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ESTIMATION OF THE EARTHQUAKE RECURRENCE PARAMETERS 
FOR UNEQUAL OBSERVATION PERIODS FOR DIFFERENT 

MAGNITUDES 

BY DIETER H. WEICHERT 

ABSTRACT 

Maximum likelihood estimation of the earthquake parameters No and f l  in the 
relation N = No exp ( - t i m )  is extended to the case of events grouped in 
magnitude with each group observed over individual time periods. Asymptotic 
forms of the equation for fl reduce to the estimators given for different special 
cases by Aki (1965), Utsu (1965, 1966), and Page (1968). The estimates of fl are 
only approximately chi-square distributed. For sufficiently large numbers of 
events, they can be estimated from the curvature of the log-likelihood function. 

Sample calculations for three earthquake source zones in western Canada 
indicate that for well-constrained data sets, the often-used, least-squares esti- 
mation procedures lead to compatible results, but for less well-defined data 
sets, the effect of subjective plotting and weighting methods used for least- 
squares fitting leads to appreciably different parameters. 

INTRODUCTION 

Recent requirements of seismic risk estimation have led to a re-evaluation of 
historical earthquake records and statistical methods in many countries, with a view 
to optimizing the use of the available information. Whatever approach is chosen to 
quantify risk, the basic information is earthquake catalogs from which a recurrence 
relation is derived. Its most widely used form is still the Gutenberg-Richter log- 
linear relation, log N = a - b i n ,  perhaps with some modification at larger magnitudes. 

The estimation of the parameters, especially b, has received much attention. The 
basic premise for the use of the conventional least-squares method is violated in this 
case, especially if N is the cumulative event count. The least-squares method dates 
back to Gauss (cf. e.g., Kendall and Stuart, 1963, p. 71), who derived it intuitively, 
but also recognized that it was the maximum likelihood method for data that  are 
independent and whose error distributions follow the "Gaussian", or normal error 
law. However, cumulative event counts are not independent, and the number of 
earthquake occurrences are better represented by a Poisson rather than a Gaussian 
distribution. Furthermore, weighted least squaring does not invalidate these basic 
objections to the method, and in fact, relies upon additional unjustifiable assump- 
tions. 

The maximum likelihood estimation of b was discussed by Aki (1965) who gave 
a formula equivalent to 

1 - -  
- = m - m o ,  ( 1 )  
B 

where fl = b ln(10), lfi is the average magnitude of the sample, and m o  is the lowest 
magnitude at which event observations are complete. Utsu (1965} derived the same 
estimator for fl by equating the first moments of the population and the sample. 

Equation (1) applies to continuous magnitude values. However, event magnitudes 
can rarely be specified more accurately than to a ¼ magnitude unit, often only to ½ 
unit and it is, therefore, common practice to group events into classes with equal 
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magnitude increments. For such grouping, with half-width 6, the estimate of fl from 
equation (1) is biased and Utsu (1966) tabulates a correction factor which modifies 

(1) 1 fig - -  
- m - m o .  ( 2 )  

fl t anh  (f13) 

A realistic risk analysis must admit a regional maximum possible magnitude, even 
though it may not yet be possible to estimate this magnitude reliably. Lacking 
compelling evidence for.more complicated forms, a simple truncation of the Guten- 
berg-Richter recurrence relation is suggested, preferably of the incremental form, 
since a truncation of ~the cumulative relation implies a spike in the recurrence 
density. Page (1968) considered this modification and gives a maximum likelihood 
estimate for fl, for data with continuous magnitudes between mo and rex, as 

1 --  mx exp ( - f l (mx  - too)) 
- = m - m o  - ( 3 )  
fl 1 - exp ( - f l (m~ - mo))" 

Error estimates for fl were given by both Aki and Utsu. Aki (1965) uses the central 
limit theorem to arrive at a Gaussian distribution of fl around its maximum 
likelihood estimate, flo, with a standard deviation of floN -1/2. This should not be 
used for small N. Also, Aki tabulates values for N _-_ 50. Utsu (1966) gives 1/fl  as chi- 
square distributed, with X 2 = 2Nflo/fl  and the number of degrees of freedom f = 2N. 

