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ESTIMATION OF THE EARTHQUAKE RECURRENCE PARAMETERS
FOR UNEQUAL OBSERVATION PERIODS FOR DIFFERENT
MAGNITUDES

By DIieTER H. WEICHERT

ABSTRACT

Maximum likelihood estimation of the earthquake parameters N, and 8 in the
relation N = N, exp (—B8m) is extended to the case of events grouped in
magnitude with each group observed over individual time periods. Asymptotic
forms of the equation for 8 reduce to the estimators given for different special
cases by Aki (1965), Utsu (1965, 1966), and Page (1968). The estimates of B are
only approximately chi-square distributed. For sufficiently large numbers of
events, they can be estimated from the curvature of the log-likelihood function.

Sample calculations for three earthquake source zones in western Canada
indicate that for well-constrained data sets, the often-used, least-squares esti-
mation procedures lead to compatible results, but for less well-defined data
sets, the effect of subjective plotting and weighting methods used for least-
squares fitting leads to appreciably different parameters.

INTRODUCTION

Recent requirements of seismic risk estimation have led to a re-evaluation of
historical earthquake records and statistical methods in many countries, with a view
to optimizing the use of the available information. Whatever approach is chosen to
quantify risk, the basic information is earthquake catalogs from which a recurrence
relation is derived. Its most widely used form is still the Gutenberg-Richter log-
linear relation, log N = a — bm, perhaps with some modification at larger magnitudes.

The estimation of the parameters, especially b, has received much attention. The
basic premise for the use of the conventional least-squares method is violated in this
case, especially if N is the cumulative event count. The least-squares method dates
back to Gauss (cf. e.g., Kendall and Stuart, 1963, p. 71), who derived it intuitively,
but also recognized that it was the maximum likelihood method for data that are
independent and whose error distributions follow the “Gaussian”, or normal error
law. However, cumulative event counts are not independent, and the number of
earthquake occurrences are better represented by a Poisson rather than a Gaussian
distribution. Furthermore, weighted least squaring does not invalidate these basic
objections to the method, and in fact, relies upon additional unjustifiable assump-
tions.

The maximum likelihood estimation of b was discussed by Aki (1965) who gave
a formula equivalent to

1
B

where 8 = b In(10), m is the average magnitude of the sample, and m, is the lowest
magnitude at which event observations are complete. Utsu (1965) derived the same
estimator for 8 by equating the first moments of the population and the sample.
Equation (1) applies to continuous magnitude values. However, event magnitudes
can rarely be specified more accurately than to a  magnitude unit, often only to $
unit and it is, therefore, common practice to group events into classes with equal
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magnitude increments. For such grouping, with half-width 8, the estimate of 8 from
equation (1) is biased and Utsu (1966) tabulates a correction factor which modifies

‘ ,
(1) Lo -

Btamb (88) ™ @)

A realistic risk analysis must admit a regional maximum possible magnitude, even
though it may not yet be possible to estimate this magnitude reliably. Lacking
compelling evidence for more complicated forms, a simple truncation of the Guten-
berg-Richter recurrence relation is suggested, preferably of the incremental form,
since a truncation of the cumulative relation implies a spike in the recurrence
density. Page (1968) considered this modification and gives a maximum likelihood
estimate for 8, for data with continuous magnitudes between m, and m,, as

1 - my exp (_B(mx - mo))

B~ ° " 1= exp (—B(me — mo))

Error estimates for 8 were given by both Aki and Utsu. Aki (1965) uses the central
limit theorem to arrive at a Gaussian distribution of f around its maximum
likelihood estimate, B8,, with a standard deviation of 8,N"'/2. This should not be
used for small N. Also, Aki tabulates values for N = 50. Utsu (1966) gives 1/8 as chi-
square distributed, with x* = 2NB,/8 and the number of degrees of freedom f = 2N.

