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From two to many earthquake  
sources at fixed distance
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Some earthquake statistics
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from Stein & Wysession (2003)
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from Stein & Wysession (2003)
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Gutenberg-Richter magnitude frequency 
relation: incremental version

Gutenberg and Richter (1954): Log10 (NM±ΔM/2 ) = a − b ⋅M

NM±ΔM/2 = 10
a−b⋅M= 10a10−b⋅M = α ⋅ e−β⋅M

The number of earthquakes as a function of magnitude 
follows an exponential distribution

a = measure of activity level
b = „b-value“, ratio of large to small earthquakes, 

measure of  degree of fracturing, (stress?), 0.4 < b < 1.8, 
global average roughly equal to 1

with
α = 10a

β = ln(10) ⋅b{
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Gutenberg-Richter magnitude frequency 
relation: cumulative version

NM±ΔM/2 = α ⋅ e−β⋅M

incremental

N≥M = ?
cumulative

The cumulative number of earthquakes as a function of 
magnitude  follows an exponential distribution as well

Log10 (N≥M ) = acum − b ⋅M

N≥M = α e−β⋅m
M

∞

∫ dm =
α
−β

⋅ e−β⋅m
M

∞
=
α
β
⋅ e−β⋅M

= α cum ⋅ e
−β⋅M = 10acum −b⋅M with

α cum = α / β

acum = a + Log10 (e)ln(β)

b = β / ln(10)
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On global scale approximately

Earthquake number Magnitude
1 > 8

10 7 – 7.9
100 6 – 6.9

1000 5 – 5.9
10000 4 – 4.9

100000 3 – 3.9
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Goal today 
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Two sources at fixed distance

Distribution of  sources at a 
distribution of distances
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Earthquake occurrence model

In seismic hazard analysis: 

Most popular: doubly truncated exponential with [Mlow,Mupp]
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M

Completeness 
limit and damage 
negligible below

Physical or 
tectonic limit

a-value
b-value
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[Mlow,Mupp]=[5,7]

Linear display

Doubly truncated magnitude-frequency distribution
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Many source at fixed distance

..............

Each bin treated as individual source 
at the same distance with different 
occurrence rates 

1) Calculate conditional exceedance 
    probability for ground motion level
    of interest for each magnitude bin: 
    P(x>xtest | seismic event in magnitude bin) 

Principle:

2) Multiply  occurrence rate for each
    magnitude bin with
    P(x>xtest | seismic event in magnitude bin) 

=  expected exceedance rate for ground
    motion level of interest for each
     magnitude bin

Sum gives total expected exceedance 
rate for ground motion level of interest

Ground motion at the site of 
interest calulated using the 
model of Berge-Thierry  et al. 
(2003) with  15 km distance 
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ContribOfMagBins2HazardValue
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HazFromDistribAtFixedDist
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Xtest= 0.5 m/s2

# of standard deviation of xtest from median   

Expected exceedance rate for 0.5 m/s2: 0.658631
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Xtest= 1.5 m/s2

Expected exceedance rate for 1.5 m/s2: 0.0593884
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Xtest= 3.0 m/s2

Expected exceedance rate for 3.0 m/s2: 0.004311041
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Lessons learned

• all sources contribute to the expected exceedance 
rate for a given ground-motion level of interest.

• the influence of the occurrence rates and the 
exceedance probabilities as a function of magnitude 
anti-correlate.

• the dominant contributions come from different 
magnitude bands depending on the ground motion 
level of interest. For higher ground-motion levels of 
interest, higher magnitude sources become more 
and more important.
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Expected Rate of Exceedance Curve

Definition Hazard curve: 
Expected rate of exceedance  as  function of ground-motion level.

Expected exceedance rate for 3.0 m/s2: 0.0043

Expected exceedance rate for 1.5 m/s2: 0.059

Expected exceedance rate for 0.5 m/s2: 0.659
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Definition 

The reciprocal value of the expected rate of 
exceedance for a given ground-motion level is 
commonly referred to as return period. 
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Return period and exceedance probability

Question: Return period for ground motion produced as result of 
a  Poissonian process in time for which the exceedance probability 
is 10% in T=50 years?