Current applications of seismic risk for critical engineering structures, i.e., nuclear 
reactors, make it desirable to optimize the use of available data in every justifiable 
way. For instance, the seismic risk estimates included in the current (1977) Canadian 
National Building Code are derived from formal calculations based on a 76-yr data 
period (Milne and Davenport, 1969), even though information for the largest 
magnitude earthquakes in eastern Canada is considered complete over about 300 yr, 
while m4 earthquakes may only be cataloged completely since the 1920's in that 
region (cf. Basham et  al., 1979). Stepp (1972) has also discussed the utilization of 
unequal observational periods for different magnitudes and tests for completeness 
at each magnitude. Molchan et al. (1970) recognize the same problems, but use ni /  
Ti, event numbers divided by time interval of completeness for each magnitude 
interval, as maximum likelihood estimator. These authors do not impose a maximum 
magnitude. More details on the Russian work can be found in Kantorovich et al. 
(1970). 

GENERALIZATION TO UNEQUAL OBSERVATIONAL PERIODS 

Ignoring the possibly very serious question of time variability of earthquake 
activity, the following generalization and combinations of earlier work appear 
desirable: (a) unequal observational periods, ti; (b) grouping of data in magnitude 
classes, mi +- 8; and (c) an imposed maximum magnitude, rex. 

The periods of observation are independently determined, e.g., by Stepp's (1972) 
method or from a consideration of historical seismograph capability (Basham et al., 
1979; Milne et  al., 1978). Similarly, the regional maximum earthquake must be 
independently estimated from geophysical considerations, such as maximum fault 
lengths, regional stress drop, and earthquake history. 

With the arbitrary choice of a truncated recurrence density, the probability of an 
earthquake having its magnitude between m and m + d m  is 

p ( m )  d m  = const.fl e -Bm d m  m o <  m < m~ =- = (4) 
= 0 otherwise. 
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Integration over magnitude intervals and proper normalization leads to the like- 
lihood function, L, for ni events in magnitude class mi 

L(fl  lni, mi, ti) = ~ 1-[i pin` 
i 

(5) 

where pi -- - -  
ti exp (--tim.i) 

- - .  An extremum of In(L) is obtained for 
tj exp (-flmy) 

J 

~, t i ln i  exp ( - - f l m i )  ~, n i m i  
i 

- - - - ~ - m  
Y, ty exp (-flmy) N 
J 

(6) 

which can easily be solved for fl by an iterative scheme (e.g., Newton's method). A 
computer program is given in the Appendix. 

It is interesting to compare the asymptotic forms of equation (6) with the 
corresponding earlier equations. For equal observational periods, ti = t, ml  = m o  + 

8 and number of intervals m~ - rn_________~o, this reduces to 
26 

1 [  fl8 !_(m___fl- 2 ~°- o) j 
- -  m x  + m o  

tanh (f16) tan m~ m = m 2 (7) 

For large rex, this reduces to equation (2), Utsu's formula for grouped data without 
an upper magnitude bound. As 3 goes to 0, all ni become unity, and Page's result is 
obtained, which, in our notation, is 

1 - -  mx + mo ( r e x -  too)~2 
- = m - -  + ( 8 )  
f l  2 t a n h  (fi(rn~ - mo) /2 )"  

Equations (2), (7), and (8), require recursive solutions which make them no more 
useful than the general equation (6). 

A simple, almost intuitive estimate of the variance of fi can be obtained from the 
curvature of ln(L) at its maximum. The greater the curvature, the sharper the 
maximum and the smaller the variance. For instance, for a set of Gaussian obser- 

v a t i o n s w i t h l i k e l i h o o d L = I I e x p [ - - ( 2 - ~ x ) 2 ] , a n d w i t h a n e s t i m a t e f o r 2 g i v e n  

O In L (xi - -  X) 
by O----~ - ~ o ~ - 0, which is the unweighted least-squares estimate, one 

i 
- 0  ~ In L N 

finds a x----- T -  - ~ .  This is the usual expression for the reciprocal of the variance of 

the mean, except that a factor (N - 1 ) / N  is included i fa  sample estimate, s 2, is used 
instead of the unknown o ~. For the likelihood function leading to equation (1), N~ 
f12 is identical to Aki's result. More generally, the law of large numbers ascertains 
(e.g., Edwards, 1972) that, for sufficiently large numbers, fl is approximately normally 
distributed about its mean with variance 
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_[02 In L~ -1 
var \ 0/ 2 ] 