Current applications of seismic risk for critical engineering structures, i.e., nuclear
reactors, make it desirable to optimize the use of available data in every justifiable
way. For instance, the seismic risk estimates included in the current (1977) Canadian
National Building Code are derived from formal calculations based on a 76-yr data
period (Milne and Davenport, 1969), even though information for the largest
magnitude earthquakes in eastern Canada is considered complete over about 300 yr,
while m4 earthquakes may only be cataloged completely since the 1920’s in that
region (cf. Basham et al., 1979). Stepp (1972) has also discussed the utilization of
unequal observational periods for different magnitudes and tests for completeness
at each magnitude. Molchan et al. (1970) recognize the same problems, but use n;/
T;, event numbers divided by time interval of completeness for each magnitude
interval, as maximum likelihood estimator. These authors do not impose a maximum
magnitude. More details on the Russian work can be found in Kantorovich et al.
(1970).

3)

GENERALIZATION TO UNEQUAL OBSERVATIONAL PERIODS

Ignoring the possibly very serious question of time variability of earthquake
activity, the following generalization and combinations of earlier work appear
desirable: (a) unequal observational periods, ¢; (b) grouping of data in magnitude
classes, m; + 8; and (¢) an imposed maximum magnitude, m,.

The periods of observation are independently determined, e.g., by Stepp’s (1972)
method or from a consideration of historical seismograph capability (Basham et al.,
1979; Milne et al., 1978). Similarly, the regional maximum earthquake must be
independently estimated from geophysical considerations, such as maximum fault
lengths, regional stress drop, and earthquake history.

With the arbitrary choice of a truncated recurrence density, the probability of an
earthquake having its magnitude between m and m + dm is

p(m) dm = const.B e dm m,=m=m,. @)

=0 otherwise.
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Integration over magnitude intervals and proper normalization leads to the like-
lihood function, L, for n; events in magnitude class m;

Inl, m;, tz sz (5)

h bexp (opm) L ext £ In(L) is obtained f
w erep,—mm. n extremum of In(L) is obtained for
J

2 tim; exp (—Bm,) Ynm; _

Stew (Bm) N " ©

which can easily be solved for 8 by an iterative scheme (e.g., Newton’s method). A
computer program is given in the Appendix.

It is interesting to compare the asymptotic forms of equation (6) with the
corresponding earlier equations. For equal observational periods, ; = t, m = m, +

8 and number of intervalsm2;6m°, this reduces to

Bmx—mo
l ,85 _ 2 ;—mx*'mo
tanh (85) —m\ | 2
A p tanh(;;%)

For large m., this reduces to equation (2), Utsu’s formula for grouped data without
an upper magnitude bound. As § goes to 0, all n; become unity, and Page’s result is
obtained, which, in our notation, is

1 — me+m, (mx —m,)/2
-m -

B 2 tanh (B(mx — mo)/2) ®

Equations (2), (7), and (8), require recursive solutions which make them no more
useful than the general equation (6).

A simple, almost intuitive estimate of the variance of 8 can be obtained from the
curvature of In(L) at its maximum. The greater the curvature, the sharper the
maximum and the smaller the variance. For instance, for a set of Gaussian obser-

e — w2
vations with likelihood L = IT exp {%—)——] , and with an estimate for X given
dlnL — x) o : ,
by —— Y Z 02 = (, which is the unweighted least-squares estimate, one
-’ In L N
finds ———= =k This is the usual expression for the reciprocal of the variance of
dx

the mean, except that a factor (N — 1)/N is included if a sample estimate, s°, is used
instead of the unknown o”. For the likelihood function leading to equation (1), N/
B° is identical to Aki’s result. More generally, the law of large numbers ascertains
(e.g., Edwards, 1972) that, for sufficiently large numbers, 8 is approximately normally
distributed about its mean with variance



1340 DIETER H. WEICHERT

var (8) = —(%)

Another derivation and result are given by Kendall and Stuart (1963). Equation (6)
yields

2
[E ti exp (—Bmi):l
9)

var (f) =%

2
l: E tim; exp (—,Bm.-)} - Z t; exp (—fm;) Z tm? exp (—Bm;)
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F1c. 1. £1 S.D. confidence intervals, 15.9 and 84.1 percentilefrfor an estimated average x of a Poisson
variable, calculated from equations (11) and (12) and from % + vx.

which is obtained as a by-product from solving (6) numerically using the Newton
iteration scheme (cf. Appendix).

