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Abstract

IBARRA, S. Air pollution modeling in São Paulo using bottom-up vehicular emis-
sions inventories, 2017. XXXf. Tese (Doutorado) - Instituto de Astronomia, Geofísica
e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, 2017.

"Modelagem da poluição atmosférica em São Paulo utilizando inventários de emissões
veiculares bottom-up”

Neste trabalho, investiga-se o impacto de diferentes cenários de inventários de emis-
sões veiculares na qualidade do ar nas regiões metropolitanas de São Paulo, Baixada
Santista, Vale do Paraíba, Sorocaba e Campinas. A construção de inventários de
emissões veiculares bottom-up é complexa, tendo que agregar informações diversas,
como a composição da frota veicular (com a distribuição de idade, tipos de veículos,
tipos de combustível) e os processos emissores (fatores de emissão para partidas a
frio, emissões de escapamento e evaporativas). Além disso, para modelos de qualidade
do ar, estas emissões ainda devem ser distribuídas no tempo e no espaço. Os cenários
foram construidos utilizando diferentes fontes de dados, destacando-se as simulações
de tráfego e contagem de veículos da CET e SPTRANS, e registros de deslocamentos
de veículos através de GPS para a distribuição espaço-temporal do fluxo veicular.
Para o cálculo de emissões foi desenvolvido um software open source chamado VEIN
(Vehicular Emissions Inventories, disponível em https://github.com/ibarraespinosa/vein).
As emissões simuladas para as regiões metropolitanas de São Paulo são maiores do
que as emissões estimadas pela CETESB para todos os poluentes. A partir destes
cenários, foram realizadas simulações de qualidade do ar com o modelo WRF-Chem.
Os resultados variam para os diferentes poluentes. De uma forma geral, a variação
diurna dos poluentes é bem simulada, mostrando que as emissões estão consistentes.
Apesar dos maiores valores de emissão encontrados neste trabalho, as concentrações
simuladas dos poluentes primários foi, em média, menor do que as concentrações
observadas. Isto provavelmente é decorrente do fato dos ventos simulados serem mais
fortes do que os ventos observados. Este trabalho mostra novos métodos para desen-
volver inventários de emissões com diferentes dados fornecendo um novo enfoque para
compreender os problemas de qualidade do ar.

Key-words: VEIN, Air Pollution, Vehicular Emissions COPERT, WRF-CHEM, SÃO
PAULO.





Abstract

IBARRA, S. Air pollution modeling in São Paulo using bottom-up vehicular emis-
sions inventories, 2017. XXXf. Tese (Doutorado) - Instituto de Astronomia, Geofísica
e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, 2017.

"Air pollution modeling in São Paulo using bottom-up vehicular emissions inventories"

In this work, the impact of different vehicle emission inventory scenarios on air quality in
the metropolitan areas of São Paulo, Baixada Santista, Vale do Paraíba, Sorocaba and
Campinas is investigated. The construction of bottom-up vehicular emissions inventories
is complex, being necessary to aggregate diverse information, such as the composition
of the vehicle fleet (with the distribution of age, types of vehicles, types of fuel) and the
emitting processes (emission factors for cold starts, exhaust and evaporative emissions).
In addition, for air quality models, these emissions must still be distributed in time
and space. The scenarios were constructed using different data sources, highlighting
traffic simulations and vehicle counting of CET and SPTRANS, and records of vehicular
displacements through GPS for the spatial-temporal distribution of vehicular flow. For
the calculation of emissions, an open source software called VEIN (Vehicular Emissions
Inventories, available at https://github.com/ibarraespinosa/vein) was developed. The
simulated emissions for the metropolitan regions of São Paulo are larger than the
emissions estimated by CETESB for all pollutants. From these scenarios, air quality
simulations were performed with the WRF-Chem model. The results vary for different
pollutants. In general, the daily variation of the pollutants is well simulated, showing that
emissions are consistent. Despite the higher emission values found in this work, the
simulated concentrations of the primary pollutants were, on average, lower than the
observed concentrations. This is probably due to the fact that the simulated winds are
stronger than the observed winds. This work shows new methods to develop emission
inventories with different data providing a new approach to understanding air quality
problems.

Key-words: VEIN, Air Pollution, Vehicular Emissions COPERT, WRF-CHEM, SÃO
PAULO.





Resumen
IBARRA, S. Air pollution modeling in São Paulo using bottom-up vehicular emis-
sions inventories, 2017. XXXf. Tese (Doutorado) - Instituto de Astronomia, Geofísica
e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, 2017.

"Modelación de la contaminación atmosférica en São Paulo utilizando inventarios de
emisiones vehiculares bottom-up”

En este trabajo se investiga el impacto de diferentes escenarios de inventarios de emi-
siones sobre la calidad del aire en las regiones metropolitanas de São Paulo, Baixada
Santista, Vale de Paraiba, Sorocaba y Campinas. La construcción de los inventarios
de emisiones es compleja, teniendo que agregar diversas informaciones como la com-
posición de la flota vehicular (con la distribución de edad, tipos de vehículos, tipos
de combustible) y los procesos emisores (factores de emision para partidas en frio,
emisiones de tubo de escape y evaporativas). Ademas de esto, para los modelos de
calidad del aire, estos modelos deven ser distribudos en tiempo y espacio. Los escena-
rios fueron construidos utilizando diferentes datos, destacandose las simulaciones de
tráfico y conteo vehicular de la CET y SPTRANS, y los registros de desplazamiento
de vehículos a través de GPS para la distribución espacio-temporal del flujo vehicular.
Para el cálculo de las emisiones fue desarrollado un software llamado VEIN (Vehicu-
lar Emissions Inventories, disponible en https://github.com/ibarraespinosa/vein). Las
emisiones estimadas para las regiones metropolitanas de São Paulo son mayores que
las emisiones estimadas por la CETESB para todos los contaminantes. A partir de
estos escenarios, fueron realizadas simulaciones de calidad del aire con el modelo
WRF-Chem. Los resultados varian para los diferentes contaminantes. De forma general,
la variación diurna de los contaminantes es bien simulada, mostrando que las emisio-
nes estan consistentes. A pesar que las emisiones son mayores en este trabajo, las
concentraciones simuladas de los contaminantes primarios fue, en media, menor que
las concentraciones obervadas. Esto es probablemente por el hecho de que los vientos
simulados son mas fuertes que los vientos observados. Este trabajo muestra metodos
nuevospara desarrollar inventários de emisiones con difernetes datos entregando un
nuevo enfoque para comprender los problemas de calidad del aire.

Key-words: VEIN, Air Pollution, Vehicular Emissions COPERT, WRF-CHEM, SÃO
PAULO.
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1 Introduction

Air pollution is a global threat to the health of population, causing 3% of car-
diovascular mortality and 5% of several types of cancer (COHEN et al., 2005). The
levels of air pollution grew rapidly with the industrial revolution in 19th century but it
is during the 20th century that the pollution reached the category of global threat for
human health by exposition and for the deleterious effect on ecosystemic services. One
consequence of this issue is the Antarctic ozone hole (MOLINA, 1996), but perhaps, the
main threat of population to the biosphere is the climate change. There is consensus
in the scientific community that climate change is due to human activity (COOK et
al., 2016). Anthropogenic emissions of greenhouse gases are causing global warming
producing a climate change with significant impacts on ecosystems (STOCKER, 2014).
Therefore, in order to glimpse strategies to diminish air pollution, fighting back against
global warming and improving population health, it is crucial to better understand the
physical and chemical mechanism of generation of the air pollutants, the emissions.

One important tool for air quality management is the emissions inventory. Emis-
sions inventory is the compilation of all the pollutants released by activities for a defined
area and time-lapse (PULLES; HESLINGA, 2010).

Inventories can have two main applications: Scientific or Policy. When focused
on policy making, emissions inventories are used to try to identify which sources
contribute most to selected pollutants. The Intergovernmental Panel on Climate Change
(IPCC) Guidelines for National Greenhouse Gas Inventories, for example, provide
guidance to the process of developing inventories for these gases in order to reduce
their emissions. Another example is the Convention on Long-Range Transboundary
Air Pollution (CLRTAP1) signed by 51 member States who must report their emissions
inventory annually. In a smaller scale, in the USA, areas of the country that violate
air quality standards2 must develop a plan to reduce the levels of air pollution. The
plan involves an emissions inventory to identify key sources that are responsible for
most of the pollution. An example of scientific emissions inventory is the Emissions
Database for Global Atmospheric Research (EDGAR) (OLIVIER et al., 1994), which is
a worldwide emissions inventory of greenhouse gases and ozone-depleting substances
with a spatial resolution of 1 degree. This model has been updated improving the
spatial and temporal coverage, and also, to include more pollutants. Policy emissions
inventories seek agreement and scientific inventories question the methods and develop
new ones.

1 http://www.unece.org/env/lrtap/welcome.html
2 https://www.epa.gov/green-book
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The elaboration of emissions inventories is a complex task where the approach
used plays an important role. There are basically two approaches, bottom-up and
top-down. Top-Down approach uses national statistics and average emissions ratios,
meaning that they are faster to be produced but present lacks of detail, as well as lower
temporal and spatial definition. Bottom-up emissions inventories require a larger and
more detailed amount of information, with a higher temporal and spatial resolution.

Atmospheric pollutants are released by natural and anthropogenic sources. Bio-
genic emissions have no human intervention, for example, volcanic ashes, lightning,
desert dust or oceanic aerosols. For anthropogenic activities, US-EPA identifies 8 main
sources3: Agriculture, Dust, Fires, Fuel Combustion, Industrial Processes, Miscella-
neous, Mobile and Solvent.

The importance of the source depends on the air pollution problem in the study
area. In general, emissions inventories studies are made in zones where air pollutant
concentrations exceed air quality standards. Therefore, the most important sources of a
study area are the ones that are causing the exceeding of air quality standards. Hence,
the knowledge of the atmospheric chemistry and meteorology sciences is crucial for
the understanding of air pollution problem, which is inherently inter-disciplinary. For
instance, residential wood combustion is the main source for PM2.5 concentrations at
Temuco, a city in south of Chile (SANHUEZA et al., 2009). Photochemical smog is a
persistent problem in mega-cities - cities with more than 10 million of habitants - where,
on the other hand, vehicles are the main air pollutants source, specially for CO, NOX

and VOC (MOLINA; MOLINA, 2004a).

In the state of São Paulo, Brazil, the pollutants O3 and PM10 frequently present
violation of their air quality standards. The official emissions inventory was developed
by the Environmental Agency of São Paulo (CETESB) following a top-down approach.
The 2013 CETESB Air Quality Report (CETESB, 2013a) shows that vehicles in the
Metropolitan Area of São Paulo were responsible for 96% of the Carbon Monoxide
(CO), 81% of the Hydrocarbons (HC), 80% of the Oxides of Nitrogen (NOX), 31% of the
Inhalable Particulate Matter (PM10) and 47% of the Oxides of Sulfur (SOX) emissions of
2012. Hence, vehicles are the most important source in São Paulo.

Another important tool for policy decision is air quality models. They have been
used not only to study the impact of different emissions scenarios for policy making but
also to understand the dynamics of air pollutants in various parts of the world. MASP,
for example, was the area studied with different air quality models: CIT photochemical
model (Ulke Andrade, 2001; Vivanco Andrade, 2006), CMAQ (Albuquerque et al., 2007),
SPM-BRAMS (ANDRADE et al., 2015) and WRF-Chem (VARA-VELA et al., 2016).
There were many interesting results from these air quality simulations. It was shown

3 Emission Data Source: https://www.epa.gov/air-emissions-inventories/air-emissions-sources
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that vehicles were responsible for 40% of PM2,5 (ANDRADE et al., 2012) and for the
formation of 20-30% of secondary aerosols (VARA-VELA et al., 2016). MASP emissions
also cause high O3 concentrations which is transported to the nearby metropolitan
regions of Campinas, Santos, São Jose dos Campos and Sorocaba (BOIAN; ANDRADE,
2012). This work also questioned the values of the official emissions inventory, making
adjustments to HC (an increase of 20%) and NOX (divided by half) emissions, following
the suggestion given in VIVANCO; ANDRADE (2006).

Although air quality models are easily available, emissions - that must be used
as input for these models - are not. One of the biggest problem is lack of information
regarding vehicular emissions. All the top-down emissions inventories cited above inform
the amount of pollutant released in one year for a relative large area, for example, for a
whole country (National Emissions Inventories) or a Metropolitan Area (CETESB Emis-
sions Inventory). Air quality models require gridded hourly emissions data. Therefore,
spatial disaggregation was performed based on land use (VIVANCO; ANDRADE, 2006;
ULKE; ANDRADE, 2001), night satellite images (ANDRADE et al., 2015), international
databases (VARA-VELA, 2013), street density (EICKER et al., 2008), density of a
combination of street length and category of street density (ANDRADE et al., 2015)
(VARA-VELA et al., 2016), population density (WILSON et al., 2006) and correlations
of emissions, traffic counts and land use maps (SAIDE et al., 2009). For temporal
distribution, usually an average profile was assumed (ANDRADE et al., 2015). These
approaches, although cumbersome, have the advantages of being relatively fast, cheap
and not so complicated, but the main disadvantage is the lack of representativity of
the dynamic of traffic conditions, and misrepresentation of the emissions for particular
regions (NTZIACHRISTOS; SAMARAS, 2016).

Therefore, there is a need for an emissions inventory model for scientific appli-
cations, with high level of detail and high temporal and spatial resolution. This present
doctoral thesis pursues to provide a scientific and bottom-up vehicular emissions in-
ventory model in order to clarify air quality questions. The study area comprehends
the metropolitan areas of São Paulo, Santos, São José Dos Campos, Campinas and
Sorocaba.

1.1 Objectives

The main object of this study was to develop a bottom-up vehicular emissions
inventory model applicable for São Paulo metropolitan areas and evaluate its emissions
impact on air pollution.
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1.1.1 Specific Objectives

In order to achieve the main objective, the following actions were taken:

• Review, identify and elaborate activity traffic data.

• Identify and elaborate vehicular emission factors for Brazilian reality.

• Construct a vehicular emissions model that integrates different sources of traffic
data, emission factors and produces gridded emissions for air quality models.

• Elaborate a high resolution emissions inventory for the main metropolitan regions
of São Paulo.

• Simulate air pollutant concentrations with an air quality model and evaluate the
impact of the emissions

This thesis is organized as:

• Chapter 2: Traffic data. In this chapter, all the traffic data (vehicular types, road
network, traffic simulations, traffic counts, GPS tracking data) are presented. Since
traffic counts must be interpolated in order to be useful for air quality modeling
purposes, the interpolation methodology is also described.

• Chapter 3: VEIN v0.2.2: an R package for bottom-up Vehicular Emissions Invento-
ries. In this chapter, the development of the Vehicular Emissions Inventories Model
(VEIN) is described. Initially, the usage of the R-package is explained using only
Light Duty Vehicles and CO emissions for MASP. Then, VEIN model is applied to
the different traffic activity data presented in chapter 2. A more detailed description
is given for the classification of types of vehicles, calculation of emission factors,
speciation of NMHC, and traffic calibration considering fuel consumption.

• Chapter 4: Weather and Research Forecast Model with Chemistry (WRF-Chem).
In this chapter, the configuration of the WRF-Chem model, the meteorological
conditions of the period of simulation and the evaluation indexes are presented.

• Chapter 5: Results. In this chapter, all the results from the previous chapters are
shown and discussed.

• Chapter 6: Conclusions. In this chapter, the main conclusions of the work are
given.
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2 Traffic data

A key element to develop bottom-up vehicular emissions inventories is the
availability of traffic data. Some studies use macro (CORVALÁN; OSSES; URRUTIA,
2002) and micro (PANIS; BROEKX; LIU, 2006) traffic simulations to estimate vehicular
emissions. Others use traffic counts to allocate or produce traffic flow to later estimate
emissions (KINNEE et al., 2004). New technologies such as GPS incorporated into
smart-phones, vehicles with assurance policy with GPS and other fleet management
services are generating new data available to the public. Companies such as Google
(https://www.google.com.br/maps) and Maplink (http://transito.maplink.global/) in Brazil
use this data to provide real-time traffic conditions at any time. Accessing this data
to generate inputs for vehicular emissions could enhance the inventories and provide
better input for air quality simulation and health studies.

In this chapter it will be described the data and the procedures developed to
generate the traffic flow input for the bottom-up vehicular emissions inventory model
(VEIN model) (IBARRA-ESPINOSA et al., 2017).

2.1 Types of vehicles

Vehicular composition is the characterization of the fleet into its components and
it is one the first steps when developing a vehicular emissions inventory. CORVALÁN;
OSSES; URRUTIA (2002) defined vehicular composition characterizing the fleet by
the type of use, type of fuel and gross weight. In this work the following categories,
partly based on the classification presented in the vehicular emissions inventory for São
Paulo (CETESB, 2015), were adopted: Light Duty Vehicles (LDV = Passenger Cars
(PC) + Light Commercial Vehicles (LCV)); Heavy Duty Vehicles (HDV composed by
Heavy Good Vehicles (HGV) or trucks + Buses); and also Motorcycles (MC). Type of
fuel consist of: Gasohol as a mixture of gasoline and 25 % of ethanol- E25; hydrated
ethanol 100% - E100; and diesel with 5 % of biodiesel - B5. In 2003, car manufacturers
started producing vehicles capable of running with E25, E100 or any mixture in between
with the development of the flex engine (GIROLDO et al., 2005). FE25 is a vehicle with
flex engine using E25 and FE100, when consuming E100. Table (1) shows the vehicle
classification for this study. This table was defined to match vehicular categories from
CETESB and the European Emission Guidelines (NTZIACHRISTOS; SAMARAS, 2016).
The table also included size of engines, gross weight, and the emission standards for
each type of vehicle (Ministerio de Medio Ambiente, 2011; CONAMA, 1986; MACEDO
et al., 2011). These informations as well as the emission factors used in this work will
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Table 1 – Classification of vehicles

Vehicle Fuel Size/Gross weight Standard

Passenger Car (PC)

E25
FE25
FE100
E100

<1400cc
1400-2000cc
>2000cc

PRE L1
L1
L2
L3
L4
L5

Light Commercial Vehicles (LCV)

E25
FE25
FE100
E100
B5

<=3.5t

PRE L1
L1
L2
L3
L4
L5

Light Truck (LT)
Semi Light Truck (LT)
Medium Truck (MT)
Semi Heavy Truck (SHT)
Heavy Trucks

B5

<7.5t
12-14t
14-20t
20-26t
>32t

PRE P1
P1
P2
P3
P4
P5
P7

Small Urban Bus (SUB)
Urban Bus (UB)
Urban Bus Articulated (UBA)
Motorway Bus (Coach)

B5
<=15t
15-18t
>=18t

PRE P1
P1
P2
P3
P4
P5
P7

Motorcycle (MC)
E25
FE25
FE100

<=150cc
150-500cc
>=500cc

PRE M1
M1
M2
M3

be treated in more detail in Chapter 3.

2.2 Road network

The bottom-up vehicular emissions inventory model developed during this work,
requires traffic data as an hourly amount of vehicles per street. The following sections
describe the study area and the map of streets adopted for the emissions model.
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2.2.1 Study area

The study area is delimited by the coordinates -47.85848 to -45.48376 degrees of
longitude and -24.488 to -22.46691 degrees of latitude. The area is located at Southeast
Brazil and covers the metropolitan areas of São Paulo (MASP), Santos, São José dos
Campos (SJDC), Sorocaba and Campinas. The area of study is shown in Fig. (1). The
political delimitations of each metropolitan area are smaller than the regions presented,
with exception of MASP. In other words, it was added more municipalities into each
metropolitan area because data was available for the whole area, and not only each
geopolitically defined metropolitan area.

Figure 1 – Area of study: Metropolitan Areas (delimited by black lines), Topography
(gray shades) and road network (colored lines)
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2.2.2 Road network

OpenStreetMap (OpenStreetMap contributors, 2017) is an open mapping project.
Data is freely available and covers many parts of the world where geographical infor-
mation is either nonexistent or very expensive. Fig. (1) also shows the types of street
from OpenStreetMap. There are many road categorization covering not only streets
for vehicles displacement, but also rails, pedestrian roads, among other. In the case of
streets, there is a discussion1 at OpenStreetMap regarding the classification of streets
with Highway Functional Classification System, proposing this equivalence: Interstates
& other freeways equivalent to motorway, Expressways equivalent to trunk or primary,
Other Principal Arterials equivalent to secondary, Minor Arterial Streets equivalent to
tertiary and local streets equivalent to residential.

The data was downloaded with the QGIS software (QGIS Development Team,
2017) and it filtered only streets field identified as ’highway’ with the following attributes:
motorway, motorway_link, trunk, trunk_link, primary, primary_link, secondary, sec-
ondary_link, tertiary, tertiary_link and residential. In Brazil, the characteristics of the
type of road are: Motorway is a paved express highway, with speed >= 80 km · h−1,
without crossings or obstructions, being a major street, normally with 2 or more running
lanes. Trunk is similar to motorway with the exception that it includes obstructions such
as traffic lights, being national or urban expressways with speed limit 70 - 80 km · h−1.
Primary roads are paved with speed >= 60 km · h−1 connecting many neighborhoods
and designed as urban arterial roads. Secondary roads collect traffic, speed >= 40
km ·h−1 and circulation between neighborhoods. Tertiary roads are similar to Secondary,
connecting fewer neighborhoods. The last category is Residential which is a local road
with few vehicles located in a residential areas. Streets terminated in ’_link’ are junctions
between these streets and other categories. The road network of Fig. (1) shows how the
metropolitan areas are connected by motorways and trunk roads. It is also possible to
see the other roads especially the numerous residential ones (yellow lines in the map).

2.3 Traffic activity

Traffic data is a very important source of information for urban planning. Urban
planners use this information to make decisions about projections, costs, quality of
life and air pollution. However, this information is not always available to researchers,
consultants and civil servants. In addition, this data can be particularly difficult to obtain
in developing countries.

Traffic data can be developed generally in two ways, either by a multi-step
demand estimation or a direct demand estimation (LOWRY, 2014). Multi-step demand

1 https://wiki.openstreetmap.org/wiki/Talk:Highway_Functional_Classification_System
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estimation refers to a 4-stage traffic simulation. This data is generally available for
morning rush hour, however, it requires a burdensome and costly amount of input data
(ORTUZAR; WILLUMSEN et al., 1994). Direct demand estimation consists of collecting
and extrapolating traffic data based on characteristics of roads and the adjacent areas.

For this work, traffic activity data were obtained from different sources. Traffic sim-
ulations were obtained from Traffic Engineering Company (CET http://www.cetsp.com.br/)
and from SPtrans (http://www.sptrans.com.br/), and since they could be directly inserted
in the VEIN model, they are just described in the next subsections. Another source
was vehicle counts from CET and GPS data and the procedures made to transform
this information into traffic simulations are detailed in subsections 2.3.3 and 2.3.4,
respectively.

2.3.1 Traffic simulation from CET

The Traffic Engineering Company of São Paulo (CET) is the agency that performs
the transport planning in São Paulo city. They have a specific sector dedicated to 4-stage
traffic simulations using data from an Origin-Destination-Survey (ODS) (METRO, 2017)
which started in the decade of 1950 in São Paulo. A classic reference of a 4-stage
modeling transport is (ORTUZAR; WILLUMSEN, 2002). The 4 stages of the traffic
modeling includes characterization of trip attractions and productions by zone in some
regions, distribution of these trips, preferred mode of transport for traveling and finally
the allocation of the trips at each mode, in this case into the road network. The ODS is
made every 10 years by Metro (http://www.metro.sp.gov.br/), which is the underground
company, and they perform a smaller update of ODS after 5 years. The information
gathered in the ODS is massive with the participation of thousands of commuters. It
helps to identify characteristics of the trips inside MASP. CET uses the information from
ODS and performs the traffic simulation. In this case, it is a macro or strategic traffic
simulation which represents the equilibrium between offer and supply of transportation
at maximum load of the road network, that is, at the rush hour, which is from 08:00 to
09:00 Local Time (LT).

The CET traffic simulation provides initial and final id of node, volume of LDV
(veh ·h−1), HGV (trucks, veh ·h−1), number of lanes, capacity (veh ·h−1), free flow speed
(FFS, km · h−1), Peak Speed (PS, km · h−1), type of street and travel-time for each link.

The traffic simulations for LDV and HGV are shown on Fig. (2) and (3) respectively.
LDV traffic is more concentrated in urban motorways located near the center of the
city. The color scale shows that there are streets where LDV traffic overpasses more
than 15000 veh · h−1. At this simulated rush hour, the total volume of LDV is 24708767,
distributed through 34733 streets, resulting on an average of 711 veh · h−1 · street−1.
HGV is concentrated in motorways around the city where the volume can overpass
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Figure 2 – CET Traffic simulation of LDV from 08:00 to 09:00 LT.

7000 veh · h−1. The total amount of HGV is 2809297 and the average number of HGV
per street is 80.

2.3.2 Traffic simulation from SPTRANS

The Secretary of Transport and Mobility of São Paulo (SPTrans) is the agency
responsible for public transportation by buses, and also uses ODS (METRO, 2017) to
make traffic simulation for the rush hour. SPTrans traffic simulation is also a spatial
network with the following information: initial and final id of node, LDV (veh · h−1),
capacity (veh ·h−1), volume of passengers (passengers ·h−1), volume of buses (veh ·h−1)
and Peak Speed (PS, km · h−1). it was used only volume of buses, since the other
information is already covered by CET simulation. Fig. (4) shows that buses are also
more concentrated near the center of the city.The volume of buses can overpass 5000
veh · h−1, the total amount of buses is 763097 and the average number of buses per
street is 23.

2.3.3 Traffic counts

Traffic data can be collected with automatic traffic detectors or manually. When
the traffic count is manual, it is usually only for most congested routes over the city at
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Figure 3 – CET Traffic simulation of HGV from 08:00 to 09:00 LT.

Figure 4 – SPTrans simulation of buses from 08:00 to 09:00 LT.
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morning and evening rush hours. When the traffic is counted over 72 hours or less, it
is known as Short Period Traffic Counts (SPTC) and this data is usually employed to
calculate Annual Average Daily Traffic (AADT). AADT plays a key role in this study and
it is a very effective indicator for urban planning. The methods used to obtain AADT
are distinguished between ordinary least square, neural networks and Kriging regres-
sion. For instance, ZHAO; CHUNG (2001) tested several multiple stepwise regressions
incorporating land-use characteristics. They considered several variables: number of
lanes, classification of road type, employment numbers and access to expressway. Their
results had correlations between 0.66 and 0.82. LAM; XU (2000) compared neural net-
works and regressions for a dataset of 13 locations obtaining better results with a neural
network approach. Kriging methods have also been used in AADT interpolation. EOM
et al. (2006) predicted AADT for non-motorway streets. WANG; KOCKELMAN (2009)
also predicted AADT but applied it where no traffic detectors were present. SELBY;
KOCKELMAN (2013) compared Kriging and geographically weighted regressions in the
prediction of AADT. Road characteristics and land use can show little variation in road
networks of small communities. LOWRY (2014) presented a new method for predicting
AADT based on the concept of origin-destination centrality. The idea is to obtain predic-
tor variables directly from the road network. He identified origin and destination zones
and added multiplication factors based on the land-use characteristics.