Another derivation and result are given by Kendall and Stuart (1963). Equation (6) 
yields 

ti exp (- f lmi)  
1 

timi exp (-- f lmi)  - -  2 ti exp (-- f lmi)  ~ t imi 2 exp (- f lmi)  
i i 

(9) 

50- 
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FIG. 1. -el S.D. confidence intervals,  15.9 and  84.1 percenti les~for an  es t ima ted  average ~ of a Poisson 
variable,  ca lcula ted f rom equat ions  (11) and  (12) and  f rom 2 + ~/x. 

which is obtained as a by-product from solving (6) numerically using the Newton 
iteration scheme (cf. Appendix). 

For a useful estimate of fl, the total number of events, N, should be large enough 
to allow use of a Gaussian with variance (9) for the distribution of fl, but Utsu's chi- 
square distribution with k ~ ffi 2Nflo/fl, [ = 2 N  could be used for small numbers. Utsu 
includes this cumulative distribution of bo/b as his Figure 1. From this figure and 
the results shown in our Figure 1, the approximation may well be used with sufficient 
accuracy to much smaller N. However, it should be pointed out that this distribution, 
in fact, disagrees with the maximum likelihood principle, since its peak does not  
occur at X 2 = 2N [cf. also the discussion following equation (11)]. 

The activity parameter, equivalent to "a" in the Gutenberg-Richter relation, is 
not usually discussed since its maximum likelihood estimate is simply the total 
number of events observed above the threshold of completeness. For unequal 
observation periods, the total number of events, N, is still a Poisson variable, being 
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the  sum of Poisson variables, each given by the sought-after  actual annual  event  
rate,  Na, a t  or above rno, multiplied by the probability,  qi, of falling into magni tude 
increment  rni, qi -- exp ( - f l r n i ) / ~ j  exp ( - f l rn j ) ,  and multiplied by  the number  of 
years  which each magni tude  increment  was observed [q~ is not  the same as p~ in 
equat ion (5)]. Thus,  

Na = N ~ exp ( - f lmi) /~ t1 exp (-flmj). 
i j 

(lO) 

For  identical ti, this reduces appropriately to N i t .  

T h e  variance of Na is N a / N ,  and since N hopefully is a substantial  number,  
confidence limits can approximately  be obtained from the normal  distribution. 
However,  the chi-square distributions quoted in the next  paragraph are more 
appropria te  for smaller N. 

For  visual display and comparison, ear thquake  recurrence data  are usually plotted, 

TABLE 1 
CONFIDENCE INTERVALS FOR POISSON MEAN, N* 

~v N ~L 

1.84 0 0 
3.30 1 0.173 
4.64 2 0.708 
5.92 3 1.37 
7.16 4 2.09 
8.38 5 2.84 
9.58 6 3.62 

10.8 7 4.42 
12.0 8 5.23 
13.1 9 6.06 
14.3 10 6.89 

* Lower and upper +1 S.D. confidence intervals, i.e., 
15.9 and 84.1 percentiles use ~£L and pu from equation (11). 
Above N = 9, use Figure 1 or N - N 1/2 for the lower 
bound and N + 3/4 + (N + 1/2) 1/2 from equation {12}. 

most  often as logarithmic cumulat ive event  counts, accumulated from above. Re- 
gardless of the me thod  of calculation, lines are then  shown which should fit the data 
in a convincing manner.  The  obvious way of quantifying the expected fit is the 
inclusion of error  bars, e.g., _+1 S.D. above or below the plot ted points. For  large 
event  numbers,  +_N 1/2 corresponds closely to the usual in terpreta t ion as a confidence 
interval  of _1  S.D., enclosing 68 per cent of the distribution. For  small numbers  and 
for annual  rates, especially when derived from unequal  observat ion intervals, ques- 
tions ma y  arise about  the equivalent  confidence intervals to use, and the following 
expressions are, therefore,  quoted here  for the lower and upper  limits, #L and gv of 
the two-sided intervals of confidence 1-a in te rms of chi-square distributions with f 
degrees of f reedom (Graf e t  al . ,  1966), and their  numerical  values for _+1 S.D. are 
given in Table  1 

gL ½ 2 ffi X ~/2;f with f = 2N 

~ ½ 2 
---~ X 1--(a/2);f with f = 2(N + 1). (11) 

