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Crash Course in Probabilistic 
Seismic Hazard Analysis (PSHA)

Part 1
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Content

mathSHA
seismic hazard analysis using Mathematica http://www.wolfram.com/products/player/
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http://www.wolfram.com/products/player/download.cgi
http://www.wolfram.com/products/player/download.cgi
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Seismic hazard is shaking hazard

Don´t think about earthquakes first, 
think about ground motion first!*
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*)But don´t forget the earthquakes
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Key aspects of basic PSHA

PSHA provides models (PSHMs) for shaking hazard in terms 
of chosen ground motion intensity parameters

PSHMs are probabilistic in nature: ground motion is treated 
as a random variable 

Questions that can be addressed  with PSHMs  are e.g.

• What is the  ground motion which is expected to be exceeded with a 
particular probability at a particular site within a particular time interval? 

• What is the probability for a particular ground motion value to be 
exceeded at a given site of interest within a particular time interval?
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PSHA in a nutshell

   Modern PSHA deals with probabilistic models for 
seismically generated ground motion. It combines 
concepts and methods from seismology,  
earthquake engineering, and probability theory.

Focus here:  Conceptual understanding

   For critical facilities, modern PSHA  includes also a 
systematic  assessment of (epistemic) uncertainties. 
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Don´t be afraid to do simple things
- R. Adams
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Single idealized source

Source

R

Site

= 200

Exercise 1: What is the expected daily rate at 
which certain ground motion levels are reached 
or exceeded?
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Exceedance rate & excedance probability

Rate: How often in absolute sense (per chosen time interval)

Probability: How often in relative sense (e. g. in comparizon  
to a large number of similar cases)

Examples: 
How many heads in 500 trials? How many 4s in 600 trials?

500 ⋅0.5 = 250 600 ⋅ 16 = 100
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# trials ⋅prob(single event)Expected number:
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What is the expected daily rate at which certain 
ground motion levels are reached or exceeded?

Expected daily rate of occurrence of 
blasts is: # blasts/day = 200/365 = 0.55

Each of them generates

Single idealized source
= 200 (for all i)

P(a is reached or exceeded) = 1 (for all a ≤  0.1m/s2 )
= 0 (for all a > 0.1m/s2 )

= 0.55 ⋅0 = 0 (for all a > 0.1m/s2 )
ExpDailyRate = 0.55 ⋅1 = 0.55 (for all a ≤  0.1m/s2 )
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Single earthquake source 
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What happens during an earthquake?

Hypocenter
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From myths to models
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San Francisco earthquake, 18. of April 1906
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From a shifted fence to the rebound hypothesis
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Principle of the rebound hypothesis
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Principle of the rebound hypothesis
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Principle of the rebound hypothesis
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Principle of the rebound hypothesis

18



                    Frank Scherbaum

    

Slip is not only horizontal

Abschiebung

Überschiebung

Strike slip

Reverse 

Normal

Focal mechanism
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Exercise

StylesOfFaulting.cdf                   EarthquakeFocalMechanism.cdf 
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a) What is the style of faulting of an earthquake in which the fault strikes with an angle of 60 degrees NE, 
dips with 55 degrees to the SE and in which the hanging wall slips at an angle of 45 degrees 
( counterclockwise against the horizontal  in strike direction)?
b) Generate the focal mechanism and discuss the different sections.
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Intraplate earthquakes 

Possible reasons:
• Stress concentrations
• Reactivation of pre-existing faults 
• High heat flow
....
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Seismicity in Europe
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(E. Hecht, 1994)
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P wave
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S wave

26



                    Frank Scherbaum

    

Rayleigh wave
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Water wave
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Radiation from an earthquake source

P waves S waves
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Exercise

DeformationPatternInAnEarthquakeSourceRegion.cdf
RadiationPatternForDoubleCoupleEarthquakeSources.cdf
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a) What is the deformation pattern of an earthquake in which the fault strikes with an angle of 60 degrees NE, 
dips with 55 degrees to the SE and in which the hanging wall slips at an angle of 45 degrees 
( counterclockwise against the horizontal  in strike direction)?
b) Generate the corresponding readiation pattern  and discuss the different sections.
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Loma Prieta, 1989
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Mexico City, 1985
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Earthquake ground motion in a nutshell

• rupture propagation effects 
   (directivity)
• source heterogenity effects 
   (asperities, barriers)
• source extension effects 
  (interference)
• hanging wall /foot wall

Crustal propagation

• geometrical spreading,
• scattering
• anelastic attenuation
• reflection (e. g. Moho bounce), 
• refraction
• focusing, defocusing
• 

Site effects

• reverbaration 
• basin effects
• non-linear damping
• kappa- effect
• 

Source
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Earthquake strength

mean dislocation [m]

rupture plane area [m2]shear modulus [N/m2]

[N m]M0 = µ ⋅d0 ⋅A

Seismic moment M0

Moment determination e. g.:
 M0

36



                    Frank Scherbaum

    

Earthquake strength: magnitudes

B. Gutenberg               C. F. Richter
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Magnitude

•Amplitude ratios widely independent of measurement site

Amplitude - 
distance relations 
for Southern 
California 
earthquakes
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•Amplitude measurement on Wood Anderson displacement 
seismometer (T0 = 0.8 s, h = 0.8, V= 2800)
• Comparison to expected amplitude of reference earthquake