In general, most studies are interested in predicting total vehicular count and not
the type of vehicle. Light duty vehicles have different rush hours than heavy duty vehicles.
Moreover, regressions and interpolations use factors that expand traffic to obtain AADT
and no results are shown for hourly interpolation. Furthermore, traffic regressions
are assuming normal distribution, and literature shows that when working with count
data, this assumption is not appropriate (ZEILEIS; KLEIBER; JACKMAN, 2008). Even
more, it has been shown that Poisson distribution should be used with count data only
when variance is equal to mean, but this assumption is highly restrictive, especially
in environmental sciences (HOEF; BOVENG, 2007). This section presents stepwise
regressions with quasi-Poisson and negative binomial distributions to interpolate hourly
traffic data by type of vehicle. This involved the use of a traffic counts dataset for the
Metropolitan Area of São Paulo (MASP). The dataset included LDV, Trucks, Buses (UB
and private urban buses, RB) and MC. Road network data from OpenStreetMap was
also used.

2.3.3.1 Short Period Traffic Count (SPTC)

CET performs SPTC for São Paulo City. The reports are available on-line as pdf
documents (CET, 2013). This study used the report from year 2012 as a base year. CET
identifies 31 main traffic routes and then traffic is counted manually in several points
of each route, in each way. Traffic is counted in street segments and each segment is
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explicitly identified in the CET reports. This allowed geo-referencing each point over
a OpenStreetMap road network with the software QGIS (QGIS Development Team,
2017). The traffic is counted hourly during morning and evening rush hours between
07:00 - 10:00 and 17:00 - 18:00. All the mentioned times are in the Local Time (LT).
This is performed in order to represent usual conditions of workdays. Most of the points
are counted once per year, but the point with highest volume of traffic in each route is
counted twice per year and only the average value is shown in the CET reports.

The traffic count dataset was aggregated to have total vehicles in each point, in
both ways. Traffic counts distinguish the following type of vehicles: Light Duty Vehicles
(LDV) which can be Passenger Cars (PC) or Light Commercial Vehicles (LCV), Trucks
with two axes (T2A or LT in Table (1)), Trucks with three axes (T3A or MT), Trucks with
four axes (T4A or SHT), Urban buses (UB), Rented buses (RB) and Motorcycles (MC).
The points are shown in Figure 5, where it is shown higher amount of LDV towards the
center of the city. This Figure also shows the OpenStreetMap road network. In the case
of T2A, initially there were more vehicles outside the city showing spatial bias towards
southeast. This issue was corrected by adding traffic counts from toll stations located
near São Paulo City, as seen on the left of Figure 5(b). The toll database comes from the
Transport Agency of São Paulo State (Artesp, http://www.artesp.sp.gov.br/) and consists
of 6 traffic points located at motorways near São Paulo City. The toll station points
are located on the motorways SP280-KM180 (Castelo Branco), SP021-KM14 (Castelo
Exter), SP021-KM24 (Raposo Exter),SP021-KM24700 (Raposo Inter), SP021-KM25
(Regis) and SP021-KM14 (Castelo Inter). A decision was made to append this Artesp
dataset only for trucks and not for other types of vehicles. This decision was made
because light vehicles and urban buses circulate mainly in the urban center, while load
transport travel to other cities using mainly routes such as motorways. The resulting
database consisted of 107 counting points from CET for LDV, UB, RB, and MC; and 107
from CET plus 6 from Artesp for T2A, T3A and T4A, resulting in 113 traffic counts for
trucks. Concerning the road network, there were 48 traffic counting points over Trunk
roads, 43 over Primary roads, 14 in Secondary roads, 2 in Tertiary and 6 in Motorways
(only for T2A).

2.3.3.2 Regression approach

After analyzing the traffic count data, the next step is to use a regression for each
type of vehicle and each hour. As previously mentioned, similar studies have focused
on estimating AADT, however, this study is novel since it proposes an hourly approach.
Before making any assumption about traffic count distribution, it was tested the normality
of each type of vehicle at each hour. It was used the test of SHAPIRO; WILK (1965) to
check normality with the software R (R Core Team, 2017) and the command shapiro.test
(ROYSTON, 1982).
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Figure 5 – Traffic counts for (a) LDV and (b) T2A, between 07:00 and 08:00 LT, 2012.
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It is important to consider some checking when working with count dependent
variables. Poisson regression is the first candidate to fit count data (GROUP., 2017).
However, there are some assumptions that must be considered: variance cannot be
higher than mean as it produces over-dispersion, and variables should not contain zeros
(ZEILEIS; KLEIBER; JACKMAN, 2008).

In this study, the dataset of traffic counts was tested to check for over-dispersion.
Table 10 showed that the standard deviation values are identified near to the mean
values for each type of vehicle, meaning that the variance is far greater than the mean.
Therefore, the traffic count dataset presents over-dispersion, and the Poisson regression
was not used.

After analyzing the data, it was decided to fit and compare a negative binomial
and a quasi-poisson regressions. This was performed using also the software R (R Core
Team, 2017), with the library MASS for negative binomial regressions (VENABLES;
RIPLEY, 2002) and the library stats for quasi-poisson regressions. ZEILEIS; KLEIBER;
JACKMAN (2008) provide a good review of count models.

Regarding the independent variables, it was used OpenStreetMap (OSM) be-
cause it is open and free source of spatial information that allows to include several
attributes related to traffic counts. The traffic counts were associated with the following
type of roads: Trunk, Primary, Secondary and Tertiary. In order to use the regressions
to estimate traffic in a city, all variables should be assigned to each link. The MASP
road network does not count with number of lanes to each road. Therefore, it was
necessary to calculate the average number of lanes per type of road. The mean values
are: motorway = 3.2, motorway_link = 1.9, trunk = 2.1, trunk_link = 1.9, primary = 2.6,
primary_link = 1.6, secondary = 2.2, secondary_link = 1.6, tertiary = 2.1, tertiary_link =
1.5 and residential = 1.

Traffic counts shown in Figure 5a suggest a spatial relationship in which there are
more LDV vehicles towards the center of the city. When comparing with the Figure 5b,
T2A shows less vehicles towards the center of the city. Considering these observations,
it is possible to establish a hypothesis that distance from center dfc is a predictor for
traffic counts. This variable could also be expressed as geographical coordinates lat
and lon or as the distance from a point representing the center of the city. The point
of center was considered to be the location known as "Pátio do Colégio", which is the
point where São Paulo City was founded in 1554. This point is located in the middle of
the historic center, near to many government and private buildings, bus and subways
stations and commerce. The coordinates are latitude = -23.548056 and longitude =
-46.6325, WGS84.

Traffic count reports from CET identify the road segment in which traffic was
counted. The road segment is limited by streets also identified in the report. This means
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that traffic was counted by taking into consideration the traffic that circulated over a
distance. It is reasonable to think that when distance for counting vehicles is longer,
more vehicles are counted. Therefore, this variable was also added to the model.

Negative binomial and quasi-poisson distributions were tested and compared to
count data. Finally, the models were configured in the following way:

log(u) = β0 + β1 · ts+ β2 · lan+ β3 · dfc+ β4 · drs (2.1)

where u is the traffic count, ts is the type of street, lan is the number of lanes, dfc
is the distance from center, and drs is the length of the road segment. Since both the
geographical coordinates and distance to the center are related, this could be a source
of collinearity. Therefore, this study evaluated separately each model with the variable
dfc, and another with geographical coordinate of longitude lon and latitude lat. For the
case of values representing type of street ts, the study assigned the same value to the
type of street with name ’_link’. For example, trunk and trunk_link have the number 1.
This could lead to an overestimation of vehicles in these types of streets. However, the
amount of these link streets is relatively small so high overestimations are not expected.

The models selected were those with statistical significance Pr(> |z|) < 0.05,
i.e., small probability that the model coefficients were zero. The study also considered
akaike information criterion (AIC) during the stepwise process (VENABLES; RIPLEY,
2002), as well as correlations with observed and predicted traffic counts.

2.3.3.3 Evaluation

The predictor capacity of the models was evaluated in terms of forecasting traffic
over the road network for the Metropolitan Area of São Paulo (MASP), which is a mega-
city with more than 20 million habitants. Forecasting traffic is a complex process involving
many variables that sometimes are difficult to obtain, mainly in developing countries,
and the process involves a propagation of errors. Therefore, predicting traffic over this
road network results in an approximation of the traffic that is actually in circulation.

To verify if the regression equations provided good results the fuel consumption
resultant from this traffic interpolation was estimated and compared with annual fuel
sales for the area where they were interpolated. This approach has been proposed
by (NTZIACHRISTOS; SAMARAS, 2016) to compare vehicular emissions inventories
produced by a bottom-up and top-down approach and is incorporated in the VEIN model,
which is explained in the next chapter.

In order to run VEIN, it was necessary to match the vehicular categories from
traffic counts and vehicular fleet, as described in (CETESB, 2013a). Therefore, LDV
from traffic counts were divided into PC and LCV. T2A were also divided into five types



2.3. Traffic activity 45

of trucks, as described in the CETESB report. In addition, the type of fuel and age
distribution were also considered.

The MASP area has a zonal and meridional lengths of 120 km and 80 km,
approximately. The assumption is that the automotive fuel sold in this area is consumed
in the same area. The fuel sales for MASP were obtained from the Annuary of Statistcs
of Energy for all municipalities of São Paulo State (PAULO", 2013) for year 2012. The
fuel sold for year 2012 was 4780017 m3 of gasohol, 2198794 m3 of ethanol and 3336678
m3 of diesel. The density of each type of fuel is 0.754 t ·m3 for gasohol, 0.809 t ·m3 for
ethanol and 0.852 t ·m3 for diesel.

2.3.4 GPS tracking data

Nowadays many smart-phones and vehicles includes Global Position Systems
(GPS) devices for many uses. This provides a massive source of data that can be used
in environmental studies. GPS vehicle tracking data is the continuous registry of geo-
graphical position of vehicles including the time at each registry. GPS data was obtained
from Maplink (http://transito.maplink.global/), one of the companies that provides data
to GoogleMap. The GPS data was stored online and the data for the study area was
extracted using the Google online tool Biq Query (https://cloud.google.com/bigquery/).
The data is composed of GPS positions of more than 103 million vehicles for the study
area and includes the following information: "Vehicle" with an anonymous id for each
vehicle; "Type" including Cars, Taxi, Trucks and Undefined; "Collect_time" time with the
format Year-month-day Hour-Minute-Seconds (eg: "2014-10-05 00:00:00") in UTC; "Lat"
and "Long" indicating the geographical coordinates in WGS 84. The first registry was
recorded at "2014-10-05 00:00:00" and the last one at "2014-10-11 00:00:00" covering
6 days, from Saturday October 4th at 21:00 of 2014 to Friday 10th at 21:00 in Local
Time (LT), totalizing 145 hours.

2.3.4.1 GPS data processing

The Laboratory of Geo-processing of USP provided 50 comma separated value
(CSV) text files of raw GPS data obtained from Maplink. A quality control had to be
developed to avoid errors. Each file contains information for the 145 hours. It was
calculated the distance between two consecutive readings of each vehicle to calculate
its speed and acceleration. The quality control excluded vehicles with speeds higher
than 110 km · h−1 and acceleration higher than |129600| km ·h−2. Also, the same vehicle
must be tracked at least 5 times in each CSV file. The total number of observations was
104069448. As the data was too numerous only a slice of it is shown in Fig. (6), for LDV
(223470 observations) and Fig. (7), for HGV (46207 observations). When comparing
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both figures it can been seen that HGV is more spread than LDV. This reflects the
behavior of HGV delivering goods and LDV concentrated inside each urban settlement.

Generating traffic flow for emissions inventories from massive GPS records is,
to my knowledge, a novel approach and as such it requires caution. One important
aspect is the frequency of the observations. Ideally, the frequency of two consecutive
observations from the same vehicle would be one second. However, the average
frequency of the records is 9155 s for Cars and 38345 s for Trucks. This means that,
on average, there is 2.54 hours between two consecutive records of Cars and 10
hours for Trucks. Filtering the data to include only consecutive observations with higher
frequency would imply in much less observations. Therefore, the resulting data must
be an equilibrium between high frequency of consecutive observations and a minimum
set of observations by each street. It was explored several frequencies: a maximum
frequency of 5 minutes resulted on an average of 2.21 minutes by consecutive readings
and 50 streets; a maximum frequency of 10 minutes resulted on an average of 4.27
minutes and approximately 2000 streets with records; finally, a maximum frequency
of 29 minutes resulted on an average of 11.57 minutes and approximately 5000-6000
streets with observations per hour. Despite the relatively lower number of streets, it was
decided to use an average frequency of 11 minutes. The percentiles for the Cars data
were then P25: 240 seconds, P50: 600 s, P75: 1095 s and P100: 1799 s. For Trucks, the
P25 was 3391 seconds; P50, 15609 s and P75, 58272.5 s. Most of the recordings were
found in streets different than residential. One possible reason is that vehicles goes
quickly from a residential street to another type and therefore, most of GPS records
were registered in streets different from residential, which was therefore excluded from
the filtered data.

The package data.table (DOWLE; SRINIVASAN, 2017) was used for the analy-
ses since it performs fast analyses with few computational cost in R. It was calculated
the average speed by type of vehicle, but since Taxis, Cars, Trucks and Undefined share
a common space on the street network, it was used the information of all the vehicles,
allowing to calculate speeds with a bigger number of observations. After that, it was
excluded Undefined from the analyses because there was no way to know which type
of vehicle it was. It was also excluded Taxis because there were too many Taxi records,
which does not mean that there are actually more of these type of vehicles in circulation
but could be due to proliferation of related applications for cellphones with GPS included.
In other words, there are more Taxis records because nowadays most of Taxis counts
with GPS records, however, there are more Cars on the road without GPS devices.

Traffic data consists in points and they must be assigned into the road network.
the traffic data was first converted to spatial features with geometry points and then
projected to the system of coordinates 31983 SIRGAS 2000 / UTM zone 23 South using
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Figure 6 – Cars positions derived from GPS recordings on Monday 2014-10-06 09:00
LT.

the R package sf (PEBESMA, 2016). In order to avoid the use of all RAM the data
was divided by hour and then created 10 m buffers to have one polygon for each traffic
recording position. Then an intersection between the polygons and road network was
made. Finally, the total number of vehicles and the average and quantiles by road at
each hour were aggregated. To ensure that the calculation of the speed was correct it
was calculated the average speed by type of street for Monday Midnight. The resulting
average speeds by type of street for Cars, Taxi, Trucks were low, as shown in table (2).
This table also shows the maximum Taxi, Trucks and All speeds. It can be seen that
the average speed does not change abruptly among the hierarchy of the street, except
for motorways. Ideally, in order to represent Cars only the recordings of cars should
be considered, which shows an average speed of 74 km · h−1 at motorways and lower
speeds at other type of streets. However, the number of streets with recordings was
only 64 and the total network have 56966 streets. Therefore, it was used the speed
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Figure 7 – Trucks positions derived from GPS on Monday 2014-10-06 09:00 LT.

of Taxis as proxy of Cars traffic flow. The number of streets with recording of Taxi is
larger than Cars, with 5679 streets. The average and maximum speeds of Taxis are
lower than Cars for motorway, and higher for the other type of streets. Trucks present
higher speeds than Cars and Taxis at all type of streets but there are only 147 street
with recordings. Lastly, the Max average speed considering all types (Cars, Taxi, Trucks
and Undefined) is higher than the other type of vehicles but still lower than motorways
of Cars, also, the number of streets with recordings are 9116. In order to produce traffic
flows coherently despite the limitations of the data, it was decided to use the average
max speed of taxis as proxy for traffic flow of Cars. For the Trucks, it was considered
first its average max speed and when there was no data available, the average max
speeds of all vehicles.

The spatial distribution of the speeds on Monday at 00:00 LT is show in figure
8. It can been seen that motorways have higher speeds with values between 88 and
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Table 2 – Speeds Monday 2014-10-06 00:00 by type of street km · h−1.

Type of street Carsmean Taximean Truckmean Taximax Trucksmax Allmean

Motorway 73.98 40.40 55.09 51.45 57.14 65.63
Motorway_link - 36.99 56.96 41.53 57.83 52.44
Trunk 14.80 22.73 43.49 26.39 43.50 37.84
Trunk_link - 22.09 - 23.26 - 34.99
Primary 16.09 16.38 44.12 23.26 45.22 27.12
Primary_link 22.00 18.44 - 21.30 - 28.04
Secondary 7.65 14.69 50.80 19.21 60.61 22.24
Secondary_link 0.06 18.64 - 21.00 - 25.39
Tertiary 4.17 12.59 42.32 16.54 43.31 19.59
Tertiary_link - 16.00 59.65 16.54 72.20 24.49
Mean 10.31 17.76 54.19 23.46 55.96 31.37
n 64 5679 147 5679 147 9116

110 km · h−1 shown in red. At major streets near the cities the average speeds oscillate
between 44 and 88 km · h−1 shown in yellow. The lower speeds are found in the center
of the cities shown in green.

The temporal distribution of speeds by type of street for the 24 hours of the
Monday 2014-10-06 is shown on Fig. (9). Higher speeds are found in motorways and
the speeds diminish as descending on the hierarchy of the type of street from motorway
to tertiary which seems reasonable. The interquartile range of speeds are lower as
descending on the hierarchy of the type of street. Regarding the hourly distribution, only
motorway shows a profile trunk of speeds increasing in early morning, and lowering at
morning and evening rush hours, followed by an increase in speeds at night. Primary,
secondary and tertiary do not present a noticeable variation at different hours.

It is important to have a well represented speed because not all the vehicles
count with GPS devices, which could result in a spatial bias. This means that it is
possible that specific regions with more vehicles with GPS devices will present higher
number of registries, but other regions with higher traffic flows could not appear in the
results if there were fewer vehicles with GPS devices. This is most probable for Cars
than for Trucks because the spatial behavior of Trucks depends on the transport of
goods, following therefore a more fixed route than Cars. One way to solve this problem
is to use the speed as proxy of traffic flow. In this way, it is not crucial to have all streets
monitored with GPS, but at least know the average speed on most of the streets.

Besides Traffic counts, described in section 2.3.3, CET also provides a data-
base of simultaneous speed and traffic flow measurements, available for the public on
http://www.cetsp.com.br/sobre-a-cet/relatorios-corporativos.aspx. This data was then
used to correct the spatial bias from the GPS recordings. The procedure consisted in
creating ratios between traffic flow of LDV and Trucks and speed per type of street and
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Figure 8 – Speed (km · h−1) on Monday at 00:00 LT.

number of lanes. Then, the speed of LDV and Trucks from the GPS records was then
multiplied with these ratios when type from street and number of lanes were similar. A
formulation of this procedure is shown in Eq. (2.2).

FCts,nl = SGPSts,nl ·
(
FRts,nl

SRts,nl

)
(2.2)

Where FCts,nl is the traffic flow corrected for the type of street ts, number of
lanes nl. SGPSts,nl is the average speed obtained form the GPS recordings at streets
indicating the type and number of lanes. FRts,nl and SRts,nl are the Traffic flow and
Speed recorded during CET measurements made between 08:00 and 09:00LT during
2012. The values used as reference are shown in Table (3), as well as the number of
lanes, which was also taken from the Traffic Counts Interpolation Section. This dataset
is part of the paper in review (IBARRA-ESPINOSA et al., 2017) but the data set was
also uploaded into Mendeley Data web services, doi: 10.17632/rz2cymv6c2.1 (IBARRA-
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Figure 9 – Temporal distribution of average max speed of Taxi (km · h−1) by type of
street for Monday 2014-10-06.

Table 3 – Average traffic and speeds by type of street and number of lanes at 08:00-
09:00 in São Paulo, 2012

Type of street Lanes PC veh · h−1 Speed km · h−1 PC/Speed

Motorway and Trunk >= 10 9615.500 69.15000 139.05278
Motorway and Trunk < 10& >= 8 4709.071 60.62143 77.67998
Motorway and Trunk < 8& >= 6 4416.850 54.01000 81.77837
Motorway and Trunk < 6& >= 4 3282.500 51.53333 63.69664
Motorway and Trunk < 4 786.500 16.00000 49.15625
Primary >= 8 4486.500 61.68750 72.72948
Primary = 7 2664.000 30.80000 86.49351
Primary = 6 3233.250 37.30357 86.67401
Primary < 6& >= 4 3311.200 35.88000 86.67401
Primary < 4 2697.000 29.50000 91.42373
Secondary >= 8 1671.000 26.00000 64.26923
Secondary < 8& >= 6 2388.000 36.64286 65.16959
Secondary = 5 1295.000 28.90000 44.80969
Secondary = 4 2527.000 26.43333 95.599
Secondary < 4 626.500 27.50000 22.78182
Tertiary >= 4 1600.000 22.00000 72.72727
Tertiary < 4 804.000 15.90000 50.56604

ESPINOSA, 2017). There are no traffic counts in Motorways, therefore it was assigned
the same values of Trucks to Motorways. This table shows a tendency that the higher
the hierarchy of the type of streets, the more lanes per streets, and the more vehicles
circulating. However, the speed does not increase linearly. The traffic was corrected in
’link’ streets, dividing by two, producing a smoother change of flow. It has to be noticed
that since these ratio were obtained with Traffic counts, they might not be applicable to
other regions.

The specification presented applies only for traffic flow generated from GPS
recordings of Cars. In the case Trucks only the traffic circulating in motorways and
trunks were corrected, using the average number of trucks in trunk streets 101 veh · h−1

and the average speed for the same type of streets 50 km · h−1. The correction ratio
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obtained was 2 and it was applied for trucks flow circulating only in motorway and trunk.
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3 VEIN v0.2.2: an R package for bottom-
up Vehicular Emissions Inventories

Emissions inventory is a quantification of pollutants discharged into the atmo-
sphere by different sources (PULLES; HESLINGA, 2010). This quantification is vital for
regulatory and scientific purposes, because it allows to monitor the state of the Earth’s
atmosphere and climate. There are several emissions inventories that use different input
data and approaches for different scales. One of the most frequently used inventories
is the Emission Database for Global Atmospheric Research (EDGAR) (OLIVIER et al.,
1996), which provides estimates for the total emissions worldwide. This inventory uses
national statistics however do not provide detailed characterizations of high resolution
applications which are needed for urban studies. There are also continental emissions
inventories such as the European Monitoring and Evaluation Programme (EMEP), which
compile emissions from the parties of the Convention on Long-range and Transbound-
ary Air Pollution (CLRTAP) (EEA, 2013). Moreover, there is the Regional Emissions
inventory in Asia (REAS), which covers China, Japan and other countries (STREETS et
al., 2003). However, there are many countries and cities that do not count with estimates
of emissions for environmental and climate planning.

Vehicular emissions are becoming increasingly important in urban centers (AN-
DRADE et al., 2017) and measurements have shown that compounds emitted from
exhausts can be highly reactive in the atmosphere, contributing to critical episodes
of photochemical smog (NOGUEIRA et al., 2015). However, obtaining this type of
emissions database can be complicated, since the sources are in movement and
the emissions process is complex. This can be a challenge, especially in developing
countries due to the lack of information about the vehicle type, technology, age, motor
size, fuel, speeds, accelerations, street type, environmental temperature and humidity,
among other aspects. Besides that, there are other aspects involving the emissions
inventory. The most common aspects are the accuracy and complexity relating to the
exact contribution of the different pollutant sources, and that in most cases, emissions
inventories are usually seen as a scapegoat when simulations do not match observation
(PULLES; HESLINGA, 2010).

Vehicular emissions inventories are classified according to top-down and bottom
approaches. Top-down are based on statistics of vehicle composition, representative
speeds and country balances, while bottom-up are based on traffic counts, vehicle
composition and speed recording (NTZIACHRISTOS; SAMARAS, 2016). The accuracy
of the emissions inventory will reflect on the representation of the pollutants in the
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atmosphere. It is not always related to the complexity of the model. For instance, a meta-
analysis of several studies on vehicular emissions (SMIT; NTZIACHRISTOS; BOULTER,
2010) concluded that there is no evidence that the more complex models perform
better than the less complex ones. An emissions inventory must be comprehensive,
including all the important sources and aspects regarding the emissions. All of these
complexities were addressed by the Laboratório de Processos Atmosféricos (LAPAt)
from the Departamento de Ciências Atmosféricas (DCA) of the Universidade de São
Paulo (USP) when modeling the atmospheric chemistry over Brazilian cities using a top-
down vehicular emissions inventory with an on-line atmospheric model (ANDRADE et
al., 2015). The Metropolitan Area of São Paulo (MASP), is the most populated megacity
in Latin America (IBGE, 2014b) and its most important source of pollution comes from
the 11 million vehicles that circulate within the Region (CETESB, 2013b; DENATRAN,
2015; ANDRADE et al., 2017). Furthermore, half of all emissions of CO, HC and NOX

in the MASP are from vehicles that are more than 10 years old (ANDRADE et al., 2017).
Vehicular emissions for these air quality studies were made with too many assumptions
and approximations, reinforcing the need to develop a bottom-up vehicular emissions
inventory model. This model will enable to generate scientific estimates and provide
useful information to decision-makers and urban/environmental planners.

One of the main goals of this project was to develop a high spatial and temporal
resolution vehicular emissions inventory model. This chapter presents the final version
of the VEIN model, which follows the bottom-up approach. Section 3.1 presents the
methodology used by VEIN. The model design, as an R-package, is described in section
3.2. An example of application of VEIN to MASP is given in section 3.3, but only for CO
and LDV. Full application of VEIN to the previous chapter traffic activity data is described
in detail in section 3.4. In section 3.4, a discussion about the VEIN model is presented.

3.1 VEIN model: methodology to estimate vehicular emis-

sions

Temporal and spatial disaggregated emissions are estimated following a general
approach of multiplication between activities and emission factors (PULLES; HESLINGA,
2010), as shown in Eq. (3.1).

Emissionpollutant =
∑

activity

(ARactivity · EFpollutant,activity) (3.1)

where Emissionpollutant for any type of pollutant depends on the activity rate AR and the
emission factors EF , which is the mass of pollutants generated according to the level
of activity. In the context of vehicular emissions, ARactivity represents the number of
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vehicles times the distance (km) that they travel. EFpollutant,activity is the emission factor
(g · km−1) for pollutants of the vehicles.

For a bottom-up estimation of vehicular emissions, a large number of parameters
are involved with the activity (traffic flow, vehicle composition, speed recording, length
of road) and emission factors (speed or acceleration dependent including deterioration)
(NTZIACHRISTOS; SAMARAS, 2016). In this instance, the following sections provide
the theory behind the VEIN model regarding traffic data arrangement, selection of
emission factors, emissions estimation, spatial allocation and inputs for atmospheric
models.

3.1.1 Traffic data

Traffic data required for the VEIN model must be represented as an hourly
amount of vehicles per street.