Assumption: Poisson process with: 
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Example: Poisson Process

Remember: Return period is 1/(annual exceedance rate l)

P(# of events >0 in T = 50a) = 0.1 = 1− e−λ⋅50

λ =
ln(1− 0.1)

50
= 0.00211
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Potential misunderstandings

The  term return period has led to a number of 
misunderstandings. 

• it wrongly suggests some periodicity in the process 
of generating ground motion and 

• it might wrongly create the impression that ground 
motion corresponding to large return periods is caused 
by earthquakes which have a large average inter-
event time.
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Memory test

How many random numbers do you need to generate on 
average to obtain a number larger than  1 σ,  2 σ, 3 σ,  4 σ?
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Answer from simulation

N(0,1) 20000 samples How many trials to reach 1σ 

1 σ 2 σ 3 σ 4 σ
2.38 17.64 399.28 14182.3

For a small number of trials, it is very likely that random numbers generated 
from a  normal distribution stay close to the center of the distribution. 
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Consequences for seismic ground motion
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Ground motion corresponding to large 
return periods can either be caused by 
typical ground motion from rare events 
or by untypical ground motion from 
frequent events. 

From the center of the 
probability distribution

From the tails of the 
probability distribution

...It´s not just the occurrence rate of earthquakes!
29
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Earthquake distribution 
from within a circular area
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Uniformly distributed sources 
within a circular area

200 km

Total # of earthquake with M > 4: 1 per year

b-value: 1

[Mlow,Mupp]=[4,7]

No earthquakes in distances less than 10 km 
(out of curiosity)

Different hazard levels are 
dominated by sources in 
different distances.  
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Theoretical perspective
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Contribution to hazard from 
one distance and one magnitude bin

 Hazard contribution of single 
magnitude-distance-bin:

P(R ± dR / 2,M ± dM / 2,Sa > a)

Joint probability that an earthquake within a 
magnitude range  M ± dM/2 occurs within 

a distance range of  R ± dR/2  and  causes the 
ground motion level a to be exceeded (Sa > a)

R ± dR / 2
R

Site

Fixed distance
(one ring)

M ± dM / 2

Fixed magnitude range
(one bin)
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R ± dR / 2
R

M ± dM / 2

Fixed distance and

magnitude range

Site

P(R ± dR / 2,M ± dM / 2,Sa > a)

Rewrite joint probability:

P(R ± dR / 2,M ± dM / 2,Sa > a) =

Assuming independence of M and R:

= P(Sa > a R ± dR / 2,M ± dM / 2) ⋅ P(R ± dR / 2) ⋅ P(M ± dM / 2)

P(Sa > a R ± dR / 2,M ± dM / 2) ⋅

conditional probability for 
ground motion exceedance

P(R ± dR / 2,M ± dM / 2)

joint probability for earthquake 
occurrence in a magnitude-distance-bin
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R ± dR / 2
R

M ± dM / 2

Fixed distance and

magnitude range

Site

P(R ± dR / 2,M ± dM / 2,Sa > a) =

P(R ± dR / 2) ⋅
P(M ± dM / 2)

P(Sa > a R ± dR / 2,M ± dM / 2) ⋅

Evaluate  exceedance probability:

PDFgm(y R ± dR / 2,M ± dM / 2
a

∞

∫ ) ⋅dy

Considering natural logarithm  of ground motion instead:

PDFln(gm)(ε R ± dR / 2,M ± dM / 2ln(a)− ln(µ )
σ

∞

∫ ) ⋅dε

Ground motion model

Log-normal distribution 
of ground motion

a
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R ± dR / 2
R

M ± dM / 2

Fixed distance and

magnitude range

Site

Assumption: Distance distribution fr(R) within source zone

P(R ± dR / 2) = fR (R) ⋅dR

P(M ± dM / 2) = fm (M) ⋅dM
Assumption: Magnitude distribution  fm(M)

