 2.42). This force

is along the field lines and, when is dominant over the other terms (regions of curvature

of the magnetic field and high β) then: (a) when p⊥ À p‖, the gas is pushed to lower

magnetic intensity regions, being trapped there (mirror effect); (b) when p‖ À p⊥, the

gas is pushed to the side of increasing magnetic intensity, being able to stretch the field

lines with this motion.
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2.5.5 CGL-MHD waves and instabilities

Linear perturbation analysis of the CGL-MHD equations reveals three waves, analogous

to the Alfvén, slow and fast magnetosonic MHD waves (described in Section 2.2). These

waves, however, can have imaginary frequencies for sufficiently high degrees of the pressure

anisotropy. The corresponding dispersion relations can be found in Kulsrud (1983). For

convenience, we reproduce here these relations (as in Hau & Wang 2007):

(ω

k

)2

a
=

(
B2

4πρ
+

p⊥
ρ
− p‖

ρ

)
cos2 θ, (2.45)

(ω

k

)2

f,s
=

b±√b2 − 4c

2
, (2.46)

where cos θ = k ·B/B (being k the wavevector of the perturbation) and

b =
B2

4πρ
+

2p⊥
ρ

+

(
2p‖
ρ
− p⊥

ρ

)
cos2 θ,

c = − cos2 θ

[(
3p‖
ρ

)2

cos2 θ − 3p‖
ρ

b +

(
p⊥
ρ

)2

sin2 θ

]
.

The dispersion relation for the transverse (Alfvén) mode (ω/k)2
a coincides with that

obtained from the kinetic theory (in the limit when the Larmor radius goes to zero)

and does not change when heat conduction is added to the system (see Kulsrud 1983);

the criterium for the instability (named firehose instability), in terms of A = p⊥/p‖ and

β‖ = p‖/(B2/8π) is in this case

A < 1− 2β−1
‖ . (2.47)

However, for the compressible modes (ω/k)2
f,s (which include the mirror unstable

modes), the linear dispersion relation of the CGL-MHD equations is known to deviate

from the kinetic theory. The mirror instability criterium is

A/6 > 1 + β−1
⊥ , (2.48)

while the one derived from the kinetic theory is

A > 1 + β−1
⊥ , (2.49)

where β⊥ = p⊥/(B2/8π) in the last two expressions.
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Taking into account the finite Larmor radius effects, Meng et al. (2012a) (see also Hall

1979, 1980, 1981) give the following expressions for the the maximum growth rate γmax

(normalized by the ion gyrofrequency Ωi) of the firehose and kinetic mirror instabilities:

γmax

Ωi

=





1

2

(1− A− 2β−1
‖ )√

A− 1/4
(firehose),

4
√

2

3
√

5

√
A− 1− β−1

⊥ (mirror),

(2.50)

which are achieved for k−1 ∼ lci, the ion Larmor radius. These expressions are valid for

the case of |A− 1| ¿ 1 and β‖,⊥ À 1.

Figures 2.4 and 2.5 illustrate the behavior of these instabilities. In Figure 2.4, the

firehose instability results from the unbalance between a higher centrifugal force (in the

particles reference frame) FR = p‖/R exerted by the gas on the curved (R is the local

curvature radius) magnetic field line due to the parallel streaming of the particles, against

the “centripetal forces” FB = B2/4πR (Lorentz curvature force) and Fp⊥ = p⊥/R. In

Figure 2.5, the thick arrows show the direction of the mirror forces, which trap the gas in

zones of small magnetic field intensity.

Figure 2.4: Mechanism of the firehose instability. (Extracted from Treumann & Baumjo-

hann 1997).
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Figure 2.5: Satellite measurements across a mirror-unstable region. (Extracted from

Treumann & Baumjohann 1997).

2.5.6 Kinetic instabilities feedback on the pressure anisotropy

Measurements from weakly collisional plasmas, as those in the solar wind and the earth’s

magnetosphere have demonstrated that the kinetic instabilities driven by pressure anisotropy

are able to induce the pitch angle scattering of plasma particles, thus decreasing the re-

sulting anisotropy. Besides all the available in situ cosmic plasma observations (Marsch

2006 and references therein), further motivation for the choice of our relaxation model is

based on the fact that, regardless of the differences in collisionless plasma regimes and

the anisotropy instabilities, analytical models (Hall 1979, 1980, 1981), quasi-linear calcu-

lations (Yoon & Seough 2012; Seough & Yoon 2012), PIC simulations (Tajima et al. 1977;

Tanaka 1993; Gary et al. 1997, 1998, 2000; Le et al. 2010; Nishimura et al. 2002; Qu et

al. 2008; Riquelme et al. 2012), as well as laboratory experiments (Keiter 1999) evidence

the existence of saturation of the temperature anisotropy at some level, originated from

the microscopic instabilities. In particular, constraints on the anisotropy due to the mir-

ror and firehose instabilities have been clearly detected from solar wind protons (see for
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example Hellinger et al. 2006; Bale et al. 2009) and α−particles (Maruca et al. 2012).

Based on this phenomenology, the numerical studies on turbulence about the ICM

presented in Chapter 5 employ the one-fluid CGL-MHD model modified to take into

account the anisotropy relaxation due to the feedback of the kinetic instabilities. The

equations of this model can be written in conservative form (which is convenient for our

conservative numerical code described in Appendix A):

∂

∂t




ρ

ρu

B

e

A(ρ3/B3)




+∇ ·




ρu

ρuu + ΠP + ΠB

uB−Bu

eu + u · (ΠP + ΠB)

A(ρ3/B3)u




=




0

f

0

f · v + ẇ

ȦS(ρ3/B3)




, (2.51)

where ΠP is the gyrotropic pressure (eq. 2.40) and ΠB is the magnetic stress tensor:

ΠB = (B2/8π)I−BB/4π, (2.52)

In the source terms, f represents an external bulk force responsible for driving the

turbulence (see details in Section 5.1.2), ẇ gives the rate of change of the internal energy

w = (p⊥ + p‖/2) of the gas due to heat conduction and radiative cooling, and ȦS gives

the rate of change of A due to microphysical processes.

Following previous works (Denton et al. 1994; see also Pudovkin et al. 1999; Samsonov

& Pudovkin 2000; Samsonov et al. 2001; Meng et al. 2012a), whenever the plasma satisfies

the firehose (Eq. 2.47) or kinetic mirror instability criteria (Eq. 2.49), we impose the

following pressure anisotropy relaxation condition:
(

∂p⊥
∂t

)

S

= −1

2

(
∂p‖
∂t

)

S

= −νS (p⊥ − p∗⊥) , (2.53)

where p∗⊥ is the value of p⊥ for the marginally stable state (which is obtained from the

equality in Equations 2.47 and 2.49 for each instability and with the conservation of the

thermal energy w).

It is not clear yet how the saturation and isotropization timescales are related to the

local physical parameters. Some authors claim that the values of νS are of the order of the
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maximum growth rate of each instability γmax, which in turn is a fraction of the ion Larmor

frequency γmax/Ωi ∼ 10−2 − 10−1 (see Gary et al. 1997, 1998, 2000). In the ICM, the

frequency Ωi is very large compared to the frequencies that we resolve numerically. This

implies that νS →∞ would be a good approximation, or in other words, the relaxation to

the marginal values would be instantaneous (which is similar to the “hardwalls” employed

in Sharma et al. 2006). However, it is not clear yet whether the extreme low density and

weak magnetic fields of the ICM would result in isotropization timescales as fast as these.

Therefore, we have also tested, for comparison, finite values for νS which are ¿ Ωi (see

Section 5.3).

In Chapter 5 we will discuss the results of numerical simulations where we applied the

collisionless MHD model above to conditions suitable for the ICM aiming to explore both

the turbulent dynamo amplification of seed magnetic fields and the overall evolution of

the MHD turbulence in this environment.
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Chapter 3

Removal of magnetic flux from

clouds via turbulent reconnection

diffusion

The diffusion of astrophysical magnetic fields in conducting fluids in the presence of tur-

bulence depends on whether magnetic fields can change their topology via reconnection

in highly conducting media. Recent progress in understanding fast magnetic reconnection

in the presence of turbulence is reassuring that the magnetic field behavior in computer

simulations and turbulent astrophysical environments is similar, as far as magnetic recon-

nection is concerned. This makes it meaningful to perform MHD simulations of turbulent

flows in order to understand the diffusion of magnetic field in astrophysical environments.

Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenom-

ena. First of all, our three-dimensional MHD simulations initiated with anti-correlating

magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic

field and density, which corresponds well to the observations of the interstellar media.

While earlier studies stressed the role of either ambipolar diffusion or time-dependent

turbulent fluctuations for de-correlating magnetic field and density, we get the effect of

permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion.

In addition, in the presence of gravity and turbulence, our three-dimensional simulations
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show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center

of the gravitational potential increases. We observe this effect both in the situations when

we start with equilibrium distributions of gas and magnetic field and when we follow the

evolution of collapsing dynamically unstable configurations. Thus the process of turbu-

lent magnetic field removal should by TRD be applicable both to quasi-static subcritical

molecular clouds and cores and violently collapsing supercritical entities. The increase

of the gravitational potential, as well as the magnetization of the gas increases the seg-

regation of the mass and magnetic flux in the saturated final state of the simulations,

supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field

+ gas system in the gravitational field to its minimal energy state. This effect is ex-

pected to play an important role in star formation, from its initial stages of concentrating

interstellar gas to the final stages of the accretion to the forming protostar.

We have drawn the theoretical grounds on turbulent reconnection diffusion (TRD)

Section 2.4. This Chapter is organized as follows: In Section 3.1, we describe the numer-

ical model employed. In Section 3.2, we present the results concerning the diffusion of

magnetic field in a setup without external gravitational forces. In Section 3.3, we present

the results of our numerical simulations of diffusion of magnetic field in the presence of

a gravitational field. In Section 3.4, we discuss our results and compare with previous

works. In Section 3.6, we discuss the accomplishments and limitations of our present

study. In Section 3.5, we discuss our findings in the context of strong turbulence theory,

and finally in Section 3.7, we summarize our conclusions.

3.1 Numerical Model

The systems studied numerically in this work is described by the resistive MHD equations,

assuming an isothermal equation of state (see also Section 2.2):

∂ρ

∂t
+∇ · (ρu) = 0 (3.1)

ρ

(
∂

∂t
+ u · ∇

)
u = −c2

s∇ρ + (∇×B)×B− ρ∇Ψ + f (3.2)
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∂B

∂t
= ∇× (u×B) + ηOhm∇2B (3.3)

plus the divergenceless condition for the magnetic field ∇·B = 0. The spatial coordinates

are given in units of a typical length L∗. The density ρ is normalized by a reference density

ρ∗, and the velocity field u by a reference velocity U∗. The constant sound speed cs is

also given in units of U∗, and the magnetic field B is measured in units of U∗
√

4πρ∗. The

uniform Ohmic resistivity ηOhm is given in units of U∗L∗. In our numerical calculations

we will use both non-zero and zero values of ηOhm. In the latter case, the calculations will

include only numerical resistivity. Time t is measured in units of L∗/U∗. The external

gravitational potential Ψ is given in units of U2
∗ . The source term f is a random force

term responsible for injection of turbulence.

The above equations are solved inside a three-dimensional box with periodic boundary

conditions. We use a shock-capturing Godunov-type scheme with an HLL solver (see, for

example, Kowal et al. 2007; Falceta-Gonçalves et al. 2008). Time integration is performed

with the Runge-Kutta method of second order. Unless we say explicitly the opposite, we

assume ηOhm = 0.

We employ an isotropic, non-helical, solenoidal, delta correlated in time forcing f .

This forcing acts in a thin shell around the wave number kf = 2.5(2π/L), that is, the

scale of turbulence injection linj that is about 2.5 times smaller than the box size L (in

all the simulations, we choose L = 1 in code units). In most of the experiments, the rms

velocity Vrms induced by turbulence in the box is close to unity (in code units). Therefore,

in these cases, the turnover time of the energy-carrying eddies (or the turbulent timescale

tturb) is tturb ∼ linj/vturb ∼ (L/2.5)/Vrms ≈ 0.4 units of time in code units.

We note that for our present purposes we use an one-fluid approximation, which does

not include ambipolar diffusion. This choice is appropriate for approximating a fully

ionized gas. One may argue that the code describes also the dynamics of partially ionized

gas, but on the scales where ions and neutrals are strongly coupled, i.e,. on scales larger

than the scale of ambipolar diffusion (see discussion in Lazarian et al. 2004).
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3.2 Turbulent magnetic field diffusion in the absence

of gravity

Observations of different regions of the diffuse ISM compiled by Troland & Heiles (1986)

indicate that magnetic fields and density are not straightforwardly correlated. These

observations motivated Heitsch et al. (2004) to perform 2.5-dimensional numerical cal-

culations in the presence of both ambipolar diffusion and turbulence. As remarked in

Chapter 2, the results in Heitsch et al. (2004) also indicated de-correlation of magnetic

field and density1 and one may wonder whether ambipolar diffusion is always required

to de-correlate magnetic field and density or if, otherwise, to what extent the concept

of “turbulent ambipolar diffusion” introduced in Heitsch et al. (2004) is useful (see also

Zweibel 2002). To address these issues we performed three-dimensional simulations of

magnetic diffusion in the absence of ambipolar diffusion effects.

3.2.1 Initial Setup

The magnetic field is assumed to have initially only the component in the z-direction.

The initial configuration of the magnetic and density fields are:

Bz(x, y) = B0 + B1 cos

(
2π

L
x

)
cos

(
2π

L
y

)
(3.4)

ρ(x, y) = ρ0 − 1
c2s

{
B0B1 cos

(
2π
L

x
)
cos

(
2π
L

y
)

+0.5
[
B1 cos

(
2π
L

x
)
cos

(
2π
L

y
)]2

}
, (3.5)

where (x, y) = (0, 0) is the center of the x, y-plane. Boundary conditions are periodic.

This initial magnetic field configuration has an uniform component B0 plus an har-

monic perturbation of amplitude B1. The density field is distributed in such a way that

1We feel that the constrained geometry of the simulations in Heitsch et al. (2004) (where the magnetic

field was assumed to be perpendicular to the plane of the two-dimensional turbulence, so that there were

no reconnection) weakened the comparison of their set up with effects in the magnetized ISM, but this

point is beyond the scope of our present discussion.
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the gas pressure, given by the isothermal equation of state p = c2
sρ, equilibrates exactly

the magnetic pressure, giving a magneto-hydrostatic solution. We choose the parameters

B1 = 0.3, ρ0 = 1 and cs = 1 in all our simulations. Figure 3.1 illustrates these initial

fields when B0 = 1.0.
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Figure 3.1: (x, y)-plane showing the initial configuration of the z component of the mag-

netic field Bz (left) and the density distribution (right) for the model B2 (see Table 3.1).

The centers of the plots correspond to (x, y) = (0, 0).

We should remark that the simulations presented in Heitsch et al. (2004) do not start

at the equilibrium, like ours. There is no pressure term in their equation for the evolution

of the momentum of the ions to counterbalance the magnetic pressure. In addition, in

their work the ion-density field is kept constant in time and space.

Another difference between our setup and that in Heitsch et al. (2004) is that our

parameter B1 is assumed to be the same for all the models studied, and not a fraction

of B0. Also, the amplitude of the perturbation of the homogeneous component of the

density field is a free parameter in Heitsch et al. (2004), while here it is constrained by

the imposed equilibrium between gas and magnetic pressures.

In addition, we introduce a passive scalar field Φ initially identical to Bz. The param-

eters of our relevant simulations are presented in Table 3.1.

In these simulations we keep the random velocity approximately constant, i.e., Vrms ≈
0.8 for all the models after one time step. Therefore, all these models are slightly subsonic.
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Table 3.1: Parameters of the Simulations in the Study of Turbulent Diffusion of Magnetic

Flux without Gravity.

Model B0 linj Vrms tturb ηturb −Bz ηturb − Φ Resolution

B1 0.5 0.4 0.8 0.5 0.18(0.03) 0.19(0.02) 2563

B2 1.0 0.4 0.8 0.5 0.09(0.02) 0.14(0.02) 2563

B3 1.5 0.4 0.8 0.5 0.10(0.02) 0.08(0.02) 2563

B4 2.0 0.4 0.8 0.5 0.13(0.02) 0.11(0.02) 2563

B2l 1.0 0.4 0.8 0.5 0.15(0.02) 0.11(0.02) 1283

B2h 1.0 0.4 0.8 0.5 0.10(0.01) 0.13(0.02) 5123

3.2.2 Notation

Hereafter, the quantities within brackets with subscript “R = 0.25L”: 〈·〉R=0.25L, or simply

“0.25”: 〈·〉0.25 will denote averages inside a cylinder with main-axis in the z-direction

centered in the computational box, with radius R = 0.25L, while a subscript “z”: 〈·〉z will

denote an average over the z-direction. An overbar means the average of some quantity

inside the entire box.

3.2.3 Results

Figure 3.2 shows the evolution of the amplitude of the mode that is identical to the initial

harmonic perturbation of the magnetic field (i.e., the rms of the amplitude of the Fourier

modes (kx, ky) = (±1,±1)), for 〈Bz〉z and 〈Bz〉z / 〈ρ〉z. Most right plot in Figure 3.3 shows

the evolution of the amplitude of the same mode for 〈Φ〉z and 〈Φ〉z / 〈ρ〉z. All the curves

presented were smoothed in order to make the visualization clearer. We see that the decay

of the magnetic field occurs at a similar rate to that of the passive field. The mode decays

nearly exponentially at roughly the same rate for most of the models. Only the model B1

(B0 = 0.5) exhibits a higher decay rate. This may be due to the large scale field reversals

that are common in super-Alfvénic turbulence. Table 3.1 shows the fitted values (and

the uncertainty) of ηturb in the curves corresponding to the evolution of the amplitude
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of the modes for 〈Bz〉z. The fitted curve is exp {−k2ηturbt}, where k2 = k2
x + k2

y = 2 is

the square of the module of the corresponding wave-vector. We observe that the decay

of the amplitude of the modes of 〈Bz〉z is not continuous but saturates at a value that is

naturally maintained by the turbulence (in Figure 3.2 it occurs after about t = 6).

0.1

1.0

10.0

 0  1  2  3  4  5

time

<Bz>z

<Bz>z / <ρ>z
B1: B0 = 0.5
B2: B0 = 1.0
B3: B0 = 1.5
B4: B0 = 2.0

Figure 3.2: Evolution of the rms amplitude of the Fourier modes (kx, ky) = (±1,±1) of

〈Bz〉z (upper curves) and 〈Bz〉z / 〈ρ〉z (lower curves). The curves for 〈Bz〉z were multiplied

by a factor of 10. All the curves were smoothed to make the visualization clearer.

The diffusion of B/ρ on large scales was also observed in Heitsch et al. (2004) for

two-fluid simulations and there it was associated with the difference between the velocity

field of the ions and neutrals, at small scales. However, here we observe a similar effect,

but in one-fluid simulations, which is suggestive that turbulence rather than the details

of the microphysics are responsible for the diffusion.

Left and center panels of Figure 3.4 shows the distribution of 〈ρ〉z versus 〈Bz〉z for

the model B2 (B0 = 1.0) at the initial configuration (t = 0) and after 10 time steps. We

see in this projected view that the initial magnetic flux-to-mass relation is quickly spread

and, in contrast with the Φ− ρ distribution (see Figure 3.5), we do not see any tendency

for the magnetic field and density to become correlated.

To give a quantitative measure of the evolution of the flux-to-mass relation in the
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Figure 3.3: Left: evolution of the ratio of the averaged magnetic field over the averaged

density (more left) and of the ratio of the averaged passive scalar over the averaged density

(more right) within a distance R = 0.25L from the central z -axis. The values have been

subtracted from their characteristic values B̄/ρ̄ in the box. Right: evolution of the rms

amplitude of the Fourier modes (kx, ky) = (±1,±1) of 〈Φ〉z (upper curves) and 〈Φ〉z / 〈ρ〉z
(lower curves). The curves for Φ were multiplied by a factor of 10. All the curves were

smoothed to make the visualization clearer.

Figure 3.4: Distribution of 〈ρ〉z vs. 〈Bz〉z for model B2 (see Table 3.1), at t = 0 (left) and

t = 10 (center). Right : correlation between fluctuations of the strength of the magnetic

field (δB) and density (δρ).

models, let us consider 〈δB, δρ〉, the correlation between fluctuations of the magnetic
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Figure 3.5: Left : distribution of 〈ρ〉z vs. 〈Φ〉z for model B2 (see Table 3.1), at t = 0 (most

left) and t = 10 (most right). Right : correlation between fluctuations of the passive scalar

field (δΦ) and density (δρ).

field δB and density δρ, defined by

〈δB, δρ〉 =

∫
(B − B̄)(ρ− ρ̄)d3x√∫

(B − B̄)2d3x
√∫

(ρ− ρ̄)2d3x
. (3.6)

Right panel of Figure 3.4 shows the evolution of 〈δB, δρ〉 (see right side of Figure 3.5

for the evolution of 〈δΦ, δρ〉 which is similarly defined). Differently from the passive

scalar field that quickly becomes correlated to the density field, the magnetic field keeps

a residual anti-correlation with it.

A more careful analysis of our results indicates that the correlation between magnetic

field intensity and density depends on the Mach number Ms. For example, when we cal-

culate the correlation 〈δB, δρ〉 using the turbulent models (study of diffusion of passive

scalar fields, see Appendix A in Santos-Lima et al. 2010) , we find weak positive corre-

lations for the supersonic models and negative correlations for the subsonic ones. These

correlations increase with Ms. Thus, the anti-correlation detected in Figure 3.4 can be due

to the slightly subsonic regime of the turbulence. These correlations and anti-correlations

at this level cannot be excluded by the observational data as discussed, e.g., in Troland

& Heiles (1986). We shall address this issue in more detail elsewhere.

To summarize, the results of Figures 3.2 and 3.4 suggest that the turbulence can

substantially change the flux-to-mass ratio B/ρ without any effect of ambipolar diffusion.
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The diffusion of the magnetic flux occurs in a rate similar to the rate of the turbulent

diffusion of heat (passive scalar), even for sub-Alfvénic turbulence.

As remarked in Section 2.4.1, we should emphasize that the efficient turbulent diffusion

of magnetic field that we are observing in the simulations above is due to fast magnetic

reconnection because otherwise, if the tangled magnetic lines by turbulence were not

reconnecting, then they would be behaving like a Jello-type substance and this would make

the diffusive transport of magnetic flux very inefficient (contrary to what is observed in

the simulations). The issue of magnetic reconnection was avoided in Heitsch et al. (2004)

due to the settings in which magnetic field was assumed perpendicular to the plane of

the fluid motions. Magnetic reconnection, however, is an effect that is present within any

realistic three-dimensional setup.

3.2.4 Effects of Resolution on the Results

To convince the reader that the above results are not being affected by numerical effects,

we ran one of the models (model B2) with increased and decreased resolutions (models B2h

and B2l, respectively, see Table 3.1). Figure 3.6 compares the same quantities presented

in Figure 3.2 for these models. We do not observe significant difference between them.

Thus, we can expect that the results presented for the models with resolution of 2563 are

robust.
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Figure 3.6: Comparison between models of different resolution: B2, B2l, and B2h (Table

3.1). It presents the same quantities as in Figure 3.2.

3.3 “Reconnection diffusion” in the presence of grav-

ity

The “reconnection diffusion” of magnetic field in the absence of gravity can represent

the magnetic field dynamics in diffuse interstellar gas where cloud self-gravity is not

important. In molecular clouds, clumps and accretion disks, the diffusion of magnetic

field should happen in the presence of gravity. We study this process below.

3.3.1 Numerical Approach

In order to get an insight into the magnetic field diffusion in a turbulent fluid immersed in

a gravitational potential, we have performed experiments in the presence of a gravitational

potential with cylindrical symmetry Ψ, given in cylindrical coordinates (R, φ, z) by:

Ψ(R ≤ Rmax) = − A

R + R∗
(3.7)

Ψ(R > Rmax) = − A

Rmax + R∗
(3.8)
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where R = 0 is the center of the (x, y)-plane, and we fixed R∗ = 0.1L and Rmax = 0.45L

(L = 1 is the size of the computational box, as remarked in Section 3.1). We assume

a relatively high value of R∗ in order to limit the values of the gravitational force and

prevent the system to be initially Parker–Rayleigh–Taylor unstable. We assume an outer

cut-off Rmax on the gravitational force to ensure the cylindrical symmetry while using

periodic boundary conditions.