This  is obviously not  an  exact result. For  instance, only the distribution for the 
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upper limit has its maximum at N, in agreement with the maximum likelihood 
approach used to estimate N in the first place. Furthermore, for small confidence, 
i.e., for the practically not useful case of a / 2  approaching 0.5, the change in f leads 
to a finite confidence range. On the other hand, for null observations, equation (11) 
gives useful nontrivial upper limits. For N ~> 9, approximations for (11) are given by 

# u  =- N + ½ + ¼ u2i_,/2 + ui-~/2~(N÷, (12) 

where u, is the Gaussian variate for confidence a. 
Figure 1 shows the limits derived from equations (11) and (12) for 68.2 per cent 

confidence as well as N +_ N I/2. Over the whole range, down to x = 4 or 3, the lower 
limit (11) is better approximated by N - N 1/2 than by (12) which is only shown for 
its recommended range. For the upper limit (11), one finds (12) to be the better 
approximation, but again N + N I/2 is useful, although not conservative, down to 
about x = 10. 

Confidence bounds for earthquake rates ,  from equal or unequal observation 
periods, are obtained for the relevant total event count and scaled down to unit 
time. 

T A B L E  2 

NUMBER OF EVENTS IN 1/4 MAGNITUDE INCREMENTS, AND THE CORRESPONDING OBSERVATION 

PERIODS BEFORE AND INCLUDING 1975 FOR SOME OF THE WESTERN CANADIAN ZONES OF 
EARTHQUAKE OCCURRENCE 

Magnitudes, Interval Centers 

Zone 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 

No. of events  
Cascades  

Puge t  Sound 

Nor th  Vancouver  

I s land  

No. of years  

3 6 1 2 2 0 0 0 1 

9 6 1 1 5 0 1 2 0 0 1 0 1 

1 1 1 0 0 0 1 1 1 0 2 0 1 1 

(-- . . . .  25 . . . . . . .  --> <--45 - - -->(- 76 

A S A M P L E  A P P L I C A T I O N  

The described estimation procedure is currently used to determine seismicity 
parameters for the Canadian zones of earthquake occurrence, such as used by 
Basham et  al. for eastern Canada, where magnitude 6 to 7 may be completely 
cataloged over 300 yr while magnitude 3.5 has only recently become complete. As 
an illustration of the method and its remaining problems, an application to some of 
the western Canadian zones is presented here. Table 2 lists the condensed data that 
were used. These were abstracted from the Canadian earthquake catalog, and 
grouped in ¼ magnitude intervals. A grouping error is incurred which will be 
discussed later. 

A test of the Poisson assumption was not made; in fact, it is expected to be this 
assumption is violated, because it is difficult to define and remove aftershock 
sequences. On the contrary, with a view toward obtaining conservative activity 
estimates, it could be argued that  aftershocks should be counted, in case of doubt. 
This, as well as ignoring a possible time variability of earthquake activity, will result 
in overly optimistic error estimates. 

Figure 2 shows incremental and cumulative rates with +1 S.D. error bounds. The 
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84 percentiles are also shown for the empty magnitude intervals: they depend only 
on the length of the respective observation periods. The least-squares lines are 
minimizations for log(N or n) residuals. Other methods such as minimization of 
perpendicular distances from the lines, or a nonparametric method (cf. Weichert 
and Milne, 1979) give slightly different lines, but this is inconsequential for this 
comparison. 

The maximum likelihood estimate is calculated from numbers of earthquakes in 
magnitude intervals, with the assumptions of a log-linear recurrence relation and 

? ? ' T ' I ; ? T ? 
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L 1 1.$- ~0 001 

.00t 

o, o , g  
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C A S C A D E S  ~< 

:.-/,0 ,'%; " i 5.5 M , . M  I I I ~" 

, .  | 

u , : u x  : ;'.o 
I.$- 

° " l Ls r °' 
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MAGNITUDE MAGNITUDE 

Fro. 2. Right: incremental plots of earthquake rates, with least-squares lines (LS) and the maximum 
likelihood (ML) equivalent lines for the assumed regional maximum magnitude (MX) earthquake. Left: 
cumulative plots of earthquake rates, with least-squares lines and maximum likelihood lines for several 
maximum magnitudes. Typical +1 S.D. estimates for the ML parameters are indicated. The properly 
curved cumulative ML estimate is only shown for one extreme example. 

straight cutoff of the event density at some maximum magnitude; therefore, a visual 
comparison with the data and with least-squares estimates should be made on an 
incremental plot, even though here, the information that was contained in the 
different lengths of the observation periods has already disappeared except, perhaps, 
for the unexpectedly broad confidence intervals at lower magnitudes. For each of 
the seismic source zones, the maximum likelihood line is shown for one maximum 
magnitude in addition to the least-squares lines. 