= P(Sa > a R,M) ⋅ fR (R) ⋅ fm (M) ⋅dR ⋅dM

Hazard contribution:

P(R ± dR / 2,M ± dM / 2,Sa > a)

P(R ± dR / 2) ⋅ P(M ± dM / 2)= P(Sa > a R ± dR / 2,M ± dM / 2) ⋅
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Spatial distribution of earthquakes

Areal source

Site

Exceedance probability:

P(Sa > a) = P(Sa > a M,R) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dR ⋅dM
Mmin

Mmax

∫

Expected exceedance rate: 

ν(Sa > a) = N(Mmin ) ⋅ P(Sa > a M,R) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dR ⋅dM
Mmin

Mmax

∫

ν(Sa > a) = P(Sa > a) ⋅N(Mmin )
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Several areal sources

Single source: 

ν(Sa > a) = N(Mmin ) ⋅ P(Sa > a M,R) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dR ⋅dM
Mmin

Mmax

∫

Several sources: 

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ P(Sa > a M,R) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dR ⋅dM
Mmin

Mmax

∫

Different notation (Abrahamson, 2000): 

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

explictely expressed as 
integral over ε

Hazard Integral
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The hazard integral illustrated
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What´s in the hazard integral?

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

Distance distribution 
Ground motion model Magnitude distribution
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The magnitude distribution

Doubly truncated exponential distribution
                (Gutenberg-Richter)
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Source distribution 
unrealistic but simple

-10

-5

0

5

10

X HkmL
-10

-5

0

5

10

Y HkmL

-10

-5

0

Z HkmL

0 2 4 6 8 10 12 14
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Z HkmL

PD
F

42
Monday, January 21, 13



                    Frank Scherbaum

    

Distance distribution
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What´s in the hazard integral?

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

Distance distribution 
Magnitude distribution
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What´s in the hazard integral?

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫
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What´s in the hazard integral?

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

1 m/s2
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use ε for shading

What´s in the hazard integral?

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

*
Corresponding 
distribution
of ε
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What´s in the hazard integral?

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

*

The value of the 
integral is simply 
the volume under 
the surface
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1 m/s2
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4 m/s2
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Hazard Curve
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General areal sources
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ArcLenghtInPolygon
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Distance distribution  
for general areal sources

0.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

0.628319

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.1

3.14159

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.5

4.05457

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.7

3.35346

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.8

R: 0.7

R: 0.9

1.73155

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 1.0

1.45243

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Distance 
distribution

54
Monday, January 21, 13



                    Frank Scherbaum

    

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

Repi

U
-
PD
F

Distance distribution  for general areal 
sources

R: 0.7

0.628319

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.1 3.14159

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.5

4.05457

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.7

3.35346

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 0.8

R: 0.9

1.73155

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

R: 1.0

1.45243

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

Repi

U
-
PD
F

55
Monday, January 21, 13



                    Frank Scherbaum

    

EpidistDistribInPoly
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Full distance distribution
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Hazard integral

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

Distance distribution 
Ground motion model Magnitude distribution
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Hazard integral

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

Ground motion model 0 20 40 60 80
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Hazard integral

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

Ground motion model 

1 m/s2
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Hazard integral

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

Ground motion model 

1 m/s2
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Hazard integral

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫
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use ε for shading

Hazard integral

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

*
Corresponding 
distribution
of ε
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Hazard integral

ν(Sa > a) = Ni(Mmin )
i=1

nsources

∑ ⋅ PDFln(gm)(ε R,Mln(a)− ln(µ )
σ

∞

∫ ) ⋅
Rmin

Rmax

∫ fR (R) ⋅ fm (M) ⋅dε ⋅dR ⋅dM
Mmin

Mmax

∫

*

The value of the 
integral = volume 
under the surface
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Hazard curve
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HazardIntegral
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