In one class of experiments, we start the simulation with a magneto-hydrostatic equi-

librium with β = Pgas/Pmag = c2
sρ/(B2/8π) constant. The initial density and magnetic

fields are, respectively,

ρ(R) = ρ0 exp
{
(Ψ(Rmax)−Ψ(R))/c2

s(1 + β−1)
}

(3.9)

Bz(R) = cs

√
2β−1ρ(R). (3.10)

Figure 3.7 illustrates this initial configuration for one of the studied models (model

C2, see Table 3.2).

We restricted our experiments to the trans-sonic case cs = 1 (in most of the exper-

iments, we keep Vrms ≈ 0.8, see Table 3.2). We also fixed ρ0 = 1. The turbulence is

injected at t = 0 and we follow the evolution of 〈Bz〉R and 〈ρ〉R for eight time steps.

Table 3.2 lists the parameters used for these experiments. ρ̄ and B̄z represent the average

of the density and magnetic field over the entire box. VA,i refers to the initial Alfvén speed

of the system. The rms velocity of the system Vrms is measured after the turbulence is

well-developed.

We have also performed experiments starting out of equilibrium, with homogeneous

fields: the system starts in free fall. We leave the system to evolve for eight time steps

applying turbulence from the very beginning. For a comparison, we have also performed

these experiments without turbulence. The initial uniform magnetic field is parallel to

the z-direction for these models. Table 3.3 lists the parameters for these runs. The listed

values of β refer to the initial conditions.

Concerning the diffusion of the magnetic field, in order to provide a quantitative

comparison between the models, we have also performed simulations with similar initial

conditions to the models presented in Table 3.2, but without turbulence and with the
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Figure 3.7: Model C2 (see Table 3.2). Top row : logarithm of the density field; bottom

row : Bz component of the magnetic field. Left column: central xy, xz, and yz slices of

the system projected on the respective walls of the cubic computational domain, in t = 0;

middle and right columns : the same for t = 3 (middle) and t = 8 (right).

explicit presence of Ohmic diffusivity ηOhm in the induction equation. As these models

have perfect symmetry in the z-direction, we simulated only a plane cutting the z-axis,

that is, they are 2.5-dimensional simulations. We use a resolution comparable to the

turbulent three-dimensional models. Table 3.4 lists the parameters for theses runs. We

simulated a three-dimensional model equivalent to the model E7r1, and we found exact

agreement in the time evolution of the magnetic flux distribution (not shown). Therefore,

we can believe that in this case these 2.5-dimensional simulations give results which are
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Table 3.2: Parameters for the Models with Gravity Starting at Magneto-hydrostatic Equi-

librium with Initial Constant β.

Model β1 VA,i A2 ρ̄ B̄z Vrms tturb ηturb ηturb/Vrmslinj Resolution

C1 1.0 1.4 0.6 1.26 1.59 0.8 0.5 / 0.005 / 0.015 2563

C2 1.0 1.4 0.9 1.52 1.74 0.8 0.5 ≈ 0.01 ≈ 0.03 2563

C3 1.0 1.4 1.2 1.95 1.98 0.8 0.5 ≈ 0.03 ≈ 0.09 2563

C4 1.0 1.4 0.9 1.52 1.74 1.4 0.3 ≈ 0.10− 0.20 ≈ 0.18− 0.36 2563

C5 1.0 1.4 0.9 1.52 1.74 2.0 0.2 ' 0.30 ' 0.37 2563

C6 3.3 0.8 0.9 2.40 1.20 0.8 0.5 ≈ 0.02 ≈ 0.06 2563

C7 0.3 2.4 0.9 1.18 2.66 0.8 0.5 ≈ 0.01 ≈ 0.03 2563

C2l 1.0 1.4 0.9 1.52 1.74 0.8 0.5 ... ... 1283

C2h 1.0 1.4 0.9 1.52 1.74 0.8 0.5 ... ... 5123

1 Initial β parameter for the plasma: β = Pgas/Pmag

2 The parameter A for the strength of gravity (see Equations 3.7 and 3.8) is given in units of c2
sL.

Table 3.3: Parameters for the Models with Gravity Starting Out-of-equilibrium, with

Initially Homogeneous Fields.

Model β VA,i A ρ̄ B̄z Vturb Resolution

D1 1.0 1.4 0.9 1.0 1.41 0.8 2563

D1a 1.0 1.4 0.9 1.0 1.41 0.0 2563

D2 3.3 0.8 0.9 1.0 0.77 0.8 2563

D2a 3.3 0.8 0.9 1.0 0.77 0.0 2563

D3 0.3 2.4 0.9 1.0 2.45 0.8 2563

D3a 0.3 2.4 0.9 1.0 2.45 0.0 2563

D1l 1.0 1.4 0.9 1.0 1.41 0.8 1283

D1h 1.0 1.4 0.9 1.0 1.41 0.8 5123

equivalent to three-dimensional simulations.
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Table 3.4: Parameters for the 2.5-dimensional Resistive Models with Gravity Starting

with Magneto-hydrostatic Equilibrium and Constant β.

Model β A ηOhm Resolution

E1r0 1.0 0.6 0.005 2562

E1r1 1.0 0.6 0.01 2562

E2r1 1.0 0.9 0.01 2562

E2r2 1.0 0.9 0.02 2562

E2r3 1.0 0.9 0.03 2562

E2r4 1.0 0.9 0.05 2562

E3r1 1.0 1.2 0.01 2562

E3r2 1.0 1.2 0.02 2562

E3r3 1.0 1.2 0.03 2562

E4r2 1.0 0.9 0.10 2562

E4r3 1.0 0.9 0.20 2562

E5r3 1.0 0.9 0.30 2562

E6r1 3.3 0.9 0.01 2562

E6r2 3.3 0.9 0.02 2562

E6r3 3.3 0.9 0.03 2562

E7r1 0.3 0.9 0.01 2562

3.3.2 Results

Evolution of the Equilibrium Distribution

Top row of Figure 3.8 shows the evolution of 〈Bz〉0.25 (left), 〈ρ〉0.25 (middle), and 〈Bz〉0.25 / 〈ρ〉0.25

(right), normalized by the respective characteristic values inside the box (B̄z, ρ̄ and B̄z/ρ̄),

for the models C1, C2, and C3 (β = 1). We compare the evolution of these quantities for

different strengths of gravity A, maintaining the other parameters identical. The central

magnetic flux reduces faster the higher the value of A. The flux-to-mass ratio has similar

behavior. The other plots of Figure 3.8 show the profile of the quantities 〈Bz〉z (upper
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panels), 〈ρ〉z (middle panels), and 〈Bz〉z / 〈ρ〉z (bottom panels) along the radius R, each

column corresponding to a different value of A both for t = 0 (in magneto-hydrostatic

equilibrium and constant β) and for t = 8. We see the deepest decay of the magnetic flux

toward the central region for the highest value of A at t = 8.

In Figure 3.9, we compare the rate of the “reconnection diffusion” when we change

the turbulent velocity and maintain the other parameters identical as in models C2, C4

and C5. An inspection of the left panel shows that the central magnetic flux 〈Bz〉0.25

decreases faster for the two highest turbulent velocities. Fluctuations are higher in the

cases with higher velocity. The central density however, gets smaller for the highest

turbulent velocity. This is explained by the fact that the dynamic pressure is higher for

the largest velocities. The central flux-to-mass ratio 〈Bz〉0.25 / 〈ρ〉0.25 decays for the two

smallest velocities. However, for the largest velocity, it is not clear if this ratio decreases

or not. Looking at the middle graph of Figure 3.9 (bottom row), we see that the central

density decreases for the highest forcing. This is indicative that the turbulence driving

overcomes the gravitational potential making the system less bound.

Top row of Figure 3.10 compares the evolution of 〈Bz〉0.25 (left), 〈ρ〉0.25 (middle), and

〈Bz〉0.25 / 〈ρ〉0.25 (right), normalized by the characteristic average values inside the box (B̄z,

ρ̄ and B̄z/ρ̄), for models C2, C6, and C7 with different β. Both the central magnetic flux

and the flux-to-mass ratio decreases faster for the less magnetized model (β = 3.3). The

other plots of Figure 3.10 show the radial profile of the quantities 〈Bz〉z (upper panels),

〈ρ〉z (middle panels), and 〈Bz〉z / 〈ρ〉z (bottom panels) for each model. We can again

observe a lower value of the flux in the central region (relative to the external regions)

for the highest values of β at the time step t = 8. The contrast between the central and

the more external values for the flux-to-mass ratio is quite different for the three models,

being higher for the more magnetized models. This is expected, as turbulence brings the

system in the state of minimal energy. The effect of varying magnetization in some sense

is analogous to the effect of varying gravity. The equilibrium flux-to-mass ratio is larger

in both the case of higher gravity and higher magnetization. The physics is simple, the

lighter fluid (magnetic field) gets segregated from the heavier fluid (gas).

All in all, we clearly see that turbulence substantially influences the quasi-static evo-
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lution of magnetized gas in the gravitational potential. The system in the presence of

turbulence relaxes faster to its minimum potential energy state. This explains the change

of the flux-to-mass ratio, which for years was a problem to deal with invoking ambipolar

diffusion.

Equilibrium Models: Comparison of Magnetic Diffusivity and Resistivity Ef-

fects

In terms of the removal of the magnetic field from quasi-static clouds, does the effect of

“reconnection diffusion” act similar to the effect of diffusion induced by resistivity? To

address this question, we have performed a series of simulations with enhanced Ohmic

resistivity (see models of Table 3.4).

In Figure 3.11, we compare the evolution of 〈Bz〉R (at different radius) for model C2

of Table 3.2 with similar resistive models without turbulence of Table 3.4, with different

values of Ohmic diffusivity ηOhm. The decay seems initially faster and comparable with

the highest value of ηOhm (ηOhm = 0.05). But after this initial phase, the turbulent model

(C2) seems to have a behavior similar to the resistive models with ηOhm between 0.01 and

0.02.

Figure 3.12 compares the turbulent models C1, C3, C4, C5, C6, and C7 of Table 3.2

with similar resistive models of Table 3.4. After roughly one time step, the model C1

(weaker gravitational field) seems to be consistent with a value of ηOhm between 0.005

or lesser, while the model C3 (stronger gravitational field) seems to be consistent with

ηOhm ≈ 0.03. These results show that the effective turbulent magnetic diffusivity is

sensitive to the strength of the gravitational field.

The resistive simulations with increasing ηOhm values are more comparable with models

with increasing turbulent velocity. The model C4 (with smaller turbulent velocity) seems

to be consistent with the resistive model with ηOhm = 0.10. The model C5 (with larger

turbulent velocity) seems to be more comparable with the model with ηOhm ∼ 0.30 (or

higher), however, in this case we cannot associate a representative value of ηOhm due to

the very quick diffusion which occurs even before t = 1, when the turbulence becomes
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well developed.

The turbulent curve for the less magnetized model (C6) seems to follow the resistive

curve with ηOhm = 0.02, while the more magnetized model (C7) is comparable to the resis-

tive model with ηOhm ≈ 0.01. This result indicates that the effective turbulent diffusivity

is also sensitive to the strength of the magnetic field.

In summary, the results above indicate a correspondence between the two different

effects. In other words, the turbulent magnetic diffusion may mimic the effects of Ohmic

diffusion of magnetic fields in gravitating clouds. However, we should keep in mind that

the physics of turbulent diffusion and Ohmic resistivity is different. Thus this analogy

should not be overstated.

Evolution of Non-equilibrium Models

Figure 3.13 shows the same set of comparisons as in Figure 3.10 for the models D1, D2, and

D3 of Table 3.3 — these models have started out of the equilibrium with a homogeneous

density and magnetic field in a free fall system. Besides the runs with turbulence, we

also present, for comparison, the evolution for the systems without turbulence (models

D1a, D2a, and D3a). The strong oscillations seen in the evolution of the central magnetic

flux and density for these models (which are more pronounced in the models without

turbulence) are acoustic oscillations, since the time for the virialization of these systems

is larger than the simulated period. We note that the initial flux-to-mass ratio does not

change in the cases without turbulence. We also observe similar trends as in Figure 3.10:

the higher the value of β, the faster the decrease of the central magnetic flux relative to

the mean flux into the box. We also note that the radial profile of the flux-to-mass ratio

for the turbulent models crosses the mean value for the models without turbulence at

nearly the same radius. This is due to the fact that the effective gravity potential in all

these simulations acts up to this radius approximately.

This set of simulations shows that the change of mass-to-flux ratio can happen at

the time scale of the gravitational collapse of the system and therefore, turbulent diffu-

sion of magnetic field is applicable also to dynamic situations, e.g., to the formation of
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supercritical cores.

3.3.3 Effects of Resolution on the Results

As in the case of the study presented in Section 3.2, we would like to know how the results

shown in this section are sensitive to changes in resolution. Again, we ran some models

employing higher resolution and we inspected the changes in the results concerned.

Figure 3.14 compares the evolution of some of the quantities studied through this

section for models C2l and C2h — which are identical to C2, except by the lower (C2l)

and higher resolution (C2h, see Table 3.2). It shows no significant difference between

these models. Figure 3.14 also depicts the evolution of the same quantities for the models

D1, D1l, and D1h. Both models have the same parameters as in model D1, but model

D1h (D1l) has higher (lower) resolution (see Table 3.3). Again, we see no disagreement

between the models.

Therefore, the results presented in this section are not expected to change with an

increase in resolution.

3.3.4 Magnetic Field Expulsion Revealed

Both in the case of equilibrium and non-equilibrium we observe a substantial change of

the mass-to-flux ratio. Even our experiments with no turbulence injection confirm that

this process arises from the action of turbulence. As a result, in all the cases with gravity

the turbulence allows magnetic field to escape from the dense core which is being formed

in the center of the gravitational potential.
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Figure 3.8: Evolution of the equilibrium models for different gravitational potential.

The top row shows the time evolution of 〈Bz〉0.25 /B̄z (left), 〈ρ〉0.25 /ρ̄ (middle), and

(〈Bz〉0.25 / 〈ρ〉0.25)/(ρ̄/B̄z) (right). The other plots show the radial profile of 〈Bz〉z (upper

panels), 〈ρ〉z (middle panels), and 〈Bz〉z / 〈ρ〉z (bottom panels) for the different values of

A in t = 0 (magneto-hydrostatic solution with β constant, see Table 3.2) and t = 8. Error

bars show the standard deviation. All models have initial β = 1.0.
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Figure 3.9: Evolution of the equilibrium models for different turbulent driving. The

top row shows the time evolution of 〈Bz〉0.25 /B̄z (left), 〈ρ〉0.25 /ρ̄ (middle), and

(〈Bz〉0.25 / 〈ρ〉0.25)/(ρ̄/B̄z) (right). The bottom row shows the radial profile of 〈Bz〉z (left),

〈ρ〉z (middle), and 〈Bz〉z / 〈ρ〉z (right) for each value of the turbulent velocity Vrms, in

t = 0 (magneto-hydrostatic solution with β constant) and t = 8. Error bars show the

standard deviation. All models have initial β = 1.0. See Table 3.2.
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Figure 3.10: Evolution of the equilibrium models for different degrees of magnetization

(plasma β = Pgas/Pmag). The top row shows the time evolution of 〈Bz〉0.25 /B̄z (left),

〈ρ〉0.25 /ρ̄ (middle), and (〈Bz〉0.25 / 〈ρ〉0.25)/(ρ̄/B̄z) (right). The other plots show the radial

profile of 〈Bz〉z (upper panels), 〈ρ〉z (middle panels), and 〈Bz〉z / 〈ρ〉z (bottom panels) for

each value of β, in t = 0 (magneto-hydrostatic solution with β constant) and t = 8. Error

bars show the standard deviation of the data. See Table 3.2.
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Figure 3.11: Comparison between the model C2 (turbulent diffusivity) and resistive mod-

els without turbulence (see Table 3.4). All the cases have analogous parameters.

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

<
B

z>
0.

35
 / 

B−
z

C1: A = 0.6
E1r0: η = 0.005

E1r1: η = 0.01

C3: A = 1.2
E3r1: η = 0.01
E3r2: η = 0.02
E3r3: η = 0.03

C4: Vrms=1.4
E2r1: η = 0.01
E4r2: η = 0.10
E4r3: η = 0.20

0.80

0.90

1.00

1.10

1.20

1.30

1.40

0 1 2 3 4 5 6

<
B

z>
0.

35
 / 

B−
z

C5: Vrms=2.0
E2r1: η = 0.01
E5r3: η = 0.30

0 1 2 3 4 5 6

time

C6: β = 3.3
E6r1: η = 0.01
E6r2: η = 0.02
E6r3: η = 0.03

0 1 2 3 4 5 6 7

C7: β = 0.3
E7r1: η = 0.01
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Figure 3.13: Evolution of models which start in non-equilibrium. The top row shows the

time evolution of 〈Bz〉0.25 /B̄z (left), 〈ρ〉0.25 /ρ̄ (middle), and (〈Bz〉0.25 / 〈ρ〉0.25)/(ρ̄/B̄z)

(right), for runs with (thick lines) and without (thin lines) injection of turbulence. The

other plots show the radial profile of 〈Bz〉z (upper panels), 〈ρ〉z (middle), and 〈Bz〉z / 〈ρ〉z
(right) for different values of β, at t = 8, for runs with and without turbulence. Error

bars show the standard deviation. See Table 3.3.
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3.4 Discussion of the results: relations to earlier stud-

ies

Through this work we have performed the comparison of our results with the study by

Heitsch et al. (2004). Below, we provide yet another outlook of the connection of that

study with the present work. We also discuss the work by Shu et al. (2006), which was

the initial motivation of our study of the diffusion of magnetic field in the presence of

gravity.

3.4.1 Comparison with Heitsch et al. (2004): Ambipolar Diffu-

sion Versus Turbulence and 2.5-dimensional Versus Three-

dimensional

In view of the astrophysical implications, the comparison between our results and those

of Heitsch et al. (2004) calls for the discussion on how ambipolar diffusion and turbulence

interact to affect the magnetic field diffusivity. In particular, Heitsch et al. (2004) claim

that a new process “turbulent ambipolar diffusion” (see also Zweibel 2002) acts to induce

fast magnetic diffusivity.

At the same time, our results do not seem to exhibit less magnetic diffusivity than

those of Heitsch et al. (2004) in spite of the fact that we do not have ambipolar diffusion.

How can this be understood? We propose the following explanation. In the absence

of ambipolar diffusion, the turbulence propagates to smaller scales making small-scale

interactions possible. On the other hand, ambipolar diffusion affects the turbulence,

increasing the damping scale. As a result, the ambipolar diffusion acts in two ways, in

one to increase the small-scale diffusivity of the magnetic field, in another is to decrease

the turbulent small-scale diffusivity and these effects essentially compensate each other2.

2A possible point of confusion is related to the difference of the physical scales involved. If one

associates the scale of the reconnection with the thickness of the Sweet–Parker layer, then, indeed, the

ambipolar diffusion scale is much larger and therefore the reconnection scale gets irrelevant. However,

within the LV99 model of reconnection, the scale of reconnection is associated with the scale of magnetic
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In other words, if we approximate the turbulent diffusivity by (1/3)VinjLinj, where

Vinj and Linj are the injection velocity and the injection scale for strong MHD turbulence

(see LV99, Lazarian 2006b), respectively, the ambipolar diffusivity acting on small scales

will not play any role and the diffusivity will be purely “turbulent”. If, however, the

ambipolar diffusion coefficient is larger than VinjLinj, then the Reynolds number of the

steered flow may become small for strong MHD turbulence to exist and the diffusion is

purely ambipolar in this case. We might speculate that this leaves little, if any, parameter

space for the “turbulent ambipolar diffusion” when turbulence and ambipolar diffusion

synergetically enhance diffusivity, acting in unison. This point should be tested by three-

dimensional two-fluid simulations exhibiting both ambipolar diffusion and turbulence.

In view of our findings one may ask whether it is surprising to observe the “turbulent

reconnection diffusion” of magnetic field being independent of ambipolar diffusion. We

can appeal to the fact well known in hydrodynamics, namely, that in a turbulent fluid

the diffusion of a passive contaminant does not depend on the microscopic diffusivity. In

the case of high microscopic diffusivity, the turbulence provides mixing down to a scale

l1 at which the microscopic diffusivity both, suppresses the cascade and ensures efficient

diffusivity of the contaminant. In the case of low microscopic diffusivity, turbulent mixing

happens down to a scale l2 ¿ l1, which ensures that even low microscopic diffusivity is

sufficient to provide efficient diffusion. In both cases the total effective diffusivity of

the contaminant is turbulent, i.e. is given by the product of the turbulent injection

scale and the turbulent velocity. This analogy is not directly applicable to ambipolar

diffusion, as this is a special type of diffusion and magnetic fields are different from

passive contaminants. However, we believe that our results show that to some extent

the concept of turbulent diffusion developed in hydrodynamics carries over (due to fast

reconnection) to magnetized fluid.

field wandering. The corresponding scale depends on the turbulent velocity and is not small.
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3.4.2 Transient De-correlation of Density and Magnetic Field

Magneto-sonic waves are known to create transient changes of the density and magnetic

field correlation. In the case of turbulence the situation is less clear, but the research in

the field suggests that the decomposition of the turbulent motions into basic MHD modes

is meaningful and justified even for high amplitude motions (Cho et al. 2003a). Thus

the claim in Passot & Vázquez-Semadeni (2003) that even in the limit of ideal MHD,

turbulence can transiently affect the magnetic field and density correlations is justified.

However, the process discussed in this work is different in the sense that the de-correlation

we describe here is permanent and it will not disappear if the turbulence dissipates. In a

sense, as we showed above, “turbulent reconnection diffusion” is similar to the ambipolar

and Ohmic diffusion. It is a dissipative diffusion process, which does require non-zero

resistivity, although this resistivity can be infinitesimally small for the LV99 model of fast

reconnection in the presence of turbulence (see Section 2.4.1).

3.4.3 Relation to Shu et al. (2006): Fast Removal of Magnetic

Flux During Star Formation

As discussed in Shu et al. (2006), the sufficiency of the ambipolar diffusion efficiency for

explaining observational data of accreting protostars is questionable. At the same time,

they found that the required dissipation is about 4 orders of magnitude larger than the

expected Ohmic dissipation. Thus they appealed to the hyper-resistivity concept in order

to explain the higher dissipation of magnetic field.

We feel, however, that the hyper-resistivity idea is poorly justified (see criticism of it

in Lazarian et al. 2004 and Kowal et al. 2009). At the same time, fast three-dimensional

“reconnection diffusion” can provide the magnetic diffusivity that is adequate for fast

removing of the magnetic flux. This is what, in fact, was demonstrated in the present set

of numerical simulations.

It is worth mentioning that, unlike the actual Ohmic diffusivity, “reconnection dif-

fusion” does not transfer the magnetic energy directly into heat. The lion share of the

energy is being released in the form of kinetic energy, driving turbulence (see LV99). If
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the system is initially laminar, this potentially result in flares of reconnection and the

corresponding diffusivity. This is in agreement with LV99 scheme where a more intensive

turbulence should induce more intensive turbulent energy injection and lead to the un-

stable feeding of the energy of the deformed magnetic field. However, the discussion of

this effect is beyond the scope of the present work.

Similar to Shu et al. (2006), we expect to observe the heating of the media. Indeed,

although we do not expect to have Ohmic heating, the kinetic energy released due to

magnetic reconnection is dissipated locally and therefore we expect to observe heating in

the medium. Our setup for gravity can be seen as a toy model representing the situation

in Shu et al. (2006). In the broad sense, our work confirms that a process of magnetic

field diffusion that does not rely on ambipolar diffusion is efficient.

We accept that our setup assuming an axial gravitational field is a very simple and

ignores complications that could arise from using a nearly spherical potential of the self-

gravitating cloud. The periodic boundary conditions give super-stability to the system,

and do not allow inflow (or outflow) of material/magnetic field as we expect in a more

realistic accretion process. However, our experiments can give us qualitative insights.

They show that the turbulent diffusion of the magnetic field can remove magnetic flux

from the central region, leading to a lower flux-to-mass ratio in regions of higher gravity

compared with that of lower gravity.

We chose parameters to the simulations such that the system is not initially unstable

to the Parker–Rayleigh–Taylor (PRT) instability. Although the PRT instability could be

present in real accretion systems and could help to remove magnetic field from the core

of gravitational systems, its presence would make the interpretation of the results more

difficult and we wanted to analyze only the turbulence role in the removal of magnetic

flux. However, it is possible that this instability had been also acting due to local changes

of parameters due to the turbulent motion. To ensure that the transport of magnetic flux

is being caused by injection of turbulence only, we stopped the injection after a few time

steps in some experiments and left the system to evolve. When we did this, the changes

in the profile of the magnetic field and the other quantities stopped.