This traffic data can be provided by traffic simulations, interpolations or by other
sources. In the first step, VEIN reads spatial morning rush hour traffic data from each
street of a desired area or city. After reading it, VEIN arranges and organizes the data
by vehicle composition, according to Eq. (3.2).

F ∗
i,j,k = Qi · V Ci,j · Agej,k (3.2)

where F ∗
i,j,k is the vehicular flow at street link i for vehicle type j by age of use k. j defines

the vehicular composition according to their type of use, type of fuel, size of engine and
gross weight, based on definitions of (CORVALÁN; OSSES; URRUTIA, 2002). Qi is the
traffic flow at street link i. V Ci,j is the fraction of vehicles varying according to the type
of vehicles j in the composition for street link i. Agej,k is the age distribution by vehicular
composition j and age of use k. This Equation shows that V C splits the total vehicular
flow Q to identify the vehicular fraction, which varies according to the type of fuel, size
of motor and gross weight. For example, if Q is light duty vehicles (LDV) and it is known
that 5% of the Q are passenger cars (PC), with engine lesser than 1400 cc, V C is 0.05.
This characterization of the fleet depends on the amount and quality of the available
information. VEIN then multiplies the traffic with Age to obtain the amount of each type
of vehicle by age of use.

Traffic data must be temporally extrapolated because it is usually available only
for the morning rush hour. Traffic data can be estimated from short period traffic count
datasets, then expanded to represent longer timespan, such as Annual Average Daily
Traffic (AADT; (WANG; KOCKELMAN, 2009; LAM; XU, 2000)). The next step is to
extrapolate the vehicular flow at street link i, vehicle type j, and age of use k, to obtain
the vehicular flow for hour of the week l (Fi,j,k,l; see Eq. 3.3).

Fi,j,k,l = F ∗
i,j,k · TFj,l (3.3)
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where TFj,l are the temporal factors varying according to each hour of l and type of
vehicle j. For instance, TF is defined as a matrix with 24 lines and numbers of columns
to each day considered, from Monday to Sunday. In order to expand traffic to other
hours, TF matrices must be normalized to the hour that represents the traffic data. It
means that TF values at morning peak hour must be 1 and the respective proportion
must be assigned to the other hours. For example, TF values can be obtained from
automatic traffic count stations.

The average speed of traffic flow is very important and it must be determined
for each link and hour. Once the vehicular flow is identified for each hour, the average
speed is then identified for each hour. This was accomplished by employing curves from
the Bureau of Public Roads (BPR; (Bureau of Public Roads, 1964)), as shown in Eq.
(3.4). The process involves calculating speed by dividing the length of road by the time.
The time is calculated using the total traffic expanded to each street link i and hour l.

Ti,l = Toi ·

(
1 + α ·

(
Qi,l

Ci

)β)
(3.4)

In Eq. 3.4, Ti is the travel time per street link i at each hour of the week l. Toi is
the travel time under free flow conditions where maximum speed was used. Qi,l is the
traffic flow at peak hour for each street link i and hour of the week l.

Ci is the capacity of vehicles on street link i. The parameters α and β are
adjustments with default values of 0.15 and 4, respectively. These are recommendations
by the (Bureau of Public Roads, 1964). However, the user can use other values. When
there is no available information for these calculations such as capacity at each street
link i, it is possible to apply a simple average between peak and free flow speeds, in
order to obtain the average speeds at different hours.

3.1.2 Selection of the emissions factors

The emissions factors describe the relationship intensity of activity and emissions
for a given technology (PULLES; HESLINGA, 2010). In the case of the model, an
emission factor is the mass of pollutant emitted by the vehicular type, technology and
years of use. VEIN counts with emission factors for hot and cold exhaust, evaporative,
deterioration and wear emissions. VEIN allows three types of hot exhaust emission
factors:

1) Speed functions from the Computer programme to calculate emissions from
road transport (Copert; (NTZIACHRISTOS; SAMARAS, 2016)), which are stored
internally in the model. This approach can be used if there is no local emission
factors and if there is information about vehicular speed recordings, simulations,
or knowledge of the representative speeds.
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2) Emission factors from local sources. The values must be mass per km (g · km−1)
per specific type of vehicle, including fuel type, size and weight, by age of use.

3) Scaled local emission factors with Copert in order to incorporate speed variation
for local factors, as shown in Eq. (3.5). This produces a specific speed dependent
emission factor by age of use for the vehicle.

EFscaled(Vi,l)j,k,m = EF (Vi,l)j,k,m ·
EFlocalj,k,m
EF (V dci,l)j,k,m

(3.5)

where EFscaled(Vi,l)j,k,m is the scaled emission factor and EF (Vi,l)j,k,m is the Copert
emission factor for each street link i, vehicle from composition k, hour l and pollu-
tant m. EFlocalj,k,m represents the constant emission factor (not as speed functions).
EF (V dci,l)j,k,m are Copert emission factors with average speed value of the respective
driving cycle for the vehicular category j. The São Paulo emission factors data includes
recordings of Federal Test Procedure (FTP-75) driving cycle for LDV with an average
speed of 34.12 km · h−1, as shown in BARLOW et al., 2009.

By default, VEIN includes deterioration factors from Copert (NTZIACHRISTOS;
SAMARAS, 2016). However, it is possible to include other sources, such as from
(CORVALÁN; VARGAS, 2003).

3.1.3 Emissions estimation

VEIN estimates type of emissions including hot exhaust (EH; Eq. 3.6), cold start
exhaust (EC; Eq. 3.7), evaporative (EV; Eq. 3.8), deterioration factors and speciation.
The total vehicular emission is the sum of all types of emissions.

Hot exhaust emission

The VEIN process of emissions estimation is performed per street link, vehicle type,
hour of week, and pollutant. Eq. (3.6) shows the hot exhaust estimation:

EHi,j,k,l,m = Fi,j,k,l · Li · EF (Vi,l)j,k,m ·DFj,k (3.6)

In Eq. (3.6), EHi,j,k,l,m is the emissions for each street link i, vehicle category from
composition k, hour l and pollutant m, where Fi,j,k,l is the vehicular flow calculated in
Eq. 1. Li is the length of the street link i. EF (Vi,l)j,k,m is the emission factor of each
pollutant m. DFj,k is the deterioration factor for vehicle of type j and age of use k.

Cold start emissions
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Cold start emissions are produced during engine startup, when the engine and/or
catalytic converter system has not reached its normal operational temperature. Sev-
eral studies have shown the significant impact for these types of emissions (CHEN
et al., 2011b) (WEILENMANN; FAVEZ; ALVAREZ, 2009). VEIN also considers cold
start emissions - under this condition emissions will be higher, and if the atmospheric
temperature decreases, cold start emissions will increase regardless of whether the
catalyst has reached its optimum temperature for functioning (BOULTER, 1997). For
example, studies report that when ambient temperature is -7◦C, emissions are one
order of magnitude higher than at 22◦C (LUDYKAR; WESTERHOLM; ALMEN, 1999).

The VEIN model caters to these emissions by using the approach outlined in
Copert (NTZIACHRISTOS; SAMARAS, 2016), as shown in Eq. (3.7).

ECi,j,k,l,m = βj · Fi,j,k,l · Li · EF (Vi,l)j,k,m ·DFj.k ·
(
EFcold(tan, Vi,l)j,k,m − 1

)
(3.7)

This approach adds two terms to Eq. 3.6. The first term EFcold(tan, Vi,l)j,k,m − 1

is the emission factors for cold start conditions at each street link i, vehicle category
from composition k, hour l and pollutant m and monthly average temperature n. (NTZI-
ACHRISTOS; SAMARAS, 2016) suggest using monthly average temperature. This is
an important aspect that will be reviewed in future versions of VEIN.

The second term βj is defined as the fraction of mileage driven with a cold
engine/catalyst (NTZIACHRISTOS; SAMARAS, 2016). The VEIN model incorporates a
dataset of cold starts recorded during the implementation of the International Vehicle
Emissions (IVE) model (DAVIS et al., 2005) in São Paulo (LENTS et al., 2004), which
provides the hourly mileage driven with cold start conditions.

Evaporative emissions

Evaporative emissions are important sources of hydrocarbons and these emissions are
produced by vaporization of fuel due to variations in ambient temperatures (MELLIOS;
NTZIACHRISTOS, 2016; ANDRADE et al., 2017). There are mainly three types of
evaporative emissions: diurnal emissions, due to increases in atmospheric temperature,
which lead to thermal expansion of vapor fuel inside the tank; running losses, when the
fuel evaporates inside the tank due to normal operation of the vehicle; and hot soak
emissions, which occur when the hot engine is turned off. These methods implemented
in VEIN were sourced from the evaporative emissions methods of Copert (MELLIOS;
NTZIACHRISTOS, 2016). This approach is shown in Eqs. (3.8), (3.9) and (3.10).

EVj,k =
∑
s

Ds ·
∑
j

Fj · (HSj,k + dej,k +RLj,k) (3.8)

where EVj are the volatile organic compounds (VOC) evaporative emissions due to
each type of vehicle j. Ds is the "seasonal days" or number of days when the mean
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monthly temperature is within a determined range: [-5◦,10◦C], [0◦, 15◦C], [10◦, 25◦C]
and [20◦, 35◦C]. Fj,k is the number of vehicles according to the same type j and age
of use k. HSj,k, dej,k and RLj,k are average hot/warm soak, diurnal and running losses
evaporative emissions (g · day−1), respectively, according to the vehicle type j and age
of use k. HSj,k and RLj,k are obtained using equations also sourced from (MELLIOS;
NTZIACHRISTOS, 2016):

HSj,k = xj,k · (c · (p · eshc + (1− p) · eswc) + (1− c) · eshfi) (3.9)

where x are the number of trips per day for the vehicular type j and age of use k. c is
the fraction of vehicles with fuel return systems. p is the fraction of trips finished with hot
engine, for example, an engine that has reached its normal operating temperature and
the catalyst has reached its light-off temperature (NTZIACHRISTOS; SAMARAS, 2016).
The light-off temperature is the temperature at the point when catalytic reactions occur
inside a catalytic converter. eshc and eswc are average hot-soak and warm-soak emission
factors for gasoline vehicles with carburettor or fuel return systems (g · parking−1). eshfi is
the average hot-soak emission factors for gasoline vehicles equipped with fuel injection
and non-return fuel systems (g · parking−1).

RLj,k = xj,k · (c · (p · erhc + (1− p) · erwc) + (1− c) · erhfi) (3.10)

x and p have the same meanings of Eq. 3.9. erhc and erwc are average hot and warm
running losses emission factors for gasoline vehicles with carburettor or fuel return sys-
tems (g · trip−1) and erhfi are average hot running losses emission factors for gasoline
vehicles equipped with fuel injection and non-return fuel systems (g · trip−1). It is recom-
mended to estimate the number of trips per day (MELLIOS; NTZIACHRISTOS, 2016),

x, as the division between the mileage and 365 times the length of trip: x =
mileagej

(365 · ltrip)
.

However, the mileage of a vehicle is not constant throughout the years. Therefore, VEIN
incorporates a dataset of equations to estimate mileage of different types of vehicles by
age of use (BRUNI; BALES, 2013).

3.1.4 Speciation of emissions in chemical sub-components

Particulate matter and hydrocarbons are a mixture of several chemical com-
pounds that play an important role in atmospheric chemistry (SEINFELD; PANDIS,
2016). VEIN includes speciation profiles for hydrocarbons and particulate matter from
(NTZIACHRISTOS; SAMARAS, 2016) and (RAFEE, 2015). These profiles are percent-
ages of the emissions by vehicle type, fuel, emission standard and other characteristics.
Also included are speciations of particulate matter in black carbon and organic matter,
particulate matter fractions for tire, brake and road wear, non-methanic hydrocarbons
and nitrogen oxides.
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3.1.5 Spatial allocation and data-bases

VEIN provides functions to generate grids and spatially allocate emissions into
grids. This is helpful for visualization and generation of inputs for atmospheric models,
and as a tool for urban planning. In addition, VEIN includes functions to produce a
database of hourly emissions for vehicular composition by age of use. Section 3.3.4
provides details and examples about the emissions grids and databases.

3.2 VEIN model design

The VEIN model was constructed using the free open source R software (R Core
Team, 2017). R is a programming language and environment for statistical computing
and graphics (R Core Team, 2017). It was developed primarily for analyzing data.
However, since its capabilities have grown over time, R has become a flexible language
with many different areas of application. It includes elements of programming language
such as Lisp and syntax of S, as described by (IHAKA, 1998).

The VEIN R package depends on the package sp (BIVAND; PEBESMA; GOMEZ-
RUBIO, 2013), as it uses several of its classes. VEIN imports some functions from
the package rgeos (BIVAND; RUNDEL, 2016), which is an interface for the Geometry
Open Source (GEOS) library (https://trac.osgeo.org/geos/). It also imports functions
from rgdal (BIVAND; KEITT; ROWLINGSON, 2016), which provides bindings to the
Geospatial Data Abstraction Library (GDAL; http://www.gdal.org/). Therefore, these R
packages must be installed prior to using the VEIN package.

VEIN started between 2014 and 2016 as a collection of several R scripts, initially
named R-EMIssions (REMI; (IBARRA-ESPINOSA; YNOUE, 2017)), which later evolved
into an R package. It was developed in R due to the free open source advantages and
because R allows easier reproducibility. VEIN is open to scrutiny from its community of
users, thus allowing opportunities for user feedback and improvements. This facilitates
widespread use of the model and identifying any software bugs/errors, with potential for
adding new capabilities. VEIN has its own functions, but it also incorporates other data
and functions such as emission factors and mileage.

VEIN can be installed from the Comprehensive R Archive Network (CRAN)
https://CRAN.R-project.org/package=vein or from https://github.com/ibarraespinosa/vein
and the User Manual is available at https://CRAN.R-project.org/package=vein. In order
to use the VEIN library and run the demo, it is necessary to run the following scripts in
R:

install.packages("vein") #or

library(devtools)
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install_github("ibarraespinosa/vein")

library(vein)

demo(VEIN)

The diagram process for estimating emissions is shown in Fig. 10. The green
circles in this Figure refer to the data and the blue boxes refer to the functions inside
the model. The VEIN model diagram starts at the green circle traffic, which represents
the morning rush hour traffic data for each street link. Then the age functions (age_ldv,
age_hdv, age_moto or my_ldv ) determine the vehicular composition by age of use as
shown in Eq. (3.2). The data profile allows to temporally extrapolate traffic data to the
other hours and this allows to estimate the average vehicular speed to any hour and link
using the function netspeed. Emission factor selections start by adding the deterioration
effect with the function emis_det into local, speed dependent emission factors from
(NTZIACHRISTOS; SAMARAS, 2016), denoted as speed_ef or scaled emission factors
denoted as scaled_ef in Fig. 10. Besides including speed dependent emission factors
from (NTZIACHRISTOS; SAMARAS, 2016), VEIN also includes local emission factors
from (CETESB, 2015). Once the input data is ready, the function emis estimates hourly
emissions for each hour of the day, and day of the week. The function emis_post pro-
duces an emissions database by vehicle category or by street, denoted as df and street
in Fig. 10 respectively. These emissions are then speciated with the function speciate. At
this time, the user can create a grid with the function make_grid, which creates a rectan-
gular grid with format SpatialPolygonsDataFrame or a SpatialGridDataFrame
used to allocate emissions spatially with the function emis_grid. The function emis_wrf
reads the emissions grids and creates a data-frame ready to create an input for WRF-
Chem model (GRELL et al., 2005). This data-frame must be exported as a .txt file and
could be used as an input into other atmospheric models such as BRAMS (FREITAS et
al., 2005).

3.2.1 Functions and classes

VEIN uses objects of class Spatial (PEBESMA; BIVAND, 2005), to represent
road segments. To read geospatial data, there are several packages, such as rgdal
(BIVAND; KEITT; ROWLINGSON, 2016) or maptools (BIVAND; LEWIN-KOH, 2015).
The main requirement is that the network must be a SpatialLinesDataFrame, class
of sp (PEBESMA; BIVAND, 2005).

It was included several functions to arrange traffic data, select or scale emission
factors, as well as estimate and process emissions in VEIN, as shown in Table 4. These
functions implement the equations shown in Section 3.1.
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Figure 10 – Representation of the VEIN model. Boxes and circles represent functions
and data, respectively.

VEIN incorporates 8 classes (see Table 4), which are objects with specific
characteristics: methods and units. The methods are print, summary and plot. They
are functions that return a specific result depending on each class. Another important
characteristic of each class is that they include explicit units, in an effort to reduce
human errors and improve the usability. For this task, VEIN imports some functions of
the package units (PEBESMA; MAILUND; HIEBERT, 2016), which is an interface in
the C library udunits from University Corporation for Atmospheric Research (UCAR).
Therefore, this library must be installed on the system prior to using VEIN. Only the
EmissionFactorsList and EmissionsArray do not show their units explicitly due
to limitations with the units package. The classes outlined in Table 4 are also constructor
functions, which means that they can create VEIN classes and add the respective
units. VEIN incorporate constructor functions to create classes such as Vehicles or
Emissions. These functions are incorporated inside other VEIN functions in order that
the output of VEIN has a class. When the constructor function are applied to a numeric
element, the constructor simply adds the units and the resulting object has class units.
For example, applying the function EmissionsArray to a numeric vector will add the
units g · h−1 to the numeric vector.

3.3 Estimating MASP vehicular emissions using VEIN model

This section presents the application of the most important functions of the VEIN
model. These functions obtain an estimate of CO emissions from LDV fleets in MASP
for 2015 (for a typical non-holiday week).
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Table 4 – Summary of the VEIN classes, functions and internal data.
Function Description Reference
age_hdv Distribution of HDV by age of use (Ministerio do Meio Ambiente, 2011)
age_ldv Distribution of LDV by age of use (Ministerio do Meio Ambiente, 2011)
age_moto Distribution of Motorcycle by age of use (Ministerio do Meio Ambiente, 2011)
ef_evap Evaporative emission factors (MELLIOS; NTZIACHRISTOS, 2016)
ef_hdv_scaled List of scaled emission factors for HDV (NTZIACHRISTOS; SAMARAS, 2016)
ef_hdv_speed HDV Emission factors (NTZIACHRISTOS; SAMARAS, 2016)
ef_ldv_cold LDV cold start emission factors (NTZIACHRISTOS; SAMARAS, 2016)
ef_ldv_cold_list List of LDV cold start emission factors (NTZIACHRISTOS; SAMARAS, 2016)
ef_ldv_scaled List of scaled emission factors for LDV (NTZIACHRISTOS; SAMARAS, 2016)
ef_ldv_speed LDV Emission factors (NTZIACHRISTOS; SAMARAS, 2016)
ef_wear Tyre and break wear, and road abrassion (NTZIACHRISTOS; BOULTER, 2009)
EmissionFactors Creates class EmissionFactors (g · km−1)
EmissionFactorsList Creates class EmissionFactorsList (g · km−1)
Emissions Creates class Emissions (g · h−1)
EmissionsArray Creates class EmissionsArray (g · h−1)
EmissionsList Creates class EmissionsList (g · h−1)
emis Estimation to hour and day of the week
emis_cold Cold start estimation (NTZIACHRISTOS; SAMARAS, 2016)
emis_det Deterioration factors (NTZIACHRISTOS; SAMARAS, 2016)
emis_evap Evaporative estimation (MELLIOS; NTZIACHRISTOS, 2016)
emis_grid Allocation on rectangular grid
emis_paved Resuspenssion of paved roads (USA-EPA, 2016)
emis_post Post processing of emissions
emis_wear Estimation of wear emissions (NTZIACHRISTOS; BOULTER, 2009)
emis_wrf Creating data-frame to WRF-Chem (VARA-VELA et al., 2016)
Evaporative Creates class Evaporative (g · d−1)
fe2015 Data of CETESB emission factors (CETESB, 2015)
fkm Data of mileage functions by vehicle (BRUNI; BALES, 2013)
hot_soak Hot soak evaporative (MELLIOS; NTZIACHRISTOS, 2016)
make_grid Rectangular grid
my_age Distribution of vehicles by age of use
net Data of traffic simulation of west São Paulo (CET, 2014)
netspeed Estimate average speed
pc_profile Data of temporal factors (ARTESP, 2012)
pc_cold Data of vehicle start pattern (LENTS et al., 2004)
running_losses Evaporative estimation (MELLIOS; NTZIACHRISTOS, 2016)
speciate Split by species (NTZIACHRISTOS; SAMARAS, 2016),

(RAFEE, 2015)
Speed Creates class Speed (km · h−1)
temp_fact Expand hourly traffic
Vehicles Creates class Vehicles (1 · h−1)
vkm Determination of vehicle-kilometers

3.3.1 Traffic data for MASP

Hourly traffic is a requirement for this data. This data can be represented as
only one hour of data, which can then be extrapolated with the VEIN functions or as
a list of hourly traffic data for all the covered hours. The present application includes
a morning rush hour traffic simulation for MASP from (CET, 2014) loaded into R as a
SpatialLinesDataFrame. It includes peak and free flow speeds, along with capacity
(maximum amount of vehicles that can circulate in a road per hour) and traffic flow from
LDV and HDV. Fig. (11) shows the traffic simulation of LDV at 08:00-09:00 local time
(LT), where urban motorways concentrate the highest amount of vehicles. The total
volume of LDV is 24708767 veh · h−1 and the number of streets are 34733 with mean of
711 veh · h−1 · street−1. It is important to note that the VEIN model available at Github
provides an extraction of the traffic simulation for the western part of São Paulo. The
traffic simulation for MASP weights 61.6 Mb and the extraction for the western part of
São Paulo 3.1 Mb. It was provided the extraction and not the whole traffic simulation in
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Figure 11 – Traffic flow simulation for LDV (veh · h−1) at 08:00-09:00 LT for MASP.

VEIN to make it faster. This section provides codes to run VEIN so that the reader can
follow them with the data provided in the model.

After loading traffic data, the traffic flow was expanded to each hour of the week
with the function temp_fact, as shown in the following scripts. It is also necessary to
extrapolate hourly vehicle speeds. Therefore, it was created the function netspeed,
which applies the function BPR (Bureau of Public Roads, 1964) curves, according to
the Eq. 3.4. To use BPR, a data-frame is required with total traffic at all hours and the
morning rush parameters capacity, peak speed, free flow speed, length of the road, and
with BPR parameters alpha and beta. The argument scheme produces a 24 hour speed
data-frame, based only on peak and free flow speed with a profile of free flow speeds
at early mornings, peak speeds, morning and evening rush hours, and the average at
hours in between. If the time-lapse for the emissions estimation is longer than a week,
the user could simply replicate the hours until it reaches the desired number of hours.

data(net)

data(pc_profile)

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speedspeed <- netspeed(pcw, net$ps, net$ffs, net$capacity,
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Figure 12 – Traffic speeds (colored lines; km · h−1) for LDV fleet at 08:00 LT (left panel)
and 23:00 LT (right panel) in MASP.

net$lkm, alpha = 1)

For example purposes, the resulting speeds can be observed in Fig. 12, which
shows two different speed maps: one for 08:00 LT (left panel) and the other for 23:00
LT (right panel). This Figure shows that the highest speeds are found in most of the
streets further away from the MASP center at both times (08:00 and 23:00 LT). The
major difference between the two panels (left and right), is that in the late night, the flow
is faster near the center of MASP. This seems reasonable since the vehicular flow tends
to diminish during the night. The average speeds also show a pattern related to the type
of street as shows Fig. 13. The type of streets comes from São Paulo traffic simulation
and they were translated to English and are defined as Motorway: roads with speed
limits above 80 km · h−1 without physical intersections. Arterial: roads with speed limit
of 60 km · h−1 with intersection such as traffic lights. Collector: roads with speed limit
of 40 km · h−1 that collect and distribute traffic between Arterial streets. Local: roads
with speed limit of 30 km · h−1 that access restricted zones. Figure 13 shows that lower
speeds are found during the morning (07:00-10:00 LT) and evening (17:00-20:00 LT)
rush hours. This is important in terms of air pollution because at lower speeds vehicles
emit more pollutants (NTZIACHRISTOS; SAMARAS, 2016). On the contrary, maximum
average speeds for each type of road are obtained at night hours and on Sundays at all
hours.

After calculating the São Paulo traffic flow average speeds for each hour of the
week and each street link, the age distribution of the fleet was obtained by type of
vehicle. The age* functions (age_ldv, age_hdv and age_moto) distribute the traffic data
by the vehicle’s age of use. These functions return a data-frame with the number of
rows matching the number of streets, columns representing the amount of vehicles by
age of use, and a message indicating the average age of the fleet. The age* functions
are related to the Eq. 3.2, where they split the vehicular flow at street link Qi by type
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Figure 13 – Traffic average speeds for LDV fleet by type of street (colored lines) at
08:00-09:00 LT in MASP.

of vehicle j and the vehicle’s age of use k. These functions are based on the survival
equations presented in the Brazilian Emissions Inventory Report by the (Ministerio do
Meio Ambiente, 2011) and parameterized for the VEIN model. They allow the use of
different coefficients to obtain different age distributions allowing the representation
of different realities. Furthermore, the function my_age distributes the traffic from an
existing dataset, e.g. yearly vehicle licensing.

The following code shows three uses of age* functions. The first, my_age, uses
yearly traffic data from the report of the São Paulo emissions inventory (CETESB, 2015),
expressed as CETESB_PC based on vehicle sales. The second, age_ldv, uses default
parameters, and the third, age_ldv, uses b = -0.14.

CETESB_PC <- c(33491, 22340, 24818, 31808, 46458, 28574, 24856,

28972, 37818, 49050, 87923, 133833, 138441,

142682, 171029, 151048, 115228, 98664, 126444,

101027, 84771, 55864, 36306, 21079, 20138, 17439,

7854, 2215, 656, 1262, 476, 512, 1181, 4991,

3711, 5653, 7039, 5839, 4257, 3824, 3068)

pc1 <- my_age(x = net$ldv, y = CETESB_PC, name = "PC")

pc2 <- age_ldv(x = net$ldv, name = "PC", agemax = 41)

pc3 <- age_ldv(x = net$ldv, name = "PC", b = - 0.14, agemax = 41)

Figure 14 (a) shows three age distributions, each one sums 24708767 veh · h−1,
and each have different average age. It represents São Paulo LDV fleet according to its
age of use, with an estimated average age of 11.09 years (red line), 15.53 years (blue
line), and 15.17 years (green line ). This Figure shows that in MASP there are more
newer vehicles than older ones. age* functions also include a logical option named
bystreet, with default value equal to FALSE. When this value is TRUE, age* expects that
the coefficients a and b for the age* functions are numeric vectors, with length matching
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Table 5 – Proposed equivalence of emission standards used in São Paulo study.

Vehicle Brazilian Standard Euro Standard Year

LDV

L - 1 Pre ECE 1988 - 1991
L - 2 Euro 1 1992 - 1996
L - 3 Euro 2 1997 - 2004
L - 4 Euro 3 2005 - 2011
L - 5 Euro 4 2012 - 2013
L - 6 Euro 5 2014

HDV

P - 1 Pre Euro 1990 - 1992
P - 2 Pre Euro 1993
P - 3 Euro 1 1994 - 1997
P - 4 Euro 2 1998 - 2003
P - 5 Euro 3 2004 - 2011
P - 6 Euro 4 -
P - 7 Euro 5 2012

Motorcycle
M - 1 Euro 1 2003 - 2005
M - 2 Euro 2 2006 - 2008
M - 3 Euro 3 2009

Based on http://transportpolicy.net/index.php?title=Category:Brazil

the number of streets. This allows different age distributions within the same road
network and it is particularly useful for areas with less information about the vehicles’
age of use.