• Δ = epicentral distance
• log Aref (Δ) = amplitude of MWA = 0 quake at the site
• Definition of reference amplitude: half PP-amplitude 
of  MWA = 3 quake at 100 km distance is 1 mm

First magnitude definition 1935, C.F. Richter 
„Richter-, Wood-Anderson-, local magnitude“
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Graphical Richter magnitude determination
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Other magnitude definitions

Moment magnitude

• Most magnitude scales not valid for all distance/depth ranges
• Other problems e. g.: saturation, determination effort
• In the context of SHA: MW least problematic (no saturation)

Body wave  magnitude Mb

Surface wave  magnitude MS

ΔMW = 1⇒

  Energy

Δ log10(E) = 1.5⇒ Energy ratio = 101.5 ≈ 32
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Some dimensions

Take with many grains of salt.....

Magnitude MW Length (km)
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Example: Sumatra earthquake

• 26.12.2004, 00:58:53 UTC, MW 9
• Rupture length > 1000 km
• Displacement up to  20 m
• Energy: 3 month Europe
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Macroseismic Intensities
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Differences between magnitude and intensity

magnitude

intensity
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CDFs related to the seismology part

UnderstandingEarthquakes.cdf (Wolfram Research CDF Demo)
EarthquakeFocalMechanism.cdf 
DeformationPatternInAnEarthquakeSourceRegion.cdf
RadiationPatternForDoubleCoupleEarthquakeSources.cdf
StylesOfFaulting.cdf
VerticalPendulumSeismometer.cdf
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For now enough seismology, 
back on the main road
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Earthquake ground motion models

Options
 

• complete models (e. g. 3D spectral elements)
• simplified models (e. g. stochastic models)
• empirical regression models (GMPE)
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Distance dependence
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PGA distribution
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Principle: Empirical Ground  Motion Models

Style of 
faulting

Source-
to-site 
distance 
measure

magnitude Site 
condition

composite 
distance 
term

median

Residual 
in terms 
of  σ

Probabilistic model

Typical form: Y = c1e
c2M R−c3e−c4 re−c5Fe−c6Seε ⋅σ

or: lnY = c1 + c2M − c3 lnR − c4r + c5F + c6S + ε ⋅σ
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lnY-residual distribution NGA data
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the residuals ?
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One contribution:
variability in the earthquake process

Radius 
[km]

Dislocation 
[cm]

8.4 3

6.5 5

4.6 10

.... ....

• relative dislocation 
controls stress drop
• stress drop controls 
HF ground motion
• earthquakes of 
same magnitude 
can produce very 
different ground 
motion

Mw 5.5:

area

Dislocation

Shear 
modulus

Example: What´s represented by magnitude (Mw)...

M 0 = µ ⋅d0 ⋅ A
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Consequences

For an earthquake of a particular magnitude in a 
particular distance at a particular site: 

•  there is no single „true“ ground motion value for 
an EQ of fixed magnitude at fixed distance !

• ground-motion must be treated as random 
variable reflecting the intrinsic randomness of the 
earthquake process (aleatory uncertainty).

• assumption (based on data) log-normal 
distribution
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Distance scaling: Mw 6.2
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Magnitude scaling: RJB 45-55 km
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GMPEs are probabilistic models!!!

Mw 6.2

NGA dataset
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Single earthquake source 
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Single source producing
variable ground motion levels (RV)

Expected daily rate of exceedance of xtest= 
Expected daily rate of 
occurrence of events 
(200/365 = 0.55)

X P(x>xtest | seismic event) 

conditional probability from GMM
59
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Conditional exceedance probability 
for different ground motion levels

P(x>xtest | seismic event) 
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Switching scales

P(x>xtes | seismic event) 

Note: x-axis now logarithmic
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FromPDF2ExcRate
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PDF, CDF,  Exceedance Probability (Rate)

0.00 0.05 0.10 0.15 0.20
0

2

4

6

8

A Hmês2L

PD
F

0.00 0.05 0.10 0.15 0.20
0.0
0.1
0.2
0.3
0.4
0.5

A Hmês2L
Ex
c.
Ra
te

Multiply with e
expected daily rate of 
occurrence of events 
(200/365 = 0.55)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

A Hmês2L

CD
FIntegrate

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

A Hmês2L

Ex
c.
Pr
ob

1- CDF

63



                    Frank Scherbaum

    

Expected daily rate of exceedance of xtest

constant ground motion (exceedance 
rate depends only on occurrence rate 
of events = 0.55 or 0)  

variable ground motion 
(exceedance rate depends on 
occurrence rate of events AND 
conditional probability of 
ground motion exceedance)

Expected daily rate of 
occurrence of events 
(200/365 = 0.55)

X P(x>xtest | seismic event) Expected daily rate of exceedance of xtest= 
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A note on the side

overestimation of rate   

underestimation of rate

Approximating ground motion by a deterministic model will lead to overestimation 
of exceedance rates for low values and underestimation of high values.   
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Two seismic sources 
with different occurrence rates
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m=lnH0.05L, rate : 1000êa

m=lnH0.1L, rate : 500êa
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 TwoSources
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