We showed that the higher the strength of the gravitational force, the lower the flux-
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to-mass ratio is in the central region (compared with the mean value in the computational

domain). This could be understood in terms of the potential energy of the system. When

the gravitational potential well is deeper, more energetically favorable is the pile up of

matter near the center of gravity, reducing the total potential energy of the system. When

the turbulence is increased, there is an initial trend to remove more magnetic flux from

the center (and consequently more inflow of matter into the center), but for the highest

value of the turbulent velocity in our experiments, there is a trend to remove material

(together with magnetic flux) from the center, reducing the role of the gravity, due to the

fact that the gravitational energy became small compared to the kinetic energy of the

system. Our results also showed that when the gas is less magnetized (higher β, or higher

values of the Alfvénic Mach number MA), the reconnection diffusion of magnetic flux is

more effective, but the central flux-to-mass ratio relative to external regions is smaller

for more magnetized models (low β), compared to less magnetized models. That is, the

contrast B/ρ between the inner and outer radius is higher for lower β (or MA).

If the turbulent diffusivity of magnetic field may explain the results in Shu et al. (2006),

one may wonder whether one can remove magnetic field by this way not only from the class

of systems studied by Shu et al. (2006), but also from less dense systems. For instance,

it is frequently assumed that only ambipolar diffusion is important for the evolution of

subcritical magnetized clouds (Tassis & Mouschovias, 2005). Our study indicates that this

conclusion may be altered in the presence of turbulence. This point, however, requires

further careful study, which is beyond the scope of the present work. In the future, we

intend to study a more realistic model, e.g., with open boundary conditions and more

realistic gravitational potentials.

3.5 Turbulent magnetic diffusion and turbulence the-

ory

As remarked in Chapter 2, the concept of “turbulent reconnection diffusion” is related to

the LV99 model of fast reconnection which makes use of the model of strong turbulence
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proposed by Goldreich & Sridhar (1995, henceforth GS95) the turbulence is being injected

at the large scales with the injection velocity Vinj equal to the Alfvén velocity VA (see

Cho et al. 2003b for a review). The turbulent eddies mix up magnetic field mostly in

the direction perpendicular to the local magnetic field thus forming a Kolmogorov-type

picture in terms of perpendicular motions. Naturally, these eddies are as efficient as

hydrodynamic eddies are expected in terms of heat advection. One also can visualize how

such eddies can induce magnetic field diffusion.

It is important to note that the GS95 model deals with motions with respect to the

local rather than mean magnetic field. Indeed, it is natural that the motions of the parcel

of fluid are affected only by the magnetic field of the parcel and of the near vicinity, i.e., by

local fields. At the same time, in the reference frame of the mean field, the local magnetic

fields of different parcels vary substantially. Thus we do not expect to see a substantial

anisotropy of the heat advection when Vinj ∼ VA.

It was noted in LV99 that one can talk about turbulent eddies perpendicular to the

magnetic field only if the magnetic field can reconnect fast. The rates of reconnection pre-

dicted in LV99 ensured that the magnetic field changes topology over one eddy turnover

period. If the reconnection were slow, the magnetic fields would form progressively com-

plex structures consisting of unresolved knots, which would invalidate the GS95 model.

The response of such a fluid to mechanical perturbations would be similar to “Jello”,

making the turbulence-sponsored diffusion of magnetic field and heat impossible.

What happens when Vinj < VA? In this case the turbulence at large scales is weak

and therefore magnetic field mixing is reduced. Thus one may expect a partial suppres-

sion of magnetic diffusivity. However, as turbulence cascades the strength of interactions

increases and at a scale Linj(Vinj/VA)2 the turbulence gets strong. According to Lazar-

ian (2006b), the diffusivity in this regime decreases by the ratio of (Vinj/VA)3, with the

eddies of strong turbulence playing a critical role in the process. When we compare the

turbulent diffusivity ηturb estimated for the sub-Alfvénic models described in Table 3.2

(see Section 3.3) with LinjVturb(Vturb/VA)3, we find that the values are roughly consistent

with the predictions of Lazarian (2006b), although a more detailed study is required in

this regard. For instance, we know that Lazarian (2006b) theory was not intended for
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high Mach number turbulence.

All in all, we believe that the high diffusivity that we observe is related to the prop-

erties of strong magnetic turbulence. While the latter is still a theory which is subject to

intensive study (see Boldyrev 2005, 2006; Beresnyak & Lazarian 2006, 2009a,b; Gogob-

eridze 2007), we believe that for the purpose of describing magnetic and heat diffusion

the existing theory and the present model catch all the essential phenomena.

3.6 Accomplishments and limitations of the present

study

3.6.1 Major Findings

This work presents several sets of simulations which deal with magnetic diffusion in tur-

bulent fluids. Comparing our result on magnetic diffusion and that of heat, we see many

similarities in these two processes. Our numerical testing in the work would not make

sense if the astrophysical reconnection were slow. Indeed, the major criticism that can

be directed to the work of turbulent diffusion of heat by Cho et al. (2003a) is that recon-

nection in their numerical simulations was fast due to high numerical diffusivity. With

the confirmation of the LV99 model of turbulent reconnection by Kowal et al. (2009)

one may claim that astrophysical reconnection is also generally fast and the differences

between the computer simulations and astrophysical flows are not so dramatic as far as

the reconnection is concerned.

The most important part of our study is the removal of magnetic fields from gravi-

tationally bounded systems (see Section 3.3). Generally speaking, this is what one can

expect on the energetic grounds. Magnetic field can be identified with a light fluid which

is not affected by gravity, while the matter tends to fall into the gravitational potential3.

Turbulence in the presence of magnetic reconnection helps “shaking off” matter from

magnetic fields. In our simulations the gravitational energy was larger than the turbulent

3As a matter of fact, in our low β simulations, which we did not include in the work, we see clear

signatures of the PRT instability.
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energy. In the case when the opposite is true, the system is expected to get unbounded

with turbulence mixing magnetic field in the same way it does in the absence of gravity

(see Section 3.2).

It is important to note that in Section 3.3 we obtained the segregation of magnetic

field and matter both in the case when we started with equilibrium distribution and in

the case when the system was performing a free fall. In the case of non-equilibrium initial

conditions the amount of flux removed from the forming dense core is substantially larger

than in the case of the equilibrium magnetic field/density configurations (compare Figures

3.10 and 3.13). Nevertheless, the flux removal happens fast, essentially in one turnover of

the turbulent eddies. In comparison, the effect of numerical diffusion for the flux removal

in our simulations is marginal, and this is testified by the constant flux-to-mass ratio

obtained in the simulations without turbulence (see Figure 3.13).

What is the physical picture corresponding to our findings? In the absence of gravity

turbulence mixes up4 flux tubes with different magnetic flux-to-mass ratios decreasing the

difference in this ratio. In the presence of gravity, however, it is energetically advantageous

of flux tubes at the center of the gravitational potential to increase the mass-to-flux

ratio. This process is enabled in highly conducting fluid by turbulence which induces

“reconnection diffusion”.

3.6.2 Applicability of the Results

The diffusion of magnetic field in our numerical runs exhibits a few interesting features.

First of all, according to Figure 3.4 one may expect to see a broad distribution of mag-

netic field intensity with density. This seems to be consistent with the measurements of

magnetic field strength in diffuse media (Troland & Heiles, 1986).

The situation gets even more intriguing as we discuss magnetic field diffusion in the

gravitational potential. It is tempting to apply these results to star formation process (see

4This mixing for Alfvénic modes happens mostly perpendicular to the local magnetic field for sub-

Alfvénic and trans-Alfvénic turbulence (LV99). For super-Alfvénic turbulence the mixing is essentially

hydrodynamic at large scales and the picture with motions perpendicular to the local magnetic field

direction is restored at small scales (see discussion in Lazarian et al. 2004).
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studies by Leão et al. 2009, 2012). There, molecular clouds are known to be either mag-

netically supercritical or magnetically subcritical (see Mestel & Ray 1985). If, however,

the magnetic flux can be removed from the gravitating turbulent cloud in a timescale

of about an eddy turnover time, then the difference between clouds with different initial

magnetization becomes less important. The initially subcritical turbulent clouds can lose

their magnetic flux via the turbulent diffusion to become supercritical.

An important point of the turbulent diffusion of the magnetic field is that it does not

require gas to be weakly ionized, which is the requirement of the action of the ambipolar

diffusion. Therefore, one may expect to observe gravitational collapse even of the highly

ionized gas.

3.6.3 Magnetic Field Reconnection and Different Stages of Star

Formation

“Reconnection diffusion” seems to be a fundamental process that accompanies all the

stages of star formation. Our work shows (Section 3.2) that three-dimensional diffusion

of magnetic field provides a wide distribution of the mass-to-flux ratios with some of the

fluctuations having this ratio rather high. We believe that the diffusion of magnetic field

described here is one the reasons for creation of zones of super-Alfénic turbulence even

for sub-Alfvénic driving (see Burkhart et al. 2009).

The regions of density concentration get gravitationally bound. One can associate

such regions with GMCs. These entities are known to be highly turbulent and turbulent

diffusion will proceed within them, providing a hierarchy of self-gravitating zones with

different density and different mass-to-flux ratios. Some of those zones may be subcritical

in terms of magnetic field and some of them may be supercritical. In subcritical magnetic

cores the turbulent diffusion may proceed quasi-statically as we described in Section 3.3.2

and in the supercritical cores the turbulent diffusion may proceed as we described in

Section 3.3.2. In both cases, we expect the removal of magnetic field from the self-

gravitating cores. This process proceeds all the time, including the stage of the accretion

disks.
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Indeed, in the turbulent scenario of star formation it is usually assumed that at the

initial stages of star formation the concentration of material happens due to gas moving

along magnetic field lines (Mestel & Paris, 1984). This one-dimensional process requires

rather long times of the accumulation of material. In contrast, the TRD allows for the

much faster three-dimensional accumulation.

What is the relative role of the ambipolar diffusion and the TRD? This issue requires

further studies. It is clear from the study by Shu et al. (2006) that in some situations

the ambipolar diffusion may be not fast enough to explain the removal of magnetic fields

from accretion disks. This is the case when we claim that the “reconnection diffusion”

should dominate. At the same time, in cores with low turbulence, the ambipolar diffusion

may dominate the reconnection diffusion. The exact range of the parameters for one or

the other process to dominate should be defined by future research.

3.6.4 Unsolved Problems and further Studies

Our work has a clearly exploratory character. For instance, to simplify the interpreta-

tion of our results we studied the concentration of material in the given gravitational

potential, ignoring self-gravity of the gas. This has been recently considered in another

numerical study involving initially self-gravitating spherical clouds with embedded mag-

netic fields (Leão et al. 2012). The results of this study have confirmed the present

ones. In particular, self-gravity also seems to favour the decoupling between the collaps-

ing gas and the magnetic fields due to TRD. They also have demonstrated that turbulent

reconnection diffusion of the magnetic flux is very effective and may allow the transfor-

mation of initially subcritical into supercritical cores (Leão et al. 2012). In addition,

our study indicates that the highly magnetized gas in gravitational potential is subject

to instabilities (Parker–Rayleigh–Taylor-type, Parker 1966) which drive turbulence and

induce reconnection diffusion of magnetic field. This is another avenue that we intend to

explore.

We have reported fast magnetic diffusion which happens at the rate of turbulent

diffusion, but within the present set of simulations we did not attempt to precisely evaluate
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the rate. Thus we did not attempt to test, e.g., the predictions in Lazarian (2006b) of

the variations of the turbulent diffusion rate with the fluid magnetization for the passive

scalar field. We also observed that while the magnetic field and the passive scalar field

diffuse fast, there are differences in their diffusion arising, e.g., from magnetic field being

associated with magnetic pressure. We have not attempted to quantify these differences

in our work either.

3.7 Summary

Motivated by a vital problem of the dynamics of magnetic fields in astrophysical fluids,

i.e., by the magnetic flux removal in star formation, in this work we have numerically

studied the diffusion of magnetic field both in the absence and in the presence of gravita-

tional potential. Our findings obtained on the basis of three-dimensional MHD numerical

simulations can be briefly summarized as follows:

1. In the absence of gravitational potential the TRD removes strong anti-correlations

of magnetic field and density that we impose at the start of our simulations. The system

after several turbulent eddy turnover times relaxes to a state with no clear correlation

between magnetic field and density, reminiscent of the observations of the diffuse ISM by

Troland & Heiles (1986).

2. Our simulations that started with a quasi-static equilibrium in the presence of a

gravitational potential, revealed that the turbulent diffusivity induces gas to concentrate

at the center of the gravitational potential, while the magnetic field is efficiently pushed

to the periphery. Thus the effect of the magnetic flux removal from collapsing clouds

and cores, which is usually attributed to ambipolar diffusion effect, can be successfully

accomplished without ambipolar diffusion, but in the presence of turbulence.

3. Our simulations that started in a state of dynamical collapse induced by an ex-

ternal gravitational potential showed that in the absence of turbulence, the flux-to-mass

ratio is preserved for the collapsing gas. On the other hand, in the presence of turbu-

lence, fast removal of magnetic field from the center of the gravitational potential occurs.

This may explain the low magnetic flux-to-mass ratio observed in stars compared to the
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corresponding ratio of the interstellar gas.

4. As an enhanced Ohmic resistivity to remove magnetic flux from cores and accretion

disks has been appealed in the literature, e.g., by Shu et al. (2006), we have also compared

models with a turbulent fluid and models without turbulence but with substantially en-

hanced Ohmic diffusivity. We have shown that, in terms of the magnetic flux removal,

the reconnection diffusion can mimic the effect of an enhanced Ohmic resistivity.
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Chapter 4

The role of turbulent magnetic

reconnection in the formation of

rotationally supported protostellar

disks

The formation of protostellar disks out of molecular cloud cores is still not fully under-

stood. Under ideal MHD conditions, the removal of angular momentum from the disk

progenitor by the typically embedded magnetic field may prevent the formation of a ro-

tationally supported disk during the main protostellar accretion phase of low mass stars.

This has been known as the magnetic braking problem and the most investigated mecha-

nism to alleviate this problem and help removing the excess of magnetic flux during the

star formation process, the so called ambipolar diffusion (AD), has been shown to be not

sufficient to weaken the magnetic braking at least at this stage of the disk formation. In

this work, motivated by recent progress in the understanding of magnetic reconnection

in turbulent environments, we appeal to the diffusion of magnetic field mediated by tur-

bulent magnetic reconnection (TRD) as an alternative mechanism for removing magnetic

flux. We investigate numerically this mechanism during the late phases of the protostellar

disk formation and show its high efficiency. By means of fully 3D MHD simulations, we
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show that the diffusivity arising from turbulent magnetic reconnection is able to transport

magnetic flux to the outskirts of the disk progenitor at time scales compatible with the

collapse, allowing the formation of a rotationally supported disk around the protostar

of dimensions ∼ 100 AU, with a nearly Keplerian profile in the early accretion phase.

Since MHD turbulence is expected to be present in protostellar disks, this is a natural

mechanism for removing magnetic flux excess and allowing the formation of these disks.

This mechanism dismiss the necessity of postulating a hypothetical increase of the Ohmic

resistivity as discussed in the literature. Together with our earlier work (described in

Chapter 3) which showed that magnetic flux removal from molecular cloud cores is very

efficient, this work calls for reconsidering the relative role of AD for the processes of star

and planet formation.

4.1 Introduction

Circumstellar disks (with typical masses ∼ 0.1 M¯ and diameters ∼ 100 AU) are known to

play a fundamental role in the late stages of star formation and also in planet formation.

However, the mechanism that allows their formation and the decoupling from the sur-

rounding molecular cloud core progenitor is still not fully understood (see, e.g., Krasnopol-

sky et al. 2011 for a recent comprehensive review). Former studies have shown that the

observed embedded magnetic fields in molecular cloud cores, which imply magnetic mass-

to-flux ratios relative to the critical value a few times larger than unity (Crutcher 2005;

Troland & Crutcher 2008) are high enough to inhibit the formation of rationally supported

disks during the main protostellar accretion phase of low mass stars, provided that ideal

MHD applies. This has been known as the magnetic braking problem (see e.g., Allen,

Li,& Shu 2003; Galli et al. 2006; Price & Bate 2007; Hennebelle & Fromang 2008; Mellon

& Li 2008).

In this situation, the angular momentum of the disk is transferred to the external

medium (envelope) through torsional Alfvén waves (Machida et al. 2011). The magnetic

braking timescale corresponds to the time necessary for extracting all the angular mo-

mentum of the disk. When the angular momentum of the disk is aligned with the uniform
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magnetic field, the magnetic braking timescale is found to be

τ‖ =
ρd

ρe

Zd

vA,e

≡
(

π

ρe

)1/2
Md

ΦB

(4.1)

where ρd and ρe are the densities of the disk and envelope, respectively, Zd the half-

thickness of the disk, vA,e the Alfvén speed in the envelope, Md the disk mass, and ΦB

its magnetic flux (Basu & Mouschovias 1994). Therefore, the magnetic braking becomes

effective when the timescales of the system are large compared to τ‖ and this seems to be

the case in observed systems if the magnetic flux is conserved..

Proposed mechanisms to alleviate this problem and help removing the excess of mag-

netic flux during the star formation process include non-ideal MHD effects such as am-

bipolar diffusion (AD) and, to a smaller degree, Ohmic dissipation effects. The AD, which

was first discussed in this context by Mestel & Spitzer (1956), has been extensively inves-

tigated since then (e.g., Spitzer 1968; Nakano & Tademaru 1972; Mouschovias 1976, 1977,

1979; Nakano & Nakamura 1978; Shu 1983; Lizano & Shu 1989; Fiedler & Mouschovias

1992, 1993; Li et al. 2008; Fatuzzo & Adams 2002; Zweibel 2002). In principle, AD al-

lows magnetic flux to be redistributed during the collapse in low ionization regions as the

result of the differential motion between the ionized and the neutral gas. However, for

realistic levels of core magnetization and ionization, recent work has shown that AD does

not seem to be sufficient to weaken the magnetic braking in order to allow rotationally

supported disks to form. In some cases, the magnetic braking has been found to be even

enhanced by AD (Mellon & Li, 2009; Krasnopolsky & Königl, 2002; Basu & Mouschovias,

1995; Hosking & Whitworth, 2004; Duffin & Pudritz, 2009; Li et al., 2011). 1 These

findings motivated Krasnopolsky et al. (2010) (see also Li et al. 2011) to examine whether

Ohmic dissipation could be effective in weakening the magnetic braking. They claimed

that in order to enable the formation of persistent, rotationally supported disks during

the protostellar mass accretion phase a highly enhanced resistivity, or “hyper-resistivity”

η & 1019 cm2s−1 of unspecified origin would be required. Although this value is somewhat

1See however a recent work that investigates the effects of AD in the triggering of magneto-rotational

instability in more evolved cold, proto-planetary disks where the fraction of neutral gas is much larger

(Bai & Stone, 2011).
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dependent on the degree of core magnetization, it implies that the required resistivity

is a few orders of magnitude larger than the classic microscopic Ohmic resistivity values

(Krasnopolsky et al., 2010).

On the other hand, Machida et al. (2010) (see also Inutsuka et al. 2010; Machida et al.

2011) performed core collapse three-dimensional simulations and found that, even with

just the classical Ohmic resistivity, a tinny rotationally supported disk can form at the

beginning of the protostellar accretion phase (see also Dapp & Basu 2010) and grow to

larger, 100-AU scales at later times. They claim that the later growth of the circum-

stellar disk is caused by the depletion of the infalling envelope. As long as this envelope

remains more massive than the circumstellar disk, the magnetic braking is effective, but

when the circumstellar disk becomes more massive, then the envelope cannot brake the

disk anymore. In their simulations, they assume an initially much denser core than in

Krasnopolsky et al. work, which helps the early formation of a tiny rotating disk facili-

tated by the Ohmic diffusion in the central regions. But they have to wait for over 105 yr

in order to allow a large-scale rotationally supported, massive disk to form (see discussion

in Section 4.6). While this question on the effectiveness of the Ohmic diffusion in the early

accretion phases of disk formation deserves further careful testing, we here investigate the

mechanism of turbulent reconnection diffusion (TRD) which has been described in detail

in Chapter 2 (Section 2.4; see also Chapter 3).

Before addressing this new mechanism, it is crucial to note that the concept of “hyper-

resistivity” previously mentioned (see also Strauss 1986; Bhattacharjee & Hameiri 1986;

Diamond & Malkov 2003) is not physically justified and therefore one cannot rely on it

(see criticism in Kowal et al. 2009; Eyink, Lazarian, & Vishniac 2011). Therefore, the

dramatic increase of resistivity is not justified.

We show bellow by means of 3D MHD numerical simulations that the TRD enables

the transport of magnetic flux to the outskirts of the collapsing cloud core at time scales

compatible with the collapse time scale, thus allowing the formation of a rotationally

supported protostelar disk with nearly Keplerian profile.

In Section 4.2 we describe the numerical setup and initial conditions, in Section 4.3

we show the results of our three-dimensional (3D) MHD turbulent numerical simulations
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of disk formation, and in Section 4.6, we discuss our results within a bigger picture of

reconnection diffusion processes. Our summary is presented in Section 4.7.

4.2 Numerical Setup and Initial Disk Conditions

To investigate the formation of a rotationally supported disk due to turbulent reconnection

diffusion, we have integrated numerically the following system of MHD equations 2:

∂ρ

∂t
+∇ · (ρu) = 0 (4.2)

ρ

(
∂

∂t
+ u · ∇

)
u = −c2

s∇ρ +
1

4π
(∇×B)×B− ρ∇Ψ + f (4.3)

∂A

∂t
= u×∇×A− ηOhm∇×∇×A (4.4)

where ρ is the density, u is the velocity, Ψ is the gravitational potential generated by the

protostar, B is the magnetic field, and A is the vector potential with B = ∇×A + Bext

(where Bext is the initial uniform magnetic field). f is a random force term responsible

for the injection of turbulence. An isothermal equation of state is assumed with uniform

sound speed cs.

In order to compare our results with those of Krasnopolsky et al. (2010), we have

considered the same initial conditions as in their setup.

Our code works with cartesian coordinates and vector field components. We started

the system with a collapsing cloud progenitor with initial constant rotation (see below)

and uniform magnetic field in the z direction.

Given the cylindrical symmetry of the problem, we adopted circular boundary condi-

tions. Eight rows of ghost cells were put outside a inscribed circle in the xy plane. For the

four outer rows of ghost cells, we adopted fixed boundary conditions in the radial direc-

tion in every time step, while for the four inner ghost cells, linear interpolation between

the initial conditions and the values in the interior bound of the domain were applied for

2We note that these equations are similar to the set of collisional MHD equations employed in Chapter

3 (eqs. 3.1 - 3.3), except that we solve the induction equation here for the vector potential.
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the density, velocity, and vector potential. With this implementation the vector potential

A has kept its initial null value. Although this produces some spurious noisy compo-

nents of B in the azimuthal and vertical directions in the boundaries, these are too far

from the central regions of the domain to affect the disk evolution. In the z direction, we

have applied the usual open boundary conditions (i.e., zero derivatives for all conservative

quantities: density, momentum and potential vector). We found this implementation far

more stable than using open boundary conditions in the x and y directions, or even in

the radial direction. Besides, adopting circular rather than square boundaries prevented

the formation of artificial spiral arms and corners in the disk.

For modeling the accretion in the central zone, the technique of sink particles was

implemented in the code in the same way as described in Federrath et al. (2010). A

central sink with accretion radius encompassing 4 cells was introduced in the domain.

The gravitational force inside this zone has a smoothing spline function identical to that

presented in Federrath et al. (2010). We do not allow the creation of sink particles

elsewhere, since we are not calculating the self-gravity of the gas. We note that this

accreting zone essentially provides a pseudo inner boundary for the system and for this

reason the dynamical equations are not directly solved there where accretion occurs,

although we assure momentum and mass conservation.

The physical length scales of the computational domain are 6000 AU in the x and

y directions and 4000 AU in the z direction. A sink particle of mass 0.5 M¯ is put in

the center of the domain. At t = 0, the gas has a uniform density ρ0 = 1.4 × 10−19 g

cm−3 and a sound speed of cs = 2.0× 104 cm s−1 (which implies a temperature T ≈ 4.8µ

K, where µ is mean molecular weight in atomic units). The initial rotation profile is

vΦ = cs tanh(R/Rc) (as in Krasnopolsky et al. 2010), where R is the radial distance to

the central z-axis, and the characteristic distance Rc = 200 AU.