3.3.2 Emission Factors

Once it was obtained the traffic flow for the desired type of vehicles (in LDV
example), for each hour of the day, for all (desired) days of the week, for each age
distribution and for each street link, then it was can proceed to the emissions calculation
by itself.

The VEIN package includes a database titled fe2015 with emission factors for
PC and light trucks by age of use from the São Paulo official vehicular emissions
inventory (CETESB, 2015). This inventory was performed using a top-down approach
and the pollutants estimated were CH4, CO, CO2, HC, N2O, NMHC, NOX , and PM. This
data includes national and equivalent Euro Emission Standards by year and age. The
equivalence among Brazilian (CONAMA, 1986), (Ministerio de Medio Ambiente, 2011)
and Euro (DIRECTIVE70/220/EEC, 1991) was added into this database in order to
choose the corresponding matching vehicle and emissions standard. The equivalence
can be seen in Table 5.

fe2015 emission factors do not include the deterioration effect due to accumu-
lated age of vehicle and it must be included. This is performed with the the deterioration
factor function emis_det which has the arguments: pollutant, size of engine, Euro Stan-
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dard and mileage in km. VEIN includes a Brazilian database of mileage functions named
fkm, which is a list of functions with each element of the list corresponding to vehicle
type. These functions depend on the vehicle’s age of use and they originate from the
odometer readings of more than 1.6 · 106 vehicles (BRUNI; BALES, 2013).

Emission factors for PC, LCV and motorcycles are called with the function
ef_ldv_speed. In the case of trucks and buses they use the function ef_hdv_speed.
The arguments are filters for an internal database of emission factors which include
several parameters such as fuel, Euro Standard, volume of engine and load, among
others. These functions also include a multiplication factor with a default value of 1.
Exact spelling is required when using the arguments. If the argument names are entered
incorrectly, VEIN will not return the emission factor functions.

The following code shows how to read the emission factors of the VEIN databases
fe2015, pc_profile and fkm, in order to incorporate the deterioration effect into the
(CETESB, 2015) emission factors. The age of LDV shown in Fig. 14 (a) has a length of
41 years. This means that it needs 41 emission factors, one per each age of use. It calls
the function emis_det, which requires the accumulated mileage, obtained from the list
of mileage equations fkm. The Fig. 14(c) shows the emission factors from CETESB
with and without deterioration by age of use. It was used deterioration factors from
(NTZIACHRISTOS; SAMARAS, 2016) that affect only vehicles with a catalytic system.
The base year of this emissions estimation is 2015 and the vehicles with catalytic system
started in 1992 in Brazil (23 years before 2015). Therefore, the vehicles that entered
into the market before 1992 do not include deterioration. The emission factors dataset
fe2015 includes emission factors for vehicles with only 36 years of use but the vehicular
distribution calculated in the last script has 41 years of use. Therefore, it was repeated
the oldest emission factors to have 41 emission factors. Here it was assumed that the
emission factors of vehicles 36 years of use is the same as the vehicles till 41 years of
use. The last line of the following script calculates the deteriorated emission factors of
Passenger Cars by age of use.

data(fe2015)

data(pc_profile)

data(fkm)

pckm <- fkm[[1]](1:24)

pckma <- cumsum(pckm)

cod1 <- emis_det(po = "CO", cc = 1000, eu = "III",

km = pckma[1:11])

cod2 <- emis_det(po = "CO", cc = 1000, eu = "I",

km = pckma[12:24])

co1 <- fe2015[fe2015$Pollutant == "CO", ]
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co1[37:41, ] <- co1[36, ]

cod <- c(co1$PC_G[1:24] * c(cod1, cod2), co1$PC_G[25:nrow(co1)])

Once the deterioration effect was added into the Brazilian emission factors
(CETESB, 2015), they were scaled to account for speed with the function ef_ldv_scaled.
This function is used to multiply emission factors from ef_ldv_speed with a constant.

The new emission factor (dependent on speed) has the same value as the local
emission factor, which is evaluated at the reference speed of the measurement 34.12
km · h−1 for FTP-75. The default speed value is 34.12 km · h−1, but this value must
change correspondingly to the speed of the driving conditions. To use this function, it is
necessary to scale emission standards of local emission factors with Euro Standards.
In the following code, Euro_LDV is a vector indicating Euro Standard by age of use.

lef <- ef_ldv_scaled(co1, cod, v = "PC", cc = "<=1400",

f = "G", p = "CO", eu = co1$Euro_LDV)

3.3.3 Emission estimation

After inputting the database of vehicles and their respective emission factors,
VEIN is ready to use the emis function. The VEIN package counts with several emis
functions according to the type of emission being estimated. The emis function as-
sembles data and outputs from other VEIN functions, and estimates the emissions for
the number of hours and days in the week. This function reads the morning rush hour
traffic data by age of vehicle use and extrapolates it with the profile data-frame, as
previously explained. It reads the emission factors stored in a list with length matching
the age distribution of the vehicle category and then reads the list of speeds. This
function returns the emissions at each street in an array with 4 dimensions: 1) number
of streets; 2) max age of age distribution; 3) hours (usually 24); and 4) days (usually 7).
For convenience, there are defined default values for this function hour = 24, day = 7
and array = TRUE. The values can be changed accordingly.

For example, the estimation of the traffic simulations shown in Fig. 11 has 34,733
streets, fleet of 41 years age distribution, 24 hours of the day, and 7 days of the week.
Therefore, it will produce an emissions array with dimensions 34,733, 41, 24 and 7. The
vehicle fleet used to produce the age distribution is shown in green in Fig. 14(a) and it
has 41 years of length.

data(pc_profile)

E_CO <- emis(veh = pc1, lkm = net$lkm, ef = lef,

speed = speed, profile = pc_profile)
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Figure 14 – (a) Distribution of LDV composition by age of use, (b) temporal factor for
expanding morning rush hour traffic data and (c) CO emission factors used
in the estimation presented in this manuscript.

This emissions array output for 34,733 streets and vehicle fleet with 41 years age
distribution, 24 hours and 7 days of the week, has the size of 1.8 Gb. Hence, it is
recommended to use the function emis_post and then delete the original emissions
array. The arguments include: the emissions array, type of vehicle, size or weight,
fuel, pollutant, and the boolean argument by. The emis_post function was created to
preserve the most important information in the emissions array, to use less memory
size and to be compatible with the packages sp (PEBESMA; BIVAND, 2005) and
ggplot2 (WICKHAM, 2009). VEIN outputs could also be used with the package openair
(CARSLAW; ROPKINS, 2012). emis_post returns a data-frame, but the argument by
determines the shape of the data-frame. When by has the value ’veh’, it returns a
data-frame with an aggregation of the emissions array by each vehicle’s age of use with
columns: vehicle name, emission (in grams), vehicle type, size, fuel, pollutant, age, hour
and day. This output allows the user to visualize hourly emissions at each day of the
week, as shown in Fig. 15a. Higher emissions are found at morning and evening rush
hours from Monday to Friday. Saturday has peak higher emissions at noon and Sunday
has the lowest emissions.

VEIN enables the user to identify which type of vehicle emits more by age of
use. This is particularly useful for environmental authorities who aim to reduce local
traffic emissions and restrict the circulation of high-emitting vehicles. Fig. 15b shows
the CO emissions of gasoline fueled LDV by the vehicle’s age of use. The average
age of these vehicles is 15.17 years, as shown by the green curve in Fig. 14 (a). The
total number of vehicles is 24708767 veh · h−1 (8:00-9:00 LT on a Monday). The total
CO emissions is 233095 t · y−1, considering a year of 52 weeks, but the emissions are
concentrated for the LDV between 20 and 23 years of use. The vehicles in this age
interval represent 15% of the fleet, emitting 64% (148712 t · y−1) of the total emissions.
In other words, 15% of the fleet emit more than 60% of the CO. Between 1992 and
1996, the emissions standard was Proconve L2, equivalence with Euro 1 (see Table 5),
and also the introduction of the catalytic system in Brazil. Therefore, the high emissions
are due to vehicles with a deteriorated catalytic converter. This information is useful
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Figure 15 – (a) CO Emissions (t · h−1) per hour of the day and day of the week (colored
and shaped lines) for LDV from MASP, (b) CO Emissions (t · y−1) according
to the age of use of the LDV from MASP.

for reducing air pollution, thus supporting the aims of environmental planners and local
authorities.

3.3.4 Post estimation

The spatial dimensions of the emissions estimation is an important feature of
VEIN because it allows the representation of the streets into spatial vectors. This
is accomplished by using the function emis_post with the argument by equal to
’streets_narrow’ or ’streets_wide’. Both options return a data-frame with different charac-
teristics, which can be converted into spatial vectors. When by is equal to ’streets_narrow’,
it returns a data-frame with four columns: id, indicating the number of rows, emissions,
hour and day of the week. The number of rows in the data-frame is the original number
of selected streets multiplied by the hours and days of the week. For example, when
there are 34733 streets, 24 hours and 7 days of the week, it returns a data-frame with
5835144 rows having a size of 133.6 Mb. This option is useful to visualize the tem-
poral behavior of specific streets with ggplot2 (WICKHAM, 2009) or ggmap (KAHLE;
WICKHAM, 2013), for instance.

In most cases, users will be particularly interested when the argument by is
equal to ’streets_wide’. This produces a data-frame with number of rows matching
number of streets for the domain and number of columns as hours. Fig. 16 shows the
CO emissions for LDV at each street on a Friday at 19:00 LT. The following code shows
how to produce hourly emissions by street and then add these emissions back into
the SpatialLinesDataFrame net. This is possible because the number of rows in
E_CO_STREETS is equal and it matches the number of rows in net.

E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO",

by = "streets_wide")
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Figure 16 – CO Emissions (colored lines; g · h−1) for LDV at Friday 19:00 LT over MASP.

net@data <- cbind(net@data, E_CO_STREETS)

The emissions shown in Fig. 16 are concentrated in two streets, a motorway and a
trunk street at the northern part of the emissions map. This image was generated with the
function spplot in the package sp. It also shows a rectangular grid, which can be used
for allocating the emissions. The allocation of emissions into the grid is very important
for visualization and for inputs to air quality models. It was included a simple function to
create a rectangular grid in VEIN. The function was named, make_grid, which has the ar-
guments, width, height and a boolean argument polygon for determining the type of out-
put. When the argument polygon is TRUE, it returns a SpatialPolygonsDataFrame,
and when it is FALSE, it returns a SpatialGridDataFrame. The units of ’width’ and
’height’ depend on the coordinate reference systems of the data.

The allocation of emissions in each grid cell is produced by a spatial interception
between the emissions at each street and the polygon-grid. SpatialLinesDataFrame
objects with emission must contain a column with the length of the street. The length is
calculated with the function gLength in the package rgeos (BIVAND; RUNDEL, 2016).
Secondly, it is performed at the intersection between the SpatialLinesDataFrame of
emissions and the grid SpatialPolygonsDataFrame. The intersection is performed
by importing the function intersect in the package raster (HIJMANS, 2016). The grid
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must have a column with the id for each cell. Thirdly, it calculates, in another column, the
length of the street in the resulting SpatialPolygonsDataFrame. Then it multiplies
the emissions with the proportion of the new and old length of the street. This allows
proportional emissions in each grid cell. Fourthly, it aggregates the emissions by id of
grid and adds these emissions by grid id into the grid. The results are in emissions
grid with format SpatialPolygonsDataFrame. These calculations can be performed
automatically by the function emis_grid.

The function make_grid is suitable in mid-size or small cities when the resolution
is approximately 1 km. When dealing with larger cities and higher resolution, it is
recommended to use other tools because make_grid would take up too much time. This
difficulty will be overcome in a future version of VEIN with dependencies on package sf
(PEBESMA, 2016). In the following code, it is shown the use of the function make_grid
only for example purposes. It is recommended that function emis_post be used with the
argument ’by = streets_wide’, in order to return a data-frame with hourly emissions for
each street. This output can be used with the functions emis_grid to create an emissions
grid map, as shown in Fig. 17. This is helpful when the user plans to use the data to
construct inputs for air quality models. The following code applies with the demo inside
the VEIN model.

g <- make_grid(spobj = net, width = 0.00976, height = 0.00976,

polygon = T)

E_CO_g <- emis_grid(spobj = net, g = g,sr = "+init=epsg:31983",

type = "lines")

The Fig. 17 (a) shows a SpatialPolygonsDataFrame of emissions of CO
with resolution of 1 km representing the base year 2015. This emissions grid was built
using the package sf. Fig. 17 (b) shows the CO emissions grid of road transport from
EDGAR for the same area and base year 2010 (EJ-JRC/PBL, 2016), which is the latest
available year.

3.3.5 Speciation

Atmospheric simulations of ozone require knowledge about the VOC compounds
and particulate matter speciation, which are necessary for solving the different chemical
mechanisms. For example, a São Paulo study of ozone concentrations that used models
BRAMS/SPM (FREITAS et al., 2005) and WRF/Chem (GRELL et al., 2005), involved
detailed VOC speciation (ANDRADE et al., 2015). It is important to mention that there
is evidence to prove that reducing Black Carbon emissions would help lower the Global
Radiative Forcing and improve population health (BOND et al., 2013). Hence, the
speciation of emissions is important and VEIN provides this information. The VEIN
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function speciate splits VOC and PM into their constituents. The arguments of these
functions are: emissions estimation, type of speciation, type of vehicle, fuel and Euro
Standard. There are four types of PM speciation: ’bcom’ (NTZIACHRISTOS; SAMARAS,
2016), ’tyre’, ’break’, and ’road’ (NTZIACHRISTOS; BOULTER, 2009). However, there is
only one type of VOC speciation for MASP, the ’iag’ (RAFEE, 2015). For PM, the default
speciation is ’bcom’, which splits the exhaust emissions into black carbon and organic
matter.

3.3.6 Input of atmospheric models

Meteorological factors influence the chemical process of pollutants in the atmo-
sphere. Therefore, their transport and behavior in the atmosphere must be predicted by
a model that includes the meteorological components ("on-line" coupling of meteorology
and chemistry), such as the Weather Research and Forecasting Chemistry model
(WRF-Chem; (GRELL et al., 2005)). This model has been widely used around the world
since its conception (2005 to 2006).

WRF-Chem, as another regional atmospheric model, requires a superficial layer
of emission fluxes as input data. There are tools to assimilate top-down emissions in-
ventories, such as EDGAR (OLIVIER et al., 1996) and REanalysis of the TROpospheric
chemical composition (RETRO; (SCHULTZ, 2007)), using the software PREP-Chem
(FREITAS et al., 2011). These tools are very important to the modeling community,
however, their spatial resolutions are very limited. VEIN includes functions to generate
WRF-Chem inputs from the emissions grid with any desired resolution in the following
way. VEIN estimates emissions of different pollutants at each street and also produces
emissions grids needed to do the regional modeling. This is performed through the
spatial intersection between emissions at streets and a polygon grid with the required
resolution. The resulting grid has total emissions in each grid cell proportional to the
length of the streets inside each cell.

Fig. 17 shows a comparison for VEIN (Fig. 17a) and EDGAR (Fig. 17b), using
emissions inventory for the CO in MASP. One can notice that CO is spatially well
represented for VEIN, by comparison with EDGAR. Furthermore, VEIN offers much
more details about the emission of this pollutant, which occurs mainly in the urban
motorways due to the high volume of traffic in these roads. The total emissions of CO
emissions using VEIN are 1.73e-06 (kg ·m−2 · s−1), considering the first second of a
typical Monday at 00:00 LT and EDGAR, 8.46e-08 (kg ·m−2 · s−1). Therefore, VEIN
estimates are 20.50 times higher than EDGAR. This difference could be higher if
compared with the morning rush hour of VEIN. However, it is important to mention
that the estimate with VEIN for this manuscript is illustrative, and that more detailed
emissions inventories should be made when comparing to others. For example, the
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inventory for this manuscript includes estimates only for LDV assuming that all are PC.
It does not include other types of vehicles as the total amount of vehicles were not
calibrated with fuel consumption. (NTZIACHRISTOS; SAMARAS, 2016) recommends
to compare bottom-up estimates with fuel consumption in order to calibrate inputs of
emissions inventory (traffic data in this case). These differences highlight the needs
for development, inter-comparison and uncertainty evaluation of emission estimates.
These results are very useful for many scientific and standardization purposes such as
health effects in air pollution studies, urban planning and strategies to cut greenhouse
gas emissions.

Figure 17 – CO emissions (kg ·m−2 · s−1) in MASP for (a) Monday at 00:00:00 LT, esti-
mated with VEIN for a 1 km x 1 km grid spacing, and (b) the emissions of
road transport for the same area from EDGAR.

The VEIN model provides functions to transform the emissions grids into inputs
for atmospheric models. (VARA-VELA et al., 2016) presented a system for assimilating
anthropogenic emissions (AAS4WRF) into the WRF-Chem model. AAS4WRF consists
of an NCL (BOULDER, 2017) script that reads a text file in long format and a WRF
input header for the desired domain. The VEIN model provides the function emis_wrf to
automatically create a data-frame in the correct format with columns longitude, latitude,
id of grid cell, pollutants, local time and GMT time in format POSIXct. The arguments of
emis_wrf are sdf, which is a list of SpatialPolygonsDataFrames, each per pollutant.
nr indicates how many times the hours of estimations will be repeated. dmyhm indicates
the day, month, year, hour and minute of the first hour of emissions in local time. tz is
the time-zone and utc indicates the difference in hours between local and GMT time.
islist indicates if the first argument, df is a list (islist = TRUE) or a data-frame (islist =
FALSE). The output of VEIN emissions are in g · h−1, and in the following code chunk,
emissions were converted to mol.

E_CO_g@data <- E_CO_g@data[, -1] / (12 + 16)

ldf <- list("co" = E_CO_g)
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df_wrf <- emis_wrf(ldf, nr = 1, dmyhm = "04-08-2014 00:00",

tz = "America/Sao_Paulo", islist = TRUE)

3.4 VEIN model applied to different traffic activity data

The previous sections of this chapter presented the VEIN model R package
focusing on LDV as example. In the next sections, the application of VEIN to different
traffic activity data is written in more detail.

3.4.1 Conciliating bottom-up and top-down emissions estimation

Once the traffic flows are generated, as explained in Chapter 2, it is time to
arrange the traffic in an harmonized way and design the scenarios before the emission
estimation. The European guidelines for vehicular emissions inventories shows that
there are differences using the two approaches for estimating emissions, bottom-up and
top-down (NTZIACHRISTOS; SAMARAS, 2016). The guidelines say that the estimations
with both approaches must be conciliated using fuel sales statistics as criteria. In other
words, the fuel consumption estimated with any method should result in the same
amount of fuel sold for the region and period of time considered.

In the case of bottom-up approaches, the only way of calibrating the fuel con-
sumption is by factoring the traffic flow because the length of the road is constant.
Therefore, in order to calibrate the traffic flows generated for this study, it was compared
the fuel consumption estimated for these vehicles with fuel sales for each metropolitan
region. The base year is 2014 and the fuel sales comes from the Yearbook of Energy
and Statistics for São Paulo State 2014 (ELECTRICA, 2014). This technical report is
made by the State Government and includes fuel sales for each municipality of the
Estate of São Paulo. There are several types of fuel for automotive use. The most used
automotive fuels used in Brazil are Gasohol or Gasoline with 25%-27% of ethanol (E25),
ethanol (E100) and diesel with 5% of biodiesel (B5). The total amount of fuel sold during
2014 for automotive use and for each metropolitan region is shown on Fig. (18). Most of
fuel sales are in MASP because it is the bigger area with most inhabitants and number
of vehicles with 3383973.7 t of E25, 2845791.6 t of E100 and 2274181.4 t of B5. This
is the only region where sales of E25 are higher than E100. This could have some
implications regarding the atmospheric chemistry and transport of pollutant between
these regions.

The fuel sold for automotive uses can sometimes have different use than for
vehicle itself. For example, many electric generators use diesel or gasoline but they enter
into the statistics as automotive fuel sales. Therefore, it is expected that a fraction of the
fuel sales could be used for other purposes. In order to consider this, it was adopted
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Figure 18 – Fuel sales for 2014 for metropolitan areas Campinas, MASP, Santos, SJDC
and Sorocaba.

a criteria for evaluating the fuel consumption: 20% of B5 was used for other purposes
than automotive. This means that the fuel consumption estimated from the traffic must
be 80% of B5 and 100% of E25 and E100. This value is a conservative number because
there are no statistics of diesel fuel sold for purposes such as electricity generation.

Once the amount of fuel consumed with the different traffic flows are estimated
they must be compared to the fuel sales.

3.4.2 Running VEIN model for the different activity data scenarios

Traffic data can be either, only a morning rush hour data or hourly data for
different hours. When inputing only morning rush hour data VEIN provides functions to
expand traffic and speeds to other hours. Then, hourly traffic data must be split into the
vehicular composition, which is a vehicular classification of vehicles by type, engine size,
weight and fuel, without considering the emission standards. For example, Passenger
Cars using Gasoline with engine lesser than 1400 cc is one member of the vehicular
composition. Then, it is applied an age distribution to each member of the vehicular
composition. This allows to have the vehicular composition by age of use, for example:
Passenger Cars using Gasoline with engine lesser than 1400 cc with one year of use.
The age distribution is based on statistics of vehicles in circulation such as licensing. It
is possible to use also survival functions built inside VEIN.
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Vehicular composition

Vehicles classification is an important step when developing emissions invento-
ries. The first is the family classification where vehicles are classified in one of the 5
families, Passenger Cars (PC), Light Commercial Vehicles (LCV), Heavy Good Vehicles
(HGV) or Trucks, Buses and Motorcycles (MC). Traffic data used in this study was
divided into family members. Traffic of Cars from GPS recordings and LDV from traffic
simulation were divided into 73.70 % PC and 13.90 % LCV and 12.40 % MC. The
second level of classification is the vehicular composition, defined as sub-classification
of vehicles without including the technological improvement due to emission standards
or technological composition. The concept of vehicular composition was introduced by
(CORVALÁN; OSSES; URRUTIA, 2002) in the development of a vehicular emission
inventory for the city of Santiago, Chile. The vehicular composition is the classification
of the fleet by type of motor, fuel, size of engine and weight capacity. In Brazil there
are mostly three types of motors, 4-strokes, flex 4-strokes and diesel-compression.
4-strokes engines uses gasohol, gasoline with 25% of ethanol (E25) and compression
that uses diesel with 5% of biodiesel (B5). Flex engines can use gasoline with any
mixture ethanol between 25% and 100%, therefore, the driver can choose between
E25 or E100. Fleet statistics of engine size, weight and type of fuel were taken from
the report of vehicular emissions inventory for São Paulo (CETESB, 2015). PC was
divided by size of the engine with sales statistics of the National Association of Car
Manufacturers (ANFAVEA, 2014) by: 38.13% <= 1400 cc, 58.12% 1400 < cc <= 2000

and 3.54% > 2000 cc. MC was divided with sales statistics of the National Association
of Motorcycles Manufacturers (ABRACICLO, 2014) by: 86.23% <= 150 cc, 12.32%
150 < cc <= 500 and 3.43% > 500 cc. Resulting vehicular composition for this study
is shown in Table (6). This table shows the category of vehicular composition, the
percentage in each family, average age and max age. Each name of the category was
built so that it is self explanatory, for example: PC_FE25_1400 are Passenger Cars with
flex engine using gasohol E25 with engine size of 1400 cc or less. It was assumed that
the oldest vehicle has 40 years of use. Vehicles with flex engine have lower maximum
age because these engines entered into the market in 2003 for PC and in 2010 for MC
and the base year of the presented inventory is 2014. Also, vehicles designed to work
only with E100 have an average age of approximately 20 years of use because these
vehicles are no longer produced since 2006. The vehicular categories 13th to 27th
include number of the gross weight (GW) at the end of the name being: GW <= 3_5t

for LCV; GW <= 7.5t, GW between 12t and 14t, GW between 14 and 16 t, GW between
16t and 20t, GW >= 32t for HGV; and GW <= 15t, GW between 15t and 18t and GW
>= 18t for Buses. The vehicular categories 23 is Small UB, the 25, 26 and 27 are
UB, Articulated UB and Small UB of SPtrans for public transportation. According to
SPtrans (http://www.sptrans.com.br/indicadores/) the average age of UB was 5.2 in
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Table 6 – Vehicular composition used in this study.

Categories Perc Mean Max

1. PC_E25_1400 14.21 14.25 40
2. PC_E25_1400_2000 21.65 14.25 40
3. PC_E25_2000 1.39 14.25 40
4. PC_FE25_1400 8.50 5.52 12
5. PC_FE25_1400_2000 12.93 5.52 12
6. PC_FE25_2000 0.83 5.52 12
7. PC_FE100_1400 14.48 5.52 12
8. PC_FE100_1400_2000 22.07 5.52 12
9. PC_FE100_2000 1.42 5.52 12
10. PC_E100_1400 0.93 19.83 40
11. PC_E100_1400_2000 1.42 19.83 40
12. PC_E100_2000 0.09 19.83 40

13. LCV_E25_3_5 39.13 13.97 40
14. LCV_FE25_3_5 15.21 5.01 12
15. LCV_FE100_3_5 25.90 5.01 12
16. LCV_E100_3_5 1.18 20.34 40
17. LCV_B5_3_5 18.56 13.97 40

18. HGV_B5_7_5 8.38 15.72 40
19. HGV_B5_12_14 25.50 15.72 40
20. HGV_B5_14_16 15.28 15.72 40
21. HGV_B5_16_20 24.98 15.72 40
22. HGV_B5_32 25.85 15.72 40

23. SUB_B5_15 9.07 9.28 40
24. Coach_B5_18 13.5 9.28 40
25. UB_SP_B5_15_18 28.81 4.94 10
26. UBA_SP_B5_15_18 14.07 4.94 10
27. SUB_SP_B5_15 17.23 4.94 10

28. MC_E25_150 70.04 7.58 40
29. MC_E25_150_500 10.83 7.58 40
30. MC_E25_500 3.02 7.58 40
31. MC_FE25_150 3.77 2.75 5
32. MC_FE25_150_500 0.55 2.75 5
33. MC_FE25_500 0.15 2.75 5
34. MC_FE100_150 6.42 2.75 5
35. MC_FE100_150_500 0.94 2.75 5
36. MC_FE100_500 0.26 2.75 5

2014, therefore, it was adjusted the max age of this category to 10 years of use so that
the average age is 4.94. MC was distributed using fleet statistics of (CETESB, 2015).