For a useful estimate of B, the total number of events, N, should be large enough
to allow use of a Gaussian with variance (9) for the distribution of 8, but Utsu’s chi-
square distribution with x* = 2NB,/8, f = 2N could be used for small numbers. Utsu
includes this cumulative distribution of b,/b as his Figure 1. From this figure and
the results shown in our Figure 1, the approximation may well be used with sufficient
accuracy to much smaller N. However, it should be pointed out that this distribution,
in fact, disagrees with the maximum likelihood principle, since its peak does not
occur at x° = 2N [cf. also the discussion following equation (11)].

The activity parameter, equivalent to “a” in the Gutenberg-Richter relation, is
not usually discussed since its maximum likelihood estimate is simply the total
number of events observed above the threshold of completeness. For unequal
observation periods, the total number of events, N, is still a Poisson variable, being
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the sum of Poisson variables, each given by the sought-after actual annual event
rate, N,, at or above m,, multiplied by the probability, g;, of falling into magnitude
increment m;, ¢; = exp (—fm.)/Y,; exp (—Bm;), and multiplied by the number of
years which each magnitude increment was observed [¢; is not the same as p; in
equation (5)]. Thus,

Na = N Y exp (—fm.)/Y ¢; exp (—fm,). (10)
i J

For identical ¢;, this reduces appropriately to N/t.

The variance of N, is N,/N, and since N hopefully is a substantial number,
confidence limits can approximately be obtained from the normal distribution.
However, the chi-square distributions quoted in the next paragraph are more
appropriate for smaller N.

For visual display and comparison, earthquake recurrence data are usually plotted,

TABLE 1
CONFIDENCE INTERVALS FOR PO1SSON MEAN, N*
Bu N B
1.84 0 0
3.30 1 0.173
4.64 2 0.708
5.92 3 1.37
7.16 4 2.09
8.38 5 2.84
9.68 6 3.62
10.8 7 4.42
12.0 8 5.23
13.1 9 6.06
14.3 10 6.89

* Lower and upper 1 S.D. confidence intervals, i.e.,
15.9 and 84.1 percentiles use 1, and py from equation (11).
Above N = 9, use Figure 1 or N — N2 for the lower
bound and N + 3/4 + (N + 1/2)"* from equation (12).

most often as logarithmic cumulative event counts, accumulated from above. Re-
gardless of the method of calculation, lines are then shown which should fit the data
in a convincing manner. The obvious way of quantifying the expected fit is the
inclusion of error bars, e.g., +1 S.D. above or below the plotted points. For large
event numbers, +N'/? corresponds closely to the usual interpretation as a confidence
interval of £1 S.D., enclosing 68 per cent of the distribution. For small numbers and
for annual rates, especially when derived from unequal observation intervals, ques-
tions may arise about the equivalent confidence intervals to use, and the following
expressions are, therefore, quoted here for the lower and upper limits, p; and pv of
the two-sided intervals of confidence 1-a in terms of chi-square distributions with f
degrees of freedom (Graf et al., 1966), and their numerical values for =1 S.D. are
given in Table 1

pr=4% X'w2s  withf=2N
Mo = 1 le—(ﬂ/Z);f with f= 2(N + 1). (11)

This is obviously not an exact result. For instance, only the distribution for the
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upper limit has its maximum at N, in agreement with the maximum likelihood
approach used to estimate N in the first place. Furthermore, for small confidence,
i.e., for the practically not useful case of a/2 approaching 0.5, the change in f leads
to a finite confidence range. On the other hand, for null observations, equation (11)
gives useful nontrivial upper limits. For N = 9, approximations for (11) are given by

2
pr=N—=1+ 1 u'op— ti—govv-1m

pu = N+ -%— + % u21_a/2 + Ui—asov+172) (12)

where i, is the Gaussian variate for confidence a.