We employed a uniform resolution of 384x384x256 which for the chosen set of param-

eters implies that each cell has a physical size of 15.6 AU in each direction. The sink zone

has an accretion radius of 62.5 AU. 3

3We note that in the two-dimensional simulations of Krasnopolsky et al. (2010), they use a non-uniform

mesh with a maximum resolution of 0.2 AU in the central region. The employment of a non-uniform mesh
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Although we are interested in the disk that forms inside a radius of approximately 400

AU around the central axis, we have carried out the simulations in a much larger region

of 6000 AU in order to keep the dynamically important central regions of the domain free

from any outer boundary effects.

4.3 Results

We performed simulations for four models which are listed in Table 1. Model hydro is

a purely hydrodynamical rotating system. All the other models have the same initial

(vertical) magnetic field with intensity Bz = 35 µG. In order to have a benchmark, in

the model named resistive we included an anomalous high resistivity, with a magnitude

about 3 orders of magnitude larger than the Ohmic resistivity estimated for the system,

i.e., η = 1.2 × 1020 cm2 s−1. According to the results of Krasnopolsky et al. (2010), this

is nearly the ideal value that the magnetic resistivity should have in order to remove

the magnetic flux excess of a typical collapsing protostar disk progenitor and allow the

formation of a rotationally sustained disk. We have thus included this anomalous resistive

model in order to compare with more realistic MHD models that do not appeal to this

resistivity excess.

We have also considered an MHD model with turbulence injection (labeled as turbulent

model in Table 1). In this case, we introduced in the cloud progenitor a solenoidal

turbulent velocity field with a characteristic scale of 1600 AU and a Mach number MS ≈
4 − 5 increasing approximately linearly from t = 0 until t = 3 × 1010 s (or ≈ 3000 yr).

These parameters result an estimated turbulent diffusivity which is of the order of the

anomalous diffusivity employed in resistive model: ηturb ∼ VturbLinj ∼ 1020 cm2 s−1. The

induced turbulent velocity field has been intentionally smoothed beyond a radius of 800

AU, by a factor exp{−[R(AU)− 800]2/4002}, in order to prevent disruption of the cloud

could be advantageous in this problem, allowing a better resolution close the protostar. However, in the

present work since we are dealing with turbulence injection in the evolving system, the use of a uniform

mesh has the advantage of making the effects of numerical dissipation more uniform and therefore, the

analysis of the turbulent evolution and behavior more straightforward.
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at large radii. The injection of turbulence was stopped at t = 4.5 × 1011 s ≈ 0.015 Myr.

From this time on, it naturally decayed with time, as one should expect to happen in a

real system when the physical agent that injects turbulent in the cloud ceases to occur.

The last of the models (which is labeled as ideal MHD) has no explicit resistivity or

turbulence injected so that in this case the disk evolves under an ideal MHD condition.

Table 4.1: Summary of the models

Model B0 (µG)
ηOhm ηturb

(cm2 s−1) (cm2 s−1)

hydro 0 0 0

resistive 35 1.2× 1020 0

turbulent 35 0 ∼ 1020

ideal MHD 35 0 0

Figure 4.3 shows face-on and edge-on density maps of the central slice of the disk for

the four models at ≈ 0.03 Myr. The arrows in the top panels represent the direction of

the velocity field, while those in the bottom panels represent the direction of the magnetic

field.

The pure hydrodynamical model in the left panels of Figure 4.3 clearly shows the

formation of a high density torus structure within a radius ≈ 300 AU which is typical of

a Keplerian supported disk (see also Figure 4.3, top-right panel).

In the case of the ideal-MHD model (second row panels in Figure 4.3), the disk core

is much smaller and a thin, low density outer part extends to the outskirts of the compu-

tational domain. The radial velocity component is much larger than in the pure hydro-

dynamical model. The bending of the disk in the core region is due to the action of the

magnetic torques. As the poloidal field lines are dragged to this region by the collapsing

fluid, large magnetic forces develop and act on the rotating flow. The resulting torque

removes angular momentum from the inner disk and destroys its rotational support (see

also Figure 4.3, upper panels).

The third column (from left) of panels in Figure 4.3 shows the resistive MHD model.
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As in Model 1, a torus (of radius ≈ 250 AU) with a rotationally dominant velocity field

is formed and is surrounded by a flat, low density disk up to a radius of ∼ 500 AU.

Compared to the ideal MHD model (second column), the structure of the magnetic field

is much simpler and exhibits the familiar hourglass geometry.

hydro ideal MHD resistive turbulent

10−2 10−1 100 101 102 103 104 105

(1.4x10−19 g cm−3)

Figure 4.1: Face-on (top) and edge-on (bottom) density maps of the central slices of

the collapsing disk models listed in Table 4.1 at a time t = 9 × 1011 s (≈ 0.03 Myr).

The arrows in the top panels represent the velocity field direction an those in the bottom

panels represent the magnetic field direction. From left to right rows it is depicted: (1) the

pure hydrodynamic rotating system; (2) the ideal MHD model; (3) the MHD model with

an anomalous resistivity 103 times larger than the Ohmic resistivity, i.e. η = 1.2 × 1020

cm2 s−1; and (4) the turbulent MHD model with turbulence injected from t = 0 until

t=0.015 Myr. All the MHD models have an initial vertical magnetic field distribution

with intensity Bz = 35 µG. Each image has a side of 1000 AU.

Figure 4.2 depicts three-dimensional diagrams of three snapshots of the turbulent
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Figure 4.2: Three-dimensional diagrams of snapshots of the density distribution for the

turbulent model of disk formation in the rotating, magnetized cloud core computed by

SGL12. From left to right: t = 10.000 yr; 20.000 yr; and 30.000 yr. The side of the

external cubes is 1000 AU.

model.

The last column (on the right of Figure 4.3) shows the ideal MHD model with injected

turbulence (labeled turbulent). A high density disk arises in the central region within a

radius of 150 AU surrounded by turbulent debris. From the simple visual inspection of

the velocity field inside the disk one cannot say if it is rotationally supported. On the

other hand, the distorted structure of the magnetic field in this region, which is rather

distinct from the helical structure of the ideal MHD model, is an indication that magnetic

flux is being removed by the turbulence in this case. The examination of the velocity and

magnetic field intensity profiles in Figure 4.3 are more elucidative, as described below.

Figure 4.3 shows radial profiles of: (i) the radial velocity vR (top left), (ii)the rota-

tional velocity vΦ (top right); (iii) the inner disk mass (bottom left); and (iv) the vertical

magnetic field Bz (bottom right) for the models of Figure 4.3. vR and vΦ were aver-

aged inside cylinders centered in the protostar with height h = 400 AU and thickness

dr = 20 AU. Only cells with a density larger than 100 times the initial density of the

cloud (ρ0 = 1.4× 10−19 g cm−3) were taken into account in the average evaluation. The

internal disk mass was calculated in a similar way, but instead of averaging, we simply

summed the masses of the cells in the inner region. The magnetic field profiles were also
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obtained from average values inside equatorial rings centered in the protostar with radial

thickness dr = 20 AU.
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Figure 4.3: Radial profiles of the: (i) radial velocity vR (top left), (ii) rotational velocity

vΦ (top right); (iii) inner disk mass (bottom left); and (iv) vertical magnetic field Bz,

for the four models of Figure 4.3 at time t ≈ 0.03 Myr). The velocities were averaged

inside cylinders centered in the protostar with height h = 400 AU and thickness dr = 20

AU. The magnetic field values were also averaged inside equatorial rings centered in the

protostar. The standard deviation for the curves are not shown in order to make the

visualization clearer, but they have typical values of: 2 − 4 × 104 cm s−1 (for the radial

velocity), 5− 10× 104 cm s−1 (for the rotational velocity), and 100 µG (for the magnetic

field). The vertical lines indicate the radius of the sink accretion zone.

For an ideal rotationally supported disk, the centrifugal barrier prevents the gas to
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fall into the center. In this ideal scenario, the radial velocity should be null (at distances

above the accretion sink zone). The top left panel of Figure 4.3 depicts the curves of the

radial velocities for the four models. Above the central sink accretion zone (R > 62.5 AU),

the hydrodynamical model (hydro) is the prototype of a rotationally supported disk, the

radial velocity being smaller than the sound speed (cS = 2×104 cm s−1) inside the formed

disk. In the ideal MHD model, the effect of the magnetic flux braking partially destroys

the centrifugal barrier and the radial (infall) velocity becomes very large, about three

times the sound speed. The MHD model with anomalous resistivity instead, shows a very

similar behavior to the hydrodynamical model due to the efficient removal of magnetic

flux from the central regions. In the case of the turbulent model, although it shows a

persisting non-null radial (infall) speed even above R > 62.5 AU this is much smaller

than in the ideal MHD model, of the order of the sound speed where the disk forms

(between the R ≈ 70 AU and ≈ 150 AU).

The top right panel of Figure 4.3 compares the rotational velocities vΦ of the four

models with the Keplerian profile vK =
√

GM∗/R. All models show similar trends to the

Keplerian curve (beyond the accreting zone), except the ideal MHD model. In this case,

the strong suppression of the rotational velocity due to removal of angular momentum by

the magnetic field to outside of the inner disk region is clearly seen, revealing a complete

failure to form a rotationally supported disk. The turbulent MHD model, on the other

hand, shows good agreement with the Keplerian curve at least inside the radius of ≈ 120

AU where the disk forms. Its rotation velocity profile is also very similar to the one of

the MHD model with constant anomalous resistivity. Both models are able to reduce

the magnetic braking effects by removing magnetic flux from the inner region and the

resulting rotation curves of the formed disks are nearly Keplerian. In the resistive model,

this is provided by the hyper-resistivity, while in the turbulent model is the turbulent

reconnection that provides this diffusion.

The bottom right panel of Figure 4.3 compares the profiles of the vertical component

of the magnetic field, Bz, in the equator of the four models of Figure 4.3. While in

the ideal MHD model, the intensity and gradient of the magnetic field in the central

regions are very large due to the inward advection of magnetic flux by the collapsing
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material, in the anomalous resistive MHD model, the magnetic flux excess is completely

removed from the central region resulting a smooth radial distribution of the field. In

the turbulent model, the smaller intensity of the magnetic field in the inner region and

smoother distribution along the radial direction compared to the ideal MHD case are clear

evidences of the transport of magnetic flux to the outskirts of the disk due to turbulent

reconnection diffusion (Santos-Lima et al. 2010; see also Chapter 3). We note however

that, due to the complex structure which is still evolving, the standard deviation from the

average value is very large in the turbulent model, with a typical value of 100 µG (and

even larger for radii smaller than 100 AU) which accounts for the turbulent component

of the field.

Finally, the bottom left panel of Figure 4.3 shows the mass of the formed disks in

the four models, as a function of the radius. In the hydrodynamical and the MHD

resistive models (hydro and resistive), the mass increases until R ≈ 250 AU and ≈ 350

AU, respectively, and both have similar masses. The masses in the ideal MHD and the

turbulent MHD models (ideal MHD and turbulent) increase up to R ≈ 150 AU and

≈ 250 AU, respectively, and are smaller than those of the other models. Nonetheless

the turbulent MHD disk has a total mass three times larger than that of the ideal MHD

model.

4.4 Comparison with the work of Seifried et al.

The results just described in this Chapter (see also Santos-Lima et al. 2012) have been

recently criticized in Seifried et al. (2012) (hereafter S+12) who performed AMR simula-

tions of the collapse of a 100 solar mass turbulent cloud core permeated by a magnetic field

(with 1.3 mG in the center and declining radially outwards with R−0.75). They introduced

sink particles in the cloud above a density threshold and detected the formation of sev-

eral protostars around which Keplerian discs with typical sizes of up to 100 AU built up.

Then, they examined a few mechanisms that could be potentially responsible for lowering

the magnetic braking efficiency and thus, allowing for the formation of the Keplerian discs

and concluded that none was necessary in their models, nor even reconnection diffusion.
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They argued that the build up of the Keplerian disk was a consequence of the shear flow

generated by the turbulent motions in the surroundings of the disk (which carry large

amounts of angular momentum). The lack of coherent rotation in the turbulent velocity

field would not allow the development of toroidal B components and toroidal Alfvén waves

that could remove outward magnetic flux, in spite of the small values of the mass-to-flux

ratio that they considered in their models (around µ ' 2− 3).

According to S+12, any effects like misaligned magnetic fields and angular momen-

tum vectors, reconnection diffusion or any other non-ideal MHD effects seem not to be

necessary. They conclude that “turbulence alone provides a natural and at the same time

very simple mechanism to solve the magnetic braking catastrophe”.

S+12 conclusion above was based on the calculation of the mean mass-to-flux ratio

within a sphere around the disk with a radius much larger than the disk (i.e., r = 500 AU).

This ratio µ was computed taking the volume-weighted, mean magnetic field evaluated

in this sphere, in combination with the sphere mass M, normalized by the critical value.

They found that at these scales µ varies around a mean of 2 - 3 and is comparable with the

initial value in the core (which is also the overall initial value in the massive cloud) and

also to the MHD simulations without turbulence. However, they have also found that in

some cases µ increases at smaller radius and eventually reaches values above 10 at radii ≤
100 AU (i.e., nearly 5 times larger than the initial value). Therefore, S+12 detected flux

transport within the Keplerian disk, at least in some of the disks formed. They did not

consider that this could be due to transport arising from reconnection diffusion, because

at these scales the velocity structures are already well ordered in their models. Thus S+12

concluded that numerical diffusion was the possible source of flux loss. In the following

paragraphs, we put this conclusion to scrutiny and argue that the increase seen in S+12

is real and due to reconnection diffusion, in agreement with both theoretical expectation

and the results described in the former sections of this thesis (see also Santos-Lima et al.

2013a).
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4.4.1 Further calculations

Let us go back to our results reported in Section 4.3. Focusing on the formation of a

Keplerian disk in a turbulent cloud core with a single sink, we clearly found flux loss

during the process of the disk build up, as indicated from the analysis of Figure 4.3. We

found that the ideal MHD model is unable to produce a rotationally supported disk due to

the magnetic flux excess that accumulates in the central regions, while the MHD model

with artificially enhanced resistivity produces a nearly-Keplerian disk with dimension,

radial and rotational velocities, and mass similar to the pure hydrodynamical model, and

the turbulent model also produces a nearly-Keplerian disk, but less massive and smaller

(r ' 100 AU), in agreement with the observations.

Considering the three MHD disk formation models investigated in Figure 4.3 (i.e., an

ideal collapsing cloud core with no turbulence, a highly resistive core with no turbulence,

and an ideal turbulent core), Figure 4.4 shows the time evolution of the gas mass, the

average magnetic flux and the mean mass-to-magnetic flux ratio, µ, which was calculated

employing the same Equation (1) of S+12, for these three models. These quantities were

computed within a sphere surrounding the central region for three different radii: a large

one (r=1000 AU), which encompasses the large scale envelope where the disc is build up

(similarly as in S+12), an intermediate (r=500 AU), and a small one (r=100 AU) which

corresponds to the region where the disc is later formed.

Figure 4.4 shows that our turbulent model starts with an average µ ' 0.2 and finishes

with µ ' 0.5 within r = 1000 AU (see Figure 4.4, bottom right panel). Therefore, as in

S+12, this result suggests no significant variations in µ. Besides, these values reveal no

significant changes with respect to the ideal MHD model either. However, the values of

both, the turbulent and the ideal MHD model at this scale, are also comparable to those

of the resistive model where we clearly know that there is large magnetic flux loss.

How to interpret these results then? When averaging over the whole sphere of radius

r = 1000 AU around the disk/system, the real value of µ at the small disk scales (r ≤
100 AU) is hindered by the computed overall values in the envelope. Therefore, it is not

enough to compute this average value to conclude that there is no flux loss in the process
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Figure 4.4: Disk formation in the rotating, magnetized cloud cores analysed by SGL12.

Three cases are compared: an ideal MHD system, a resistive MHD system, and an ideal

turbulent MHD system. Right row panels depict the time evolution of the total mass

(gas + accreted gas onto the central sink) within a sphere of r=1000 AU (top panel), the

magnetic flux (middle panel), and the mass-to-flux ratio normalized by the critical value

averaged within r= 1000 AU (bottom panel). Left row panels depict the same quantities

for r=100 AU, i.e., the inner sphere that involves only the region where the disk is build up

as time evolves. Middle row panels show the same quantities for the intermediate radius

r=500 AU. We note that the little bumps seen on the magnetic flux and µ diagrams for

r=100 AU are due to fluctuations of the turbulence whose injection scale (∼ 1000 AU) is

much larger than the disk scale.
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of the disk build up.

As we decrease the radius of the sphere at which the average µ is computed, we

clearly see that the magnetic flux of the turbulent model becomes comparable to that of

the resistive model (see middle panels of Figure 4.4), specially at the scale of the Keplerian

disk build up (r ' 100 AU) and, in consequence, there is an increase of µ with time in the

turbulent model with respect to the ideal MHD model. The final value of µ ' 1 within

the disk region, therefore, nearly 5 times larger than the initial value in the whole cloud.

Thus, similarly to S+12, there is no significant variations of µ with time when con-

sidering its average over the whole sphere that contains both the turbulent envelope and

the disk/sink. But, in the final state the resulting value of µ within the disk is larger

than the initial value in the cloud. A similar trend is also found for the non-turbulent

resistive MHD model, where the imposed explicit artificial resistivity leads to magnetic

flux loss which in turn allows the build up of the Keplerian disk. These results clearly

indicate that a nearly constant value of the average value of µ with time over the whole

disk+envelope system is not a powerful diagnostic to conclude that there is no significant

magnetic flux transport in protostellar disk formation (as suggested by S+12).

When examining the ideal MHD model, there is one important point to remark. µ,

which should be expected to be constant with time in an isolated system, is also slightly

growing within r ' 100 AU in this model.4 This is due to the adopted open boundaries in

the system and to the volume averaging of the magnetic flux. To understand this behavior,

we must inspect the time evolution of both the mass and the average magnetic flux in

the system which are shown in the top and middle diagrams of Figure 4.4, respectively.

Actually, in all models the total mass (envelope/disk plus accreted gas into the sink)

increases with time due to a continuous mass aggregation to the system entering through

the open boundaries. Also, there is a growing of the magnetic flux with time which is at

least in part due to a continuous injection of magnetic field lines into the system through

the open boundaries. Both effects, i.e., the increase in mass and magnetic flux could

compensate each other and produce a nearly constant µ with time. However, there is

4At the larger radii this variation is hindered by averaging over larger scales as discussed.
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another effect to be noticed. The magnetic flux in the middle diagrams of Figure 4.4 was

not computed within a comoving (accreting) volume with the gas, but at a fixed sphere

radius. If we had followed a fixed amount of accreting gas with time then, we would have

obtained a constant number of magnetic field lines and therefore, a constant magnetic flux

within this comoving volume in the ideal MHD case. This is in practice very difficult to

compute from the simulations because of the complex geometry of the turbulent magnetic

field lines. However, the key point here is not to obtain the exact value of the magnetic

flux for the ideal MHD or the other models in a comoving volume, but to realize that at

the scale of the disk build up (∼100 AU), the magnetic flux of the turbulent MHD model,

which is initially comparable to that of the ideal MHD model, decreased to a value similar

to that of the resistive model at the time that the disk has formed (∼25,000 to 30,000

yr), as indicated by the middle left panel of Figure 4.4. This is a clear indication of the

removal of magnetic flux from the disk build up region to its surrounds in the turbulent

model.

To help to better clarify the analyses above, we have also plotted in Figure 4.5 µ as a

function of the mass for the three different regions considered in Figure 4.4. Each µ(M)

in Figure 4.5 has been normalized by its initial value:

µ0(M) =

[
M

B0πR2
0(M)

]
/
[
0.13/

√
G

]
, (4.5)

where B0 is the initial value of the magnetic field and R0(M) is the initial radius of the

sphere containing the mass M). These diagrams provide a way to evaluate µ in comoving

parcels with the gas. Inside 100 AU, Figure 4.5 shows that in the turbulent model µ(M) is

larger than in the ideal MHD model and comparable to the resistive model at the largest

masses. This indicates a smaller amount of magnetic flux in the turbulent and resistive

models inside the disk region. As we go to the larger radii, µ becomes more and more

comparable in the three models, in consistency with the results of Figure 4.4.

Therefore, based on the results above, we conclude that the flux loss (and the increase

of µ within the disk) in our turbulent models is REAL and is due to the action of re-

connection diffusion, as discussed in detail in SGL12 (see also Santos-Lima et al. 2010,

Lazarian 2011, de Gouveia Dal Pino et al. 2012, Lazarian et al. 2012, Leão et al. 2012).
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Figure 4.5: Mass-to-magnetic flux ratio µ, normalized by its initial value µ0(M), plot-

ted against the mass, for (i) r = 100 AU (left), (ii) r = 500 AU (middle), and (iii)

r = 1000 AU (right). µ0(M) is the value of µ for the initial mass M : µ0(M) =

{M/[B0πR2
0(M)]} /

{
0.13/

√
G

}
, where B0 is the initial value of the magnetic field and

R0(M) is the initial radius of the sphere containing the mass M . The initial conditions

are the same as in Figure 4.4.

We must note that the flux transport by TRD is faster where turbulence is stronger

and faster. This is a fundamental prediction from LV99 fast reconnection theory which

was numerically tested in Chapter 3 (see also Santos-Lima et al. 2010 and Section 4.5). In

our turbulent simulations, while the disk is built up by the accretion of the turbulent gas

in the envelope that surrounds the sink, reconnection diffusion is fast and causes magnetic

flux loss at the same time that it allows the turbulent shear to build up a Keplerian profile

in this collapsing material. This means that the material that formed the Keplerian disk

out of the accretion of the turbulent envelope has already lost magnetic flux when it

reaches its final state and that is why the final value of µ is much larger within the disk

radius (≤ 100 AU). In other words, the mass-to-flux ratio increase that is detected in the

final Keplerian disk is due to removal of magnetic flux from the highly turbulent envelope

material while this material was accreting and building up the disk, i.e., before the final

state. After the Keplerian disk is formed (in r ≤ 100 AU), the operation of reconnection

diffusion inside this region decreases because turbulent structures are smaller and slower

there. Fortunately, in terms of magnetic breaking, high values of reconnection diffusion

are no longer needed because the magnetic field flux excess has been already removed

during the accreting phase and disk build up.
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As a result, the argument given by S+12 that reconnection diffusion could not explain

the increase of µ in their tests within the disk scales because the fluid is no longer turbulent

there, is not correct.

We have also plotted the magnetic field B versus the density ρ in different times as

in S+12 and found variations which are significant as we decrease the radius where the

average of B and ρ are computed, in consistency with the results of Figures 4.4 and 4.5

and the discussion above. Figure 4.6 shows these plots for 30,000 yr within spheres of

radii equal 100, 500, and 1000 AU. At the 1000 AU scale, both the ideal and the turbulent

MHD models are comparable and follow approximately the B ∝ ρ0.5 trend, as in S+12.

However, as we go to the smaller scales and specially to the 100 AU scale, the two models

clearly loose this correlation, similar to the resistive model in all scales. This effect in the

resistive model is clearly a natural consequence of the diffusion of the magnetic field from

the inner denser regions to the less dense envelope regions. The turbulent model tends

to follow the same trend: we note that for a given density, the magnetic field is smaller

in the resistive model than in the turbulent model which in turn, has a smaller magnetic

field than in the ideal model (see left panel in Figure 4.6), in consistence with the previous

results. In the case of the MHD model, the nearly constant magnetic field with density

at the 100 AU scale is due to the effect of the geometry. At this scale, the built up disk

dominates, but the averaging is performed over the whole sphere that encompasses the

region. This includes also the very light material above and below the disk which has

magnetic field intensities as large as those of the high density material in the disk. (The

same effect explains also the larger magnetic field intensities in the low density tail at

the 500 and 1000 AU scale diagrams − middle and right panels, specially for the ideal

MHD model.) The geometry at 100 AU obviously also affects the turbulent model in the

same way, however we have found from the simulations that in this case the amount of

low density gas carrying high intensity magnetic field below and above the disk is smaller

than in the ideal MHD case. This is because in this case the loss of the B− ρ correlation

at the 100 AU scale is also affected by the diffusion of the magnetic field as in the resistive

model, in consistence with the analyses of Figures 4.4 and 4.5.