There is another element that is related to the average age of each category of
the vehicular composition. This element is the statistical distribution of the vehicles by
age of use. Each category of the vehicular composition has its own distribution by age of
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Figure 19 – Normalized fleet of PC, LCV, HGV, Bus and MC by age of use.

use. Each distribution comes from annual time series of vehicles in circulation. (CETESB,
2015) reports a description of the fleet by type of vehicle and fuel. It was used this
data to distribute each category of the vehicular composition. The normalized licensing
curves are shown in Fig. (19). It can be seen an increment in licensing over the last ten
years and a small declination in 2010. The distribution of vehicular composition by age
of use allows to associate each vehicle-age with the respective emission standard. The
Brazilian emissions standard Proconve varies between 0 (Pre-Proconve) and 7 for HGV
and Bus and 0 and 5 for PC and LCV. Table 10 shows the equivalence of Brazilian and
European Standards.

Emissions Factors

VEIN model allows to choose between the type of emission factors, local sources,
speed functions from (NTZIACHRISTOS; SAMARAS, 2016) or scaled factors to incorpo-
rate speed variation into local factors. In the case of São Paulo, the vehicular emissions
inventory reports the emission factors of new vehicles that entered into the market each
year (CETESB, 2015).

These factors are the average of the emission certifications with driving cycle
Federal Test Procedure FTP-75 for 4-strokes light duty vehicles, motorcycles with
World Motorcycle Test Cycle (WMTC) and HDV with European Stationary Cycle (ETC).
Therefore, the data consists in yearly emission factors by type of vehicles: PC are
1) PC_E25, 2) PC_FE25, 3) PC_FE100 and 4) PC_E100, LCV are 5) LCV_E25, 6)
LCV_FE25, 7) LCV_FE100, 8) LCV_E100 and 9) LCV_B5. Trucks are 10) Light Truck
GW < 6t, 11) Semi Light Truck GW between 6t and 10t, 12) Medium Truck GW between
10t and 15t, 13) Semi Heavy Truck are rigid trucks with GW less than 15t and articulated
Trucks with GW less than 40t, and 14) Heavy Trucks which are rigid Trucks with GW
less than 15t and articulated trucks with GW bigger than 40t. Buses are 15) UB, 16)
Small UB, and 17) Coach. MC are 18) MC_E25, 21) MC_FE25 and 24) MC_FE100 for
engines less than 150cc, between 150cc and 500cc and bigger than 500cc with 26 types
of vehicles in total. The emission factors of these categories were assigned into the
vehicular composition shown in Table (6), for example, the CETESB emission factors
PC_E25 was assigned equally to VEIN categories PC_E25_1400, PC_E25_1400_2000
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and PC_E25_2000.

The CETESB emission factors covers the following pollutants of hot exhaust
and evaporative emissions: CO, NOX , PM , SO2, HC, NMHC, Aldehyde, CO2 and
N2O. The emission factors are numerous so only the CO, NOX , HC and PM Emission
factors (in g · km−1) for PC, LCV, Medium Trucks, UB and MC from (CETESB, 2015) are
shown in Fig. (20). The figure is in logarithmic scale so that it is easier to identify small
variations. The highest emission factors of CO are due older PC with 33 g · km−1, with
NOX the older UB emit 17 g · km−1, in the case of HC the older PC emit 1.16 g · km−1

and in the case of PM, the older UB emit 1.07 g · km−1. In all cases newer vehicles emit
less due to technological improvements resultant from the stringent emission standards.
It is interesting to note that newer MC emit more CO and HC than the other type of
vehicles.

Figure 20 – CO, NOX , HC and PM Emission factors (g · km−1) for PC, LCV, Medium
Trucks, UB and MC (CETESB, 2015).

It is important to mention that there is no formal definition of vehicular composition
in VEIN, however, the vehicular composition followed the type of vehicles in the European
Emissions Guidelines (NTZIACHRISTOS; SAMARAS, 2016). This allowed to create
an scaled emission factor between the local source of CETESB emission factors and
the speed dependent functions from NTZIACHRISTOS; SAMARAS (2016). As result,
speed variation could be incorporated into the local emission factors. The (CETESB,
2015) emission factors are average values for the emissions tests FTP75 and WMTC.
Each has its own average speed. The scaling process consists in identifying speed
functions so that, at the speed of the driving cycles, will return exactly the same value of
the local emission factors, (CETESB, 2015) in this study. ESC driving cycle does not
have driven speed and instead it has motor speed, so the speed of FTP75, which is
34.2 km · h−1, was used. In the case of WMTC, the speed is 54.7 km · h−1 according
to the reference report on driving cycles from the Transport and Research Laboratory
(TRL) (BARLOW et al., 2009).

The speed functions emission factors of (NTZIACHRISTOS; SAMARAS, 2016)
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depend on the emission Euro standard. Therefore, in order to select the right speed
function, it is necessary firstly do an equivalence between Brazilian and European
Emission standards. Both emission standards are relatively similar but in Brazil they
are delayed. Brazilian emission standards are named Proconve for LDV and HDV
and Promot for motorcycles (Ministerio de Medio Ambiente, 2011). Proconve L6 is
equivalent with Euro V, L3 Euro II, L2 with Euro I and L1 with Pre-Euro. In the case
HDV, Proconve P7 is equivalent with Euro V, P5 with Euro III, P4 with Euro II, P3 with
Euro I and the rest with Pre-Euro. Motorcycles are directly equivalent, Promot M3 with
Euro III, M3 with Euro II, MI with Euro I. This equivalence was made based on the site
http://www.transportpolicy.net/region/south-america/brazil/ and is shown in Table 10.

To visualize an example of this new scaled factors a plot of the emission factor
that depends on age of use and speed is shown as a 3d surface in Fig. (21) and (22).
Fig. (21) shows the CO emission factors of PC using E25 as function on speed and
includes an horizontal black line when the emission factor is 33 g · km−1. There is
also a vertical line at 34.2 km · h−1 which is the average speed of the emission test.
Therefore, at 34.2 km · h−1 the value 33 g · km−1 is the same value of (CETESB, 2015)
and the values at other speeds belongs to the speeds variation form (NTZIACHRISTOS;
SAMARAS, 2016). In other words, the speed function must be multiplied with a factor so
that the speed function at 34.2 km · h−1 must be 33 g · km−1. VEIN provides functions
to automatically scale local factors by age of use if the user only knows the Euro
equivalence of each local emission factor. Fig. (22) shows a more general view to see
the interaction between emission factors by age of use and speed. The diagonal line
shows the speeds (km ·h−1), the horizontal line shows the distribution by age of use and
the vertical the emission factors (g · km−1). At lower speeds and higher age of use of
vehicles emission factors are higher. However, at higher age of use and higher speeds
the emission factors do not grow so abruptly.

The discussed emission factors were only for hot exhaust conditions without
deterioration. The deterioration of vehicles has been studied and it is more notorious in
4-strokes vehicles whose catalytic system is not working or malfunctioning. In this study
the deterioration factors from (NTZIACHRISTOS; SAMARAS, 2016) were used, but
they are available for 4-strokes vehicles only. These factors depend on the accumulated
mileage and Euro standard and are applied to vehicles with catalytic converter only. For
vehicles without catalytic converter there is no deterioration according to this method.
This method was chosen since there is no Brazilian studies of deterioration factors.

Another type of emissions considered in this study is the evaporative. This
type of emissions can be important, they are basically the vaporization of fuel due to
variations in ambient temperatures. VEIN count the with (MELLIOS; NTZIACHRISTOS,
2016)’ methods for estimating evaporative emissions. The emission factors comes from
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Figure 21 – CO emission factors (g · km−1) for PC as a function of speed (km · h−1).

(CETESB, 2015) average measurements of evaporative emissions by type of vehicle
and year. This database includes factors of diurnal (g · day−1), hot_soak (g · trip−1)
and running_losses (g · trip−1) evaporative emissions, for three ranges of temperature,
between 0 and 10, 10 and 20 and 20 and 35 oC and available for 4-strokes PC and
LCV. The emission factors for PC are shown in Fig. (23). The three types of emissions
have a similar behavior with less emissions in newer vehicles. Older vehicles with
more than 28 years presents higher emissions and when incrementing the temperature,
higher evaporative emissions. As the period of study is the week between 2014-10-06
and 2014-10-12, the monthly average temperature for this period, 21 oC, was used to
calculate the emission factors between 20 and 35 oC.

To incorporate these emission factors into VEIN, each emission factor was
converted into g · km−1. The emission factors of diurnal evaporative emissions (g · day−1)
were divided by the daily mileage (km · day−1) according to the age of use of the type
of vehicle. There are mileage functions inside VEIN, based on odometer readings
of more than 1.6 million vehicles (BRUNI; BALES, 2013), these functions return the
annual mileage which was divided by 365 to obtain the daily mileage. (BRUNI; BALES,
2013) mileage functions are based on age of use, as VEIN works also with vehicular
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Figure 22 – CO emission factors (g · km−1) for PC as a function of speed (km · h−1) and
age of use.

composition by age of use, the fleet characterization is consistent. The other emission
factors in g · trip−1 were converted to gḋay−1, by multiplying by the average number of
4.6 trips · day−1 and then divided by the daily mileage km · day−1 according to the age
of use of the type of vehicle. There are no statistics with the number of trips per day in
São Paulo, therefore this value came from the statistics of the (Bureau of Transportation
Statistics, 2017), U.S. Department of Transportation.

Figure 23 – Evaporative emission factors for a) Diurnal, b) Hot-Soak and c) Running
Losses g · km−1 by age of use for average monthly temperature between
20 and 35 Celsius based on (CETESB, 2015).
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Area source emissions

According to (CETESB, 2015) report, evaporative emissions from leak at the
moment the car is filled are becoming increasingly important. They even claim that
this will be the most important source of hydrocarbons from year 2022. The emission
factors proposed by (CETESB, 2015) depend are 1.14 g · l−1 for E25 and 0.37 g · l−1 for
E100. The inventory presented in this study considers fuel consumption with factors in
g · km−1, therefore, the fuel consumption factors (in g · km−1) was divided by the density
of each fuel, 0.754 t ·m−3 for E25 and 0.809 t ·m−3 for E100. The resulting factor for
evaporative leaked emissions are 1.512e-03 g · km−1 for E25 and 4.57e-04 g · km−1 for
E100. These emissions are produced in fuel stations but only the spatial distribution for
MASP was available, as seen in Fig.(24). For the other regions, it was assumed that
these emissions are distributed on streets.

Figure 24 – Fuel stations on MASP, obtained from CETESB.

One of the objectives of this study is to evaluate the impact of the emissions on
the air concentrations of several pollutant including O3. This is a secondary pollutant that
in the troposphere, formed due to concentrations of hydrocarbons, oxides of nitrogen
(NOX) and solar radiation. Therefore, it is important to include all relevant anthropogenic
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sources of hydrocarbons and NOX . According to the European Emission Guidelines,
coating applications including painting are important sources of hydrocarbons. Therefore,
this source was also included with activity data from the Brazilian Association of Paints
Manufacturers (ABRAFATI, 2017). The activity data consists in sales of paints for 1119
106lt ·year−1 for buildings, 217 106lt ·year−1 for cars and industry, and 61 106lt ·year−1 for
other, all sales in Brazil during 2014. According to (KUENEN; TROZZI, 2016), emissions
factors of NMHC from decorative coating application is 150 g · kg−1, from industrial
is 400 g · kg−1 and from other is 200 g · kg−1. The densities of painting for buildings
is 1.25 g · cm−3, and industry and automotive, 0.75 g · cm−3. The resulting emissions
are 209812.5 t · y−1 from building paintings and 65751 t · y−1 from industry and cars
paintings. There is no statistics of the volume of paints sold per region, therefore, it was
approximated the regional value with population proportions. The population in Brazil
in 2014 was 202.77 · 106 and for the metropolitan regions covered in this study: MASP
20.93 · 106, Campinas 3.04 · 106, SJDC 2.43 · 106, Sorocaba 2.06 · 106 and Santos 1.78 · 106

(IBGE, 2014a). The proportional emissions of NMHC are therefore 28443.77 t · y−1 in
MASP, 4131.35 t · y−1 in Campinas, 3302.36 t · y−1 in SJDC, 2799.53 t · y−1 in Sorocaba
and 2419.01 t · y−1 in Santos. The spatial distribution of these emissions was allocated
in non-motorway streets in each region.

Speciation of NMHC

Once all the required data was gathered, the exhaust and evaporative emissions
were estimated. The method for estimating evaporative emissions is top down, which
implies that total emissions per day are generated. As hourly emissions are needed the
evaporative emissions were distributed between 06:00 and 16:00LT when, according to
(MELLIOS; NTZIACHRISTOS, 2016), most of evaporative emissions are produced due
to increasing ambient temperature.

The emissions estimates were aggregated into amount of pollutant per each
street and then in gridded emissions with a 1 km x 1 km horizontal resolution. This grid
spacing was chosen in order to take the advantage of the high resolution emissions
inventories. After estimating all the emissions of NMHC, it was used the speciation
presented in (RAFEE et al., 2017). This speciation is based on tunnel measurements
in São Paulo, depends on the type of fuel (E25, E100 and B5) and provides the
mass of each chemical compound as mol · (100g)−1. This speciation splits the NMHC
from evaporative, liquid and exhaust emissions of E25, E100 and B5, into minimum
compounds required for the Carbon Bond Mechanism (CBMZ) (ZAVERI; PETERS,
1999). The compounds presented in (RAFEE et al., 2017) speciation are: Alkanes
(Ethane (ETH), Alkanes with HO rate constant between 2.7 · 10−13 and 3.4 · 10−12(HC3),
Alkanes with HO rate constant between 3.4 · 10−12 and 6.8 · 10−12 (HC5) and Alkanes
with HO rate constant bigger than 6.8 · 10−12 (HC8)); Alkenes (Ethene (OL2), Terminal
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Alkenes (OLT), Internal Alkenes (OLI) and Isoprene (ISO)); Aromatics (Toluene and less
reactive aromatics (TOL) and Xylene and more reactive aromatics (XYL)); Carbonyls
(Formaldehyde (HCHO), Acetaldehyde and higher aldehydes (ALD)); and ethanol
(C2H5OH). All of these hydrocarbons are O3 precursors. A common measure of the
reactivity of hydrocarbons for producing O3 is the Maximum Incremental Reactivity (MIR).
(CARTER, 1994) presented a study with the MIR for several species of hydrocarbons
based on scenarios of environmental conditions of cities of United States of America.
In order to produce a simulation adjusted for São Paulo conditions, the speciation of
(RAFEE et al., 2017) was updated in order to represent the average MIR value for
Brazilian fuels E25 and E100: 4.7 and 3.2, respectively. The MIR values for the fuels
were obtained with a Gas Chromatography with Flame Ionization Detector (GC-FID)
analysis made by (Branco G. and Branco F., 2016). The MIR values for the atmospheric
species were obtained by (MARTINS, 2006) and in the case of CH3OH and KET ,
average MIR values come from (CARTER, 2009). The MIR weighted mean between
for E25 exhaust NMHC is 3.8 in (RAFEE et al., 2017) which is below the E25 MIR of
4.7. Therefore, the NMHC emission factors were multiplied by 1.7 when their MIR was
bellow 4.7. In the case of E100 exhaust, the weighted mean is 3.44 which shows that
these speciation is appropriate for the fuel burnt in São Paulo. The adjusted speciation
and MIR for the CBMZ mechanism are shown in table 7. The emission factors of the
NMHC compounds are expressed as mol · (100g)−1 of fuel from exhaust, evaporative
or liquid emissions. The chemical composition of fuel presents differences in various
countries, therefore, this method could be used in different regions when there is no
more available information.

The NMHC produced by painting activity was speciated using EPA tool Speciate
(SIMON et al., 2010). Specifically, the activity paintings were selected and calculated
an average based on technical reports and papers of NMHC measurements, such as
(SEXTON; WESTBERG, 1980), where NMHC and other pollutants were measured
downwind a plant of car paintings. USEPA-Speciate counts with several profiles for
paintings. The profile numbers 2546, 4661 and 4662 were used for Industrial painting
emissions and profile numbers 7106, 7113, 7125, 7133, 7139, 7141, 7163 and 7173
for building painting. Then an average percentage for each compound was calculated
and normalized. Most of pollutants are included in CBMZ speciation such as Toluene
or Xylenes, but other were aggregated as alkanes using the categorization from VOC
Reactivity Scales (CARTER, 2000) for CBMZ.

The chemical mechanism CBMZ needs more pollutants and most of them are
covered in normal VEIN estimation based on (CETESB, 2015) and (NTZIACHRIS-
TOS; SAMARAS, 2016) emission factors: Methane (CH4), Carbon Monoxide (CO),
Carbon Dioxide (CO2), Total Hydrocarbons (HC), Nitrous Oxide (N2O), Ammonia (NH3),
Non-Methanic Hydrocarbons (NMHC), Nitric Oxide (NO), Nitrogen Dioxide (NO2),
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Table 7 – Speciation for NMHC by type of fuel and process mol · 100g−1. MIR values
from (MARTINS, 2006) and speciation values from (RAFEE et al., 2017)

NMHC with E25 NMHC with E100 NMHC with B5 Painting

NMHC MIR Exhaust Evap Liq Exhaust Evap & Liquid Exhaust Buildings Industry

ETH 0.28 0.2826 0.2317 0.0250 0 0 0 0 0
HC3 1.33 0.4352 0.3567 0.2400 0 0 0.0490 0 0.0006
HC5 1.58 0.1586 0.1300 0.4500 0 0 0.0577 0.5660 0.2198
HC8 1.01 0.0765 0.0627 0 0.0490 0 0.2967 0 0
OL2 9.07 0.5807 0.2800 0.0382 0.1260 0 0.3189 0 0
OLT 8.91 0.2434 0.1174 0.200 0.0018 0 0.3853 0 0
OLI 1.94 0.1614 0.1323 0.4600 0.0013 0 0 0 0
ISO 10.68 0.0077 0.0037 0 0 0 0 0 0
TOL 2.5 0.1405 0.1152 0.0850 0.0050 0 0.2351 0.4534 0.0821
XY L 8.15 0.2677 0.1291 0 0.0149 0 0.0084 0.1805 0.0409
C2H5OH 1.69 0.3082 0.3082 0.3500 1.5226 2.1706 0 0 0
HCHO 6.98 0.1127 0.0508 0 0.3605 0 0.3225 0 0
ALD 8.96 0.0864 0.0663 0 0.1317 0 0.0751 0 0.0246
CH3OH 0.65 0 0 0 0 0 0 0.2561 0.1436
KET 1.65 0 0 0 0 0 0 0.0818 0.2558

Particulate Matter from engine combustion (PM ) and Sulfur Dioxide (SO2). Atmospheric
simulations using the same pollutants in Brazil have resulted in good agreement with
observations (ANDRADE et al., 2015).

3.5 Partial Conclusions

This section described the development of the Vehicular Emission INventory
(VEIN model v0.2.2), an open source model, to produce high resolution spatial and
hourly emission estimation. VEIN is a tool suited for application in complex environmen-
tal science studies, including regional atmospheric modeling. It generates inputs for air
quality models in order to forecast air pollutant concentrations or for studies of green-
house gas emissions from vehicular sources. It can be used to study the relationship
between emissions and health effects. A recent study used VEIN estimates with a grid
of 10 m resolution to determine the relationship between vehicular emissions and birth
outcomes in the western area of São Paulo (FINK et al., 2017). VEIN can be used as
a tool for urban planning in order to estimate vehicular emissions due to interventions
at road networks in most cities. It was written in an R package that includes several
methods for estimating vehicular emissions in a harmonized way.

VEIN provides functions to easily produce inputs of regional air quality models
such as WRF-Chem (GRELL et al., 2005) and BRAMS/SPM (FREITAS et al., 2005).
In Fig. 17, the comparison between VEIN and EDGAR (EJ-JRC/PBL, 2016) of CO
emissions shows that emissions are heavily concentrated in few streets with a high
volume of traffic. EDGAR emissions do not provide this level of detail and they are
lower than VEIN estimates. Furthermore, the highest spatial resolution of EDGAR is
0.1 degree, approximately 12 km and it is possible to have better resolution with VEIN.
Based on these factors, it can be concluded that EDGAR is suitable for modeling air
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pollution in larger domains without considering meteorological meso-scale interactions,
including feedbacks. However, with the computational advances, it would be possible
to perform air pollution modeling for larger domains with higher resolution and level of
detail. VEIN can produce these necessary inputs with a bottom-up approach.

VEIN currently experiences some limitations. The first limitation is the avail-
ability of activity data. VEIN needs at least one hour of traffic data for each street
considered in the estimation. This data can based on traffic simulation or traffic counts,
however, most of cities do not count with this type of data in developing countries.
In this case, new data should be generated with traffic counts and interpolations. In
addition, the widespread use of applications for smart-phones such as Waze (c) or
Uber (c), among others, produce traffic data that eventually could be used as ac-
tivity data for estimating vehicular emissions. For example, currently Google Traffic
(https://developers.google.com/maps/coverage) cover several countries and this data
could provide valuable information to estimate vehicular emissions in cities with non-
traffic simulation or traffic counts. It is expected that new features will be added in future
versions of VEIN. One very promising feature will be the migration of the spatial depen-
dencies into the new spatial features sf package. This package provides S3 classes for
handling spatial data faster than its predecessor, the package sp (PEBESMA; BIVAND,
2005).

The emission factors are another aspect of VEIN that can be enhanced in future
versions. They could be sourced from several emissions studies, such as tunnel studies
(PÉREZ-MARTINEZ et al., 2014; MARTINS et al., 2006), or others based on traffic
situations whereby emissions are sourced from driving cycles (ARTEMIS for example,
(ANDRé, 2004)) or other experimental campaigns (CORVALÁN; VARGAS, 2003). The
International Vehicular Emissions (IVE) is a top-down vehicular emission model that
has been used in different countries to estimate vehicular emissions (GONZáLEZ et al.,
2017; WANG et al., 2008). It could be possible to derive emission factors from IVE and
estimate their corresponding emissions in VEIN, in order to use the capabilities of VEIN.

VEIN’s purpose is to serve as a tool for air quality research and environmental
management. Since air quality models need detailed emissions species, VEIN was
created with the function speciate. VEIN will add several new speciations into these
functions, such as those in the EMEP/EEA guidelines (NTZIACHRISTOS; SAMARAS,
2016). In the case of Brazil, there are several studies of tropospheric ozone, which
use speciation of VOC emissions as an input (VARA-VELA et al., 2016; RAFEE et al.,
2017).
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4 Weather and Research Forecast
model with Chemistry (WRF-Chem)

WRF-Chem is a fully coupled online meteorological and chemical transport
model (GRELL et al., 2005), available at http://www.wrf-model.org. This model has
been widely used in different parts of the world including Brazil (ANDRADE et al., 2015;
VARA-VELA et al., 2016; RAFEE et al., 2017; HOSHYARIPOUR et al., 2016).

4.1 Model configuration

The objective of the present study is to compare and evaluate different bottom-up
emissions inventories. Consequently, the model configuration of WRF-Chem must be
set in order to take fully advantage of the detailed and high resolution emissions fluxes.
Some previous sensitivity studies regarding model horizontal resolution show that not
always a higher resolution will imply in better agreement with observations. For instance,
a study of ozone formation in Mexico compared observation with simulations with model
resolutions of 3, 6, 12 and 24 km of grid spacing (TIE; BRASSEUR; YING, 2010).
Although their analyses were based solely on two days of simulation, they concluded
that better results were obtained with 6 km of grid spacing. The authors, however, did not
evaluate the impact of the emissions resolution, since their emissions were only spatially
aggregated. It remained unclear if the methods adopted to calculate the emissions
inventory with different resolutions would imply in a better agreement with observations.
Another study more focused on the planetary boundary layer (PBL) schemes also
analyzed WRF-Chem performance at 12 and 4 km of resolution (MISENIS; ZHANG,
2010). Their results indicate the need of improving WRF-Chem for higher resolutions.
Therefore, although it could be made a 1 km grid resolution for emissions, uncertainties
in other physical parameterizations could jeopardize the analysis of using different
inventories.

The model configuration consisted in three domains shown in Fig. (25). Only
the inner domain included the emissions in a grid of 3 km of grid spacing, with 85 grid
points in the zonal direction and 96 points in the meridional direction, centered at the
city of São Paulo, with latitude -23.550391 and longitude -46.633949. Fig. (1) shows
that the Santos Metropolitan Area has lower elevations because it is a coastal region,
but there is an abrupt increase in elevations at the Serra do Mar, between 600 and
900 m above sea level. The vertical grid consisted in 35 levels with the top at 50 hPa.
The outer domains were run for meteorological fields only, with 9 and 27 km of grid
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spacing. The initial and boundary meteorological conditions were obtained from the
National Center for Environmental Prediction’s Final Operational Global Analysis with
0.5 degrees of grid spacing, 26 vertical levels, every 6 hours: 00:00, 06:00, 12:00, and
18:00 UTC from https://rda.ucar.edu/datasets/ds335.0/. The set of parameterizations for
different physical process is shown in Table (8). It was included cumulus parametrization
only in outer domains.

The gas-phase chemistry mechanism used was Carbon Bond Mechanism
(CBMZ), as previously mentioned. Regarding the chemical boundary conditions, accord-
ing the GAVIDIA-CALDERON’s thesis, including chemical dynamic boundary conditions
not necessary will improve O3 simulations at superficial level in São Paulo. Therefore, it
was used the idealized profile for default chemical boundary conditions of WRF-Chem
(LIU et al., 1996).

Figure 25 – Domains of 27, 9 and 3 km of grid spacing.
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Table 8 – Parameterizations used in WRF-Chem

Physics options Parametrization

Microphysics Lin (LIN; FARLEY; ORVILLE, 1983)
Boundary Layer YSU (HONG; NOH; DUDHIA, 2006)
Cumulus (GRELL; DÉVÉNYI, 2002)
Shortwave Goddard (CHOU; SUAREZ, 1999)
Longwave RRTM (MLAWER et al., 1997)
Land surface Noah (TEWARI et al., 2004)
Surface layer MM5 (ZHANG; ANTHES, 1982)
Urban Surface UCM (CHEN et al., 2011a)
Gas-phase chemistry CBMZ (ZAVERI; PETERS, 1999)
Photolysis Fast-J (FAST et al., 2006)

4.2 Meteorological conditions

In order to understand air pollution concentration with simulations, it is important
to choose periods of time according to the objective of the study. In this case, it was of
interest evaluating the emissions, so it is important to check if there was precipitation
in the smaller domain during the period of study. During October 2014 there was a
severe drought in Southeast Brazil (COELHO et al., 2016) which produced risk in water
availability for different uses. According to the Group of Climatic Studies (GREC, 2014)
of the Universidade de São Paulo (http://www.grec.iag.usp.br/), the climatological mean
of precipitation for October in South and Southeast Brazil are 107 mm and 173 mm

respectively. However, during October of 2014, there were anomalies of -51.7 and -56.7
mm in each region. Regarding the synoptic conditions, the climatic bulletin of the Center
for Weather Forecasting and Climate Research (CPTEC) synoptic analyses (CPTEC,
2014) show that for almost the whole period of simulation there was anticyclone with
center on the Atlantic Ocean which was blocking southern fronts from reaching São
Paulo, as shown in Fig. (27). The only day with presence of clouds was Tuesday after a
weak front reached São Paulo. The closest precipitation system near São Paulo was
a stationary front acting in south of Rio Grande do Sul, the Southest state of Brazil
between 12 and 13 of October of 2014, with a distance of approximately 1000 km of
São Paulo. In addition, it was investigated the presence of precipitation with data of
rain gauge collectors of the National Institute of Meteorology located in São Paulo. Fig.
(26) shows daily accumulated precipitation of the station Mirante de Santana, located
at latitude -23.49 and longitude -46.62. It can be seen that there was no precipitation
during the study period, shown between red lines on Fig (26).
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Figure 26 – Hourly accumulated precipitation at Mirante de Santana station, October
2014, (INMET, 2016)

4.3 Evaluation

In order to evaluate the performance of the atmospheric and air quality simula-
tions, it was first made a visual comparison between observed and simulated values.
Then, it was calculated the statistics Mean bias (MB), Mean fractional bias (MFB),
Mean fractional error (MFE), Unbiased root mean square error (RMSE) and Correlation
coefficient (R). The evaluation is made by pairs of simulations from WRF-Chem (Mi) and
observations (Oi) from the air quality and meteorology network stations from CETESB,
shown on Table 9. This table shows the column Reg which means Regions 1: Campinas,
2: MASP, 3: Santos, 4: SJDC and 5: Sorocaba.