One notes that the least-squares recurrence slopes are all shallower than the 
corresponding maximum likelihood slopes. This is due to the points at minus infinity 



1344 D I E T E R  H. W E I C H E R T  

(log 0) representing the empty intervals and predominantly occurring at the high- 
magnitude end. These points are not taken into account by the least-squares 
method. In the case of the North Vancouver Island Zone, empty magnitude intervals 
are well distributed over most of the magnitude range, pulling the ML estimate 
below all plotted data points. In general, both the least-squares and maximum 
likelihood lines fit the incremental plot equally well, according to the simple criterion 
of expecting the line to pass through about ~ of the 68 per cent confidence intervals. 

For the least-squares method, the unpleasantness of empty intervals and large 
data scatter is partly overcome by plotting and fitting on a cumulative plot. The 
customary repetition of points from right to left results in a rather arbitrary high 
weighting of the less well-established rates in the higher magnitude range, but also 
has an unintentional beneficial effect described below. 

In comparing cumulative and incremental recurrence curves, one must remember 
two points. First, the level of the lines will depend on both fl and the interval width. 
For the usual plotting convention of placing cumulative points at the lower end of 
the respective magnitude interval and centering incremental points, one finds, well 
away from Mx, where the density is truncated, that the incremental/cumulative 
ratio, n/N, is approximately given by 

n/N = exp (fiB) - exp ( -  fiB) - 2 sinh (fiB). (13) 

The straight lines denoted by ML:MX . . . .  , in the cumulative plots, are related to 
the maximum likelihood estimates for the respective Mx by this expression. 

As the maximum magnitude is decreased and empty intervals above the observed 
data range are omitted, the maximum likelihood lines become shallower, often by 
an appreciable fraction of their standard deviations. However, for the Cascade and 
Puget Sound seismic zones, no clear bias between least-squares and maximum 
likelihood lines can be recognized. One can conclude that least-squares fitting in 
cumulative plots is a reasonable approximation for well-defined data sets. It appears 
that the repetition of points for empty intervals tends to pull the estimates down, 
while in the incremental form this is not possible. Other weighting schemes could be 
used, such as l/N, but conceptually none can compete with maximum likelihood. It 
is noted that the formulation given here does not give an estimate of Mx, but 
alternative approaches could be used such as McGuire {1977). 

The second, more important point to observe is the curvature that should be 
shown in the cumulative equivalent of the incremental maximum likelihood lines as 
a result of the cutoff at Mx. Thus, the cumulative curves, N', should go to minus 
infinity according to the relation 

log (N') -- log (N exp (-tiM)(1 - exp ( -  (M~ - M)))). (14) 

This effect is small enough for representative fl of 1.6 (b = 0.7), to be ignored in 
Figure 2 for the Cascades and Puget Sound seismic zon(-, for the purposes of 
comparison with least-squares straight lines. However, for the low fl of the North 
Vancouver Island Zone, the effect is so pronounced, that the ML:MX = 7.5 line lies 
above all data points. The properly calculated curve is, therefore, shown for this 
case. As expected from the incremental plot, it passes below the data. 

In formulating the statistical approach, it was assumed that catalog magnitudes 
could be grouped unambiguously. This is not true, since the older earthquake 
magnitudes were given to ¼ magnitudes, so that the increment used for this 
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illustration is appropriate. For m0.1 catalog increments, m¼ grouping leads to 
unequal magnitude intervals; in this case, a m0.5 grouping would be more appropriate 
as, e.g., used by Basham et al. and by Milne et al. (1978). However, this makes the 
assignment of the older m¼ earthquakes ambiguous. Further generalizations of the 
estimation procedure to take this into account do not appear worthwhile in the light 
of the available data. 