Although the initial conditions above are different from those in S+12, the build up
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Figure 4.6: Mean magnetic intensity as a function of bins of density, calculated for the

models analyzed in SGL12 at t = 30 kyr. The statistical analysis was taken inside spheres

of radius of 100 AU (left), 500 AU (middle), and 1000 AU (right). Cells inside the sink zone

(i.e., radius smaller than 60 AU) were excluded from this analysis. For comparison, we

have also included the results for the turbulent model turbulent-512 which was simulated

with a resolution twice as large as the model turbulent-256 presented in SGL12 (see also

the Section 4.5).

of the Keplerian disks by the accretion of the turbulent envelope around the sinks is quite

similar to our setup, so that we can perform at least qualitative comparisons between

the results. In particular, both models consider initially supercritical cores5, i.e., initial

µ larger than unity. We remember that in Figures 4.4 and 4.5 only the values of µ

corresponding to the accreted gas mass were plotted in order to allow an easier track of

the mass and magnetic flux evolution of the disk and envelope material. Nonetheless, the

total µ in our models are larger than unity when including the sink, as in S+12 models.

Another important parameter in this analysis of magnetic flux transport is the initial

ratio between the thermal and magnetic pressure of the gas, β, which is also similar in

both models (β ∼ 0.1 in the center of the cloud in the S+12 models, while β ∼ 0.6 in the

whole core of our models). As a matter of fact, we chose an initial value of β smaller than

unity in the core in order to show that reconnection diffusion could be able to remove the

magnetic flux excess even from an initially magnetically dominated gas and thus solve the

magnetic braking problem. In the case of the S+12 models, it is possible that due to their

5Supercritical cores have a mass-to-magnetic flux ratio which is larger than the critical value at which

the magnetic field force balances the gravitational force. Subcritical cores, satisfy the opposite condition.
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setup, sink regions far from the center of the cloud do not have this constraint on β. In

this case, such regions might not require, in principle, removal of magnetic flux to allow

the formation of a rotating disk and thus this initial condition would naturally avoid the

magnetic braking problem. However, when ingredients such as rotation and turbulence

are introduced, the accreting history in the different sinks within this cloud may change

completely depending on the relative strength of the turbulence and magnetic field. In

this sense, the formation of a Keplerian disk is very sensitive to the local conditions of

the region around the sink (rather than the global initial conditions of the entire cloud)

and therefore, the track of the detailed evolution of the magnetic flux around each sink

region at the scale of the disk build up would be required in order to evaluate the real

evolution of µ around each sink. Such an analysis is missing in S+12 work.

Based on the discussion in the previous paragraphs, it is natural to assume that the

increase in µ detected in some of the S+12 models within the disk radius is real, as in our

model. This increase could be simply an evidence that flux loss was very efficient during

the disk build up in the turbulent envelope around this sink. The fact that they find a

final µ in the disk which is much larger than the initial value in the cloud suggests that

even if numerical resistivity is operating in the inner regions, a substantial magnetic flux

excess was removed by turbulent reconnection diffusion when the disk was still forming

from the accreting envelope.

Regarding the potential role of the numerical resistivity, we can make some quantita-

tive estimates. The relevant scales for the reconnection diffusion to be operative are the

turbulent scales, from the injection to the dissipation scale, i.e., within the inertial range

scales of the turbulence which are larger than the numerical viscous scale. In our simula-

tions with a resolution of 2563 this scale is approximately of 8 cells. To evaluate the relative

role of the numerical dissipation on the evolution of the magnetic flux at scales near the

dissipation range, we can compare the advection and the diffusion terms of the magnetic

field induction equation at a given scale. Considering the magnetic flux variations of our

turbulent model within a 100 AU scale at t = 30 kyr, we find that the ratio between these

two terms, which gives the magnetic Reynolds number, is Rm = LV/ηNum ∼ 75, where

L = 100 AU and we have considered the radial infall velocity as a characteristic velocity
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of the system in this region, V ≈ 0.5 km/s (see Figure 4.7). The approximate numer-

ical resistivity for our employed resolution is ηNum ∼ 1018cm2s−1. Therefore, although

present, the numerical dissipation was not the dominant ingredient driving the change of

the magnetic flux inside 100 AU in the SGL12 turbulent model. Examining the case of

the S+12 models with increase in µ, considering that their magnetic Reynolds number

must be even larger at 100 AU (i.e., the numerical viscosity is even smaller) due to their

higher resolution, then in their case there should be no significant magnetic flux removal

either at 100 AU due to numerical resistivity because of the same arguments above.

Since the S+12 authors do not provide the details of the magnetic field, turbulence,

and density intensity within their Keplerian disks, it is hard to argue whether there was

some significant flux loss or not in the other cases that they investigated where no increase

was detected in the averaged µ over a large volume. It is also possible that some of these

disks developed in regions where the local magnetic fields were not strong enough to cause

magnetic braking and prevent the growth of the Keplerian disk. In these cases, even if

flux loss by reconnection diffusion is occurring it would be undetectable.

4.5 Effects of numerical resolution on the turbulent

model

In Chapter 3 (see also Santos-Lima et al. 2010), we have performed a rigorous numerical

test of the role of turbulent magnetic reconnection diffusion on the transport of magnetic

flux in diffuse cylindrical clouds, considering periodic boundaries and different numerical

resolutions between 1283 and 5123. We found very similar results for all resolutions which

revealed the importance of the diffusion mechanism above to remove magnetic flux from

the inner denser to the outer less dense regions of the clouds.

The turbulent reconnection diffusion theory is based on the fact that in the presence of

turbulence, magnetic reconnection becomes fast and independent of the Ohmic resistivity

(at the scales where the magnetic Reynolds number Rm is & 1). This is because there is

an increase of the number of magnetic reconnection events boosted by the turbulence, in
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according with Lazarian & Vishniac (1999) reconnection theory (which has been already

tested numerically in Kowal et al. 2009, 2012). However, a common distrust in turbulent

numerical simulations is that turbulence could be enhancing the numerical resistivity

itself. This is unjustified, as proved by the careful numerical analysis performed in Kowal

et al. (2009, 2012) and in Santos-Lima et al. (2010). If this were true, the turbulent

reconnection rate would reduce whenever the resolution of the numerical experiment were

increased, which is not the case. Besides, the turbulent reconnection diffusion coefficient,

which is of the order of the Richardson hydrodynamical diffusion coefficient (ηturb ' LVturb

for super-Alfvénic turbulence; see e.g., Lazarian 2011), is much larger than the numerical

(or the Ohmic) diffusion coefficient at scales larger than the dissipation scales of the

turbulence, so that the effects of turbulent reconnection diffusion on the magnetic flux

transport are dominant over numerical diffusion at the relevant scales of the system.

Nonetheless, in order to provide more quantitative tests about the reliability of our

models of Figure 4.3, we also have run a similar turbulent model but with a resolution twice

as large, which is named turbulent-512. We also included in this model an explicit small

Ohmic resistivity (ηOhm = 1017cm2s−1) in order to speed up the numerical computation

(this is however, comparable to the numerical viscosity for this resolution and much

smaller than the turbulent diffusion coefficient, so that it does not influence the physical

results of the problem). The computational domain in this model is cubic with 4000 AU

of side, and the sink accretion radius is half of the value for the models in SGL12 (≈ 30

AU). In Figure 4.7, we present the radial profiles for the mean values of the radial and

azimuthal velocities, the disk (+ envelope) mass, and the mean vertical magnetic field at

t = 30 kyr for this model, which are compared with those of the Figure 4.3 models.

We clearly see that the results of the turbulent models for both resolutions are similar.

The mass of the disk inside this radius is also identical in both models and slightly smaller

for larger radii (in the envelope) in the higher resolution model. The vertical magnetic

field is also slightly smaller for radii larger than 500 AU, but similar to the lower resolution

model in the inner regions (except for some fluctuations due to the different sizes of the

sinks, but which are not relevant for the present analysis. The infall velocity is generally

smaller in the higher resolution model. Nonetheless, in this model, a slightly thinner disk
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Figure 4.7: Comparison between the radial profiles of the high resolution turbulent model

turbulent-512 with the models presented in SGL12 (for which the resolution is 2563). Top

left: radial velocity vR. Top right: rotational velocity vΦ. Bottom left: inner disk mass.

Bottom right: vertical magnetic field Bz. The numerical data are taken at time t ≈ 0.03

Myr. The velocities were averaged inside cylinders centered in the protostar with height

h = 400 AU and thickness dr = 20 AU. The magnetic field values were also averaged

inside equatorial rings centered in the protostar. The vertical lines indicate the radius of

the sink accretion zone for all models except turbulent-512 for which the the sink radius

of the accretion zone is half of that value.
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develops and if this velocity is averaged only over the higher density gas concentrated

at smaller heights around the disk, then the infall velocity profile becomes very similar

with that of the smaller resolution model. This also has to do with the fact that the

turbulence in the model with lower resolution decays slightly faster, so that at the period

of time considered in Figure 4.7, the model with lower resolution has reached already a

more relaxed, non turbulent state. The similarity between the results of both turbulent

models indicates that the lower resolution model of Figures 4.3 and 4.3 is reliable and

therefore, can be employed in the analysis presented in this work.

4.6 Discussion

4.6.1 Our approach and alternative ideas

Shu et al. (2006) (and references therein) mentioned the possibility that the ambipolar

diffusion can be substantially enhanced in circumstellar disks, but did not consider this

as a viable solution. The subsequent paper of Shu et al. (2007) refers to the anomalous

resistivity and sketches the picture of magnetic loops being reformed in the way of eventual

removing magnetic flux. The latter process requires fast reconnection and we claim that

in the presence of fast reconnection a more natural process associated with turbulence,

i.e. magnetic reconnection diffusion can solve the problem.

Krasnopolsky et al. (2010) and Li et al. (2011) showed by means of 2D simulations that

an effective magnetic resistivity η & 1019 cm2 s−1 is needed for neutralizing the magnetic

braking and enable the formation of a stable, rotationally supported, 100 AU-scale disk

around a protostar. The origin of this enhanced resistivity is completely unclear and the

value above is at least two to three orders of magnitude larger than the estimated ohmic

diffusivity for these cores (e.g., Krasnopolsky et al. 2010). On the other hand, these same

authors found that ambipolar diffusion, the mechanism often invoked to remove magnetic

flux in star forming regions, is unable to provide such required levels of diffusivity (see

also Li et al. 2011).

In this work, we have explored a different mechanism to remove the magnetic flux
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excess from the central regions of a rotating magnetized collapsing core which is based

on magnetic reconnection diffusion in a turbulent flow. Unlike the Ohmic resistivity

enhancement, reconnection diffusion does not appeal to any hypothetical processes, but

to the turbulence existing in the system and fast magnetic reconnection of turbulent

magnetic fields. One of the consequences of fast reconnection is that, unlike resistivity, it

conserves magnetic field helicity. This may be important for constructing self-consistent

models of disks.

In order to compare our turbulent MHD model with other rotating disk formation

models, we also performed 3D simulations of a pure hydrodynamical, an ideal MHD and

a resistive MHD model with a hyper-resistivity coefficient η ∼ 1020 cm2 s−1 (Figure 4.3).

The essential features produced in these three models are in agreement with the 2D

models of Krasnopolsky et al. (2010), i.e., the ideal MHD model is unable to produce

a rotationally supported disk due to the magnetic flux excess that accumulates in the

central regions, while the MHD model with artificially enhanced resistivity produces a

nearly-Keplerian disk with dimension, mass, and radial and rotational velocities similar

to the pure hydrodynamical model.

The rotating disk formed out of our turbulent MHD model exhibits rotation velocity

and vertical magnetic field distributions along the radial direction which are similar to the

resistive MHD model (Figure 4.3). These similarities indicate that the turbulent magnetic

reconnection is in fact acting to remove the magnetic flux excess from the central regions,

just like the ordinary enhanced resistivity does in the resistive model. We note, however,

that the disk formed out of the turbulent model is slightly smaller and less massive than

the one produced in the hyper-resistive model. In our tests the later has a diameter

∼ 250 AU, while the disk formed in the turbulent model has a diameter ∼ 120 AU which

is compatible with the observations.

The effective resistivity associated to the MHD turbulence in the turbulent model is

approximately given by ηturb ∼ VturbLinj, where Vturb is the turbulent rms velocity, and

Linj is the scale of injection of the turbulence 6. We have adjusted the values of Linj

6We note however, that this value may be somewhat larger in the presence of the gravitational field

(see L05, SX10)
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and Vturb in the turbulent model employing turbulent dynamical times (Linj/Vturb) large

enough to ensure that the cloud would not be destroyed by the turbulence before forming

the disk. We tested several values of ηturb and the one employed in the model presented

in Figure 4.3 is of the same order of the magnetic diffusivity of the model with enhanced

resistivity, i.e., ηturb ∼ VturbLinj ≈ 1020 cm2 s−1. Smaller values were insufficient to

produce rotationally supported disks. Nonetheless, further systematic parametric study

should be performed in the future.

As mentioned in Section 4.1, Machida et al. (2010, 2011) have also performed 3D

MHD simulations of disk formation and obtained a rotationally supported disk solution

when including only Ohmic resistivity (with a dependence on density and temperature

obtained from the fitting of the resistivities computed in Nakano et al. 2002). However,

they had to evolve the system much longer, about four times longer than in our turbulent

simulation, in order to obtain a rotationally supported disk of 100-AU scale. In their

simulations, a tiny rotationally supported disk forms in the beginning because the large

Ohmic resistivity that is present in the very high density inner regions is able to dissipate

the magnetic fields there. Later, this disk grows to larger scales due to the depletion of

the infalling envelope. Their initial conditions with a more massive gas core (which has a

central density nearly ten times larger than in our models) probably helped the formation

of the rotating massive disk (which is almost two orders of magnitude more massive than

in our turbulent model). The comparison of our results with theirs indicate that even

though at late stages Ohmic, or more possibly ambipolar diffusion, can become dominant

in the high density cold gas, the turbulent diffusion in the early stages of accretion is able

to form a light and large rotationally supported disk very quickly, in only a few 104 yr.

Finally, we should remark that other mechanisms to remove or reduce the effects of

the magnetic braking in the inner regions of protostellar cores have been also investigated

in the literature recently. Hennebelle & Ciardi (2009) verified that the magnetic braking

efficiency may decrease significantly when the rotation axis of the core is misaligned with

the direction of the regular magnetic field. They claim that even for small angles of the

order of 10 − 20o there are significant differences with respect to the aligned case. Also,

in a concomitant work to the present one, Krasnopolsky et al. (2011) have examined the
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Hall effect on disk formation. They found that a Hall-induced magnetic torque can diffuse

magnetic flux outward and generate a rotationally supported disk in the collapsing flow,

even when the core is initially non-rotating, however the spun-up material remains too

sub-Keplerian (Li et al., 2011).

Of course, in the near future, these mechanisms must be tested along with the just

proposed turbulent magnetic reconnection and even with ambipolar diffusion, in order to

assess the relative importance of each effect on disk formation and evolution. Nonetheless,

since MHD turbulence is expected to be present in these magnetic cores (e.g., Ballesteros-

Paredes& Mac Low 2002; Melioli et al. 2006; Leão et al. 2009; Santos-Lima et al. 2010,

and references therein; see also Chapter 3), turbulent reconnection arises as a natural

mechanism for removing magnetic flux excess and allowing the formation of these disks.

4.6.2 Present result and bigger picture

In this work we showed that the concept of reconnection diffusion successfully works

in the formation of protostellar disks. Together with our earlier testing of magnetic

field removal through reconnection diffusion from collapsing clouds this work supports

a considerable change of the paradigm of star formation. Indeed, in the presence of

reconnection diffusion, there is no necessity to appeal to ambipolar diffusion. The latter

may still be important in low ionization, low turbulence environments, but, in any case,

the domain of its applicability is seriously challenged.

The application of TRD concept to protostellar disk formation and, in a more general

framework, to accretion disks in general, is natural as the disks are expected to be tur-

bulent, enabling our appeal to LV99 model of fast reconnection. An important accepted

source of turbulence in accretion disks is the well known magneto-rotational instability

(MRI) (Chandrasekhar 1960, Balbus & Hawley 1991) 7, but at earlier stages turbulence

can be induced by the hydrodynamical motions associated with the disk formation. The

application of the reconnection diffusion mechanism to already formed accretion disks will

7We note, however, that in the present study, we were in a highly magnetized disk regime, where the

magneto-rotational instability is ineffective.
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be investigated in detail elsewhere. It should be noted however that former studies of the

injection of turbulence in accretion disks have shown that at this stage turbulence may

be ineffective to magnetic flux diffusion outward (Rothstein & Lovelace, 2008).

4.7 Conclusions

Appealing to the LV99 model of fast magnetic reconnection and inspired by the successful

demonstration of removal of magnetic field through turbulent reconnection diffusion from

numerical models of molecular clouds in Santos-Lima et al. (2010; see also Chapter 3),

we have performed numerical simulations and demonstrated that:

1. The concept of reconnection diffusion is applicable to the formation of protostellar

disks with radius ∼ 100 AU. The extension of this concept to accretion disks is foreseen.

2. In the gravitational field, reconnection diffusion mitigates magnetic breaking allow-

ing the formation of protostellar disks.

3. The removal of magnetic field through turbulent reconnection diffusion is fast

enough to explain observations without the necessity of appealing to enhanced fluid re-

sistivity.

In Section 4.4.1, we have demonstrated that an analysis which is based solely on the

computation of the average value of the mass-to-magnetic flux ratio (µ) over the whole

envelope that surrounds a newly formed Keplerian disk, is not adequate to conclude that

there is no significant magnetic flux loss in simulations of disk formation. This averaging

masks significant real increases of µ in the inner regions where the disk is build up out of

the turbulent envelope material that is accreting.

Actually, we have demonstrated that this is what happens on the build up of the

Keplerian disk both, in our turbulent and resistive models, where magnetic flux loss has

been detected. While the average µ computed over the large scale envelope/disk does

remain nearly constant with time, the value of µ inside the formed Keplerian disk is 5

times larger than the initial value in the cloud core. Similarly, some of the disks formed

in the turbulent S+12 models also revealed a value of µ 5 times larger within the disk

than the initial cloud value, while the average µ over the whole envelope surrounding the
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disk was nearly constant with time.

In our models we have found that the reduction of the magnetic braking efficiency

during the building of the disk was due to the action of TRD; we suggest that the increase

in µ found in S+12’s disk is real and, as in our model, is caused by reconnection diffusion

rather than numerical effects. While the shear flow generated by the turbulent motions in

the surroundings of the disk (which carry large amounts of angular momentum) allows the

build up of the rotationally supported disk, it also removes the magnetic flux excess due

to fast turbulent reconnection, which otherwise may prevent the formation of the disk.

During the build up of these disks out of turbulent envelopes around the sinks embedded in

a massive cloud core (as in S+12 models), some envelopes may have strong local magnetic

support (low local µ) which may prevent the Keplerian disk formation unless magnetic

flux is removed, and some not. In the former case, we argue that reconnection diffusion

is reducing the effect of the magnetic braking. In the latter case, even in the presence

of magnetic flux loss induced by reconnection diffusion in the turbulent flow, its effect

is marginal and therefore difficult to detect, because the magnetic field is dynamically

unimportant.
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Chapter 5

Turbulence and magnetic field

amplification in collisionless MHD:

an application to the ICM

As stressed in Chapter 2 (Section 2.5), the applicability of the standard collisional MHD

model to the magnetized plasma of the intracluster medium (ICM) of galaxies can be

questioned due to the collisionless nature of the gas. But a fully kinetic approach is not

appropriate either for studying large scale phenomena, like the evolution of the turbulence

and magnetic fields in these environments. Nevertheless, it is still possible to formulate

a fluid approximation for collisionless plasmas, namely a collisionless-MHD description.

In this case, we assume a double Maxwellian velocity distribution of the particles in both

directions, parallel and perpendicular to the local magnetic field, which gives rise to an

anisotropic thermal pressure. The forces arising from this anisotropy modify the stan-

dard Alfvén and magnetosonic waves and lead to the development of kinetic instabilities.

Measurements of weakly collisional plasmas (like the solar wind and laboratory plasmas)

as well as PIC simulations have demonstrated that these instabilities are able to saturate

the pressure anisotropy.

In Section 2.5 we described the physical characteristics of the ICM. In this chapter,

we present the results of our numerical studies of the evolution of the turbulence and the
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magnetic fields in the ICM, employing a collisionless-MHD description with constraints

on the pressure anisotropy as described in Chapter 2 (Section 2.5.6). In particular, we

demonstrate that due to the saturation of the pressure anisotropy at the relevant large

scales of the system, the turbulent dynamo amplification of seed magnetic fields and the

overall magnetic field power spectrum evolution are similar to those found in a collisional

MHD description of the ICM.

In Section 5.1 below we describe the numerical setup; in Section 5.2 we describe our

numerical experiments and results; in Section 5.3 we discuss our results and the limitations

of our model; in Section 5.4 we summarize our conclusions.

5.1 Numerical methods and setup

5.1.1 Thermal relaxation model

The simplest collisionless MHD description, the so called CGL-MHD model (see Sec-

tion 2.5.4) neglects any heat conduction or radiative cooling mechanisms which is not a

realistic assumption for the ICM. Combining Equations (2.44) we find that

w∗ =

[(
B

B0

)
A0 +

1

2

(
B

B0

)−2 (
ρ

ρ0

)2
]

w∗
0

(A0 + 1/2)
, (5.1)

where the subscripts 0 refer to the initial values in the Lagrangian fluid volume.

In the statistically steady state of the turbulence, the constant turbulent dissipation

power leads to a secular increasing of the temperature of the gas which can lead to heat

conduction and radiative losses. In order to deal with these effects in a simplified way,

we employ a term ẇ that relaxes the specific internal energy w∗ = (p⊥ + p‖/2)/ρ to the

initial value w∗
0 at a constant rate νth (see Brandenburg et al. 1995):

ẇ = −νth(w
∗ − w∗

0)ρ. (5.2)

Although simplistic, this approximation is useful for two reasons: (i) it allows the

system to dissipate the turbulent power excess; and (ii) it helps to relax the local values

of w∗ which may become artificially high or low in the CGL-MHD formulation without

constraints on the anisotropy growth (see discussion in Section 5.3.2).
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5.1.2 Numerics

Equations (2.51) were evolved in a three-dimensional Cartesian box employing the code

described in Appendix A.

The induction equation was integrated in its “uncurled” form. In the simulations

presented in this research, no explicit diffusion term was used, except for model A2 (see

Table 5.1) where an Ohmic dissipation term with a diffusivity η ∼ 10−4 (i.e., of the same

order of the numerical diffusivity) was employed in order to prevent eventual negative

values of the internal energy w. These can arise because the eventual diffusion of the

magnetic energy, specially in the presence of very high spatial frequency instabilities, is not

being explicitly taken into account in the energy equation. Nonetheless, numerical tests

showed that the introduction of this diffusion term does not cause significant differences

in the results for this model.

The pressure anisotropy relaxation was applied after each sub-time-step of the RK2

method, by transforming the conservative variables e and A in the primitive ones p⊥ and

p‖, calculating their relaxed values through Eq. (2.53) (using the same implicit method

as in Meng et al. 2012b)1 and then, reconstructing back the conservative variables.

A time-step constraint is considered due to the thermal relaxation (Eq. 5.2). At the end

of each time-step, we estimate the minimum characteristic time of the thermal relaxation

δtth for the next time step as given by

δtth = min
(w

ẇ

)
, (5.3)

where ẇ is the value calculated during the time-step and the minimum value is computed

over the whole domain.

The next time-step is then taken as the minimum between εCδtC and εthδtth where,

after performing several tests, we have chosen the following factors εC = 0.3 and εth = 0.1.

1In the case νS = ∞ (see Table 5.1), when the plasma is in the firehose (Eq. 2.47) or in the kinetic

mirror instability (Eq. 2.49) regimes, this method simply replaces the pressures p⊥ and p‖ by the values

given by the corresponding marginal stability criterium (while ensuring conservation of the internal energy

w = p⊥ + p‖/2).
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5.1.3 Reference units

In the next sections, all the physical quantities are given in code units and can be easily

converted in physical units using the reference physical quantities described below (see

also Appendix A). We arbitrarily choose three representative quantities from which all

the other ones can be derived: a length scale l∗ (which is given by the computational box

side), a density ρ∗ (given by the initial ambient density of the system), and a velocity

v∗ (given by the initial sound speed in most of the models, but Model C3 for which the

velocity unit is 0.3v∗; see Table 5.1). For instance, with such representative quantities

the physical time scale is given by the time in code units multiplied by l∗/v∗; the physical

energy density is obtained from the energy value in code units times ρ∗v2
∗, and so on. The

magnetic field in code units is already divided by
√

4π, thus to obtain the magnetic field

in physical units one has to multiply the value in code units by v∗
√

4πρ∗.

5.1.4 Initial conditions and parametric choice

Table 5.1 lists the simulated models and their initial parameters.