MB =
1

n

n∑
i=1

(Mi −Oi) (4.1)

MFB =
1

n

n∑
i=1

2 ∗ (Mi −Oi)

Mi +Oi

∗ 100% (4.2)

MFE =
1

n

n∑
i=1

2 ∗ |Mi −Oi|
Mi +Oi

∗ 100% (4.3)

RMSE =

√√√√ 1

N

N∑
i=1

[(Mi − M̄i)− (Oi − Ō)]2 (4.4)
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Figure 27 – GOES 13 satellite IR image for October 8th, at 15:00 LT.

r =

N∑
i=1

(Mi − M̄)(Oi − Ō)√
N∑
i=1

[(Mi − M̄i)− (Oi − Ō)]2

(4.5)

Lastly, it was compared simulations at observations sites to see if there is
significant difference between scenarios. Therefore, it was used the Wilcoxon (BAUER,
1972) tests inside the package "stats" of R language programming (R Core Team, 2017).
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Table 9 – Air quality and and meteorology stations from CETESB used in this study

Station Latitude Longitude Reg Parameters

Americana -22.715 -47.339

1

PM10, O3, UR, TEMP , WS, WD
Paulinia -22.763 -47.155 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Campinas -22.902 -47.057 PM10, CO, UR, TEMP
Jundiai -23.192 -46.897 PM10, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD

Cerqueira Cesar -23.553 -46.672

2

PM10, SO2, NO, NO2, NOX , CO
Congonhas -23.616 -46.663 PM10, PM2.5, SO2, NO, NO2, NOX , CO
Ibirapuera -23.591 -46.660 PM10, PM2.5, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Sao Caetano do sul -23.609 -46.556 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Pedro II -23.545 -46.628 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Parelheiros -23.776 -46.698 PM10, PM2.5, SO2, NO, NO2, NOX , CO, O3, UR, TEMP
Pinheiros -23.561 -46.702 PM10, PM2.5, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Taboa da Serra -23.600 -46.758 PM10, SO2, NO, NO2, NOX , CO, UR, TEMP
Interlagos -23.671 -46.675 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Carapicuiba -23.522 -46.836 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Guarulhos Municipal -23.446 -46.518 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Capao Redondo -23.659 -46.780 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Ponte Remedios -23.509 -46.743 PM10, PM2.5, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Itaim Paulista -23.502 -46.421 PM10, PM2.5, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
Capuava -23.630 -46.492 PM10, SO2, O3, WS, WD
Mooca -23.550 -46.600 PM10, CO, O3, WS, WD
Nossa Senhora de O -23.480 -46.692 PM10, O3, UR, TEMP
Santana -23.506 -46.629 PM10, O3, UR, TEMP
Santo Amaro -23.646 -46.710 PM2.5, O3, WS, WD
Diadema -23.686 -46.612 PM10, O3

Osasco -23.527 -46.792 PM10, SO2, NO, NO2, NOX , CO, WS, WD
Santo Andre -23.640 -46.492 PM10, CO, WS, WD
Maua -23.569 -46.465 PM10, NO, NO2, NOX , O3

Vila Parisi -23.840 -46.389

3

PM10, SO2, NO, NO2, NOX , CO, O3, WS, WD
Cubatao Centro -23.879 -46.418 PM10, SO2, NO, NO2, NOX , O3,UR,TEMP , WS, WD
Santos -23.963 -46.321 PM10, NO, NO2, NOX , O3, UR, TEMP , WS, WD
Ponta Praia -23.972 -46.300 PM10, PM2.5, SO2, NO, NO2, NOX , O3, UR, TEMP , WS, WD,

Jacarei -23.294 -45.968 4 PM10, SO2, NO, NO2, NOX , CO, O3, UR, TEMP , WS, WD
SJDC -23.188 -45.871 PM10, SO2, NO, NO2, NOX , O3, UR, TEMP , WS, WD, BEN , TOL

Sorocaba -23.502 -47.479 5 PM10, NO, NO2, NOX , O3, UR, TEMP , WS, WD
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5 Results

In urban centers, vehicles are the most important source of air pollution (MOLINA;
MOLINA, 2004b). In the mega-city of São Paulo, in Southeast of Brazil, there were
7940713 vehicles on June 2017, with 70 % as Passenger Cars (PC) according to
data from the Brazilian Department of Transit (DENATRAN, 2017). Besides, the city
of São Paulo is part of a bigger conurbation called Metropolitan Region of São Paulo
(MASP) located near other 4 metropolitan areas: Baixada Santista (hereafter identified
as Santos), Vale do Paraíba (in this work will be identified as the name of its main
city São José Dos Campos - SJDC), Sorocaba and Campinas. Altogether these 5
metropolitan areas accounted for more than 30 million of inhabitants at year 2016
according the Brazilian Institute of Geography and Statistics (IBGE, 2016). Emissions
inventories made for these regions show that vehicles are the most important source of
air pollution (CETESB, 2015) remarking the importance of a correct characterization of
the emission of these pollutants, which would help to evaluate impacts on the climate,
ecosystem and population exposure.

Different approaches have been used to generate emissions inputs for air quality
models for decades generating good results. For example, in Santiago, Chile, a city
with steep terrain and stable nocturnal conditions, air quality simulations using traffic
simulations among other input data could forecast critical episodes of air pollution
(SAIDE et al., 2011). However, the results are still subject to the quality of the input
data. In other words, air quality simulations depend on the quality of the data used to
generate the emissions fluxes.

In this study four types of traffic data described in Chapter 2 were used in
developing bottom-up vehicular emissions inventories with VEIN, which produced inputs
for WRF-Chem model using the Assimilation System for WRF (AS4WRF) presented
by (VARA-VELA et al., 2016). This system reads the gridded emissions and create
WRF-Chem input files for the desired domain.

This chapter presents the results from the different traffic data sources, in section
5.1. From these traffic flows, 3 emissions scenarios were designed. Section 5.2 shows
the emissions inventories from VEIN for the 3 scenarios and for the week from the 06th
to the 12th of October, 2014. The gridded emissions for these scenarios produced by
VEIN were then used as input for WRF-CHEM, and the air quality simulation results are
discussed in section 5.3. Final remarks are given in section 5.4.
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Figure 28 – Box-plots for traffic counts.

5.1 Traffic data

5.1.1 Traffic flow from interpolation

The dataset consisted of 113 points counting traffic data in both ways. The total
amount of vehicles at all hours was 3266323 with 78.2 % LDV, 2.82 % UB, 0.36 % RB ,
1.25 % T2A, 0.47 % T3A, 0.25 % T4A and 16.63 % MC. T3A had 86 traffic counts with
zeros, representing 76.6% of all hours. T4A had 85 traffic counts with zero, representing
79.4%. There is a restriction in circulation that affects trucks with 3 and 4 axes at morning
and evening rush hours at city of São Paulo (http://www.cetsp.com.br/consultas/rodizio-
municipal/como-funciona.aspx). Since these categories represent less than 1% of traffic,
they were not considered for further analyses.

Figure 28 shows histograms in logarithmic scale for each type of vehicle at
different hours. Each box-plot does not show high variation for each type of vehicle at
different hours. The highest median is approximately 4000 veh · h−1 for LDV, then 500
veh · h−1 for MC, 150 veh · h−1 for UB, 10 - 50 veh · h−1 for T2A and 10 veh · h−1 for
RB. LDV does not show upper outliers at evening times, contrary to morning times. UB
shows a marked median near the quantile 75.

As previously discussed, traffic counts were geo-referenced and plotted over
an OpenStreetMap road network. Table 10 shows a summary of statistics about the
traffic counts for LDV, UB, RB, T2A and MC by type of street at hours 7:00, 8:00, 9:00,
17:00, 18:00 and 19:00. Trunk roads have more vehicles than Primary, Secondary and
Tertiary, except for UB, with more vehicles in Secondary roads. This is because urban
buses must follow planned routes collecting passengers at residential neighborhoods.
All types of vehicles show great variability at each hour.

The box plots of the traffic counts by type of street in Figure (29 a) show that
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Table 10 – Summary of statistics for traffic counts by type of street.

Vehicle Highway 7:00 8:00 9:00 17:00 18:00 19:00

LDV

Trunk 5303 4859 4548 5303 5041 4995
Primary 3764 3450 3292 3796 3703 3530
Secondary 2085 2037 1794 1736 1733 1397
Tertiary 1553 1202 1795 1946 2006 1873
mean 4193 3855 3631 4168 4014 3877
sd 2801 2527 2132 2517 2312 2437

UB

Trunk 124 130 126 111 103 108
Primary 177 183 183 164 149 152
Secondary 200 203 203 134 128 125
Tertiary 127 117 140 116 104 110
mean 155 160 159 135 125 128
sd 118 120 118 107 99 102

RB

Trunk 33 18 11 29 29 22
Primary 18 13 9 19 19 13
Secondary 12 5 3 8 8 7
Tertiary 2 2 4 2 4 1
mean 24 14 9 22 22 16
sd 38 15 10 34 33 20

T2A

Motorway[*] 246 379 305 449 349 272
Trunk 71 97 141 81 60 53
Primary 28 37 79 28 21 17
Secondary 29 38 53 103 93 60
Tertiary 20 10 16 6 6 1
mean 62 98 124 103 80 64
sd 112 169 171 209 182 127

MC

Trunk 1118 1047 891 1189 1173 639
Primary 726 814 719 927 908 497
Secondary 227 277 292 884 805 613
Tertiary 124 192 261 274 238 130
mean 826 837 732 1027 1001 569
sd 693 679 561 734 740 473
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Figure 29 – Box-plots for traffic counts of vehicles (veh · h−1) for (a) type of streets and
(b) number of lanes.

the median values increase as the hierarchy of the streets increases (from Tertiary to
Trunk). This observation is clear for all types of vehicles except for UB, which shows
higher median at Primary roads.

Type of street ts is a categorical variable and, after some tests, it was assigned
the following values: Motorway = 0, Trunk = 1, Primary = 2, Secondary = 3, Tertiary = 4
and Residential = 20. These values considered the fact that Trunk roads and Motorway
roads should have a higher amount of vehicles. These assumptions were made after
analyzing Figure 29a, where there is a clear tendency to have more vehicles with higher
road hierarchy. The road type, Residential, was not considered in the traffic counts.
This presents a problem for the regressions with type of street because there are many
residential types of streets in the city road network. After testing different values, it was
observed that using values of 5 or 10 could overestimate the vehicles in the regression.
Therefore, this study used the value of 20 for the type of road Residential.

The number of lanes lan in each traffic count were also identified. This number
refers to the total number of lanes in both ways. This variable is present in Open-
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StreetMap data. Capacity is the maximum amount of vehicles that can circulate on a
street. A street with more lanes will have higher capacity than another with fewer lanes.
Figure 29b shows a box-plot for traffic counts and lanes. There is a clear tendency
to have more vehicles with more lanes, especially for LDV, MC RB, and T2A. Median
values for UB vary around 100 vehicles for lanes 4 to 10. UB have defined routes and
frequency, which is reflected in the amount of traffic per lanes.

It was tested regressions for each vehicle types(LDV, UB, RB, T2A and MC) for
the hours 07:00, 08:00, 09:00, 17:00, 18:00 and 19:00. The total amount of regressions
was 168. In this section the best the regressions were chosen such that: 1) all predictors
that were statistically significant; 2) produced least AIC; and 3) the highest correlation
between observed and modeled outputs. In general, the most significant variables were
type of street (ts) and number of lanes (lan).

LDV regressions are shown in Table 11 with the coefficient (Coef, β from Equation
2.1), estimate (Est), standard error (SE), z value and p-value P(z) to test the null
hypothesis that the coefficient is 0. The quasi-poisson approach performed better than
the negative binomial at all hours. The maximum correlation obtained was 0.72 for
morning rush hours and the lowest was 0.67 at 18:00. For most hours, the inclusion
of the variable distance from center dfc obtained better results than the geographical
coordinates lat and lon. The exception is for 18:00 when geographical coordinates were
more significant. All variables were statistically significant. When analyzing the temporal
tendencies, the study obtained better results for morning rush hours including higher
correlations with more significant predictors.

UB regressions are shown in Table 12. As with LDV, the quasi-poisson approach
performed better than negative binomial at all hours. The maximum correlation obtained
was 0.54 at 07:00 and the lowest was 0.43 at 17:00. Contrary to LDV, here geographical
coordinates appears to achieve better results than dfc. This could be due to the fact that
UB is a fleet with planned frequency involving variables other than solely geographical
aspects.

The results for RB regressions obtained correlations below 0.5. The maximum
correlation obtained was only 0.46 at 08:00, but the lowest was 0.41 at 18:00. Since this
category represents only 0.36 % of traffic counts, it was discarded from the analysis.

The T2A regressions obtained correlations up to 0.73 and 0.74 for morning
rush hours 07:00 and 08:00. However, the correlations fall below 0.5 at 18:00. When
considering correlations, all regressions show that quasi-poisson performed better than
the negative binomial approach. The morning rush hour may have more accurate results
due to the fact that this category relates to small trucks delivering goods inside the city
and these vehicles are not subject to restriction applied to T3A and T4A. This allows
the circulation of a greater number of vehicles. Regarding the geographical approach,
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Table 11 – Regressions coefficients for LDV.

Hour Coef Est SE z P(z) COR

07:00

Int 8.00 0.25 31.67 0.00

0.72ts -0.33 0.07 -4.77 0.00
lan 0.17 0.03 6.66 0.00
dfc -0.04 0.01 -3.65 0.00

08:00

Int 8.09 0.25 32.79 0.00

0.72ts -0.35 0.07 -5.10 0.00
lan 0.15 0.02 6.20 0.00
dfc -0.04 0.01 -4.47 0.00

09:00

Int 8.03 0.23 35.47 0.00

0.72ts -0.33 0.06 -5.31 0.00
lan 0.14 0.02 6.17 0.00
dfc -0.03 0.01 -3.80 0.00

17:00

Int 8.27 0.25 33.37 0.00

0.69ts -0.37 0.07 -5.43 0.00
lan 0.13 0.03 5.18 0.00
dfc -0.03 0.01 -2.71 0.01

18:00

Int 65.57 25.79 2.54 0.01

0.67ts -0.31 0.06 -4.71 0.00
lan 0.14 0.03 5.71 0.00
lat 2.45 1.10 2.24 0.03

19:00

Int 8.13 0.26 31.10 0.00

0.70ts -0.39 0.07 -5.37 0.00
lan 0.14 0.03 5.35 0.00
dfc -0.02 0.01 -2.35 0.02

distance from the center achieved better results in all hours except at 09:00.

Despite the relatively high amount of motorcycles in the dataset, the results
shown in Table 14 were worst than LDV. It is interesting to notice that negative binomial
distribution appears to produce better results than quasi-poisson, except at 08:00.
Therefore, this study compared results with both distributions. The highest correlation
was obtained at 09:00 with both distributions, 0.59 negative binomial and 0.53 quasi-
poisson. Furthermore, with negative binomial distribution all coefficients were statistically
significant, and with quasi-Poisson only ts and lan were significant. In general, the
negative binomial results achieved more accurate results than quasi-poisson for almost
all hours, except 08:00, where quasi-poisson correlation was 0.45 and negative binomial
was 0.44. Nevertheless, the correlation values are still low. There is no significant
difference in using one distribution or another.

Regarding the spatial approach, only dfc was statistically significant at 09:00.
These results suggest that motorcycles follow a pattern more related to the road
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Table 12 – Regressions coefficients for UB.

Hour Coef Est SE z P(z) COR

07:00

Int -303.46 59.52 -5.10 0.00

0.54ts 0.23 0.09 2.65 0.01
lon -4.64 1.51 -3.07 0.00
lat -3.88 1.85 -2.10 0.04

08:00
Int -271.67 61.23 -4.44 0.00

0.48ts 0.18 0.09 2.05 0.04
lon -5.93 1.31 -4.52 0.00

09:00
Int -268.49 60.30 -4.45 0.00

0.50ts 0.20 0.08 2.38 0.02
lon -5.86 1.29 -4.53 0.00

17:00 Int -260.51 62.25 -4.18 0.00 0.43lon -5.69 1.33 -4.26 0.00

18:00
Int -274.84 59.80 -4.60 0.00

0.50lon -4.00 1.52 -2.63 0.01
lat -3.94 1.87 -2.11 0.04

19:00
Int -288.51 59.62 -4.84 0.00

0.52lon -4.13 1.52 -2.71 0.01
lat -4.27 1.85 -2.31 0.02

Table 13 – Regression coefficients for T2A.

Hour Coef Est SE z P(z) COR

07:00
Int 1.84 0.38 4.85 0.00

0.73lan 0.16 0.05 3.24 0.00
dfc 0.12 0.01 9.33 0.00

08:00
Int 2.03 0.39 5.23 0.00

0.74lan 0.16 0.05 3.32 0.00
dfc 0.13 0.01 9.66 0.00

09:00
Int 298.37 51.33 5.81 0.00

0.54lon 6.28 1.10 5.70 0.00
lat -0.55 0.15 -3.69 0.00

17:00
Int 2.12 0.59 3.59 0.00

0.60lan 0.15 0.08 1.99 0.05
dfc 0.13 0.02 6.25 0.00

18:00 Int 2.87 0.32 8.83 0.00 0.49lan 0.12 0.02 5.00 0.00

19:00
Int 1.21 0.58 2.09 0.04

0.70lan 0.20 0.07 2.69 0.01
dfc 0.14 0.02 7.27 0.00
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Table 14 – Regression coefficients for MC with Binomial Negative and Quasi-Poisson
distributions.

Negative Binomial Quasi-Poisson

Hour Coef Est SE z P(z) COR Est SE z P(z) COR

07:00
Int 7.11 0.36 19.52 0.00

0.47
7.66 0.18 43.23 0.00

0.44ts -0.65 0.10 -6.73 0.00 -0.60 0.11 -5.29 0.00
lan 0.10 0.04 2.26 0.02

08:00
Int 6.73 0.35 19.34 0.00

0.44
6.59 0.37 17.89 0.00

0.45ts -0.47 0.09 -5.08 0.00 -0.37 0.11 -3.36 0.00
lan 0.12 0.04 2.84 0.00 0.11 0.04 2.76 0.01

09:00

Int 6.12 0.34 17.74 0.00

0.59

5.94 0.34 17.39 0.00

0.53
ts -0.34 0.08 -4.23 0.00 -0.26 0.10 -2.63 0.01
lan 0.16 0.03 4.54 0.00 0.16 0.04 4.41 0.00
dfc -0.03 0.01 -2.21 0.03
dtr 0.00 0.00 1.97 0.05

17:00 Int 6.00 0.23 25.63 0.00 0.40 5.94 0.26 23.04 0.00 0.40lan 0.15 0.04 4.02 0.00 0.15 0.04 4.11 0.00

18:00
Int 6.51 0.35 18.86 0.00

0.35
6.05 0.27 22.18 0.00

0.33ts -0.20 0.09 -2.16 0.03 0.13 0.04 3.35 0.00
lan 0.11 0.04 2.77 0.01

19:00 Int 5.57 0.26 21.70 0.00 0.27 5.56 0.31 17.89 0.00 0.27lan 0.12 0.04 3.02 0.00 0.12 0.05 2.68 0.01

characteristics than the spatial characteristics. At this time, only length of street segment
dtr appears to be statistically significant. However, the value of the coefficient was
0.0005 and since the tables are showing rounded numbers with two digits, it appears as
zero, denoting a lower significance of this variable. Therefore, this suggests that dtr is
not significant for most hours. It must be considered that there will be difficulties when
modeling with the type of vehicle due to limitations in data access, especially in Brazil.
In Brazil, motorcycles are allowed to share lanes with other types of vehicles. As a
consequence, they reach higher speeds and it is expected that they would prefer streets
with higher numbers of lanes. This aspect makes modeling motorcycles a challenging
task.

In order to obtain an idea of the power of prediction for the regressions, it was
estimated the amount of vehicles to the OSM road network of the Metropolitan Area
of São Paulo (MASP). Despite the limitations of the data, it is important to test if this
method could be applied to a mega-city. The resulting amount of vehicles was later
adjusted with fuel sales. The sold mass for each type of fuel was 3604133 t for gasohol,
1778825 t for ethanol and 2842849 t for diesel.

The initial amount of vehicles circulating over the road network was estimated to
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be: LDV = 22.3 · 106, T2A = 10.91 · 106, UB = 1.9 · 106 and MC = 3.7 · 106. These numbers
were calculated as the sum of vehicles over the road network. The amount of vehicles
were classified according to the official vehicular emissions inventory for São Paulo
City (CETESB, 2013a). This report provides the fuel consumption by type of vehicle.
The VEIN model was used to estimate fuel consumption. The estimated consumed
fuel for 2012 was: 1582597 t of gasohol, 1444188 t of ethanol and 4208099 t of diesel.
The ratios between the consumed fuel estimated by VEIN and fuel sales were 0.55 for
gasohol, 0.81 for ethanol and 1.48 for diesel. These discrepancies indicate that vehicles
which consume gasohol and ethanol are sub-estimated and vehicles that consume
diesel are over-estimated. Therefore, it was necessary to re-estimate the fuel multiplying
vehicles that consume gasohol by 2, ethanol by 1.2 and diesel by 0.5. After running the
model, the new values of fuel consumption were 3165194 t for gasohol, 1733026 t for
ethanol and 2129871 t for diesel. The ratios between the fuel estimated by VEIN and
fuel sales were 0.88 for gasohol, 0.97 for ethanol and 0.75 for diesel. These new ratios
seem more plausible and realistic. It is not expected to have a ratio equal to 1 because
some fuel is consumed for purposes other than automotive. Moreover, some vehicles
may purchase fuel inside MASP but consume the fuel outside of this region, especially
in the case of trucks. On the other hand, it is possible that vehicles circulate inside
MASP with fuel purchased from outside of MASP. Therefore, under these circumstances
the new ratios are satisfactory.

The new amount of vehicles circulating over the road network was estimated to
be: LDV = 36.78 · 106, T2A = 5.45 · 106, UB = 0.92 · 106 and MC = 7.11 · 106.

The road network with the traffic interpolation is shown in Figure 30 for selected
hours which produced better results. On panel (a), LDV shows higher concentrations of
vehicles towards the center of the network and LDV is concentrated on main roads. On
panel (b), UB shows spatial bias to the western part of the city. This could be due to
lon being the variable with the highest value, -4.64 at 07:00 while the others have lower
values. On panel (c), T2A shows overestimation towards the easternmost and western
part of the network. Figure 5 shows traffic counts with higher values at the east and
west sides. It also seems that the regressions over-predicted traffic at these regions. On
panel (d), MC shows a distribution similar to LDV on panel (a), but with lower values. It
seems that after all the analyses, LDV and MC were more accurately predicted than the
other types of vehicles.

5.1.1.1 Discussion

The dataset of traffic counts consisted of 107 points located inside the city and
6 toll stations near the city which added trucks, resulting in a dataset of 113 points in
total. Most of traffic in circulation is due LDV with 78.2%, then MC with 16.63% and the
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Figure 30 – Traffic count interpolation for (a) LDV, (b) UB, (c) T2A and (d) MC
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remainder of vehicles with only 5.17%.

Each type of vehicle was associated with a specific set of variables, at almost all
hours. For example, the statistically significant variables for LDV were ts, lan and dfc for
all hours, except for 18:00. The study obtained highest correlation values at morning
rush hours with very similar values to each coefficient. This means that LDV traffic is
very homogeneous at morning rush hours.

A spatial pattern of high numbers of light vehicles were observed towards the
center of the city with trucks observed towards the outer regions of the city. This pattern
is due to the fact that the variable dfc is significant in all regressions of LDV, T2A, and
also in some hours of MC. It can be expected that this pattern could be replicated in
other cities with similar characteristics as São Paulo. Among the characteristics of São
Paulo is that it is a large urban center with a small percentage of heavy vehicles. This
can differ to coastal cities which usually have ports for transport of goods by trucks.

The variable dfc implicitly relates to the coordinates of the mid-point for each link
at a defined center of the city. Hypothetically speaking, in any town there is a center with
denser traffic. However, the strength of this variable was very low compared with type
of street ts and number of lanes lan. For example, Table 11 shows that dfc of LDV is
-0.04, but the other variables ts and lan have higher magnitude values of -0.33 and 0.17
respectively. In some cases, the explicit use of geographical coordinates achieved better
results, with UB for example. In other situations, nor dfc or geographical coordinates
were significant. For instance, quasi-poisson MC at 09:00 was associated only with
intercept Int, ts and lan. Furthermore, it would be interesting to know if dfc is significant
in other cities.

In the case of UB, the variable lon was included in all hours. The results also
show that ts is significant at morning rush hours. However, in the afternoon the variable
lat was significant at 18:00 and 19:00. Therefore, it can be interpreted that this method is
not adequate to properly model UB, especially considering the low values of correlation.
Urban Buses is a type of vehicle which has a planned frequency and routes, as a
consequence its modeling requires other information.

The category of trucks T2A showed that, in most hours, the only significant
variables were lan and dfc. The only hour with different variables was 09:00 with lat and
lon, and also with lower correlation. Higher correlations were found with the other types
of vehicles. Figure 5 (b) helps to understand that distance from center dfc was present
at almost all hours, due to the high values at the eastern and western parts of the city.

Motorcycles are the only type of vehicle that presented higher correlation with
negative binomial than quasi-poisson. In general, negative binomial regressions include
more variables. On the other hand, results with quasi-poisson show that ts and lan are



108 Chapter 5. Results

present in many hours. Regressions shows that generally geographical aspects do not
play an significant role with the exception of results at 09:00 where dfc was significant.
At this hour the highest correlation found was only 0.59.

Spatial interpolation on traffic performed better for LDV and MC, as shown on
panel (a) and (d) of Figure 30.