Figure 1 shows the limits derived from equations (11) and (12) for 68.2 per cent
confidence as well as N = N2 Over the whole range, down to x = 4 or 3, the lower
limit (11) is better approximated by N — N2 than by (12) which is only shown for
its recommended range. For the upper limit (11), one finds (12) to be the better
approximation, but again N + N*? is useful, although not conservative, down to
about x = 10.

Confidence bounds for earthquake rates, from equal or unequal observation
periods, are obtained for the relevant total event count and scaled down to unit
time.

TABLE 2

NUMBER OF EVENTS IN 1/4 MAGNITUDE INCREMENTS, AND THE CORRESPONDING OBSERVATION
PERrIoDs BEFORE AND INCLUDING 1975 FOR SOME OF THE WESTERN CANADIAN ZONES OF
EARTHQUAKE OCCURRENCE

Magnitudes, Interval Centers

Zone 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

No. of events

Cascades 3 6 1 2 2 o 0 0 1

Puget Sound 9 6 1 1 5 0 1 2 o0 o0 1 0 1

North Vancouver 1 1 1 0 o0 0 1 1 1 0 2 0 1 1
Island

No. of years i T P4 —— € - — —— T~ —- = == =P

A SAMPLE APPLICATION

The described estimation procedure is currently used to determine seismicity
parameters for the Canadian zones of earthquake occurrence, such as used by
Basham et al. for eastern Canada, where magnitude 6 to 7 may be completely
cataloged over 300 yr while magnitude 3.5 has only recently become complete. As
an illustration of the method and its remaining problems, an application to some of
the western Canadian zones is presented here. Table 2 lists the condensed data that
were used. These were abstracted from the Canadian earthquake catalog, and
grouped in } magnitude intervals. A grouping error is incurred which will be
discussed later.

A test of the Poisson assumption was not made; in fact, it is expected to be this
assumption is violated, because it is difficult to define and remove aftershock
sequences. On the contrary, with a view toward obtaining conservative activity
estimates, it could be argued that aftershocks should be counted, in case of doubt.
This, as well as ignoring a possible time variability of earthquake activity, will result
in overly optimistic error estimates.

Figure 2 shows incremental and cumulative rates with +1 S.D. error bounds. The
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84 percentiles are also shown for the empty magnitude intervals: they depend only
on the length of the respective observation periods. The least-squares lines are
minimizations for log(N or n) residuals. Other methods such as minimization of
perpendicular distances from the lines, or a nonparametric method (cf. Weichert
and Milne, 1979) give slightly different lines, but this is inconsequential for this
comparison.

The maximum likelihood estimate is calculated from numbers of earthquakes in
magnitude intervals, with the assumptions of a log-linear recurrence relation and
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F1c. 2. Right: incremental plots of earthquake rates, with least-squares lines (LS) and the maximum
likelihood (ML) equivalent lines for the assumed regional maximum magmtude (MX) earthquake. Left:
cumulative plots of earthquake rates, with least-squares lines and maximum likelihood lines for several
maximum magnitudes. Typical 1 S.D. estimates for the ML parameters are indicated. The properly
curved cumulative ML estimate is only shown for one extreme example,

straight cutoff of the event density at some maximum magnitude; therefore, a visual
comparison with the data and with least-squares estimates should be made on an
incremental plot, even though here, the information that was contained in the
different lengths of the observation periods has already disappeared except, perhaps,
for the unexpectedly broad confidence intervals at lower magnitudes. For each of
the seismic source zones, the maximum likelihood line is shown for one maximum
magnitude in addition to the least-squares lines.