In Table 5.1, VA0 = B0/
√

ρ0 is the Alfvén speed given by the initial intensity of the

magnetic field directed along the x-axis. Initially, the gas pressure is isotropic for all the

models with an isothermal sound speed VS0 =
√

p0/ρ0. The parameter β0 is the initial

ratio between the thermal pressure and the magnetic pressure (β0 = 2p0/B
2
0).

Turbulence was driven considering the same setup in all the models of Table 5.1. The

injection scale is lturb = 0.4. The power of injected turbulence εturb is kept constant

and equal to unity. After t = 1 a fully turbulent flow develops in the system with an

rms velocity vturb close to unity. This implies a turbulent turn-over (or cascading) time

tturb ≈ 0.4.

Models A, B and C in Table 5.1 are collisionless MHD models with initial moderate,

strong, and very small (seed) magnetic fields, respectively. For models A and C the

injected turbulence is initially super-Alfvénic, while for models B it is sub-Alfvénic.

Amhd, Bmhd, and Cmhd correspond to collisional MHD models, i.e., have no anisotropy

in pressure. The set of equations describing these models is identical to those in Eq. (2.51),
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but dropping the equation for the evolution of the anisotropy A and replacing the thermal

energy by w = 3p/2 (which corresponds to a politropic gas index 5/3). Their correspond-

ing dispersion relations are those from the usual collisional MHD approach (rather than

Equations 2.45 and 2.46).

We have considered different values of the pressure anisotropy relaxation rate νS.

Models with νS = ∞ (i.e. with instantaneous relaxation rate) represent conditions for

which the relaxation time ∼ ν−1
S is much shorter than the minimum time step δtmin that

our numerical simulations are able to solve (δtmin ∼ 10−6). Previous studies (Gary et al.

1997, 1998, 2000) suggest that the rate νS should be of the order of a few percent of Ωp,

the proton gyrofrequency (see Section 5.3.2). If we consider typical physical conditions

for the ICM, in order to convert the code units into physical units (see Section 5.1.3), we

may take l∗ = 100 kpc, v∗ = 108 cm/s, and ρ∗ = 10−27 g/cm3 as characteristic values for

the length scale, dynamical velocity and density of the ICM, respectively. This implies a

characteristic time scale t∗ ∼ 1015 s, while for models A in Table 5.1, the proton Larmor

period is τcp ∼ 103 s. Using νS ∼ 10−3τ−1
cp , we find ν−1

S ∼ 10−9t∗. Therefore, the models of

Table 5.1 for which we assumed νS = ∞ are very good approximations to the description

of the direct effect of plasma instabilities at the large scale turbulent motions within the

ICM. For comparison, we have also run models with no anisotropy relaxation, or νS = 0,

which thus behave like standard CGL-models.

We notice that the turbulence in the ICM is expected to be trans- or even subsonic,

and the plasma beta is expect to be high (β ∼ 200). Therefore, models A are possibly

more representative of the typical conditions in the ICM.

In the following section we will start by describing the results for models A and B

which have initial finite magnetic fields and therefore, reach a nearly steady state turbulent

regime relatively rapidly after the injection of turbulence. Then, we will describe models

C which start with seed magnetic fields and therefore, undergo a dynamo amplification

of field due to the turbulence and take much longer to reach a nearly steady state.
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Table 5.1: Parameters of the simulated models

Name νS νth VA0 VS0 β0 tf Resolution

A1 ∞ 5 0.3 1 200 5 5123

A2 0 5 0.3 1 200 5 5123

A3 101 5 0.3 1 200 5 5123

A4 102 5 0.3 1 200 5 5123

A5 103 5 0.3 1 200 5 5123

A6 ∞ 0 0.3 1 200 5 5123

A7 ∞ 0.5 0.3 1 200 5 5123

A8 ∞ 50 0.3 1 200 5 5123

Amhd - 5 0.3 1 200 5 5123

B1 ∞ 5 3.0 1 0.2 5 5123

Bmhd - 5 3.0 1 0.2 5 5123

C1 ∞ 5 10−3 1 2× 106 40 2563

C2 0 5 10−3 1 2× 106 40 2563

C3 0 5 10−3 0.3 2× 105 40 2563

C4 102 5 10−3 1 2× 106 40 2563

Cmhd - 5 10−3 1 2× 106 40 2563

5.2 Results

Figure 5.1 depicts the density (left column) and the magnetic intensity (right column)

distribution maps of the central slices for collisionless models with moderate initial mag-

netic fields A2 (top row), A1 (middle row), and Amhd (bottom row). All these models

have β0 = 200 and the same initial conditions, except for the anisotropy relaxation rate

νS.

In the A2 model there is no constraint on the growth of the pressure anisotropy

(νS = 0). In this case, the kinetic instabilities that develop due to the anisotropic pressure

are very strong at the smallest scales. This makes the density (and the magnetic field
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Figure 5.1: Central XY plane of the cubic domain showing the density (left column) and

the magnetic intensity (right column) distributions for models of Table 5.1 with initial

moderate magnetic field (β0 = 200) and different values of the anisotropy relaxation rate

νS, at t = tf . Top row: model A2 (with νS = 0, corresponding to the standard CGL model

with no constraint on anisotropy growth); middle row: model A1 (νS = ∞, corresponding

to instantaneous anisotropy relaxation to the marginal stability condition); bottom row:

model Amhd (collisional MHD with no anisotropy). The remaining initial conditions are

all the same for the three models (see Table 5.1).
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intensity) distribution in Figure 5.1 more “wrinkled” than in the standard (collisional)

MHD case. On the other hand, in the A1 model where the isotropization of the thermal

pressure due to the back reaction of the same kinetic instabilities is allowed to occur above

a threshold, the developed density (and magnetic field intensity) structures are larger and

more similar to those of the collisional MHD turbulent model Amhd.

In order to better quantify and understand the results evidenced by Figure 5.1 regard-

ing the collisionless models without and with anisotropy growth constraints, in the next

paragraphs of this Section we will present a statistical analysis of the physical variables

of these turbulent models after they reach a steady state.

For models A1 to Bmhd in Table 5.1, the statistical analyses were performed by

averaging data from snapshots taken every ∆t = 1, from t = 2 until the final time step tf

indicated in Table 5.1. For the models with initial seed fields, C1 to Cmhd, the statistical

analysis considered snapshots from t = tf − 10 until tf .

Averages and standard deviation of important physical quantities that will be dis-

cussed below are presented in Tables 5.2, 5.3, and 5.4.

Tables 5.2, 5.3, and 5.4 present one point statistics in space and time for the simulated

models in Table 5.1. The averaged quantities are listed in the most left column. Each

column presents the averages and below it the standard deviation, for each model. For

the statistics, we considered snapshots spaced in time by ∆t = 1, from t = 2) (Tables 5.2

and 5.3) or tf − 10 (Table 5.4), until tf (the tf for each model is listed in Table 5.1).

All the values are in code units and can be converted into physical units according to

the prescription given in Section 5.1.3. The functional definitions (in terms of the code

units) of the physical quantities listed are: EK = ρu2/2, EM = B2/2, EI = (p⊥ + p‖/2),

MA = uρ1/2/B, MS = u(3ρ)1/2/(2p⊥ + p‖)1/2. For the collisional MHD models, the

following definitions are used: EI = 3p/2, MS = u(ρ/p)1/2, β‖ = β.

5.2.1 The role of the anisotropy and instabilities

The injected turbulence produces shear and compression in the gas and in the magnetic

field. Under the collisionless approximation, according to Eqs. (2.44) A ∝ B3/ρ2, there-
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fore, one should expect that compressions along the magnetic field lines, which keep B

constant but make ρ to increase, cause a decrease of A, while compressions or shear per-

pendicular to the magnetic field lines, which make B to increase but keep either B/ρ or

ρ constant, cause an increase of A. Therefore, even starting with A = 1, parcels of the

gas with A 6= 1 will naturally develop. Inside these parcels, kinetic instabilities can be

triggered which in turn will inhibit the growth of the anisotropy.

Figure 5.2 presents the distribution of the anisotropy A as a function of β‖ for the

models with moderate initial magnetic field A1, A2, A3, A4, and A5 of Table 5.1. Model

A2 (νS = 0) has an A distribution that nearly follows a line with negative inclination in

the log-log diagram. This is consistent with the derived A dependence in the CGL models

given by A ∝ (ρ/B)β−1
‖ (when the initial conditions are homogeneous; see Eqs. 2.44). This

model attains values of A spanning several orders of magnitude (from 10−2 to 103).

Model A1 (νS = ∞), on the other hand, keeps A close to unity, varying by less than

one order of magnitude.

Figure 5.2 also shows the distribution of A for the A3, A4, and A5 models which have

bounded anisotropy with finite anisotropy relaxation rates νS (see Table 5.1). We see

that in these cases, a fraction of the gas has A values out of the stable zone. The model

with smaller anisotropy relaxation rate (model A3) obviously presents a larger fraction

of gas inside the unstable zones. We also note that the higher the value of β‖, the larger

the linear growth rate of the instabilities and more gas is inside the unstable regions with

A < 1. This is consistent with the CGL trend for which A ∝ β−1
‖ .

Bottom right panel of Figure 5.2 shows the distribution of A versus β‖ for the model

B1 with strong initial magnetic field (small β0 = 0.2). We see that in this regime, B1

model has an A distribution inside the stable zone.

The spatial anisotropy distribution is illustrated in Figure 5.3 in two-dimensional maps

that depict central slices of A in the XY-plane at the final time step for models A1, A2,

A3, A4, A5 and B1. For the CGL model with moderate magnetic field (β0 = 200), model

A2, the A structures are thin and elongated. These small scale structures probably arise

from the fast fluctuations driven by the kinetic instabilities (see Figure 5.2). For the model

with strong magnetic field (small β0), B1 model, the A structures are smoother. They are
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Figure 5.2: The panels show two-dimensional normalized histograms of A = p⊥/p‖ versus

β‖ = p‖/(B2/8π) for models starting with moderate magnetic fields (models A with

β0 = 200) and the model B1 with strong magnetic field (with β0 = 0.2 (see Table 5.1).

The histograms were calculated considering snapshots every ∆t = 1, from t = 2 until

the final time step tf indicated in Table 5.1 for each model. The continuous gray lines

represent the thresholds for the linear firehose (A = 1 − 2β−1
‖ , lower curve) and mirror

(A = 1+β−1
⊥ , upper curve) instabilities, obtained from the kinetic theory. The dashed gray

line corresponds to the linear mirror instability threshold obtained from the CGL-MHD

approximation (A/6 = 1 + β−1
⊥ ).

originated by small amplitude magnetic fluctuations (Alfvén waves) and also compression

modes at the large scales. The map of model A1 also shows thin and elongated structures,

but with lengths of the order of the turbulence scale.

As an illustration of the spatial distribution of the unstable gas, Figures 5.4 and 5.5
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Figure 5.3: Maps of the anisotropy A = p⊥/p‖ distribution at the central slice in the XY

plane at the the final time tf for a few models A and B of Table 5.1.

depict maps of the maximum growth rate of both the firehose (left column) and the mirror

(right column) instabilities given by Equations (2.50) for the models with moderate initial
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magnetic field (β0 = 200) and different anisotropy relaxation rates νS.2 These maximum

growth rates are normalized by the initial ion gyrofrequency Ωi0 and occur for modes with

wavelengths of the order of the ion Larmor radius. First thing to note is that the mirror

unstable regions have a larger volume filling factor than the firehose unstable regions for all

the models in Figure 5.4. This is because the regions where the magnetic field is amplified

have a large perpendicular pressure and this happens on most of the turbulent volume.

Regions with an excess of parallel pressure arise when the magnetic intensity decays, like

in regions with magnetic field reversals. The correspondence of the low intensity magnetic

field with firehose unstable regions can be checked directly in model A2 by comparing the

maps of Figures 5.4 and 5.1. The firehose unstable regions in models A2 and A3 in

Figure 5.4 are small and fragmented; while in models A4 and A5 (in Figure 5.5), they

are elongated (at lengths of the turbulent injection scale) and very thin (with thickness

of the order of the dissipative scales) and are regions with magnetic field reversals and

reconnection.

Also, from Figures 5.4 and 5.5 we see that most of the volume of models A2 and A3

are mirror unstable; for models A4 and A5, the mirror unstable regions are elongated

but with much larger thickness than in the firehose unstable regions. We must remember

that the criterium for the mirror unstable regions in Figures 5.4 and 5.5 is the kinetic one

(Eq. 2.49) rather than the CGL-MHD criterium (Eq. 2.48) (see also Figure 5.2).

The spatial dimensions of the unstable regions in Figures 5.4 and 5.5 also reveal the

maximum wavelength of the unstable modes which should develop inside the turbulent

domain. In the models with finite anisotropy relaxation rate νS, the larger the value of νS

the smaller the wavelength of the unstable modes. For realistic values of νS of the order of

γmax (the maximum frequency of the instabilities), there would have only unstable modes

with wavelengths below the spatial dimensions we can resolve.

2We note that because Equations (2.50) have a validity limit as described in Section 2.5.5, we have

corrected the growth rates to γmax/Ωi = 1 when outside of the validity range. This limit is well justified

by fully solutions of the dispersion relation obtained from the linearization of the Vlasov-Maxwell equation

by Gary (1993; see Chapter 7).
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Figure 5.4: Central slice in the XY plane of the domain showing distributions of the

maximum growth rate γmax (normalized by the initial ion gyrofrequency Ωi0) of the fire-

hose (left column) and mirror (right column) instabilities for models A2 and A3 (with

β0 = 200 and different values of the anisotropy relaxation rate νS). The expressions for

the maximum growth rates are given by Equations (2.50), with a maximum value given

by γmax/Ωi = 1. Data are taken at the the final time tf for each model, indicated in

Table 5.1.

5.2.2 Magnetic versus thermal stresses

The gyrotropic tensor gives the gas a larger (smaller) strength to resist against bending

or stretching of the field lines if A > 1 (A < 1). This higher or smaller strength comes

from the parallel anisotropic force

fA = (p‖ − p⊥)∇‖ ln B, (5.4)
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Figure 5.5: The same as Figure 5.4, for models A4 and A5.

where ∇‖ ≡ (B/B) ·∇. The relative strength between this anisotropic force and the usual

Lorentz curvature force can be estimated from α ≡ (p‖ − p⊥)/(B2/4π).

As a measure of the dynamical importance of the anisotropy, we calculated the average

value of |α| for all the models of Table 5.1 and the values are listed in Tables 5.2, 5.3,

and 5.4 for models A, B and C, respectively.

First let us consider the models with initial moderate magnetic field (β0 = 200). For

models A1, A6, A7, and A8 (νS = ∞), the anisotropic force is non dominant: 〈|α|〉 ≈ 0.4.

For model A2 (νS = 0), on the other hand, the anisotropic force is dominant, with

〈|α|〉 ≈ 5. For the models A3, A4, and A5, with finite isotropization rate, the anisotropic

force is comparable to the curvature force, being smaller for the higher isotropization rate:

〈|α|〉 ≈ 4 for model A3 (νS = 101) and 〈|α|〉 ≈ 1.5 for model A5 (νS = 103).

For model with strong magnetic field (β0 = 0.2) B1, the anisotropic force is negligible
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compared to the Lorentz curvature force: 〈|α|〉 ≈ 0.04.

5.2.3 PDF of Density

Figure 5.6 shows the normalized histograms of log ρ for models A and B of Table 5.1

having different rates of anisotropy relaxation νS. The left panel shows models with

initial moderate magnetic field intensity (β0 = 200) and the right panel the model with

initial strong magnetic field intensity (β0 = 0.2). The corresponding collisional MHD

models are also shown for comparison.

Examining the high β models in the top diagram, we note that all the models with

anisotropy relaxation have similar distribution to the collisional model. Model A2, for

which the anisotropy relaxation is null, has a much broader distribution, specially in the

low density domain. This difference is due to the presence of strong mirror forces in the A2

model which expels the gas to outside of high magnetic field intensity regions, causing the

formation of low density zones. Consistently, we can check this effect in the bi-histograms

of density versus magnetic field intensity in Figure 5.7 for model A2 (the bi-histogram for

the model Amhd is also shown for comparison). The lowest density points are correlated

with high intensity magnetic fields for the model A2.
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Figure 5.6: Normalized histogram of log ρ. Left: models starting with β0 = 200. Right:

models starting with β0 = 0.2. The histograms were calculated using one snapshot every

∆t = 1, from t = 2 until the final time tf indicated in Table 5.1.
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The right panel of Figure 5.6 indicates that the low β, strong magnetic field model B1

has density distribution only slightly narrower than the collisional MHD model Bmhd,

specially at the high density region. The slight difference with respect to the collisional

model is possibly due to: (i) the sound speed parallel to the field lines is higher in the col-

lisionless models: c‖s =
√

3p‖/ρ for the collisionless model, while for the collisional model

cs =
√

5p/3ρ; and (ii) in the direction perpendicular to the magnetic field, the fast modes

have characteristic speeds higher in the collisionless model: cf =
√

B2/4πρ + 2p⊥/ρ, while

for the MHD model cf =
√

B2/4πρ + 5p/3ρ. These larger speeds in the anisotropic model

imply a larger resistance to compression and therefore, smaller density enhancements (at

least for our transonic models).
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Figure 5.7: Two-dimensional normalized histograms of log ρ versus log B. Left: collision-

less model A2 with null anisotropy relaxation rate. Right: collisional MHD model Amhd.

The histograms were calculated using snapshots every ∆t = 1, from t = 2 until the final

time tf indicated in Table 5.1. See more details in Section 5.2.3.

5.2.4 The turbulence power spectra

Power spectrum is an important characteristic of turbulence. For MHD turbulence a sub-

stantial progress has been achieved recently as the Goldreich-Sridhar model has become

acceptable. Recent numerical work has tried to resolve the controversies and confirmed

the Kolmogorov −5/3 spectrum of Alfvénic turbulence predicted in the model (e.g. Beres-
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nyak & Lazarian 2009a, 2010; Beresnyak 2011, 2012b). This spectrum corresponds to the

Alfvénic mode of the compressible MHD turbulence (Cho & Lazarian 2002, 2003; Kowal

& Lazarian 2010; Beresnyak & Lazarian 2013).

Our goal here is to determine the power spectrum of the turbulence in collisionless

plasma in the presence of the feedback of plasma instabilities on scattering.

Figure 5.8 compares, for different models of Table 5.1, the power spectra of the velocity

(top row), magnetic field (middle row) and density (bottom row). The models starting

with moderate magnetic field and β0 = 200 (A1, A2, A3, A4, A5, Amhd), for which the

turbulence is super-Alfvénic, are in the left column, and the models starting with strong

magnetic field and β0 = 0.2 (B1, Bmhd), for which the turbulence is sub-Alfvénic are in

the right column. Each power spectrum is multiplied by the factor k5/3.

The velocity power spectrum Pu(k) for the super-Alfvénic high beta collisional model

Amhd (in the left top panel of Figure 5.8) is consistent with the Kolmogorov slope ap-

proximately in the interval 4 < k < 20 and decays quickly for k > 30. The power spectra

of the collisionless models A1, A3, A4, and A5 are similar, but show slightly less power

in the interval 4 < k < 30. In fact, in Table 5.2, we find that the average values of u2 for

these models are smaller than the model Amhd. Models A3 and A4 evidence more power

at the smallest scales, already at the dissipation range. This is due to the acceleration

of gas produced by the firehose instability (see Figure 5.2). Model A2 (νS = 0), has a

flatter velocity power spectrum than the collisional MHD model Amhd, and much more

power at the smallest scales. This excess of power comes from the firehose and mirror

instabilities and is consistent with the trend reported in the previous sections and also in

Kowal et al. (2011a).

The sub-Alfénic velocity power spectrum Pu(k) of the collisional MHD model Bmhd

(top right panel in Figure 5.8) has a narrower interval of wavenumbers consistent with

the Kolmogorov slope. The power spectra Pu(k) of the collisionless model B1 is almost

identical which is in agreement with the small dynamical importance of the anisotropy

forces compared to the magnetic forces (see Section 5.2.2).

The power spectrum related to the compressible component of the velocity field PC(k)

is shown in Figure 5.9, where it is divided at each wavenumber by the total power of the
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Figure 5.8: Power spectra of the velocity Pu(k) (top row), magnetic field PB(k) (middle

row), and density Pρ(k) (bottom row), multiplied by k5/3. Left column: models A, with

initial β0 = 200. Right column: models B, with β0 = 0.2. Each power spectrum was

averaged in time considering snapshots every ∆t = 1, from t = 2 to the final time step tf

indicated in Table 5.1.

velocity field. For the high beta models, the ratio PC(k)/Pu(k) for the collisionless models

is similar to that of the collisional MHD model Amhd for almost every wavenumber k and

is≈ 0.15. For the low beta model, however, the collisionless model has a ratio PC(k)/Pu(k)

slightly higher than that of the collisional MHD model Bmhd for wavenumbers above

k ≈ 10. The fractional power in the compressible modes in the interval 2 < k < 20 is

smaller compared to the super-Alfvénic (high β) models, but at larger wavenumbers it

becomes higher.

The anisotropy in the structure function of the velocity is shown in Figure 5.10. The

134



Turbulence and magnetic field amplification in collisionless MHD

10−2

10−1

100

100 101 102

P
C

(k
)/

P
u
(k

)

k

A1: β0 = 200, νS = ∞
A2: β0 = 200, νS = 0

A3: β0 = 200, νS = 101

A4: β0 = 200, νS = 102

A5: β0 = 200, νS = 103

Amhd: β0 = 200
10−2

10−1

100

100 101 102

P
C

(k
)/

P
u
(k

)

k

B1: β0 = 0.2, νS = ∞
Bmhd: β0 = 0.2

Figure 5.9: Ratio between the power spectrum of the compressible component PC(k) and

the total velocity field Pu(k), for the same models as in Figure 5.8 (see Table 5.1 and

Section 5.2.4 for details).

structure function of the velocity Su
2 is defined by

Su
2 (l‖, l⊥) ≡ 〈|u(r + l)− u(r)|2〉, (5.5)

where the displacement vector l has the parallel and perpendicular components (relative

to the local mean magnetic field) l‖ and l⊥, respectively. The local mean magnetic field

is defined by (B(r + l) + B(r))/2 (like in Zrake & MacFadyen 2012). The GS95 theory

predicts an anisotropy scale dependence of the velocity structures (eddies) of the form

l‖ ∝ l
2/3
⊥ . The axis in Figure 5.10 are in cell units. The collisional MHD model Amhd is

consistent with the GS95 scaling for the interval 10∆ < l⊥ < 40∆, where ∆ is one cell

unit in the computational grid. For the sub-Alfvénic model Bmhd, however, this scaling

is less clear, although the anisotropy is clearly seen.

The collisionless models A1, A4, and A5 in Figure 5.10 evidence anisotropy in the

velocity structures which is identical to that of the collisional MHD model Amhd. Models

A2 and A3, on the other hand, have more isotropized structures at small values of l. This

effect is due to the action of the instabilities and is also observed in the high beta models

in Kowal et al. (2011a) for both the firehose and mirror instabilitiy regimes.

The magnetic field power spectra PB(k) of the collisional MHD models Amhd and

Bmhd (middle row of Figure 5.8) show a power law consistent with the Kolmogorov slope
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Figure 5.10: l⊥ vs l‖ obtained from the structure function of the velocity field (Eq. 5.5).

The axes are scaled in cell units.

at the same intervals of the velocity power spectra. As in the velocity power spectrum,

in the high beta, super-Alfvénic cases, the collisionless models A1, A3, A4, and A5 have

similar PB(k) to the collisional model Amhd (although with slightly less power). Model

A2 has a PB(k) much flatter than that of Amhd and has less power (by a factor of two)

at the inertial range interval. In the smallest scales (k > 50), however, its power is above

that of the Amhd model (this is also observed for model A3). As in the velocity power

spectrum, these small-scale structures are due to the instabilities which are present in this

model.

For the sub-Alfvénic, low beta models (B), the magnetic field power spectrum PB(k)

of the collisionless model is again similar to the collisional MHD model Bmhd.

Figure 5.11 compares PB(k) and Pu(k) for our models. For the super-Alfvénic, high

beta models (A) which are in steady state, the magnetic field power spectrum is in super

equipartition with the velocity power spectrum for k > 3 for all models, but the A2 model

which has PB(k) < Pu(k) for all wavenumbers. Models A3, A4, and A5 show PB(k)/Pu(k)

decreasing values for larger wavenumbers, being this effect more pronounced in model A3

which has smaller anisotropy relaxation rate. The sub-Alfvénic, low beta collisionless

model B1 has the ratio PB(k)/Pu(k) slightly smaller than unity for all wavenumbers and

slightly smaller than the collisional Bmhd model at large k values.