For example, "Trucks" on the Santos Region are important because this city is a
port, attracting and generating several "trucks" trips. Traffic data from GPS in Santos
identified streets with high number of "Trucks" near the port and also, in the streets at
south est of the study area. It was corroborated this findings with Google image satellites
(not shown here). Traffic speeds from GPS was used for generating traffic flow based on
a set of traffic and speed measurements for MASP during 2012, (IBARRA-ESPINOSA,
2017). Unequivocally, updating and enhancing this information with new data sets could
improve traffic flow generation. Therefore, traffic data from Internet GPS recordings is a
promising new traffic data source for emissions inventories.

5.1.2 Traffic flow from GPS

Traffic flow speed provides uncertainty for generating traffic flow because it
depend on the quality and frequency of GPS recordings. The main difficulty with this
approach resided in the frequency of consecutive observations for the same vehicle,
which restricted the analyses. The three types of vehicles identified "Cars", "Taxi" and
"Trucks", and the vehicles "Undefined" provided information for calculating speeds for
each type of vehicle and for all. The speed later served as proxy for obtaining the traffic
flow.

The process of generating Trucks consisted in using the speed of Trucks and
when there is no available information, the speed of all vehicles only for motorways and
trunks. This process seems appropriate for "Cars" but in the case of "Trucks" could
lead to assignment of in the same streets of "Cars" which could not necessary be truth.
Circulation of "Trucks" deliver goods and this determine the route they follow. The initial
traffic flow including the spatial bias is shown in Fig. (31). The maximum amount of
vehicles per lane varies between one and two veh · h−1 and the traffic is concentrated
in just some streets. The spatial bias occurs because there are more GPS recordings
concentrated in some parts of the city. However, after correcting with speeds as proxy,
the traffic flow looks more like reality as shown in Fig. (32). Now the traffic has reached
a volume that exceeds the 15000 veh · h−1. Also, the traffic is condensed in urban
motorways near the center of the city. Considering the spatial distribution of the traffic, it
seems that the spatial bias was removed. In addition, the amount of vehicles per lane
also seems reasonable.
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Figure 31 – Traffic flow of Cars generated from GPS data (veh · h−1 per lane).

It was presented these aspects in Fig. (31) and in Fig. (32) for the center of
the city of São Paulo so that it can been seen very clearly the spatial bias and also,
the effect of its correction. The resulting traffic flow for all the metropolitan areas is
shown in Fig. (33) for Cars and Fig. (34) for Trucks. The resulting traffic flow of Cars
is concentrated in main roads near the center of each region. For instance, in center
of Campinas, São Paulo and Santos traffic is more density. There are streets where
traffic from Cars can overpass 15000 veh · h−1. However, the total amount of Cars is
18413811 veh ·h−1 and as the number of streets with Cars is 8459, there are on average
2176.8 veh · h−1 · street−1. In the case of Trucks, they are concentrated in motorways.
The volume can overpass 200 veh · h−1 in most congested streets. The total amount
of Trucks is 296584.4 veh · h−1 and as the number of streets with Trucks is 2774, the
average number per street is 106.9 veh · h−1 · street−1.

5.1.3 Traffic flow from simulations

The traffic from traffic simulation from CET contained LDV and HGV simulation
for morning rush hour, and simulation from SPtrans Urban buses. Each simulation have
an uncertainty in the exact number of vehicles circulating. CET performs traffic counts
to calibrate traffic simulations (IBARRA-ESPINOSA, 2017) in the mains routes at MASP.
Both simulations include a limited number of local streets as virtual links located at the
centroid of each zone of Origin-Destination. These links represent real traffic over virtual
links, therefore, provides an associated element of uncertainty. However, most of traffic
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Figure 32 – Traffic flow of Cars generated from GPS data with spatial correction using
speed as proxy (veh · h−1).

occurs in mains streets, such as motorways, trunks and primary.

Traffic simulations from CET and SPtrans is data that is ready to be processed
by the model VEIN, and therefore, does not need a description here. More details in
section 2.3.

5.1.4 Emissions scenarios

The hourly traffic flow generated using GPS recordings was for Cars (LDV) and
Trucks (HGV) for the period between 2014-10-05 00:00 and 2014-10-11 00:00 UTC.
The initial data set of 145 hours was filled with the same initial 23 hours (Sunday) to add
up to 168 hours of a week of data. The spatial coverage includes all the metropolitan
areas for this study. The traffic simulations from CET and SPtrans includes one morning
rush traffic data for a typical working day of 2014, including volume of LDV, HGV and
Urban Buses (UB) only for MASP. The traffic interpolation includes volume of LDV
and MC using count data of 2012 but it was assumed that it could represent 2014.
Traffic interpolation was made only for MASP. With this information it was configured the
scenarios that cover all regions:

A Traffic from GPS records in all regions. MASP with traffic simulation of UB from
SPtrans.
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Figure 33 – Traffic flows derived from GPS recordings for Cars (veh · h−1) on Monday
2014-10-06 08:00 - 09:00 LT.

B Traffic from GPS records except MASP. MASP with traffic simulation from CET
and SPtrans of LDV, HGV and UB.

C Traffic from GPS records except MASP. MASP with traffic interpolation for LDV
and MC, HGV from traffic simulation of CET and UB from SPtrans.

The scenario A considers not only GPS records but also traffic simulation of UB
from SPtrans. It was included UB because GPS data include only Cars and Trucks.
Also, the spatial distribution of UB and Trucks is different as shown Fig. (34) and Fig.
(4). The average number of vehicles per streets is quite different, with more UB. The
traffic will be later calibrated but before that, the proportions of UB and Trucks need to
be adjusted. According to the traffic simulations from CET and SPtrans, the volume of
trucks is 2809297 veh · h−1 and UB is 763097 veh · h−1 meaning that the proportion of
UB to Trucks is 0.2716328. To obtain this proportion it would be possible to use other
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Figure 34 – Traffic flows derived from GPS recordings for Trucks (veh · h−1) on Monday
2014-10-06 08:00-09:00 LT.

source of data but it was used traffic simulations because both have from the same
origin: ODS. This proportion is kept by multiplying the number of UB with a factor. The
volume of Trucks from GPS between 08:00 and 09:00 in MASP 474753.3 veh · h−1.
Therefore, the multiplication factor of UB is 0.2716328 · 474753

763097.3
= 0.1689935

The scenario B uses GPS records for all regions with exception of MASP where
traffic simulations are used instead. The scenario C uses LDV and MC from interpola-
tions. Scenarios B and C does not need to multiply traffic to keep proportions.
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Table 15 – Calibration factors for traffic by type of fuel in each region and scenario

E25 E100 B5

Region Factor % Factor % Factor %
MASP (GPS) 0.495 101.22 0.393 100.05 0.0124 84.14
Campinas (GPS) 0.2695 101.01 0.262 100.61 4.63 84.39
SJDC (GPS) 0.362 100.27 0.238 100.16 3.7 85.40
Santos (GPS) 0.265 100.09 0.164 100.73 5.15 85.61
Sorocaba (GPS) 0.181 100.50 0.199 100.55 3.5 85.56
MASP (Simulation) 1.135 100.41 0.905 100.47 0.44 84.47
MASP (Interpolation) 0.795 100.09 0.595 100.43 0.55 85.03

5.2 Emissions inventories

5.2.1 Traffic flow calibration with fuel consumption

Traffic from all sources was calibrated in order to match the fuel sales in each
region. A calibration factor must be multiplied to the traffic flow in order to match 100%
of sold E25 and E100, and 85% of B5. Table (15) shows the calibration factors for traffic
by type of fuel and region. Traffic data was overestimated for E25 and E100 in all regions
with the exception of MASP (Simulation) consuming E25. The region that required a
smaller factor for adjusting the traffic consuming E25 was Sorocaba, which means that
the traffic was slightly over predicted in this region. In the case of E100, all regions
presented over prediction, the highest factor was obtained with MASP (Simulation) and
the smaller for Santos. Lastly, the B5 presented values above 1 for all regions with
GPS traffic data, except MASP. In this case, MASP (GPS) contains traffic simulation
for buses, and MASP (Simulation) and MASP (Interpolation) have traffic simulation for
trucks and buses. This means that traffic was over predicted in this area, however, in
the case MASP (GPS) it was excessively over predicted. This is due to the fact the
speed was used as proxy for estimating traffic data from GPS recordings, and this area
has more motorways and trunks. Another reason is that more vehicles are recorded in
MASP contrary to the other regions, and therefore, this region has more streets with
speeds. MASP (simulation) produced the values closer to one in all fuels, which means
that this is the most representative data before adjustment by traffic sales.

5.2.2 Emissions in each region by type of vehicle

Table (16) shows the emissions inventories for each region; CO2 is expressed as
106t · y−1 and Vehicles times kilometers (VKM) as 1012km · y−1. The total NMHC includes
also the regional total for paintings, as explained in section 3.4.2. The region with the
greatest amount of emissions is MASP, however, the quantities varies depending on
the input of the activity data. In the case of PM , CO, NOX , NMHC, CH4 and CO2
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the highest emissions are obtained with MASP GPS, however, this regions produces
less activity VKM in comparison with the other MASP regions. The reason is that the
average speed in MASP GPS is lower than the other regions. This can be seen in Fig.
(35) where the average speeds in MASP for the 3 data sources are presented for the
168 hours of the week. The three speeds curves shows a similar behavior with lower
speeds at rush hours and higher speeds when the traffic is not so intense. As Fig. (21)
shows, emissions increases when the average speeds lowers. Therefore, this explains
MASP GPS higher emissions for some pollutants despite having less activity (VKM)
and highlights the importance of including kinematic parameters in vehicular emissions
inventories. Another region of interest is Campinas, because it also has lower VKM
than MASP Simulation and MASP Interpolation, but PM emissions are higher, which
is due to the relatively high VKM values for HGV and also slower speeds, which is a
characteristic of the set GPS data presented in this study. Regarding the Categories
of vehicles, there is a consistent estimation by type of vehicles for all the regions and
scenarios. In other words, vehicles consuming diesel emits more NOX , SO2 and PM,
and LDV emits more CO and NMHC.

Figure 35 – Hourly speeds in MASP with data from GPS, simulations and interpolations
(km · h−1).

5.2.3 Emissions by age of use of vehicle

The vehicular emissions inventories presented in this study shares a common
characteristic of the age of use of vehicle. This allows to identify a signature of the
pollutant in the region, which is defined as the total amount of emissions by age of use
and type of vehicle shown in 36. These figures comes from the GPS traffic data for
the 5 metropolitan regions. The emissions with traffic data from traffic simulation and
interpolations produce a similar signature with smaller emissions, therefore, they are not
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Table 16 – Emissions by each regions (t · y−1) 2014

Region Cat PM CO NOX NMHC NH3 SO2 CH4 CO2 V KM

Campinas
GPS

PC 20.80 72743.70 7214.00 25056.00 741.80 174.50 1741.90 4.06 61.67
LCV 52.50 7033.50 1752.50 4480.60 103.90 32.00 233.00 0.83 10.41
HGV 2424.40 6660.30 42079.70 1830.30 24.40 942.20 23.10 3.98 9.78
MC 0.00 11636.10 780.00 1151.50 8.70 10.30 224.30 0.28 10.47
Total 2497.70 98073.60 51826.20 35820.76 878.80 1159.00 2222.30 9.14 92.34

Santos
GPS

PC 5.40 17640.30 1868.00 6159.00 173.50 36.90 417.10 0.90 2.40
LCV 13.70 1846.40 442.60 1134.60 25.20 7.30 56.00 0.20 0.43
HGV 775.90 2052.50 13191.80 546.20 7.80 296.90 7.40 1.25 0.61
MC 0.00 3275.00 222.30 297.80 2.20 2.70 57.50 0.07 0.46
Total 795.00 24814.20 15724.70 10556.61 208.70 343.80 538.00 2.43 3.89

SJDC
GPS

PC 5.80 19148.50 1988.90 6630.60 187.30 40.60 449.00 0.99 2.73
LCV 14.60 2025.70 474.40 1218.40 27.10 8.00 60.20 0.22 0.48
HGV 513.30 1434.30 8965.40 393.50 5.20 202.00 4.90 0.85 0.39
MC 0.00 3440.30 232.40 319.40 2.40 2.90 61.40 0.08 0.52
Total 533.70 26048.80 11661.10 11864.26 222.00 253.50 575.50 2.13 4.12

Sorocaba
GPS

PC 5.00 17708.90 1856.20 6061.70 186.00 43.80 433.60 1.00 1.97
LCV 12.70 1834.00 444.00 1068.10 25.70 7.80 57.90 0.20 0.33
HGV 556.80 1409.60 9254.60 364.10 5.60 208.40 5.30 0.88 0.36
MC 0.00 3146.30 215.70 275.00 2.10 2.60 54.60 0.07 0.32
Total 574.50 24098.80 11770.50 10568.43 219.40 262.60 551.40 2.16 2.98

MASP
GPS

PC 58.40 216870.40 19458.40 70080.00 1974.60 477.80 4689.70 11.40 493.06
LCV 147.50 24418.70 4851.90 12983.20 281.60 92.60 628.50 2.43 101.06
HGV 2555.70 7865.30 47567.40 2349.50 25.80 1071.60 24.40 4.49 70.24
Bus 259.70 3364.00 15624.40 615.30 4.40 349.20 51.90 2.63 5.56
MC 0.00 30804.20 1960.50 3457.40 24.00 28.60 624.20 0.77 105.36
Total 3021.30 283322.60 89462.60 117928.93 2310.40 2019.80 6018.70 21.74 775.27

MASP
Simu

PC 53.70 127637.80 16307.70 30435.90 3422.40 278.20 3069.50 11.01 1932.57
LCV 136.8 14021.70 3810.90 5692.70 339.30 178.50 433.9 2.63 356.35
HGV 1815.3 6785.80 42215.50 1752.10 30.30 1232.80 17.70 5.18 158.21
Bus 109.6 1708.20 7574.80 268.30 2.10 260.90 20.50 1.43 13.14
MC 0.00 28622.60 1863.30 3382.80 25.20 11.90 651.40 0.76 336.43
Total 2111.54 178776.1 71772.20 69975.60 3819.30 1701.14 4220.00 21.01 2796.70

MASP
Inter

PC 62.10 137867.80 18109.90 33002.60 3756.20 480.00 3479.70 11.57 2006.11
LCV 158.10 14590.90 4152.80 6242.90 372.30 227.00 492.20 2.79 372.76
HGV 1815.30 6785.80 42215.50 1752.10 30.30 1232.80 17.70 5.18 115.52
Bus 109.60 1708.20 7574.80 268.30 2.10 260.90 20.50 1.43 13.14
MC 0.00 6064.50 403.20 660.00 5.30 91.50 136.30 0.15 63.31
Total 2145.10 167017.20 72456.20 70369.43 4166.20 2206.40 4146.40 21.12 2570.85

shown here. To understand these figures it is necessary to consider that the emission
factors are higher for older vehicles as shown on Fig. (20), and also the deterioration
of vehicles and fleet distribution as shown in Fig. (19). Emissions of CH4, CO and
NMHC show three peaks, at vehicles newer than 10, at 20 and older than 30 years
of use. The reason of the first peak is the rapid increment of the fleet between 2000
and 2011 including Motorcycles (MC). The second peak (vehicles between 19 and 23
years of use) is due to relative equilibrium between fleet and deteriorated emission
factors. According to the Manual of Air Pollution Control Program by Motor Vehicles
(MACEDO et al., 2011), vehicles with catalytic system entered into market with the
Brazilian emissions standard Proconve L2, in 1992. Vehicles of 1992 have 23 years of
use in 2014, therefore, the second peak is due to vehicles with deteriorated catalytic
system. The third peak is due to relatively small fleet with higher emission factors.
Emissions of CO2, N2O and SO2 share a pattern following the increment of the fleet.
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Emissions of NOX and PM have a pattern slightly similar with a central peak, however,
there are more NOX emissions in newer vehicles due to the participation of Buses.
Evaporative emissions have a clear pattern of higher emissions in older vehicles, for
this graph diurnal, hot-soak, running losses and also, leaking evaporative fuel emissions
produced when buying fuel were aggregated. Regarding the participation of each type
of vehicle, PC is the main responsible on emissions of 78.04% of CH4 , 75.40% CO,
48.81% of CO2, 82.92% of Evaporative, 63.12% of N2O and 64.74% of NMHC. In the
case of HGV, they were responsible of 67.09 % of NOX , 91.96% PM and 67.37 % of
SO2.

Figure 36 – Signature (vehicular emissions by age of use and type of vehicle) in all
metropolitan regions with GPS traffic data for different pollutants (t · y−1).

5.2.4 Emission maps

The emission maps of CO, NOX , NMHC considering exhaust, evaporative,
evaporation at fuel stations and paintings, and PM for traffic data from GPS, Simulations
and Interpolations are shown in Fig. (37). All emissions outside the metropolitan region
of São Paulo comes from GPS data,therefore, the spatial difference is found only at
MASP. CO have a spatial distribution very similar for the data with different sources.
However, high MASP emissions are broader with data from Interpolation, followed by
GPS. In the case of NOX , data from Interpolation and Simulation show a similar pattern,
clearly identifying the motorway ring at south of MASP. This is not the case for NOX

emissions from GPS data because trucks uses speeds from trunks and motorways as
proxy for traffic flow, the same streets used for Cars traffic generation. Therefore, Cars



5.3. Atmospheric simulation 117

and Trucks share, in some cases, the same streets. The emissions of PM follows the
pattern of NOX . There is a peak emission in a motorway at the southwest part of the
region, at longitude 47.5 W and latitude 24.4 S which is due to a high activity of trucks in
this area (Rodovia Regis Bittencourt). Other motorways (Rodovia dos Bandeirantes and
Rodovia Anhanguera) at the nortwest part also show higher emissions of PM. NMHC
shows a different pattern than the other pollutants with more streets with low emissions
in red, due to painting emissions distributed in non motorway streets. The higher density
of NMHC emissions is similar to CO, with hot-spots in the center of the cities.

Fig. (38) shows the LAPAt emissions generated according to ANDRADE et al.
(2015), for NO for a 2 km x 2 km grid. VEIN emission maps show details that could not
be done using the top-down approach.

5.2.5 Emissions by hour of the week

The hourly emissions for the 168 hours of the period study are shown on Fig. (39).
The pollutants shown are CO, NOX , NMHC and PM estimated with traffic data from
GPS recordings, Interpolation and traffic Simulations for MASP. Emissions estimated
with GPS have a similar pattern for different pollutants, and in the case of data from
Interpolations and Simulations, both set of hourly estimations show a similar pattern
because the traffic from one morning rush traffic flow is extrapolated using temporal
factors of the same normalized traffic counts from the nearest toll stations from São
Paulo. Therefore, emissions dominated by light vehicles are very similar with traffic data
from Interpolations and Simulations, with some small differences in the totals. Emissions
from GPS data presents profiles relatively constants for CO and NMHC, with lower
emissions at night and early morning, and lower emissions on weekends. In the case of
NOX the profile is more marked and with PM not so marked, this is due to the profile
of Buses which comes from traffic simulation of SPTrans. On contrary, emissions from
Interpolation and Simulations have marked profiles in all emissions.

5.3 Atmospheric simulation

Modeling air quality is a complex process that depends on emissions and the
meteorological simulation. This subsection presents first the comparison between
observed and simulated meteorology parameters and then the comparison for air
pollutant concentrations for the inner grid only. Observation data are from the Air
Quality and Meteorological Network (Qualar, http://qualar.cetesb.sp.gov.br/) from the
Environmental Agency of São Paulo, CETESB. This system provides information of
air pollutant concentration and measurements of meteorological parameters for 62
superficial stations. It was chosen the stations inside the metropolitan areas of this study,
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Figure 37 – Emission maps of CO, NOx, PM and NMHC due traffic activity from GPS,
Interpolation and Simulations (g · h−1) for 08:00-09:00LT Monday 2014.
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Figure 38 – Emission maps of NO using LAPAt top-down approach (g · h−1) for 08:00-
09:00LT.

shown in Fig. (40). It was used the information of 41 stations located in 5 metropolitan
areas.

The emissions in Campinas, SJDC, Santos and Sorocaba were the same for all
the emissions scenario, using only activity data from GPS recordings. As a consequence,
the air pollutant concentrations and meteorological parameters did not present too much
variation. Therefore, for these 4 areas, the analyses presented were those from the GPS
scenario, whereas, for MASP, it was presented the 3 scenarios: GPS, traffic interpolation
and traffic simulation. The analyses consisted in hourly mean for each metropolitan
region comparing observed and simulated variables.

5.3.1 Meteorological simulation

WRF underestimates maximum temperature and overestimates minimum tem-
perature, Fig. (41). However, the diurnal pattern (with minimum temperatures around
06LT and maximum temperatures before 15LT) and the increase of temperatures over
the week are well simulated. Temperature simulated at Santos presents higher variance,
with interquartile ranges reaching almost 10 degrees. This was caused because the
stations at Santos varies in land use and altitude: the city of Cubatão is an industrial
district, farther from the coast and at higher altitudes than the station at the city of
Santos, which is very near the beach.



120 Chapter 5. Results

Figure 39 – Hourly emissions of CO, NOx, NMHC and PM due traffic activity from
GPS, Interpolation and Simulations in MASP (g · h−1).

WRF overestimates wind speeds at all regions, as shown in Fig. (42). However,
the simulation follows the tendency of the observations more clearly in some regions,
such as Santos and Campinas. On the other hand, it is also in Santos where the largest
standard deviations are found resulting in different magnitude of winds. This means that
simulated wind is simulated at higher speeds than observed.

5.3.2 Simulation of CO, NO, NO2, SO2 and O3

Fig. (43) shows the comparison for CO concentrations. There are no CO data
in Santos and SJDC, therefore it was presented only the simulated concentrations in
those regions. Simulated CO for MASP GPS stands out for its much higher values than
any other simulation and region. For all the other simulations, inside each metropolitan
area, simulated CO are in general lower than observed. This could be due to higher
simulated wind speed. However, they all simulate the morning and evening peaks
associated to rush-hours higher emissions. Simulated CO for MASP Interpolation and
MASP Simulation show good agreement with observations, the morning peak for week
days are well represented, with simulated values very near from observed ones. The
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Figure 40 – Meteorological and Air Quality Stations from CETESB used in this study.

evening peak is also well represented, however, the higher observed concentrations at
night, could not be simulated, specially from Friday to Saturday.

NO observations and simulations are shown on Fig. (44). Campinas observations
are well accompanied by simulations in most hours, except in Friday and Saturday peaks.
Result with MASP Interpolation and MASP Simulation are very similar, observations
are higher than simulations but there is an agreement in general tendency. In the case
of MASP GPS, it seems that there is a better agreement with observation. The morning
peak is usually somewhat simulated, but the higher observed concentrations during the
evening and early hours of each day could not. In the case of Santos, simulations barely
accompanied observations that were higher in all hours. Santos is a region that has the
biggest port in South America, therefore, since these maritime and stationary sources
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Figure 41 – Hourly mean of observed and simulated temperature (Celsius) by Metropoli-
tan Area.
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Figure 42 – Hourly mean and standard deviation of observed and simulated wind speed
(m · s−1) by Metropolitan Area.
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Figure 43 – Hourly mean and standard deviation of CO (ppm) by region and scenario.
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at the port were not included in the emissions, it is reasonable that the simulated values
were so low. SJDC and Sorocaba show better agreement for low concentrations, peak
observations are not well accompanied by simulations. Since NO is also a primary
pollutant, its simulated concentration was also impacted by the higher wind speeds.
Sorocaba simulated wind speed were more similar to observed values which could
explain the better agreement of observed and simulated NO.

NO2 observations and simulations are shown on Fig. (45). In all regions obser-
vations are higher than observations. Simulated NO Fig. (44) was also much lower than
observed, which would mean less NO2 photochemical production, and thus, lower simu-
lated NO2. However, there also seems that in Sorocaba, the photochemical production
of NO2 is consistent with diurnal values. The accumulation of this pollutant during the
evening, however, could not be reproduced by the model.

Hourly mean and standard deviation of SO2 observations and simulations are
shown on Fig. (46). Campinas and Sorocaba do not present observations and both
regions present a similar profile, with higher concentrations in Campinas. Regarding
the MASP and SJDC regions, simulations are in the same order of magnitude with
observations, and the standard deviation present small values . Santos is the only
region in which observations were much above atmospheric simulations. This could
meaincludegraphicsn that emissions produced by diesel combustion are underestimated,
however, as already mentioned, a detailed characterization of the sources is required for
this region. There is a peak of SO2 at early morning of Sunday which is not accompanied
by any simulations, with exception of MASP GPS. This could be due to trucks activity at
that time, and normalized profiles to expand hourly morning rush hour did not capture
this variation. MASP Simulation and Interpolation SO2 simulated values have almost
the same peaks for morning and evening rush hours. However, as with the other
primary pollutants, there seems to be an issue with the Planetary Boundary Layer
parameterization, since ate evening higher observed values could not be reproduced.
Simulated CO and NO seemed to be more diluted by higher winds; thus, if the same
hypothesis were applied here, it would mean that SO2 emissions are overestimated for
MASP.

Hourly mean and standard deviation of O3 concentrations and simulations are
shown in Fig. (47). Concentrations in MASP regions seems to have a reasonably good
agreement with observations. However, the diurnal peak of simulated O3 occurs a few
hours later than observations. The early morning observed peak (due to recirculation)
could not be reproduced by the model. It is interesting to notice that the diurnal peak
of simulated O3 occurs a few hours before the observed one. In SJDC, this pattern
varies throughout the week. O3 is underestimated at all the regions, although in Santos
the values are more similar. In Campinas simulated O3 production was almost absent.
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Figure 44 – Hourly mean and standard deviation of NO (ug ·m−3) by region.
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Figure 45 – Hourly mean and standard deviation of NO2 (ug ·m−3) by region.
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Figure 46 – Hourly mean and standard deviation of SO2 (ug ·m−3) by region.
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Overall, the under prediction of O3 could be due to under prediction of NO. However,
NMHC should also be evaluated. Unfortunately, there are no NMHC observations
available for this period. It should also be noted that simulated O3 diurnal variation is
driven by temperature, which was very well simulated.

Another important point that affects all scenarios is the absence of other sources
of emissions such as industrial or other that combustion wood such as Pizzerias.
Therefore, air quality modeling do not match observations not only by over prediction of
wind speed, but also missing sources.

5.3.3 Evaluation of the WRF-Chem simulation in each region

The last part of this section shows the evaluation with the statistics indexes
shown on Table (17). Temperature was the best forecast variable. It was well modeled
in most of regions, except in SJDC, where the errors were bigger. In the case of wind
speed, the better correlations were obtained in the region of SJDC and Santos. CO
correlation was slightly better for MASP than for Campinas, however the MFB and MFE
had higher magnitudes in Campinas than in MASP. Regarding the NO, this pollutant has
observations in all regions and better correlation in Santos followed by MASP, however,
the errors were smaller in MASP. In the case of SO2 and NO2 the simulations were
very distant from the observations and the correlation was very low. The O3 correlations
reached mean values above 0.62 in MASP and 0.61 in Santos. There were even stations
such as Itaim Paulista where correlations reached 0.82. The results for traffic data from
Interpolation and Simulation were similar, but higher correlations were found for NO
and O3. NO2 is systematically underestimated in all regions, which suggest that the
fraction NO/NO2 is not well represented in the emission factors.