CONCLUSIONS 

It is suggested that estimation of recurrence parameters in the Gutenberg-Richter 
relation should always employ a maximum likelihood method, and the method 
presented here gives the necessary extension of known results to the important case 
of unequal periods of observation. Although for well-constrained data, the use of 
alternative methods, such as least squares may lead to equivalent results, one finds 
that for less well-defined data sets, the effect of subjective plotting and weighting 
methods leads to appreciably different parameters. In particular, least-squares 
fitting does not allow inclusion of a preconceived judgment on maximum magnitude, 
and also ignores the information content of the empty magnitude intervals, even 
though, in a cumulative plot, an empirical partial correction is usually made. Finally, 
it should perhaps be pointed out, that uncertainty of the lower cutoff magnitude 
affects results of all methods in a similar way, but this problem is not addressed in 
this paper. 
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APPENDIX 

ESTIMATION OF BETA BY MAXIMUM LIKELIHOOD FOR YRRIRBLE OBSERVATION 
PERIODS FOR DIFFERENT MAGNITUDE INCREMENTS. 
OTHER VALUES PRINTED: B AND ST. DEY., N5 AND ST. DEV. AND LOG(NO) 

INDEX OF LOWEST AND HIGHEST MRGNITLIDE GROUP TO BE USED 
IS K=LOW, IGH 
IT(K) = LENGTH OF OBSERYRTION PERIOD OF MAGNITUDE K. 
FMRG(K)=CENTRRL VALUE OF MAGNITUDE INCREMENT K. 
N(K)= NUMBER OF EVENTS IN MAGNITUDE INCREMENT K. 
DATA INPUT RT DISCRETION OF USER 

DIMENSION IT(21),FMRG(21),N(21),TITLE(20) 
BETA = 1.5 ' INITIAL TRIAL VALUE 
ITERATION LOOP: 
CONTINUE 
SNM=O. 
NKOUNT=Q 
STMEX=O. 
SUMTEX=Q. 
STM2×=B. 
SUMEXP=Q. 
DO 2 K=LOW, IGH 
SNM = SNM+N(K)*FMRG(K) 
NKOUNT=NKOUNT+N(K) 
TJEXP=IT(K)*EXP(-BETR*FMRG(K)) 
TMEXP=TJEXP*FMRG(K) 
SUMEXP=SUME×P+EXP(-BETR*FMRG(K)) 
STMEX=STMEX+TMEXP 
SUMTEX=SUMTEX+TJEXP 
STM2X=STM2X+FMRG(K)*TMEXP 



1346 DIETER H. WEICHERT 

2 CONTINUE 
DLDB=STMEX/SUMTEX ! *N - SLINNM = 0 FOR EXTREMUM 
D2LDB2 = NKOUNT*(DLDB**2 - STM2X/SUMTEX) 
DLOB = DLDB*NKOUNT-SNM 
BETL--BETA 
BETA = B E T A  - DLDB/D2LPB2 
STDV = SQRT(-I. /D2LDB2) 
B=BETA/QLOG(IQ. ) 
STDB=STDV/RLOG(IO. ) 
FNGTMO=NKOUNT*SUMEXP/SUMTEX 
FNS=FNGTMO*EXP(-BETR,~:(5. -(FMRG(LOH)-O. $25) ) )  
FNO=FNGTMO*EXP( BETA*( FMRG(LOH)-O. 125 ) )  
FLGNO=ALOGIO(PNO) ! FOR 0. 25 INCREMENTS 
STDFN5=FN5/SQRT(FLOAT(NKOUNT)) 
IF(ABS(BETA-BETL). GE.. 0001) GO TO 77 
PRINT Z00, BETA, STDY, B, STDB 

2C10 FORMAT(I.~X," BETA=',FB. 4,"  + / - i  STDY OF',F7. 3 , '  B=" 
I ,  FB. 4 , "  ÷ / - 1  STDV OF',FT. 3/) 
PRINT 210, NKOUNT, FLGNO, FN5, STDFN5 

ZIO FORMQT(14X,'TOTQL NUMBER OF EYENTS " , I 4 ,  
i ' ,  LOG'.ANNUAL RATE QBOYE MO) ",FG. 3/ 
2 14X,'QNNUBL RATE RBOYE M5 " , F B .  4 , "  +£- I  5TDV OF'F?.~) 
STOP 
END 
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