The anisotropy in the structure function for the magnetic field shows similar trend
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Figure 5.11: Ratio between the power spectrum of the magnetic field PB(k) and the

velocity field Pu(k) for the same models as in Figure 5.8 (see Table 5.1 and Section 5.2.4

for details).

to the velocity field in all models and is not presented here. Likewise, the density power

spectra Pρ(k) for the super-Alfvénic, high beta models (bottom row in Figure 5.8) reveal

the same trend of the velocity power spectra. For the sub-Alfvénic model, however,

the smaller power in the larger scales compared to the collisional MHD model Bmhd

is clearly evident, specially in the inertial range. This is consistent with the discussion

following the presentation of the density distribution (Section 5.2.3), which evidenced

that the collisionless models resist more to compression than the collisional model (see

also Figure 5.9).

5.2.5 Turbulent amplification of seed magnetic fields

Figure 5.12 shows the magnetic energy evolution of the models having initially very weak

magnetic (seed) field, models C1, C2, C3, C4, and Cmhd of Table 5.1. The kinetic energy

of the models is not shown, but their values are approximately constant in time (after

t ≈ 1) and their average values (taken during the last ∆t = 10 for each model) 〈EK〉
are shown in Table 5.4. For each of these models, Figure 5.13 shows the power spectrum

of the magnetic field, from t = 2 until the final time, for every ∆t = 2 (dashed lines).

The final magnetic field power spectrum is the continuous line. Also for comparison, it is
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plotted the final velocity power spectrum (dash-dotted line).
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Figure 5.12: Time evolution of the magnetic energy EM = B2/2 for the models starting

with a weak (seed) magnetic field, models C1, C2, C3, C4, and Cmhd, from Table 5.1.

The left and right panels differ only in the scale of EM . This is shown in a log scale in the

top panel and in a linear scale in the bottom panel. The curves corresponding to models

C2 and C3 are not visible in the right panel.

The collisional MHD model Cmhd shows an initial exponential growth of the magnetic

energy until t ≈ 5. In this interval, the average magnetic energy grows from EM = 5×10−7

to EM ∼ 10−2. After this, a slower (linear) growth rate of the magnetic energy takes place

until t ≈ 10, as can be seen in the right panel of Figure 5.12. This is consistent with studies

of turbulent dynamo amplification of magnetic fields in collisional plasmas (see, e.g., Cho

et al. 2009). At the final times, the magnetic energy achieves the value EM ≈ 9.0× 10−2

which is approximately four times smaller than the average kinetic energy EK ≈ 0.38 (see

Table 5.4). The bottom panel of Figure 5.13 shows that the final magnetic field power

spectrum is peaked at k ≈ 20 above which it is in super-equipartition with the velocity

power spectrum.

The collisionless model C1 with instantaneous relaxation of the pressure anisotropy

(νS = ∞), has a turbulent amplification of the magnetic energy very similar to that of

the collisional MHD model Cmhd (Figure 5.12). The initial exponential growth rates are

nearly indistinguishable between the two models, but in the linear stage the growth rate
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Figure 5.13: Magnetic field power spectrum multiplied by k5/3 for the same models pre-

sented in Figure 5.12, from t = 2 at every ∆t = 2 (dashed lines) until the final time

indicated in Table 5.1 (solid lines). The velocity field power spectrum multiplied by k5/3

at the final time is also depicted for comparison (dash-dotted line).

is slightly smaller in model C1 (see right panel of Figure 5.12) and also the final value of

saturation of the magnetic energy: EM ≈ 6.2 × 10−2 (see Table 5.4). During the initial

exponential growth of the magnetic energy, when the plasma still has high values of β,

the pressure anisotropy relaxation due to the kinetic instabilities keeps the plasma mostly

isotropic, explaining the similar behavior to the collisional MHD model. When β starts

to decrease, the anisotropy A can increase (or decrease) spanning a range of A values in

the stable zone (as in Figure 5.2 for model A1). Then, the anisotropic forces can start to

have dynamical importance. At the final times, the value of 〈|p‖ − p⊥|/(B2/4π)〉, which
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measures the dynamical importance of the anisotropic forces compared to the Lorentz

curvature force (see Section 5.2.2) is ≈ 0.5 (Table 5.4). The magnetic field power spectrum

has an identical shape to the model Cmhd, specially in the final time step.

The turbulent dynamo is also tested for a model with a finite anisotropy relaxation

rate, model C4, which has νS = 102. The growth rate of the magnetic energy (in the

exponential and linear phases) is smaller compared to models Cmhd and C1 (left and

right panels in Figure 5.12). In this case, the anisotropy A > 1 develops moderately

during the magnetic energy amplification and gives the mirror forces some dynamical

importance to change the usual collisional MHD dynamics. The value of the magnetic

energy at the final time of the simulation is approximately one third of the value for

the collisional MHD model. The final magnetic power spectrum has a shape similar to

the collisional MHD model Cmhd, but below the equipartition with the velocity field

power spectrum which has more power at the smallest scales due to the presence of the

instabilities (Figure 5.13).

Model C2, a standard CGL model with no constraints on the growth of pressure

anisotropy (νS = 0) shows no evidence of a turbulent dynamo amplification of its magnetic

energy which saturates at very low values already at t ≈ 5 (Figure 5.12), when EM ≈
6.2× 10−6, while the kinetic energy is EK ≈ 0.32 (see Table 5.4). The reason is that the

anisotropy A increases at the same time that the magnetic field is increased (A ∝ B3/ρ2

in the CGL closure), giving rise to strong mirror forces along the field lines which increase

their resistance against bending or stretching. For this model, 〈|p‖−p⊥|/(B2/4π)〉 ∼ 105,

that is, the anisotropic forces dominate over the Lorentz force. The magnetic field power

spectrum (top right panel in Figure 5.13) is similar in shape (but not in intensity) to the

Cmhd model, being peaked at k ≈ 40.

The saturated value of the magnetic energy for models without anisotropy relaxation

is, nevertheless, sensitive to the initial plasma β. Model C3 is similar to model C2,

but starts with a lower sound speed (VS0 = 0.3) which makes β ten times smaller (see

Table 5.1). Turbulence is supersonic in this case, rather than transonic. The magnetic

energy evolution is similar to that of the model C2, but the magnetic energy saturates

with a value about two orders of magnitude larger, although the anisotropic forces are
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still dominant, with 〈|p‖ − p⊥|/(B2/4π)〉 ∼ 104 (see Table 5.4).
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Table 5.3: Space and time averages (up-

per lines) and standard deviations (lower

lines) for models B which have initial

strong magnetic field (β = 0.2).

B1 Bmhd

Quantity (νS = ∞)

〈log ρ〉 −1.0× 10−2 −1.8× 10−2

9.8× 10−2 0.12

〈u2〉 0.90 0.86

0.79 0.73

〈EK〉 0.44 0.42

0.41 0.39

〈EM〉 4.8 4.8

0.80 0.90

〈EI〉 1.7 1.7

0.57 0.75

〈MA〉 0.28 0.27

0.13 0.13

〈MS〉 0.83 0.82

0.37 0.36

〈log A〉 5.5× 10−2 -

0.21 -

〈log β‖〉 −0.69 −0.66

0.30 0.21

〈|α|〉a 4.1× 10−2 -

3.9× 10−2 -

aα ≡ (
p‖ − p⊥

)
/ (B2/4π)

143



Turbulence and magnetic field amplification in collisionless MHD

Table 5.4: Space and time averages (upper lines) and standard deviations (lower

lines) for models C which have initial very weak (seed) magnetic field.

C1 C2 C3 C4 Cmhd

Quantity (νS = ∞, (νS = 0, (νS = 0, (νS = 102, (VS0 = 1)

VS0 = 1) VS0 = 1) VS0 = 1) VS0 = 0.3)

〈log ρ〉 −8.5× 10−3 −1.5× 10−2 −8.7× 10−2 −8.8× 10−3 −9.1× 10−3

8.7× 10−2 0.12 0.28 8.9× 10−2 9.0× 10−2

〈u2〉 0.79 0.70 0.79 0.80 0.79

0.63 0.73 0.64 0.63 0.63

〈EK〉 0.38 0.32 0.37 0.38 0.38

0.30 0.31 0.39 0.29 0.30

〈EM〉 6.2× 10−2 6.2× 10−6 1.0× 10−4 2.6× 10−2 9.0× 10−2

7.5× 10−2 3.5× 10−5 3.7× 10−4 3.9× 10−2 0.11

〈EI〉 1.7 1.7 0.33 1.6 1.7

0.49 0.44 0.28 0.49 0.51

〈MA〉 4.6 5.9× 102 2.8× 102 8.1 3.8

6.7 5.7× 102 4.2× 102 11 5.3

〈MS〉 0.78 0.74 2.1 0.79 0.78

0.34 0.38 1.0 0.34 0.34

〈log A〉 1.3× 10−2 0.51 2.1 6.7× 10−3 -

3.2× 10−2 0.87 1.2 8.6× 10−2 -

〈log β‖〉 1.5 5.5 2.0 2.0 1.4

0.64 1.4 2.1 0.70 0.62

〈|α|〉a 0.52 8.8× 105 5.5× 104 1.5× 102 -

0.25 7.1× 107 1.7× 107 6.7× 104 -

aα ≡ (
p‖ − p⊥

)
/ (B2/4π)
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5.3 Discussion

The anisotropy in pressure created by the turbulent motions gives rise to new forces in

the collisionless MHD description (see the momentum conservation equation in Eq. 2.51).

These new forces gain dynamical importance when the anisotropy A = p⊥/p‖ deviates

significantly from unity (depending on β) and give rise to instabilities. The standard

CGL-MHD model is able to capture the correct linear behavior of the long wavelength

limit of the firehose instability (which has scales much larger than the proton Larmor

radius lcp), but not of the mirror instability which is overstable (see the kinetic and CGL-

MHD instability limits in the A − β‖ plane in Figure 5.2). The correct linear threshold

of the mirror instability can be obtained from higher order fluid models which evolve

heat conduction (e.g. Snyder et al. 1997; Ramos 2003; Kuznetsov & Dzhalilov 2010) and

results in substantial difference with regard to the CGL-MHD criterium (see the kinetic

and CGL-MHD instability limits in the A− β‖ plane in Figure 5.2).

These same (mirror and firehose) instabilities are known to constrain the (proton)

pressure anisotropy growth to values close to the instability thresholds, via wave-particle

interactions which obviously are not captured by any fluid model. Other kinetic instabil-

ities driven by pressure/temperature anisotropy are also known to relax the anisotropy,

such as the cyclotron instability (for protons) and whistler anisotropy instability (for elec-

trons; see Gary 1993). Based on this phenomenology, we here imposed source terms on the

standard CGL-MHD equations which relaxed the pressure anisotropy A to the marginally

stable value (conserving the internal energy) at a rate νS, whenever A evolved to a value

inside the unstable kinetic mirror or firehose zones.

As remarked before, there are several studies about the rate at which instabilities

driven by pressure anisotropy relax the anisotropy itself. Using 2D particle simulations,

Gary et al. (2000) studied the anisotropy relaxation rate for protons subject to cyclotron

instability and found rates which are related to the growth rate of the fastest unstable

mode ∼ 10−3 − 10−1Ωp (where Ωp is the proton gyrofrequency). Nishimura et al. (2002),

also employing 2D particle simulations, found an analogous result for electrons subject to

to the whistler anisotropy instability with an anisotropy relaxation rate of a few percent
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of the electron gyrofrequency. In both studies, part of the free energy of the instabilities

is converted to magnetic energy. Recently, Yoon & Seough (2012) and Seough & Yoon

(2012) studied the saturation of specific modes of the mirror and firehose instabilities via

quasi-linear calculations, using the Vlasov-Maxwell dispersion relation. They also found

that the temperature anisotropy relaxes to the marginal state after a few hundreds of the

proton Larmor period and there is accumulation of magnetic fluctuations at the proton

Larmor radius scales.

However, exactly what kinetic instabilities saturate the pressure anisotropy or the

detailed processes involved are not fully understood yet and one cannot be sure to what

extent the rates inferred in the studies above or those employed in the present analysis

are applicable to the ICM plasma, specially with driven turbulence. In other words, the

rate νS is subject to uncertainties and further forthcoming study involving particle-in-

cell (PIC) simulations will be performed in order to investigate this issue in depth. In

particular, in a very recent study about accretion disks, Riquelme et al. (2012) performed

direct two-dimensional PIC shearing box simulations and found that for low beta values

(β < 0.3), the pressure anisotropy is constrained by the ion-cyclotron instability threshold,

while for large beta values the mirror instability threshold constrains the anisotropy, which

is compatible with the present study. However, they have also found that in the low beta

regime, initially the anisotropy can reach maximum values above the threshold due to the

mirror instability. Nevertheless, they have attributed this behavior to the initial cyclotron

frequency adopted for the particles which was small compared to the orbital frequency in

order to save computation time.

We must add yet that here we have taken into account the isotropization feedback

due to the firehose and mirror instabilities only, neglecting, for instance, the ion-cyclotron

instability because this is more probably to be important in low β‖ regimes, which is

not the case for ICM plasmas. We have considered that the anisotropy relaxation to the

marginally stable value occurs at the rate of the fastest mode of the triggered instability

(Equations 2.50), which is of the order of the proton gyrofrequency. As discussed above,

for the typical parameters of the ICM, these relaxation times correspond to time scales

which are extremely short compared to the shortest dynamical times one can solve. This
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means that the plasma at least at the macroscopic scales is essentially always inside

the stable region. This justifies why we adopted the simple approach of constraining the

anisotropy by the marginal values of the instabilities, similarly to the hardwall constraints

employed by Sharma et al. (2006). However, if one could resolve all the scales and

frequencies of the system, one would probably detect some fraction of the plasma at the

small scales lying in the unstable region. For the ICM, the scale of the fastest growing

mode is ∼ 1010 cm, i.e., the proton Larmor radius.

5.3.1 Consequences of assuming one-temperature approxima-

tion for all species

Although the electrons have a larger collisional rate than the protons in the ICM (∼
√

mp/me), we have assumed in this study, for simplicity, that both species have the same

anisotropy in pressure. Also, we assumed them to be in “thermal equilibrium”. A more

precise approximation would be to consider the electrons only with an isotropic pressure.

This would require another equation to evolve the electronic pressure and additional phys-

ical ingredients in our model, such as a prescription on how to share the turbulent energy

converted into heat at the end of the turbulent cascade or how to quantify the thermal-

ization of the free-energy released by the kinetic instabilities, as well as a description of

the cooling for each of the species. The assumption of same temperature and pressure

anisotropy for both species has resulted a force on the collisionless plasma due to the

latter which is maximized. Nevertheless, since our results have shown that the dynamics

of the turbulence when considering the relaxation of the anisotropy due to the instabilities

feedback is similar to that of collisional MHD, we can conclude that if we had considered

the electronic pressure to be already isotropic then, this similarity would be even greater.

Another relevant aspect that should be considered in future work regards the fact that

the electron thermal speed achieves relativistic values for temperatures ∼ 10 keV which

are typical in the ICM. Thus a more consistent calculation would require a relativistic

treatment (see for example Hazeltine & Mahajan 2002).
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5.3.2 Limitations of the thermal relaxation model

Our model considers a thermal relaxation (Eq. 5.2) which ensures that the average temper-

ature of the domain is maintained nearly constant, despite of the continuous dissipation

of turbulent power. This simplification allowed us to avoid a detailed description of the

radiative cooling and its influence on the temperature anisotropy. Even though, the rate

νth = 5 employed in most of our simulations is low enough to not perturb significantly the

dispersion relation arising from the CGL-MHD equations. Time scales δt ' ν−1
th = 0.2 are

much larger than the typical time-step of our simulations (∼ 10−5). This means that the

maximum characteristic speeds calculated via relations (2.45) and (2.46) were more than

appropriate for the calculation of the fluxes in our numerical scheme (see Section 5.1.2).

In order to evaluate the effects of the rate of the thermal relaxation on the turbulence

statistics, we also performed numerical simulations of three models with different rates

νth (namely, models A6, A7, and A8 of Table 5.1). Model A6 has no thermal relaxation

(νth = 0), while model A7 has a slower rate than model A1, νth = 0.5, and both, A6

and A7 systems undergo a continuous increase of the temperature as time evolves which

increases β and reduces the sonic Mach number of the turbulence. Model A8, on the other

hand, has a faster rate νth = 50 and quickly converges to the isothermal limit. Despite of

different averages and standard deviations in their internal energy, models A6, A7, and

A8 presented overall behavior similar to model A1 (see Table 5.2).

We have also tested models without anisotropy relaxation (not shown here) which em-

ployed the CGL-MHD equations of state for calculating the pressure components parallel

and perpendicular to the magnetic field (Equations 2.44 accompanied of homogeneous ini-

tial conditions, rather than evolving the two last equations in Eq. 2.51 for the anisotropy

A and the internal energy, respectively). Although there are some intrinsic differences

due to larger local values of the sound speeds, the overall behavior of these models was

qualitatively similar to the models with νS = 0 presented here.

In spite of the results above, a more accurate treatment of the energy evolution will be

desirable in future work. For instance, as discussed earlier, the lack of a proper treatment

for the heat conduction makes the linear behavior of the mirror instability in a fluid
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description different from the kinetic theory leading to an overstability of the system. A

higher order fluid model reproducing the kinetic linear behavior of the mirror instability

(see Eq. 2.49) would enhance the effects of this instability in the models with finite νS,

probably producing more small scale fluctuations compared to the present results (see

Figures 5.4 and 5.5). The effects of the mirror instability on the turbulence statistics

have been extensively discussed in Kowal et al. (2011a) (see also next section) where a

double-isothermal closure was used. This closure is able to reproduce the threshold of the

mirror instability given by kinetic derivation.

5.3.3 Comparison with previous studies

Kowal et al. (2011a) studied the statistics of the turbulence in collisionless MHD flows

assuming fixed parallel and perpendicular temperatures in the so called double-isothermal

approximation, but without taking into account the effects of anisotropy saturation due

to the instabilities feedback. They explored different regimes of turbulence (considering

different combinations of sonic and Alfvénic Mach numbers) and initially different (firehose

or mirror) unstable regimes. They analyzed the power spectra of the density and velocity,

and also the anisotropy of the structure function of these quantities and found that super-

Alfvénic, supersonic turbulence in these double-isothermal collisionless models do not

evidence significant differences compared to the collisional-MHD counterpart.

In the case of subsonic models, they have also detected an increase in the density

and velocity power spectra at the smallest scales due to the growth of the instabilities

at these scales, when compared to the collisional-MHD counterparts. They found elon-

gation of the density and velocity structures along the magnetic field in mirror unstable

simulations and isotropization of these structures in the firehose unstable models. In the

present study, the closest to their models is the high β, super-Alfvénic model A2 which is

without anisotropy relaxation. As in their subsonic sub-Alfvénic mirror unstable case, the

instabilities accumulate power in the smallest scales of the density and velocity spectra.

However, we should note that the density and velocity structures in our Model A2 become

more isotropic at these scales probably because it is in a super-Alfvénic regime.
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Our simulations starting with initial seed magnetic field have revealed the crucial

role of the pressure anisotropy saturation (due to the mirror instability) for the dynamo

turbulent amplification of the magnetic field, which in turn increases the anisotropy A. In

our seed field simulations without anisotropy constraints (models C2 and C3), where the

mirror forces dominate the dynamics, the turbulent flow is not able to stretch the field

lines and therefore, there is no magnetic field amplification. This is consistent with earlier

results presented in Santos-Lima et al. (2011) and de Gouveia Dal Pino et al. (2013), and

also with the findings of de Lima et al. (2009), where the failure of the turbulent dynamo

using a double-isothermal closure for p⊥ > p‖ was reported. On the other hand, in model

C1 where the pressure anisotropy growth is constrained by the instabilities, there is a

dynamo amplification of the magnetic energy until nearly equipartition with the kinetic

energy. This result is in agreement with 3D numerical simulations of magneto-rotational

instability (MRI) turbulence performed by Sharma et al. (2006), where a collisionless fluid

model taking into account the effects of heat conduction was employed in a shearing box.

They have found that the anisotropic stress stabilizes the MRI when no bounds on the

anisotropy are considered, making the magnetic lines stiff and avoiding its amplification.

When using bounds on the anisotropy, however, they found that the MRI generated

is similar (but with some small quantitative corrections) to the collisional-MHD case.

Sharma et al. (2006), however, did not consider any cooling mechanism, so that the

temperature increased continuously in their simulations. Besides, the simulations here

presented have substantially larger resolution. Further, they have found that the system

overall evolution is nearly insensitive to the adopted thresholds values for the anisotropy.

We have also found little difference in the turbulence statistics between models with

different non null values of the anisotropy relaxation rate.

Meng et al. (2012a) also employed a collisionless MHD model to investigate the Earth’s

magnetosphere by means of 3D global simulations. They employed the CGL closure,

adding terms to constrain the anisotropy in the ion pressure only (the electronic pressure

considered isotropic was neglected in their study). Using real data from the solar wind at

the inflow boundary, they compared the outcome of the model in trajectories where data

from space crafts (correlated to the inflow data) were available. Then, they repeated the
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same calculation, but employing a collisional MHD model. They found better agreement

with the collisionless MHD model in the trajectory passing by the bowshock region, where

gas is compressed in the direction parallel to the radial magnetic field lines, producing a

firehose (A < 1) unstable zone. However, in the trajectory passing by the magnetotail,

the simulated data in the collisionless model were not found to be more precise than in

the collisional case. In summary, the collisionless MHD description of the magnetosphere

seems to differ little from the standard MHD model when the anisotropy is constrained.

Even though, they have found quantitative differences in, for example, the thickness of

the magnetosheath, which is augmented in the collisionless case, in better agreement with

the observations. In the more homogeneous problem discussed here, in a domain with pe-

riodic boundaries and isotropic turbulence driving, we have found that both the evolution

of the turbulence and the turbulent dynamo growth in the ICM under a collisionless-

MHD description accounting for the anisotropy saturation due to the kinetic instabilities

feedback, behave similarly (both qualitatively and quantitatively) to the collisional-MHD

description. 3

Brunetti & Lazarian (2011) appealed to theoretical arguments about the decrease

of the effective mean free path and related isotropization of the particle distribution to

argue that the collisionless damping of compressible modes will be reduced in the ICM

compared to the calculations in earlier papers (Brunetti & Lazarian 2007)4. These present

calculations do not account for the collisionless damping of compressible motions, but

similar to Brunetti & Lazarian (2011) we may argue that this type of damping is not

important at least for the large scale compressions.

3We note, as remarked before, that while in the case of the ICM plasma the anisotropy relaxation

rate is expected to be much larger than the dynamical rates of turbulent motions by several orders of

magnitude, in the case of the solar wind the relaxation rate is only about ten times larger than the

characteristic compression rates, so that in this case an instantaneous relaxation of the anisotropy is not

always applicable (Meng et al. 2012a; Chandran et al. 2011).
4This happened to be important for cosmic ray acceleration by fast modes (see Yan & Lazarian 2002,

2004, 2008) that takes place in the ICM.
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5.3.4 Implications of the present study

The dynamics of the ICM plasmas is important for understanding most of the ICM

physics, including the formation of galaxy clusters and their evolution. The relaxation

that we discussed in this paper explains how clusters can have magnetic field generation,

as well as turbulent cascade present there. We showed that for sufficiently high rates of

isotropization arising from the interaction of particles with magnetic fluctuations induced

by plasma instabilities, the collisionless plasma becomes effectively collisional and can be

described by ordinary MHD approach. This can serve as a justification for earlier MHD

studies of the ICM dynamics and can motivate new ones.

In general, ICM studies face one major problem. The estimated Reynolds number for

the ICM using the Coulomb cross-sections is small (∼ 100 or less) so that one may even

question the existence of turbulence in galaxy clusters. This is the problem that we deal

with in the present paper and argue that the Reynolds numbers in the ICM may be much

larger than the naive estimates above. The difference comes from the dramatic decrease

of the mean free path of the particles due to the interaction of ions with fluctuations

induced by plasma instabilities. In other words, our study shows that the collisional MHD

approach may correctly represent properties of turbulence in the intracluster plasma. In

particular, it indicates that MHD turbulence theory may be applicable to a variety of

collisionless media. This is a big extension of the domain of applicability of the Goldreich

& Sridhar (1995) theory of Alfvénic turbulence.

5.4 Summary and Conclusions

The plasma in the ICM is formally weakly collisional. Indeed, as far as Coulomb collisions

are involved, the mean free paths of particles are comparable to size of galaxy clusters as

a result of the high temperatures and low densities of the intracluster plasmas. Therefore,

one might expect the plasmas to have high viscosity and not allow turbulent motions.