5.4 Discussion and uncertainty

This study faced the complex problem of air pollution, from the development
of detailed bottom-up vehicular emissions inventories, inclusion of speed in constant
emission factors by age of use, evaluation with fuel sales in each region and air pollutant
simulation with an "online" air quality model. Each stage included difficulties, challenges,
assumptions and uncertainties discussed in this section, that provides opportunities to
improve in future researches.

Developing a bottom-up vehicular emissions inventory with data from massive
GPS recordings is a novel approach to my knowledge, a new approach approach that
requires further improvements and this study provided an exploratory analyses. Traffic
flow speed provides uncertainty for generating traffic flow because it depends on the
quality and frequency of GPS recordings. The main difficulty with this approach resided



130 Chapter 5. Results

Figure 47 – Hourly mean and standard deviation of O3 (ug ·m−3) by region.
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Table 17 – Evaluation of atmospheric simulation in each region

Region MB MFB MFE RMSE COR Parameter Data

Campinas 0.34 2.13 6.81 11.62 0.92

Temperature
MASP 0.65 2.78 11.39 0.35 0.9
Santos -0.71 -2.59 9.14 0 0.59
SJDC -3.21 17.23 104.75 5.04 0.39
Sorocaba 0.41 2 10.14 0 0.92

Campinas 1.06 41.59 57.74 0.03 0.12

Wind Speed
MASP 1.24 54.26 74.34 0.01 0.1
Santos 1.99 80.3 88.89 0 0.26
SJDC -3.21 17.23 104.75 5.04 0.39
Sorocaba 0.53 19.91 49.72 0 0.05

Campinas -0.42 -75.92 84.09 0.18 0.29
CO

GPS

MASP 0.59 7.59 72.27 0.81 0.30

Campinas -0.64 46.82 113.3 4.15 0.25

NO
MASP -19.11 -63.96 126.16 2.87 0.44
Santos -39.61 -92.19 140.32 1.7 0.55
SJDC -3.21 17.23 104.75 5.04 0.39
Sorocaba -1.03 -5.34 142.23 1.87 0.37

Campinas -17.23 -152.01 152.80 3.78 0.16

NO2

MASP -45.80 -146.67 146.96 1.05 0.25
Santos -52.65 -159.30 159.88 0.60 0.02
SJDC -17.98 -142.65 148.96 0.34 -0.14
Sorocaba -10.18 -124.31 137.12 3.20 0.05

MASP 1.82 6.34 66.03 1.05 0.2
SO2Santos -11.95 -102.48 117.18 0.42 0.06

SJDC 1.66 40.49 75.88 0.04 0.02

Campinas -56.83 -164.75 166.18 2.44 0.45

O3

MASP -23.93 -75.33 108.53 15.57 0.62
Santos -17.45 -82.32 122.13 7.97 0.61
SJDC -3.21 17.23 104.75 5.04 0.39
Sorocaba -57.63 -126.83 129.22 7.8 0.22

MASP

-0.25 -41.44 69.72 0.07 0.28 CO

Simulation
-21.35 -66.76 123.79 1.73 0.48 NO
-45.80 -146.67 146.96 1.05 0.25 NO2

34.40 112.67 120.07 11.68 0.15 SO2

-28.16 -89.43 113.87 13.33 0.71 O3

-0.29 -47.87 75.13 0.08 0.26 CO

Interpolation
-21.38 -66.84 123.79 1.76 0.48 NO
-47.24 -154.10 154.14 0.56 0.20 NO2

34.93 111.99 119.19 12.12 0.15 SO2

-28.13 -89.17 114.06 13.36 0.71 O3
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in the frequency of consecutive observations for the same vehicle, which restricted the
analyses. The three types of vehicles identified "Cars", "Taxi" and "Trucks", and the
vehicles "Undefined" provided information for calculating speeds for each type of vehicle.
The speed later served as proxy for obtaining the traffic flow for "Cars". The process
of generating traffic flow for "Trucks" also consisted in using the speed of Trucks, but
when there was no available information, the average speed of all vehicles was used.
This process seems appropriate for "Cars" but in the case of "Trucks", it could lead to
assignment in the same streets of "Cars" which could not necessarily be true. Circulation
of "Trucks" is driven by delivering goods and this determines the route "Trucks" follow.
Therefore, this traffic flow could not have an exact spatial representation. This could
be one reason that GPS generated PM and NOX emissions have different spatial
distribution on Fig. (37) from Simulations and Interpolation emissions. This figure shows
clearly a ring of NOX and PM emissions surrounding the city of São Paulo, and in the
case of the emissions generated with traffic from GPS, this ring does not appear. On
the other hand, this data provided insights of "Trucks" flow that hardly could be obtained
from other sources. For example, "Trucks" on Santos Region are important because
this city is a port, attracting and generating several "trucks" trips. Traffic data from GPS
in Santos identified streets with high number of "Trucks" near the port and also, in the
streets at southwest of the study area. Unequivocally, updating and enhancing this
information with new data sets could improve traffic flow generation. Therefore, traffic
data from Internet GPS recordings is a promising new traffic data source for emissions
inventories.

The traffic simulation from CET contained LDV and HGV simulation for morning
rush hour, and the simulation from SPtrans contained Urban buses. Each simulation
has an uncertainty in the exact number of vehicles circulating. CET performs traffic
counts to calibrate traffic simulations (IBARRA-ESPINOSA, 2017) in the main routes at
MASP. Both simulations include a limited number of local streets as virtual links located
at the centroid of each zone of Origin-Destination. These links represent real traffic over
virtual links, therefore, provides an associated element of uncertainty. However, most of
traffic occurs in mains streets, such as motorways, trunks and primary, therefore the
uncertainty of virtual links should be small for a emissions grid with a spacing of 3 km.

The interpolation of LDV and MC from traffic counts produced results very similar
to the traffic simulation. This means that traffic interpolation is a suitable method for
cities that do not have traffic simulations. Regarding the speed, it was also interpolated
from morning rush hour but the hourly profile was generated using a simple scheme of 3
hours of rush hour speeds at morning and evening, free flow speeds from speeds limits
registered at OpenStreetMap and an average in the hours in-between. This method
leads to speeds at free flow hours higher than the average of the speeds of GPS and
traffic simulation, on average, as shown on Fig. (35).
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Traffic calibration using fuel sales resulted in consistent traffic flows regarding the
origin of the data. This can be seen in the CO2 emissions which resulted in 21 106t · y−1

for the whole MASP. As CO2 depends more directly on fuel consumption, it should be
expected that calibration with fuel sales produced satisfactory results. There is a source
of uncertainty in fuel consumption of diesel, because sales statistics (ELECTRICA,
2014) is given for total diesel, without discriminating the fuel used only for automotive
purpose. For instance, there are many electricity generators that consumes diesel. In
addition, as trucks travel long distances for delivering goods, fuel bought in one region
could be consumed outside it, adding uncertainty. The criteria that 85% of diesel sales
is used by vehicles may be conservative, thus it is an approach subject to review.

The emissions estimated with VEIN were consistent in each region. The differ-
ence in MASP region for each pollutant presents differences associated with the speeds
and amount of vehicles. As Table (16) shows, the VKM in MASP Interpolation is 2570
·1012km · y−1 and MASP Simulation 2796 ·1012km · y−1, which are very similar, but in
MASP GPS this value is 775 ·1012km · y−1, approximately 3.4 times lower. However, the
emissions in MASP GPS are higher for pollutants emitted from gasohol and ethanol
vehicles. These higher emissions are due to lower speeds, as shown in Fig. (35), and
then emission factors are higher, as shown in Fig. (20). This highlights the importance of
including kinematic parameters in the estimation of vehicular emissions. Regarding the
emission factors, there are elements of uncertainty in the emission factors measurement.
LDV and MC emission factors informed by (CETESB, 2015) come from dynamometer
measurements and it has been discovered that these emissions are not representative
of real world emissions (PELKMANS; DEBAL, 2006). In addition, car manufacturers
incorporated software in the vehicles to cheat emission certification tests. In Brazil,
the Institute of Natural Resources and Environment (IBAMA) fined Volkswagen with
USD 15 106 after tests using portable emissions measurements made by CETESB
(IBAMA, 2017). However, the diesel fleet of LDV is small and the impacts on vehicular
estimation may not be significant. These examples show the importance to start a
program of real world emissions measurements in Brazil, and that (CETESB, 2015)
emission factors could be underestimated. In addition, there are uncertainty also in the
deterioration factors used in this study, because they were calculated for European vehi-
cles (NTZIACHRISTOS; SAMARAS, 2016) and they may not fully represent Brazilian
vehicular deterioration. Lastly, the emission factors of certification tests FTP-75 informed
by (CETESB, 2015) only include one value for the all cycle, without discriminating each
phase, and it is known that cold start emissions can be very important, and they increase
when the temperature decrease (NTZIACHRISTOS; SAMARAS, 2016).

There are other corrections that could improve the emission factors, such as
the incorporation of percentage of load in HGV and the effect of the road inclination.
This could be important in the streets that connect São Paulo and Santos, because
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Table 18 – Comparison with vehicular emissions inventories in different cities (t · y−1)

City Year PM CO NOX NMHC CO2 · 106 Reference

MASP, Brazil 2014 2111 178776 71772 69975 21.01 This study
MASP, Brazil 2014 1484 162896 54334 34824 14.28 (CETESB, 2015)
Rio de Janeiro, Brazil 2010 2917 583667 68400 69689 (SOUZA et al., 2013)
Santos, Brazil 2014 795 24814 15724 10556 2.43 This study
Santos, Brazil 2014 182 13497 6157 2628 1.38 (CETESB, 2015)
Sorocaba, Brazil 2014 574 24098 11770 10568 2.16 This study
Sorocaba, Brazil 2014 257 20203 8832 4070 1.9 (CETESB, 2015)
SJDC, Brazil 2014 533 26048 11661 11864 2.13 This study
SJDC, Brazil 2014 271 27406 10116 5287 2.4 (CETESB, 2015)
Campinas, Brazil 2014 2497 98073 51826 35820 9.14 This study
Campinas, Brazil 2014 377 34890 13851 7180 3.3 (CETESB, 2015)
Porto Alegre, Brazil 2004 2350 195740 34111 23450 (TEIXEIRA; FELTES; SANTANA, 2008)
Manizales, Colombia 2014 800 43400 4900 9600 0.45 (GONZÁLEZ et al., 2017)
Santiago, Chile 2010 1275 199884 40126 16668 7.3 (ESCOBAR et al., 2007)
Buenos Aires, Argentina 2006 6370 569000 81900 69800 11.5 (D’ANGIOLA et al., 2010)

the load could be different in each trip. In addition, the road inclination is significant
because Santos is near sea level, whereas São Paulo is over 760 meters above sea
level. The streets with the highest inclinations are located near Cubatão, an industrial
district between Santos and São Paulo, and including this effect would change the
atmospheric chemistry in simulations at the interface between both cities.

It was compared the inventories of MASP simulation and GPS Sorocaba, Camp-
inas, Santos and SJDC with the emissions of different cities in Latin America shown on
Table (18). The first comparison is between the official emissions inventory for MASP,
which uses a top-down approach with statistics of fleet and representative speeds.
In this case, the CO emissions are quite similar, being the 10% overestimated. The
differences with the other pollutants is bigger, for example, the CO2 estimative is 1.5
times higher.

The comparison with the official inventories for the other cities show that this
study emissions are higher in all cases. Values for Rio de Janeiro, Porto Alegre and
Buenos Aires shows the estimates in those cities are higher, which could be due to
the fact the the base years are 2010, 2004 and 2006 respectively and the circulating
fleet had older technology allowing more emissions. The comparison with Santiago
seems to give reasonable estimates despite that the fleet is older, however, the number
of vehicles circulating in Santiago is smaller because of the size of the city and road
network. The only city in which the NMHC emissions were significantly higher than
NOX was Manizales. This seems to be related to the evaporative emissions estimations
which is based on an hourly distribution of trips based on a survey with number of times
that the engine started. In Manizales, the survey shows that there are 5 trips per day for
light vehicles and in the present study, 4.5 based on literature. This small difference in
number of trips per day can have a greater impact on evaporative emissions estimations,
therefore, improving the knowledge of this parameter could enhance the inventory in
São Paulo.
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WRF simulations produced good values of temperature, as shown on Fig (41)
and correlations in Table (17). However,the simulation of wind speed did not produce
satisfactory results, with lower correlations, with simulated wind speeds higher than
observed ones, except in SJDC. These higher winds could disperse more the pollutants
emitted and thus result in lower simulated concentrations of the primary pollutants, which
was exactly what happened in MASP. Thus, it is very important to have meteorological
simulations of good quality, because the concentrations, formation and transport of
pollutant depend on it. It has been shown the the sea breeze plays an important role in
local winds in São Paulo (FREITAS et al., 2007), trapping the pollutants and increasing
their concentrations (ANDRADE et al., 2015). Therefore, future simulations should be
performed in order to obtain better representations of meteorology.

The air pollutants concentrations obtained with the emissions inventories pre-
sented well agreement with observations in some stations across the regions. Specifi-
cally, the pollutants with better agreement was O3, followed by NO. In both cases, the
model did not reach the peak of observations, however, the simulated concentrations
were reasonable. The simulation presented in this study covers painting emissions, how-
ever, this is not a comprehensive inventory and naturally, there are missing sources
that could help to improve the matching between observations and simulations.
Despite this, air pollutants simulation is satisfactory in the case of O3, for example, with
higher regional correlation of 0.71 in MASP with traffic data from Simulations and Inter-
polations. Although the comparison between observed and simulated concentrations
present high variations, VEIN emissions maps are definitely a great advance when
compared to the maps being used nowadays at LAPAt. The horizontal resolution used
in the air quality simulation does not allow to take full advantage of VEIN high spatial
resolution. However, this characteristic could suit street level air quality models, such as
Aria City model (http://www.aria.fr/projets/aircity/).

The apparent similarity was evaluated with the Wilcoxon test as shown on Tables
19 and 20 (Appendix A). This tables indicates the columns Sim for traffic simulation, Int
for traffic interpolation and Gps, for traffic from GPS recordings. The difference in air
pollutant with each scenario is statistically significant in most of stations. However, the
stations whose differences in concentrations between scenarios were not significant
had the same result for all the pollutants. This means that results are not too different,
independent of the scenario. In the case of CO, the stations with no significant difference
are Congonhas, São Caetano do sul, Cerqueira Cesar and Osasco. In the case of NO,
Santo Amaro, Cerqueira Cesar and Ipen USP. In the case of NO2, Santo Amaro. In the
case of SO2, Santo Amaro, Pedro II and Ipen USP. Lastly, for O3, Santo Amaro, Pedro II
and Cerqueira Cesar.

The similarity between the atmospheric concentrations simulated in MASP with
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data from Simulations and Interpolations, suggest that it is possible to elaborate vehicular
emissions inventory using traffic counts interpolations. This is very important because
most cities do not count with the base information for developing traffic simulations.
Moreover, new technologies are providing increasingly new data that can be used for
developing inventories that could enhance and improve inventories and simulations in
different parts of the world. In this way, the VEIN model provides flexibility in estimating
emissions adapting to different types of traffic data and emissions factors. Also, the semi-
automatic conversion to inputs of WRF-Chem using the model AAS4WRF (VARA-VELA
et al., 2016) is very helpful.
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6 Conclusions

This study was conducted aiming at modeling air pollution in São Paulo using
bottom-up vehicular emissions inventories. For the Metropolitan Area of São Paulo
(MASP), there are some traffic activity data available, such as traffic counts and traffic
simulations. However, this information must be transformed into hourly gridded emis-
sions to be used as input in air quality modeling. This "transformation" could be done
with the development of a bottom-up vehicular emissions inventory model, the VEIN
model R-package.

Traffic simulations were provided by CET (Traffic Engineering Company) for Light
Duty Vehicles (LDV) and Heavy Good Vehicles (HGV) and by SPTrans (Secretary of
Transport and Mobility of São Paulo) for Urban Buses (UB), and they supplied the
traffic flow for a morning rush hour at MASP. Traffic counts were available for morning
and evening rush hours. These counts were interpolated using negative binomial and
quasi-poisson regressions resulting in traffic flows for the 6 rush hours with best results
for LDV and motorcycles (MC). Traffic data from GPS tracking records is a novel and
promising approach. GPS data was available for all the metropolitan areas for LDV
and HGV from 06th - 11th October, 2014, on an hourly basis. However, the frequency
of consecutive GPS records were low, compromising its results. Vehicle speeds were
calculated using two consecutive position records and these speeds were used as proxy
for traffic flow for LDV and HGV. Traffic flows from different sources were very different
and calibration with fuel sales showed to be an effective way for harmonizing them.

VEIN model was then applied to estimate the emissions considering three
scenarios: outside MASP, GPS records were used; inside MASP 1) GPS, 2) traffic
count interpolation, and 3) CET simulations were considered. SPTrans simulation was
also used in all the 3 scenarios. VEIN distributes the traffic flows in different vehicle
types, consuming different fuels and with 1 to 40 years of age. The emission factors
are functions of these characteristics, but are also dependent on the vehicle speed.
Emissions inventories (EI) from VEIN showed that GPS-EI had highest values for
LDV emissions (due to lower speeds and, thus, higher emissions). Traffic simulation
and interpolation EI’s were very similar, and thus, traffic count interpolation may be
relied upon as input data. The emissions signature (emissions by age of use) shows
that a scrapping policy for taking older vehicles out of streets could cut emissions of
NMHC, CO, CH4, PM and Evaporative. VEIN emissions were overestimated for all
the pollutants in all the metropolitan regions when compared to CETESB estimated
emissions for the year 2014.
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Finally, these emissions scenarios were used as input in the WRF-Chem model.
Overall, the simulated primary pollutants concentrations were lower than the observed
ones, despite the higher EI’s. This could be due to stronger simulated winds. However,
the simulated diurnal variation resembled the observed one, indicating that the temporal
distribution of the emissions is consistent. Besides, there were unaccounted emission
sources such as industries and a seaport at Santos. Despite differences between
observed and simulated concentrations, VEIN presented a great advance in emissions
maps which could be used in models with higher horizontal resolution.

Therefore, VEIN turned out to be a very effective tool to estimate vehicular
emissions. Furthermore, the VEIN model is free of charge and open source, making it
suitable for applications in developing countries with lack of traffic and emission factors
information. Besides, it is multi platform, and can be run in R with most of operative
systems including Windows, Mac, Linux, Solaris, etc.

6.1 Suggestions for future works

• New emission factors based on real world measurements with Portable Emissions
Measurements Systems must be performed and added to VEIN

• New vehicular emissions inventory should account for effect of load and road
inclination.

• Interpolation of hourly traffic of Trucks and Buses needs more information inherent
to their activity, such as origin and destinations.

• The frequency of consecutive GPS records of the same vehicle is important and
efforts must be made to obtain or generate data with higher frequency.
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7 Academic literature produced during
the Ph.D.

7.1 Publications with peer review process

• Ibarra S., Ynoue R. (2017). REMI model: Bottom - up emissions inventories for
cities with lack of data. Journal of earth sciences and geotechnical engeineering.

• Andrade MF., Ynoue R., Freitas E., Todezco E., Vara-Vela A., Ibarra S.m Martins
L., Martins J and Carvalho V. (2015). Air quality forecating system for outheastern
Brazil. Frontiers in Envionmental Science.

7.2 Submitted publications under review process

• Ibarra S. Ynoue R., Gianotti M (2017). A comparison between bottom-up vehicular
emissions inventories using traffic data from Internet GPS recordings, traffic
simulations and traffic interpolations with VEIN model and atmospheric simulation
with WRF-Chem. Paper in preparation for Science of Total Environment

• Ibarra-Espinosa, S., Ynoue, R., O’Sullivan, S., Pebesma, E., Andrade, M. D. F.,
and Osses, M.: VEIN v0.2.2: an R package for bottom-up Vehicular Emissions
Inventories, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-193,
in review, 2017.

• Ibarra S., O’Sullivan S., Osses M., Ynoue R. (2017). Negative binomial and quasi-
poisson regressions of hourly traffic data with OpenStreetMap. Paper in review
Computers, Environment and Urban Systems

• Fink, G., O’Sullivan S., Ibarra-Espinosa S., Grisi S., Saldiva, P., Brentani, A.
(2017). Exposure to Outdoor Air Pollution and Birth Outcomes – Evidence from
São Paulo’s Western Region Project. Paper in preparation to Plos One.

7.3 Software

• Ibarra-Espinosa S (2017). vein: Vehicular Emissions Inventories. https://CRAN.R-
project.org/package=vein.
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7.4 Conferences

• Ibarra S., Ynoue R., and Andrade MF. (2017). High Resolution vehicular emissions
inventory in Shanghai China: Application of VEIN model. Japan Geoscience Union
(JPGU) meeting, Chiba, Japan from May 20 th to 25 th , 2017.

• Ibarra S. and Ynoue R. (2016). REMI model: Bottom-up emissions inventories for
cities with lack of data. 21 International Transport and Air Pollution Conference
“TAP 2016”. Lyon, France from May 24 th to 26 th , 2016.

• Ibarra S., Vara-Vela A., Rehbein A., Ynoue R. (2015). High resolution air pollutant
simulation for the Metropolitan Region of Porto Alegre. In: IX Workshop Brasileiro
de Micrometeorologia, 2015, Santa Maria.

• Ibarra S., Vara-Vela A., Ynoue R. (2015). Vehicular buttom-up emissions inventory
and atmospheric simulation for 58 urban centers of South America. In: 11th Inter-
national Conference on Southern Hemisphere Meteorology and Oceanography,
2015, Santiago.

• Ibarra S., Ynoue R. andVara-Vela A. (2014). Development and evaluation of a
vehicular emissions inventory based in traffic counts for Metropolitan Region of
São Paulo. Joint 13th IGAC Science Conference and 13th Quadrennial iCACGP
Symposium held at Natal Convention Center (NCC), Natal, Brazil, from September
22 to 26, 2014.

7.5 Other events

• Invitation to run VEIN model in China by the Laboratory of Tibetan Environment
Changes and Land use, Chinese Academy of Sciences

• Workshop on emissions by EMISIA, May 2016, Lyon, France.

• Transport and Air Pollution Meeting, September 2016, IAG-USP.

• IAG Science Day, May 2016, IAG-USP.

• Meteorologia para a terceira idade, September 2016, IAG-USP.

• Meteorologia para a terceira idade, June 2017, IAG-USP.

• Simposio de Iniciacão Cientifica, September 2016, IAG-USP.

• Internship at Transport Research Laboratory,May, 2016, TRL, UK.

• Participation in Virada Científica USP, 2014.
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• Participation in Virada Científica USP, 2015.

• Partnership with CET to evaluate the effect of change in speeds on air pollution,
2015
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APPENDIX A – Evaluation of tests of
Wilcoxon for scenarios of simulation

Table 19 – Test Wilcoxon for CO, NO and NO2

CO NO NO2
Station Sim Int Sim Gps Int Gps Sim Int Sim Gps Int Gps Sim Int Sim Gps Int Gps
Santo Amaro 4.00E-10 1.96E-04 3.66E-04 2.26E-03 5.67E-01 5.70E-01 8.63E-04 4.18E-01 4.26E-01
Pedro II 1.27E-06 4.99E-02 1.82E-02 1.99E-01 5.50E-02 6.21E-02 5.95E-04 5.54E-11 8.69E-11
Congonhas 5.72E-02 2.55E-04 1.60E-04 2.24E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Ibirapuera 7.24E-06 3.50E-11 1.60E-04 1.09E-08 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Sao Caetano do Sul 1.30E-01 2.31E-04 3.71E-11 3.35E-04 1.78E-10 2.12E-10 1.13E-13 2.20E-16 2.20E-16
Cerqueira Cesar 4.52E-07 1.59E-04 1.11E-04 2.32E-01 5.05E-01 5.15E-01 1.13E-13 9.01E-05 1.04E-04
Ipen USP 1.51E-05 5.12E-02 5.45E-02 3.20E-02 5.42E-01 5.48E-01 7.62E-03 5.60E-08 6.30E-08
Parelheiros 1.30E-02 3.62E-08 2.56E-08 9.98E-10 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Tabao da Serra 5.30E-12 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Osasco 8.72E-02 2.21E-08 1.16E-08 6.46E-13 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Carapicuiba 3.08E-14 2.20E-16 2.20E-16 2.00E-17 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Marginal TPR 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Capao Redondo 2.20E-16 2.20E-16 2.20E-16 9.63E-12 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Capuava 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Diadema 3.03E-16 2.20E-16 2.20E-16 2.75E-14 2.20E-16 2.20E-16 1.67E-14 2.20E-16 2.20E-16
GRUPM 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Itaim Paulista 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Maua 1.35E-15 2.20E-16 2.20E-16 3.64E-05 5.29E-14 5.28E-14 2.20E-16 2.20E-16 2.20E-16
NSO 3.03E-06 1.99E-10 2.00E-10 1.48E-05 2.12E-10 1.22E-09 9.08E-06 6.90E-10 6.68E-10
Santana 2.20E-16 2.20E-16 2.20E-16 7.47E-16 2.20E-16 2.20E-16 4.02E-16 2.20E-16 2.20E-16
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Table 20 – Test Wilcoxon for SO2 and O3

SO2 O3

Station Sim Int Sim Gps Int Gps Sim Int Sim Gps Int Gps
Santo Amaro 4.69E-05 1.50E-01 1.39E-01 1.87E-01 1.47E-01 1.56E-01
Pedro II 1.18E-01 1.56E-01 2.27E-01 3.87E-01 1.68E-02 1.94E-02
Congonhas 4.40E-05 5.87E-11 2.09E-10 2.41E-04 2.10E-09 2.86E-09
Ibirapuera 3.01E-12 2.20E-16 2.20E-16 9.52E-14 2.20E-16 2.20E-16
Sao Caetano do Sul 2.85E-03 6.01E-09 3.09E-08 1.22E-05 1.23E-13 1.35E-13
Cerqueira Cesar 1.45E-03 2.13E-01 1.22E-01 1.90E-03 1.97E-01 1.84E-01
Ipen USP 1.80E-01 2.10E-01 2.53E-01 2.02E-01 3.24E-05 3.46E-05
Parelheiros 3.19E-07 2.20E-16 2.23E-16 5.18E-13 2.20E-16 2.20E-16
Tabao da Serra 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Osasco 6.14E-02 6.74E-10 1.37E-09 6.95E-04 5.31E-13 5.22E-13
Carapicuiba 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Marginal TPR 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Capao Redondo 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Capuava 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Diadema 7.72E-14 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
GRUPM 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Itaim Paulista 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
Maua 5.18E-12 2.20E-16 2.20E-16 4.51E-15 2.20E-16 2.20E-16
NSO 1.95E-06 9.45E-10 1.07E-09 1.06E-07 5.09E-15 4.74E-15
Santana 1.08E-13 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16
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