One notes that the least-squares recurrence slopes are all shallower than the
corresponding maximum likelihood slopes. This is due to the points at minus infinity



1344 DIETER H. WEICHERT

(log 0) representing the empty intervals and predominantly occurring at the high-
magnitude end. These points are not taken into account by the least-squares
method. In the case of the North Vancouver Island Zone, empty magnitude intervals
are well distributed over most of the magnitude range, pulling the ML estimate
below all plotted data points. In general, both the least-squares and maximum
likelihood lines fit the incremental plot equally well, according to the simple criterion
of expecting the line to pass through about % of the 68 per cent confidence intervals.

For the least-squares method, the unpleasantness of empty intervals and large
data scatter is partly overcome by plotting and fitting on a cumulative plot. The
customary repetition of points from right to left results in a rather arbitrary high
weighting of the less well-established rates in the higher magnitude range, but also
has an unintentional beneficial effect described below.

In comparing cumulative and incremental recurrence curves, one must remember
two points. First, the level of the lines will depend on both 8 and the interval width.
For the usual plotting convention of placing cumulative points at the lower end of
the respective magnitude interval and centering incremental points, one finds, well
away from M,, where the density is truncated, that the incremental/cumulative
ratio, n/N, is approximately given by

n/N = exp (88) — exp (— B8) = 2 sinh (B8). (13)

The straight lines denoted by ML:MX = ..., in the cumulative plots, are related to
the maximum likelihood estimates for the respective M, by this expression.

As the maximum magnitude is decreased and empty intervals above the observed
data range are omitted, the maximum likelihood lines become shallower, often by
an appreciable fraction of their standard deviations. However, for the Cascade and
Puget Sound seismic zones, no clear bias between least-squares and maximum
likelihood lines can be recognized. One can conclude that least-squares fitting in
cumulative plots is a reasonable approximation for well-defined data sets. It appears
that the repetition of points for empty intervals tends to pull the estimates down,
while in the incremental form this is not possible. Other weighting schemes could be
used, such as 1/N, but conceptually none can compete with maximum likelihood. It
is noted that the formulation given here does not give an estimate of M., but
alternative approaches could be used such as McGuire (1977).

The second, more important point to observe is the curvature that should be
shown in the cumulative equivalent of the incremental maximum likelihood lines as
a result of the cutoff at M,. Thus, the cumulative curves, N’, should go to minus
infinity according to the relation

log (N') = log (N exp (=BM)(1 — exp (— (M. — M)))). (14)

This effect is small enough for representative 8 of 1.6 (b = 0.7), to be ignored in
Figure 2 for the Cascades and Puget Sound seismic zone¢-, for the purposes of
comparison with least-squares straight lines. However, for the low 8 of the North
Vancouver Island Zone, the effect is so pronounced, that the ML:MX = 7.5 line lies
above all data points. The properly calculated curve is, therefore, shown for this
case. As expected from the incremental plot, it passes below the data.

In formulating the statistical approach, it was assumed that catalog magnitudes
could be grouped unambiguously. This is not true, since the older earthquake
magnitudes were given to 1 magnitudes, so that the increment used for this
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illustration is appropriate. For m0.1 catalog increments, m} grouping leads to
unequal magnitude intervals; in this case, a m0.5 grouping would be more appropriate
as, e.g., used by Basham et al. and by Milne et al. (1978). However, this makes the
assignment of the older m} earthquakes ambiguous. Further generalizations of the
estimation procedure to take this into account do not appear worthwhile in the light
of the available data.