At the same time, magnetic fields and turbulence are observed to be present there. The

partial resolution of the paradox may be that even small magnetic fields can substantially
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decrease the perpendicular viscosity of plasmas and enable Alfvénic turbulence that is

weakly couple with the compressible modes (see also Lazarian 2006b). This present study

indicates that the parallel viscosity of plasmas can also be reduced compared with the

standard Braginskii values.

Aiming to understand the effects of the low collisionality on the turbulence statistics

and on the turbulent magnetic field amplification in the ICM, both of which are commonly

treated using a collisional-MHD description, we performed three-dimensional numerical

simulations of forced turbulence employing a single-fluid collisionless-MHD model. We

focused on models with trans-sonic turbulence and at the high β regime (where β is the

ratio between the thermal and magnetic pressures), which are conditions appropriate to

the ICM. We also considered a model with low β for comparison.

Our collisionless-MHD approach is based on the CGL-MHD model, the simplest fluid

model for a collisionless plasma, which differs from the standard collisional-MHD by the

presence of an anisotropic thermal pressure tensor. The new forces arising from this

anisotropic pressure modify the MHD linear waves and produce the firehose and mirror

instabilities. These instabilities in a macroscopic fluid can be viewed as the long wave-

length limit of the corresponding kinetic instabilities driven by the temperature anisotropy

for which the higher the β regime the faster the growth rate.

Considering the feedback of the kinetic instabilities on the pressure anisotropy, we

adopted a plausible model of anisotropy relaxation and modified the CGL-MHD equations

in order to take into account the effects of relaxation of the anisotropy arising from

the scattering of individual ions by fluctuations induced by plasma instabilities. This

model appeals to earlier observational and numerical studies in the context of the solar

magnetosphere, as well as theoretical considerations discussed in earlier works. While the

details of this isotropization feedback are difficult to quantify from first principles, the

rate at which an initial anisotropy is relaxed is found (at least in 2D PIC simulations)

to be a few percent of the ion Larmor frequency (Gary et al. 1997, 1998, 2000). The

frequencies that we deal with in our numerical simulations are much larger than the ion

Larmor frequency in the ICM (considering the scale of the computational domain ∼ 100

kpc). This has motivated us to consider this anisotropy relaxation to be instantaneous.
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Nevertheless, for completeness we also performed simulations with finite rates, in order

to access their potential effects in the results.

The main results from our simulated models can be summarized as follows:

• Anisotropy in the collisionless fluid is naturally created by turbulent motions as

a consequence of fluctuations of the magnetic field and gas densities. In all our

models, the net increase of magnetic field intensity led to the predominance of the

perpendicular pressure in most of the volume of the domain;

• In the high β regime with moderate initial magnetic field, the model without

anisotropy relaxation (which is therefore, a “standard” CGL-MHD model; see Model

A2 in Figures 5.1 and 5.2) has the PDF of the density broadened, specially in the

low density tail, in comparison to the collisional-MHD model. This is a consequence

of the action of the mirror instability which traps the gas in small cells of low mag-

netic field intensity. The density and velocity power spectra show excess of power

specially at small scales, where the instabilities are stronger, although the magnetic

field reveals less power. Consistently, the anisotropies in the structure functions of

density, velocity, and magnetic field are reduced at the smallest scales in comparison

to the collisional-MHD model;

• Models with anisotropy relaxation (either instantaneous, or with the finite rates

102 times or 103 times larger than the inverse of the turbulence turnover time

tturb) present density PDFs, power spectra, and anisotropy in structures which are

very similar to the collisional MHD model. However, the model with the smallest

anisotropy relaxation rate (∼10t−1
turb) shows a little excess of power in density and

velocity in the smallest scales, already in the dissipative range. This is consistent

with the presence of instabilities in the smallest regions of the gas;

• Models starting with a very weak, seed magnetic field (i.e., with very high β),

without any anisotropy relaxation, have the magnetic energy saturated at levels

many orders of magnitude smaller than kinetic energy. The value of the magnetic
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energy at this saturated state is shown to depend on the sonic Mach number of the

turbulence, the smaller the sound speed the higher this saturation value;

• Models starting with a very weak, seed magnetic field, but with anisotropy relaxation

(with instantaneous or finite rates) show an increase of the magnetic energy until

values close those achieved by the collisional-MHD model. The growth rate of the

magnetic energy for the model with instantaneous relaxation rate is similar to the

collisional-MHD model, but this rate is a little smaller for the models with a finite

rate of the anisotropy relaxation, as one should expect;

• In the low β regime, the strength of the injected turbulence (trans-sonic and sub-

Alfvénic) is not able to produce anisotropy fluctuations which trigger instabilities.

The statistics of the turbulence is very similar to the collisional-MHD case, in con-

sistency with the fact that in this regime the pressure forces have minor importance.

All these results show that the applicability of the collisional-MHD approach for study-

ing the dynamics of the ICM, especially in the turbulent dynamo amplification of the

magnetic fields, is justified if the anisotropy relaxation rate provided by the kinetic insta-

bilities is fast enough and the anisotropies are relaxed until the marginally stable values.

As stressed before, the quantitative description of this process is still lacking, but if we

assume that the results obtained for the anisotropy relaxation (usually studied in the con-

text of the collisionless plasma of the solar wind) can be applied to the turbulent ICM,

we should expect a relaxation rate much faster than the rates at which the anisotropies

are created by the turbulence.

We intend in future work to investigate the kinetic instabilities feedback on the pressure

anisotropy in the context of the turbulent ICM. To do this in a self-consistent way a kinetic

approach is required. This can be done analytically and/or by the employment of PIC

simulations.

We should emphasize that, even in the case of a good agreement between the collisional-

MHD and collisionless-MHD results for the dynamics of the ICM, collisionless effects, like

the kinetic instabilities themselves, can still be important for energetic processes in the
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ICM, such as the acceleration of particles (Kowal et al. 2011b, 2012b), heating and con-

duction (Narayan & Medvedev 2001; Schekochihin et al. 2010; Kunz et al. 2011; Rosin

2011; Riquelme et al. 2012).
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Chapter 6

Conclusions and Perspectives

We have presented in this thesis the results of our investigations on magnetic flux diffu-

sion during different phases of star-formation in the interstellar medium (ISM) via the

mechanism termed “turbulent reconnection diffusion” (TRD, Lazarian 2005), and on the

turbulence and turbulent magnetic field amplification in the collisionless plasma of the

intracluster medium (ICM) of galaxies. These studies were approached numerically by

the use of three-dimensional simulations of collisional and collisionless-MHD models.

The two first Chapters presented the theoretical and observational motivation of the

subjects we treated. In Chapter 2 we started presenting the collisional-MHD description

for astrophysical plasmas and pointed its range of validity. Some fundamental concepts

and results of recent theories on MHD turbulence were reviewed. We then exposed two

open issues related to the diffusion of magnetic fields: the observational requirement of the

transport of magnetic flux during the gravitational collapse of molecular clouds to allow

star formation (the “magnetic flux problem”) and the formation of rotationally sustained

protostellar discs in the presence of magnetic fields inside molecular cloud cores. Both

problems challenge the frozen in condition of the magnetic fields, generally expected to

be a good approximation in these environments. The diffusive mechanism (TRD) inves-

tigated in Chapters 3 and 4, based on fast magnetic reconnection induced by turbulence

(Lazarian & Vishniac 1999) was then presented as an alternative to the one discussed

in the literature, the ambipolar diffusion, which has been lately challenged both by ob-
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servations and numerical simulation results. Next, we moved to intergalactic scales and

revised the turbulent dynamo mechanism based on collisional MHD which is believed to

be responsible for amplifying and sustaining the magnetic fields observed in the ICM.

However, we pointed that a collisional-MHD treatment is loosely justified in this environ-

ment and described a more appropriate collisionless-MHD model for the ICM which was

studied in Chapter 5.

In Chapter 3 (see also Santos-Lima et al. 2010), we presented our numerical simula-

tions addressing the diffusion of magnetic flux via TRD. Using simple models injecting

turbulence into molecular clouds with cylindrical geometry and periodic boundary condi-

tions, we demonstrated the efficiency of the TRD in decorrelating the magnetic flux from

the gas, enabling the infall of gas into the gravitational well while the field lines migrate

to the outer regions of the cloud. This mechanism worked for clouds starting either in

magnetohydrostatic equilibrium or for clouds initially out-of-equilibrium, in free-fall. We

estimated the rates at which the TRD operates and found it to be faster when the central

gravitational potential is higher1. Besides, we found the diffusion rates to be consistent

with the predictions of the theory. We also presented results of models without gravity

and found that the TRD is equally able to remove the initial correlation between mag-

netic field and matter. An absence of correlation is observed in the diffuse interstellar

medium. All the results in the models with gravity demonstrate that the TRD alone has

the potential to solve the “magnetic flux problem”. Finally, we remark that the TRD effi-

ciency depends only on the dynamic conditions of the medium, contrary to the ambipolar

diffusion mechanism which depends on very stringent conditions of the molecular cloud

composition for being efficient (Shu et al. 2006).

Advancing further in this research, recently Leão et al. (2012; see also de Gouveia

Dal Pino et al. 2012) tested successfully the TRD during the collapse of molecular cloud

cores employing more realistic initial conditions with a spherical gravitational potential

representing embedded stars and including self-gravity. Their results confirm the trends

1We remark that the setups were always controlled to not allow the system to be Parker-Rayleigh-

Taylor unstable. This ensured that the gas and magnetic field decoupling were due to the effect of TRD

only, rather than to the Parker-Rayleigh-Taylor instability.
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presented in Chapter 3. Future work on this subject should explore the effects of the TRD

in the evolution of initially starless clouds in order to assess the effects of self-gravity only

upon the transport, without considering an external field. Also, our studies above have

been performed considering isothermal clouds. This approximation actually mimics the

effects of an efficient radiative cooling of the gas. However, in more realistic cases, a

detailed treatment of non-equilibrium radiative cooling in the clouds (e.g., Melioli et al.

2005) is required, particularly in the late stages of the core formation. The effects of

non-equilibrium radiative cooling will be also considered in these forthcoming studies.

Besides, quantitative measurements of the effects of the gravity strength on the TRD

diffusivity are also desirable.

In Chapter 4 (see also Santos-Lima et al. 2012, 2013a), we presented numerical sim-

ulations of protostellar disks formation. When considering realistic values of ambient

magnetic fields, previous numerical simulations demonstrated that a disk rotationally

sustained fails to form due to the extraction of the angular momentum from the gas in

the plane of the developing disk by the torsioned field lines. These previous studies also

showed that an enhanced microscopic diffusivity of about three orders of magnitude larger

than the Ohmic diffusivity would be necessary to enable the formation of a rotationally

supported disk. However, the nature of this enhanced diffusivity was not explained. Our

numerical simulations of disk formation in the presence of turbulence demonstrated the

plausibility of the TRD in providing the diffusion of the magnetic flux to the envelope of

the protostar during the gravitational collapse, thus enabling the formation of rotationally

supported disks of radius ∼ 100 AU, in agreement with the observations (Santos-Lima et

al. 2012). Afterwards, another group (Seifried et al. 2012) also appealing to turbulence

during the gravitational collapse of a molecular cloud, argued that in their simulations

the turbulence was not changing or removing the magnetic flux. They concluded that

the rotationally supported disks were formed simply due to the action of turbulent shear.

However, their assertive about the absence of magnetic flux diffusion was based on the

evaluation of the mass-to-magnetic-flux ratio averaged over a volume much larger than

the disk radius, which they found to be constant. In more recent work (Santos-Lima et al.

2013a), we demonstrated that their averaging of the mass-to-flux ratio over large volumes
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is inappropriate as hinds the real increase of the magnetic-to-flux ratio occurring at the

smaller scales where the disk is formed. We demonstrated that the magnetic flux diffusion

is occurring in the inner envelope regions of the collapsing gas that is forming the disk.

These conclusions were reinforced by new calculations with resolution twice as large as

the resolution of our previous study (Santos-Lima et al. 2012) and confirmed that our

results are robust and not product of numerical dissipation (Santos-Lima et al. 2013a).

Very recently, new simulations also confirmed the formation of rotationally supported

disks and the diffusion of the magnetic flux when turbulence is present during the gravita-

tional collapse of molecular clouds (Joo et al. 2013, Myers et al. 2013). Our investigation

on this subject has still many possibilities of refinement. It would be interesting to repeat

them varying the parameters of the turbulence and the mass of the proto-star as well, in

order to explore the variations in the diffusion of the magnetic flux.

In Chapter 5 (see also Santos-Lima et al. 2013b), we have studied the turbulence

statistics and turbulent dynamo amplification of magnetic fields using a collisionless-

MHD model for exploring the plasma of the ICM. We performed simulations of transonic

turbulence in a periodic box, assuming different initial values of the magnetic field inten-

sity. We compared models with different rates of relaxation of the pressure anisotropy

to the marginal stability condition, due to the feedback of the firehose and mirror insta-

bilities. We showed that, in the high β plasma regime of the ICM where these kinetic

instabilities are stronger, a faster anisotropy relaxation rate gives results closer to the

collisional-MHD model in the description of the statistical properties of the turbulence

(we analyzed the PDF of the density, the power spectra of density, velocity and magnetic

field, and the anisotropy in the structure functions of these quantities). The growth rate

of the magnetic energy by the turbulent dynamo when starting with a seed field, and the

value of the magnetic energy at the saturated state are also similar to the values found for

the collisional-MHD models, particularly when considering an instantaneous anisotropy

relaxation. The models without any pressure anisotropy relaxation deviate significantly

from the collisional-MHD results (in consistency with earlier results; e.g. Kowal et al.

2011), showing more power in small-scale fluctuations of the density and velocity field, in

agreement with the strong presence of the kinetic instabilities at these scales; however,
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the fluctuations in the magnetic field are mostly suppressed. In this case, the turbulent

dynamo fails in amplifying seed magnetic fields, with the magnetic energy saturating at

values several orders of magnitude below the kinetic energy.

It was suggested by previous studies of the collisionless plasma of the solar wind

that the pressure anisotropy relaxation rate is of the order of a few percent of the ion

gyrofrequency (Gary et al. 1997, 1998, 2000). The present analysis has shown that if this

is also the case in the ICM, then the models which best represent the ICM are those with

instantaneous anisotropy relaxation rate, i.e., the models which revealed a behavior very

similar to the collisional-MHD description.

Nonetheless, this assumption applied to the ICM requires further investigation. In

forthcoming work, we intend to investigate the details of the kinetic instabilities feedback

on the pressure anisotropy in the context of the turbulent ICM. To do this in a self-

consistent way, a kinetic approach, as for instance, the use of 3D particle simulations, will

be required.

This is a new field and there are many topics to be studied yet about collisionless-

MHD turbulence. The use of a model including the evolution of the heat conduction, for

example, can help to represent more correctly the linear behavior of the mirror instability

and to better capture the effects of this instability in comparison with the present study.

Also the use of a two-temperature model, separating electrons and ions would be more

realistic in the context of the ICM. These two ingredients, besides a realistic cooling

treatment will probably shed new light on the comprehension of the energy distribution

and structuring of the ICM and cold-core clusters as well.
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Appendix A

Numerical MHD Godunov code

The three-dimensional numerical simulations presented in this thesis employed modified

versions of the MHD Godunov 1 code which was originally built by Grzegorz Kowal (Kowal

et al. 2007; 2009) and employed in several astrophysical studies2, such as the investigation

of MHD turbulence in the ISM and the ICM (e.g., Kowal et al. 2007; Falceta-Gonçalves

et al. 2010a, 2010b); in molecular cloud core collapse (Leão et al. 2009; 2012; de Gouveia

Dal Pino et al. 2012); in magnetic reconnection studies (Kowal et al. 2009; 2012a); in

relativistic particle acceleration (Kowal et al. 2011b; 2012b); etc. Below, we present a

brief description of our employed versions of the code.

A.1 Code units

The dimensionless units used in the code can be easily converted into physical ones with

the employment of reference physical quantities as described below.

We arbitrarily choose three representative quantities from which all the other ones

can be derived: a length scale l∗ (which can be given, e.g., by the dimension of the

system), a density ρ∗ (usually given by the initial ambient density of the system), and a

velocity v∗ (which can be given by the sound speed of the medium). For instance, with

1A public version of this code is available in the website http://www.amuncode.org under the GNU

licence terms (more details in the website of the code).
2An updated list of publications using the code can be found in its website.
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such representative quantities the physical time scale is given by the time in code units

multiplied by l∗/v∗; the physical energy density is obtained from the energy value in code

units times ρ∗v2
∗, and so on. The magnetic field in code units is already divided by

√
4π,

thus to obtain the magnetic field in physical units one has to multiply the value in code

units by v∗
√

4πρ∗.

A.2 MHD equations in conservative form

Our code is an unsplit, second-order Godunov code able to evolve the collisional or colli-

sionless MHD equations on a three-dimensional, cartesian, uniform grid. The code solves

the equations in the conservative form. Let us consider the basic scheme for solving the

following set of ideal MHD equations, already in code units:

∂ρ

∂t
+∇ · (ρv) = 0, (A.1)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p + (∇×B)×B (A.2)

∂B

∂t
= ∇× (v ×B), (A.3)

∂e

∂t
+∇ · {(e + p + B2/2)u + (u ·B)B

}
= 0 (A.4)

where ρ, u, B, p are the primitive variables density, velocity, magnetic field, and thermal

pressure, respectively e = w + ρu2/2 + B2/2 is the total energy density, with w being the

internal energy of the gas. This set of equations is closed by an adiabatic equation-of-state:

p = (γ − 1)w, (A.5)

where γ is the adiabatic index given by the ratio between the specific heats.

The above set of equations can be written in the following flux conservative form

∂U

∂t
= −

∑

l=x,y,z

∂Fl

∂l
, (A.6)
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with the vector of conservative variables U and fluxes Fl

U =




ρ

ρud

Bd

e




, Fl =




ρul

ρudul −BdBl + δkl(p + B2/2)

Bdul −Blud

(e + p + B2/2)ul − (u ·B)Bl




, (A.7)

where the different components x, y, z are represented by the label d.

Our code solves the MHD equations discretized in the finite-volume approach. Inte-

grating (A.6) over the volume of each cell (i, j, k) of sizes ∆x, ∆y, ∆z in the cartesian grid

gives

∂Ui,j,k

∂t
= − 1

∆x

(
F̂i+1/2,j,k

x − F̂i−1/2,j,k
x

)
(A.8)

− 1

∆y

(
F̂i,j+1/2,k

y − F̂i,j−1/2,k
y

)

− 1

∆z

(
F̂i,j,k+1/2

z − F̂i,j,k−1/2
z

)

where Ui,j,k are the average values of U in the cell (the values evolved numerically), and

F̂l are the fluxes across the surfaces of the cell. The fluxes F̂l are calculated by means of a

Riemann solver (e.g. Toro 1999). In the simulations presented in this thesis, we employed

the approximated Riemann solver HLL, which is fast and robust.

For performing time integration, we used the second-order Runge-Kutta scheme (RK2,

see e.g. Press et al. 1992). Represented by L(U) on the rhs of Equation (A.8), the

advancing of the solution from the initial condition U(tn) ≡ Un (omiting now the indices

i, j, k) up to the time tn+1 through the RK2 scheme is given by

U∗ = Un + ∆tL (Un) ,

Un+1 = 1
2
(Un + U∗) + 1

2
∆tL (U∗) ,

(A.9)

where ∆t = tn+1 − tn.

The numerical algorithm has to obey the Courant-Friedrichs-Lewy (CFL) stability

condition, which states that the fluid is not allowed to flow more than one cell within one
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time-step. In order to fulfill this condition the maximum allowed time-step to advance

the solution must be given by:

∆tC =
min(∆x, ∆y, ∆z)

V n
max

(A.10)

where V n
max is the maximum signal speed in the flow at the earlier state tn. This maximum

signal speed is the maximum value of {|u|+ max(cA, cs, cf )} in the domain (cA, cs, cf are

the speed of the Alfvén, slow, and fast waves of the linear modes, respectively).

In practice, ∆tC is multiplied by a safety factor C < 1, to make ∆t = C∆tC . The

simulations presented in this thesis use C = 0.3.

In Chapters 3 and 4 we presented simulations employing the collisional MHD equations

above considering an isothermal equation-of-state. The only modification was to drop

the last component of the vector of conserved variables U (and of the fluxes Fl) which

corresponds to the total energy density. The pressure term in the momentum equation is

simply given by

p = c2
sρ, (A.11)

where c2
s is the fixed sound speed of the gas.

A.3 The collisionless MHD equations

As stressed before, our code also solves the collisionless-MHD set of equations. For the

simulations of the collisionless MHD presented in Chapter 5, the vector of conserved

variables U and fluxes Fl in the numerical scheme (Eq. A.6) are modified to

U =




ρ

ρud

Bd

e

A(ρ3/B3)




, Fl =




ρul

ρudul −BdBl − (p‖ − p⊥)bdbl + δkl(p⊥ + B2/2)

Bdul −Blud

(e + p⊥ + B2/2)ul − (u ·B)Bl − (p‖ − p⊥)(u · b)bl

A(ρ3/B3)ul




,

(A.12)
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where p⊥,‖ are the thermal pressures perpendicular/parallel to the local magnetic field;

e = (p⊥ + p‖/2 + ρu2/2 + B2/2) is total energy density, bl = Bl/B, and A = p⊥/p‖ is the

anisotropy in the pressure (see more details in Chapter 5).

To prevent negative values of the anisotropy A due to precision errors during the

numerical integration, we used an equivalent logarithmic formulation for the conservative

variable [A(ρ3/B3)], which is replaced by [ρ log(Aρ2/B3)] (and the corresponding flux

becomes [ρ log(Aρ2/B3)u]).

With this set of equations, in order to evaluate Vmax in the CFL stability condition

(Eq. A.10), we take into account both the real and the imaginary wave speeds of the

linear modes (see Eqs. 2.45 and 2.46).

A.4 Magnetic field divergence

The code stores each magnetic field components at the center of the cell interface per-

pendicular to the component. The divergence of the magnetic field calculated at the cell

centers is given by

(∇ ·B)i,j,k =
1

∆x
(Bi+1/2,j,k

x −Bi−1/2,j,k
x ) (A.13)

+
1

∆y
(Bi,j+1/2,k

y −Bi,j−1/2,k
y )

+
1

∆z
(Bi,j,k+1/2

z −Bi,j,k−1/2
z ),

is kept null (to the machine precision) using the constrained transport method (CT)

(Evans & Hawley 1988). The code also offers an equivalent formulation, where the induc-

tion equation is replaced by its “uncurled” form. With this formulation, the potentical

vector stored at the cell corners is evolved and used for calculating the magnetic field.

A.5 Source terms

The simulations presented in Chapters 3 and 4 have the basic collisional MHD equations

modified by following source terms: an external gravity force and magnetic diffusivity.
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Their effect in the method is simply to add a vector of source terms S(U) is the rhs of the

Equation (A.6). However, they also add constraints in the time-step ∆t of the integration.

Besides the CFL condition, the external gravity and the magnetic diffusivity imposes the

following maximum time-step to advance the solution:

∆tG =

(
min(∆x, ∆y, ∆z)

amax

)1/2

, (A.14)

∆tη =
min(∆x2, ∆y2, ∆z2)

η
(A.15)

where amax is the maximum gravity acceleration in the grid and η the magnetic diffusivity.

Additionally, in the simulations presented in Chapter 4 we have employed the tech-

nique of sink particles. Its implementation in our code version followed the recipe provided

in Federrath et al. (2010).

In Chapter 5, we have also presented numerical calculations of the collisionless-MHD

equations which have been modified by source terms. These are described in detail in

Chapter 5 and so their effects which are explained in Section 5.2.1.

A.6 Turbulence injection

In all numerical simulations presented in this thesis, the turbulence in the code is driven by

adding a solenoidal velocity field to the domain at the end of each time-step. This velocity

field is calculated in the Fourier space with a random (but solenoidal) distribution in

directions and sharply centered in a chosen value kf (being the injection scale linj = L/kf ,

where L is the size of the cubic domain). The forcing is approximately delta correlated

in time.
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Appendix B

Diffusion of magnetic field and

removal of magnetic flux from clouds

via turbulent reconnection
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Appendix C

The role of turbulent magnetic

reconnection in the formation of

rotationally supported protostellar

disks
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Appendix D

Disc formation in turbulent cloud

cores: is magnetic flux loss necessary

to stop the magnetic braking

catastrophe or not?
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Appendix E

Magnetic field amplification and

evolution in turbulent collisionless

MHD: an application to the

intracluster medium

189