CONCLUSIONS

It is suggested that estimation of recurrence parameters in the Gutenberg-Richter
relation should always employ a maximum likelihood method, and the method
presented here gives the necessary extension of known results to the important case
of unequal periods of observation. Although for well-constrained data, the use of
alternative methods, such as least squares may lead to equivalent results, one finds
that for less well-defined data sets, the effect of subjective plotting and weighting
methods leads to appreciably different parameters. In particular, least-squares
fitting does not allow inclusion of a preconceived judgment on maximum magnitude,
and also ignores the information content of the empty magnitude intervals, even
though, in a cumulative plot, an empirical partial correction is usually made. Finally,
it should perhaps be pointed out, that uncertainty of the lower cutoff magnitude
affects results of all methods in a similar way, but this problem is not addressed in
this paper.
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APPENDIX

e ESTIMARTION OF BETA BY MAXIMUM LIKELIHOOD FOR YARRIABLE OBSERYRTION
c PERIODS FOR DIFFERENT MAGNITUDE INCREMENTS
c OTHER VALUES PRINTED: B AND ST. DEV., N5 AND ST. DEV. AND LOG(NO)
c
c INDEX OF LOWEST AND HIGHEST MAGNITUDE GROUP TO BE USED
c IS K=LOMW, IGH
C ITCK) = LENGTH OF OBSERYARTIGN FERIOD OF MAGNITUDE K.
c FMAGCK)=CENTRAL VYALUE OF MAGNITUDE INCREMENT K.
c NCK)>= NUMEER OF EVENTS IN MAGNITUDE INCREMENT K.
c DATA INFUT AT DISCRETION OF USER
C

DIMENSION IT(21), FMAGC24), N(24), TITLE(2@)

BETA = 1.5 ! INITIAL TRIAL YALUE
c ITERATION LOOP:
77 CONTINUE

SNM=0.

NKOUNT=8

STMEX=8.

SUMTEX=8.

STH2X=8.

SUMEXP=8.

DO 2 K=LOW, IGH

SNM = SNH+N(K)*FMRG(K)
NKOUNT=NKQUNT+N(K)>
TIJEXP=IT(K)®EXP(-BETA*FMAG(K))
TMEXP=TJEXP*FHAG(K)
SUMEXF=SUMEXP+EXP(-BETR*#FMARG(K))
STMEX=STMEX+THEXP
SUMTEX=SUMTEX+TJEXFP
STM2X=STM2K+FMAG(K)Y *THEXF
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2 CONTINUE
DLDB=STMEX/SUMTEX ! #N - SUMNM = @& FOR EXTREMUN
D2LDB2 = NKOUNT*(DLDB**2 - STMZX/SUMTEX)D
DLDE = DLDB*NKOUNT-SNM :
BETL=BETR
BETA = BETA - DPLDB/D2LDEZ
STDV = S@RT(-1. /DZ2LDE2)
B=BETA/ARLOG(18.)
STDB=STDV/ALOG(1@. >
FNGTMO=NKOUNT «SUMEXF/SUMTEX
FNS=FNGTMO*EXP(-RETA*(S. -(FMAG(LOW)-@. 125)))
FNB=FNGTMO*EXF( BETA*( FMAGCLON)> ~@._ 125 ))
FLGNO=ARLOG1@(FN@R) ! FOR @. 25 INCREMENTS
STOFNS=FNS/SQRT(FLOAT{NKOUNT)Y)
IF(RESC(BETR~-EETL). GE. . d@@4) GO TO 77
PRINT z@@, PETR, STDV, B, STDE

260 FORMATC(4L2X,’ BETA=‘,F&. 4,7 +/-1 STDV OF’,F7.3,° &=
1,F8. 4,7 +/-% STDV QF’.,F7. 2/
PRINT 218, NCOUNT, FLGN@, FNS, STDFNS

218 FORMAT (14X, " TOTAL NUMEER OF EVENTS 7, 1[4,
17, LOG<ANNURL RATE ABOYE M@&)> ‘., F€. X/
2 14X, “ANNUAL RATE ABOYE WS 7, FE. 4,7 +/-4 STOY OF’F7. 3)
STOF
END
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